

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 June 2013 (27.06.2013)

(10) International Publication Number
WO 2013/093909 A1

(51) International Patent Classification:
F24J1/00 (2006.01) **H01Q 15/14** (2006.01)
B64G 1/44 (2006.01)

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/IL2012/050530

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:
17 December 2012 (17.12.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
217059 18 December 2011 (18.12.2011) IL

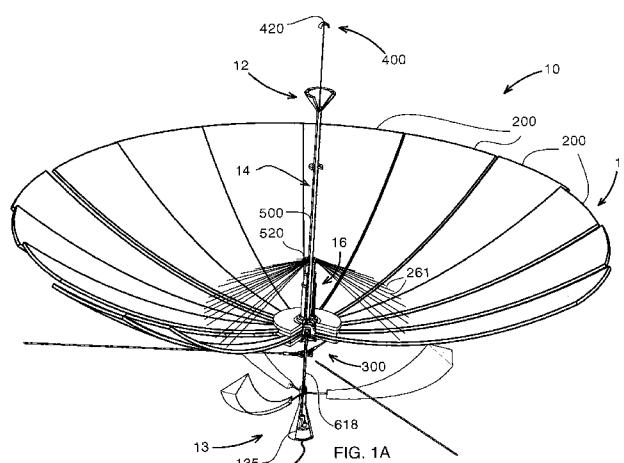
(71) Applicant: OR HAMA ENERGY LTD. [IL/IL]; 14/4 Hakinor Street, 98361 Maaleh Adumim (IL).

(72) Inventor: BLAU, Gilad; 14/4 Ha Kinor Street, 98361 Maaleh Adumim (IL).

(74) Agent: REINHOLD COHN AND PARTNERS; P.O.B. 13239, 61131 Tel-Aviv (IL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

Declarations under Rule 4.17:


— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: SYSTEM AND METHOD FOR SOLAR ENERGY UTILIZATION

(57) **Abstract:** A system for solar energy utilization is described. The system comprises a solar receiver, a solar energy concentrator mounted on a pole extending from the solar receiver along the main axis of the system, and a solar tracking system. The solar receiver is configured for receiving solar energy from the sun and concentrating the received solar energy at a predetermined spot area. The solar receiver includes a plurality of flexible mirrors independent of each other and radially arranged around a main axis of the system. The flexible mirrors are configured to be either deployed for operation or collapsed, for example for transportation or in the cases of possible damage of the system. The solar energy concentrator is located at the predetermined spot area in which the solar energy reflected from said plurality of flexible mirrors is concentrated, and configured for converting the concentrated reflected energy into electric energy. The solar tracking system is configured for sensing position of the sun and tilting the system for directing the solar receiver towards the sun to receive and reflect maximum sunlight onto the predetermined spot area.

WO 2013/093909 A1

SYSTEM AND METHOD FOR SOLAR ENERGY UTILIZATION

FIELD OF THE INVENTION

This invention relates generally to system and methods for solar energy utilization, and more specifically to dynamic methods and apparatus for generation of electricity.

5 BACKGROUND OF THE INVENTION

To date, there are two predominant kinds of solar systems, namely (a) thermal system based on a mirror focusing the sun's rays and producing energy via heat. This system is based on mirrors and is effective, but it is generally too costly; and a (b) photovoltaic (PV) system, which comprises photovoltaic cells, and which convert 10 incident energy into electricity.

For example, U.S. Pat. Application No. 2012/0118351 describes a solar electricity generator including an array of photovoltaic power generating elements, and a single continuous smooth solar reflecting surface, the surface being arranged to reflect light from the sun onto the array of photovoltaic power generating elements.

15 U.S. Pat. Application No. 2011/0265852 describes an open concentrator system for solar radiation comprising a hollow mirror and a photovoltaic module comprising a plurality of solar cells disposed in the focus of said hollow mirror, the photovoltaic module being encapsulated by a housing. The housing is thereby configured such that it has a transparent cover at least in the region of the incident radiation reflected by the 20 hollow mirror and such that this transparent cover is at a spacing from the photovoltaic module, i.e. is situated in the cone of the incident radiation.

It should be noted that these systems can be less effective than thermal systems, and often require more than seven years of electrical output to provide a return on investment (ROI). Thus, solar systems, despite their green advantages are not 25 sufficiently economical, compared to conventional energy sources.

- 2 -

There is thus a need to provide economical, low-cost systems and methods for solar energy utilization.

GENERAL DESCRIPTION OF THE INVENTION

5 Despite the prior art in the area of solar energy utilization techniques, there is still a need in the art for further improvement in order to provide a more economical and low-cost system and method for solar energy utilization.

There is also a need and it would be advantageous to have a light weight system for solar energy utilization

10 In some embodiments of the present invention, improved methods and apparatus are provided for utilizing solar energy in production of electricity.

The systems and devices of the present invention are constructed in the form of a flower, and this form is inspired by the shape and qualities of a living flower, whose petals or leaves are easily manipulated. Hereinafter the terms "petals" and "leaves" will 15 be used interchangeably. According to an embodiment, the system includes a pole, a solar receiver mounted on the pole configured for reflecting and focusing the received solar energy, and a solar energy concentrator mounted on the pole at the location in which the solar energy that is reflected from the solar receiver is concentrated. Thus, as noted above, the pole resembles a flower stalk, the solar receiver resembles a flower 20 corolla and includes a plurality of mirrors that resemble flower petals, whereas the solar energy concentrator resembles a flower pistil.

Each mirror leaf includes two main elements, such as an inflatable supporting element and a working element that covers the supporting element. The leaf is flexible, because both (supporting and working) elements are made of flexible materials.

25 Strings form parts of the supporting elements. The leaf shape can be flat or curved. The inflatable supporting element includes a valve connected by an air line to the air valve and by a common air line to the air pump. The supporting element has a spring-like ability because it is filled by pressurized or non pressurized gas.

30 The working element is formed by plates made of reflex foil. Concentric bedplates with locking mechanisms are stacked in layers.

- 3 -

The pole includes an upper central tube situated in the main axis of the device, attached to the bedplates. The leaf mirror has a lock mechanism opposite to the lock on the bedplate.

Once inflated, the leaf can be closely connected to the device. Clusters of leaves 5 create a multi-layer working surface for the device. Multiple layers of leaves of equal size create a multi-focus area with a "dispersed" focus. Due to the centre of gravity point of the device, which is lower than a center of rotation and due to the device's construction being based on leaves with described attributes, the entire device is well-balanced and is naturally protected against outside forces when it is spread out and 10 operational.

The folding mechanism is based on a pneumatic piston, which is coupled and pressurized through an air line to the air pressure tank with an electromagnetic air valve and by a common air line to the air pump. The piston is located on the top bedplate and actuates in the axis of the central tube.

15 The leaves can be closed at any time. Thus, the surface of the device can fold and shut. By folding and shutting the device, the leaves change to a compact shape with low aerodynamic profile which is greatly resistant to any outside forces.

A rotation mechanism based on a ball or a ball bearing is in the center of rotation. A tube going through the ball is terminated by two adapters and is situated 20 beneath the bedplates. The device is connected by sheaths around the ball to legs or to cables. The upper central tube is connected to the upper adapter. A lower central tube is connected to the ball through the lower adapter.

The device can easily change the direction of the central tube about two axes due to the rotation mechanism. Three fluid tanks are connected symmetrically by an 25 angle of 120° to the lower central tube. Inside the tanks is a fluid, whose movement induces a change in the direction of the direction vector.

Redirection can, for example, be achieved by pumping the fluid between the tanks and changing the center of gravity of the device. Pumping is produced by the air pump and can utilize the principle of an airlift. The fluid's destination is determined by a 30 photovoltaic sensor on the top of the device. A microchip associated with sensor receives input from all connected sensors, manages the compressor, servos,

- 4 -

electromagnets, etc. through many different processes. The microchip analyzes the appropriate time to fold and shut the device and drive the air pump to keep the necessary pressure in every part of the device as required.

According to some embodiments, the system includes a movement sensor that is 5 responsible for active protection (closing) of the device during operation. Folding of the system can be carried out by a pneumatic piston mounted on the pole of the system. The central tube can convey cold air from the area below the surface of the corolla of the device, where the air is naturally cooler as a result of shadows created by the corolla surface of the device.

10 The solar concentrator is also referred to as a "crown" because of its shape and is situated on the top of the central tube of the pole. There could be various embodiments of a crown, based on different principles and technology.

In one case of utilization, the crown's surface catches sun rays prior to reaching 15 a real focus and the crown's curvature and construction with air conduits create an airflow based on expansion of hot air and differences of temperature potentials, through the central tube. Photovoltaic (PV) plates can be inserted in the surface of the crown. These PV plates are able to transform the power of concentrated solar energy into 20 electricity. The PV plates can be connected in parallel and/or serially into an electric circuit by conductors, e.g., wires. The DC power generated by the PV plates can be conducted to an inverter, that can be situated outside the system. The inverter is responsible for conversion DC power to AC power, synchronization of frequency and management of the supply of electricity to a grid.

It should be understood, that the system's lightweight construction that can, for example, weigh only a few kilograms, creates many opportunities, currently 25 unavailable, for utilizing and placement of the system. The system can be installed on roofs, when the overlapping area of the roof also becomes a sunshade. The extended support pivots create a raised system suitable for installations in parks, fields, lawns, gardens, forests or hillsides etc. in harmony with the natural environment.

If the system is connected to carrying cables, one- or two- dimensional, vertical, 30 horizontal or combined environmentally friendly installations can be created in cities, habitable areas, deserts, islands and oceans, etc.

Thus, the present invention partially eliminates disadvantages of conventional techniques solar energy utilization and provides a novel solar energy utilization system including a solar receiver, a solar energy concentrator mounted on a pole extending from the solar receiver along the main axis of the system, and a solar tracking system.

5 The solar receiver is configured for receiving solar energy from the sun and concentrating the received solar energy at a predetermined spot area. The solar receiver includes a plurality of flexible mirrors independent from each other and radially arranged around a main axis of the system. The plurality of the flexible mirrors is configured to be either deployed for operation or collapsed, for example for
10 transportation or in the cases of possible damage of the system.

The solar energy concentrator is located at the predetermined spot area in which the solar energy reflected from said plurality of flexible mirrors is concentrated, and configured for converting the concentrated reflected energy into electric energy.

15 The solar tracking system is configured for sensing position of the sun in the sky and tilting the system for directing the solar receiver towards the sun to receive and reflect maximum of sunlight onto the predetermined spot area.

20 The solar receiver includes a hub having a plurality of disks arranged along the main axis of the system and suitable for holding the flexible mirrors. According to an embodiment, the hub includes an upper bedplate cover disk, a lower bedplate cover disk and a plurality of mirror holding disks sandwiched between the upper bedplate cover disk and the lower bedplate cover disk. The mirror holding disks are configured for securing and holding the flexible mirrors.

25 For example, the solar receiver may include three mirror holding disks and eighteen flexible mirrors arranged in three layers formed by the three holding disks. In this example, each mirror holding disk holds six flexible mirrors.

According to an embodiment, the solar receiver comprises a leaf locking mechanism configured for holding the flexible mirrors in the mirror holding disks. The mirror holding disks include a "female" part of the leaf locking mechanism securing the flexible mirrors in the radial positions around the main axis of the system. On the other
30 hand, each flexible mirror includes a "male" part of the locking mechanism mating the "female" part arranged in the corresponding holding disks.

- 6 -

According to an embodiment, each female part includes a corresponding slit arranged in the holding disk. An inner surface of the slits includes at least one slit irregularity in a tooth shape. On the other hand, each flexible mirror comprises at least one corresponding leaf irregularity having a shape suitable to mate said at least one slit 5 irregularity.

According to an embodiment, the solar receiver further includes a pneumatic mirror folding mechanism. The pneumatic mirror folding mechanism includes a movable ring mounted on the pole and capable to slide along the main axis of the system; folding strings attached to the flexible mirrors; and a pneumatic piston mounted 10 on the top of the hub, and configured to lift the movable ring. The flexible mirrors can be folded in the radial direction toward the pole by lifting the movable ring up to pull the folding strings.

According to an embodiment, the folding mechanism includes an electromagnetic lock device mounted on the pole and configured to lock the movable 15 ring, thereby holding the flexible mirrors in the folded state. The lock device can include an electromagnetic trigger configured for unlocking the lock device and releasing the movable ring.

According to an embodiment, the solar receiver includes an air tank coupled to the pneumatic piston via an air line including a controllable electromagnetic air valve. 20 The pneumatic piston is activated by pressurized air passing from the tank after opening the controllable electromagnetic air valve.

According to an embodiment, the pneumatic piston includes a plurality of concentric tubes telescopically arranged along the main axis.

According to an embodiment, the system further includes an air controllable 25 compressor coupled to the air tank for filling thereof with compressed air.

According to an embodiment, the air controllable compressor is coupled to the air tank via a multi-way gas flow control valve.

According to an embodiment, each flexible mirror includes an inflatable supporting member configured for connecting to the mirror holding disk, and a working 30 member that is mounted on the inflatable supporting member.

According to an embodiment, the inflatable support element includes a flexible inflatable frame having a ladder shape and including inflatable radial beams fortified by a plurality of inflatable cross ribs. The inflatable supporting member of the flexible mirrors includes a leaf locking mechanism for securing an end part of the inflatable 5 supporting member in the holding disks. The proximal end of the inflatable supporting member includes a nipple air valve configured for inflation of the flexible inflatable frame.

According to an embodiment, the system further includes a multi-functional controllable air compressor coupled to the inflatable supporting member for filling 10 thereof.

According to an embodiment, the inflatable supporting member is enveloped by a fiber mesh for fortifying the supporting member. The inflatable supporting member is covered by radial shaping strings crossing the inflatable supporting member in radial directions and by circumferential shaping strings crossing the inflatable supporting 15 member in the circumferential direction, which is perpendicular to the radial directions.

According to an embodiment, the shaping strings are interlaced with the fiber mesh along the radial direction, whereas the shaping strings are interlaced with the fiber mesh along the ribs. The shaping strings include SILON™ wire.

According to an embodiment, the inflatable supporting member further includes 20 one or more folding strings attached to a distal end of the inflatable supporting member.

According to an embodiment, the inflatable supporting member includes guide tubes, which are attached to the fiber mesh at the foldable cross ribs and are configured to provided passage of the folding strings unrestrictedly therethrough.

According to an embodiment, the foldable cross ribs of the inflatable supporting 25 member include a weakened longitudinal cross-section around which, the foldable cross ribs can kink or buckle to deform and move the radial beams towards each other.

According to an embodiment, the working member further includes a covering mesh attached to the top of the inflatable supporting member. The working member includes a plurality of flexible reflective plates attached to the covering mesh.

30 According to an embodiment, the flexible reflective plates are regularly arranged

and overlap with each other, thereby filling completely the top surface of the working member. According to another embodiment, the flexible reflective plates are sparsely dispersed within the top surface of the working member. According to yet an embodiment, the flexible reflective plates are arranged in a fish scale fashion.

5 According to an embodiment, the flexible reflective plates are deflectable from the surface of the working member, thereby forming holes between the plates to enable an air stream to flow through these holes, and returning the flexible reflective plates to their operating position during the absence of the air stream. A space can be formed between flexible mirrors enabling an air stream, such as a mild wind to flow through the
10 holes.

According to an embodiment, the solar receiver includes an air checking and filling mechanism configured for controllable checking pressure in the flexible inflatable frame of the flexible mirrors, and for filling the flexible mirrors with air when required, the air checking and filling mechanism includes a first multi-way air flow
15 valve configured to supply air to the flexible inflatable frame. The first multi-way air valve is coupled to the air controllable compressor (via an air pipe connected to the compressor via a second multi-way air valve.

According to an embodiment, the solar receiver further includes a first servo configured for setting the first multi-way valve to supply pressurized air from the
20 compressor to a selected flexible mirror.

According to an embodiment, the solar energy concentrator includes a substrate having a funnel shape with a wide conical substrate mouth with expansion towards a top end of the system, and a narrow stem including a sleeve connector mounted on the pole of the system. The substrate is axially symmetric and has a tapering angle of the conical
25 part in the range of about 5 degrees to about 85 degrees with respect to an axis of the pole. The substrate has an outer surface configured for mounting solar photovoltaic (PV) elements thereon to generate electricity. For example, the solar photovoltaic (PV) elements can include arsenic-germanium-indium (AsGeln) photovoltaic elements.

According to an embodiment, the solar energy concentrator includes an air-
30 based cooling mechanism. For example, the cooling mechanism can include an inner coned tube mounted inside of the substrate. The inner coned tube is axially symmetric

and has a diameter of a top of a conical mouth of the inner coned tube less than the diameter of the conical mouth of the substrate, thereby forming a circular slit between the substrate and the inner coned tube to form an air channel for cooling the photovoltaic elements. In the air channel, air passes from the area below the solar 5 receiver, then through the pole and finally through the slit.

According to an embodiment, the cooling mechanism further includes a fan located along the air channel and configured to facilitate the air flow in the air channel.

According to an embodiment, the inner coned tube is mechanically connected to the substrate by means of connecting members. Examples of the connecting members 10 include, but are not limited to, rods and plates in the shape of square brackets radially extending across the circular slit and attached to the walls of the inner coned tube and to the walls of the substrate.

According to an embodiment, a wall of the inner coned tube is wavy in shape and includes threads helically turning around the wall from both inner and outer sides of 15 the inner coned tube. Thus a whirl effect for the air passing and exiting between the substrate and the inner coned tube is provided that enhances the cooling of the photovoltaic elements.

According to an embodiment, the cooling mechanism further includes an outer coned tube mounted outside of the substrate on a sleeve mounted on the pole. The outer 20 coned tube is made from a material transparent to the light of the sun beams. The outer coned tube is axially symmetric and has a diameter of a top of a conical mouth of the outer coned tube greater than the diameter of the conical mouth of the substrate, thereby forming another circular slit between the substrate and the outer coned tube. This other circular slit provides another air channel for cooling the photovoltaic elements in 25 addition to the air channel formed between the substrate and the inner coned tube.

According to an embodiment, the solar energy utilization system of the present invention further includes a pivot system for orienting the main axis of the system towards the sun. The pivot system includes a bearing socket integrated with sleeves having an opening configured for inserting installation members, and a thrust bearing 30 arranged in the bearing socket. The thrust bearing includes a stationary outer race attached to the inner surface of the bearing socket and a movable inner race supporting

- 10 -

the system at a pivot point located on the pole at a center of rotation of the system.

According to an embodiment, the solar tracking system includes three fluid communicating balance tanks extending from the main axis of the system in radial directions with an angle of 120 degrees between each pair of the tank directions. The 5 three balance tanks contain liquid that is transferred between the tanks controllably via liquid communication tubes, thereby shifting the center of the mass of the system and tilting the main axis of the system in a desired direction.

According to an embodiment, the solar tracking system includes a second multi-way gas flow control valve coupled to an air compressor and configured for controllable 10 providing air to one tank selected from the tanks to increase the pressure in the selected tank and thereby to push the liquid out from the selected tank into the other tanks.

According to an embodiment, the solar tracking system includes a second servo configured for setting the second multi-way air flow valve to supply air from the air compressor to a desired tank of the three tanks.

15 According to an embodiment, each tank of the solar tracking system includes a tank opening arranged at a distant end of the tank for releasing the excessive air. According to an embodiment, the solar tracking system includes an opening pipe arranged in each tank. The opening pipe has one pipe end connected to the tank opening and other pipe end is always kept above the level of the liquid. In order to support the 20 other pipe end of the tank opening above the level of the liquid, the solar tracking system includes a float configured to float on the liquid inside each tank.

According to an embodiment, the solar tracking system includes a passing liquid pipe arranged in each tank and having one pipe end connected to the liquid communication tube and other pipe end being always kept below the level of the liquid. 25 In order to keep the other pipe end always below the liquid level, the solar tracking system includes a sinker configured to be immersed in the liquid.

The solar energy utilization system includes an air compressor configured for providing pressurized gas for activation of folding the mirrors and tracking the sun.

According to an embodiment, the solar receiver includes the following 30 controllable devices: an electromagnetic trigger configured for unlocking the flexible mirrors when the mirrors are in a folded state; an electromagnetic valve configured for

providing compressed air for folding the flexible mirrors, a first servo associated with a first multi-way valve and configured for setting the first multi-way valve to supply pressurized air from the compressor to a selected flexible mirror for filling the selected mirror with air when required, a second servo associated with a second multi-way air flow valve and configured for setting the second multi-way air flow valve to supply air from the compressor to the solar tracking system, and a fan configured for providing air for cooling the solar tracking system.

The solar energy utilization includes a control system configured for control of the operation of the system. The control system includes a power supply unit configured 10 to provide electric power required for operation of electric and electronic modules of the system and at least one sensor selected from the group consisting of: a output voltage sensor configured for measuring the output voltage generated by the system; a motion sensor configured for detecting moving objects in the vicinity of the system that might be potentially hazardous for the system; a sun tracking sensor configured for 15 recognizing the location of the sun; a mirror pressure sensor configured for measuring the air pressure that is required for deploying the solar receiver; a power voltage sensor configured for measuring the power supply voltage provided by the power supply unit; and an output voltage sensor configured for measuring output voltage generated by the solar energy concentrator.

20 The control system includes a controller coupled to at least one of the sensors and configured for analyzing the received sensor data and generating control signals to the controller connector switch to controllably provide electric power supply voltages from a power supply unit to at least one device selected from the group consisting of: the electromagnetic trigger, the electromagnetic valve, the first servo, the second servo, 25 the air compressor, and the fan, thereby to control operation of the system.

According to another aspect of the present invention, there is provided a novel method for dynamic solar energy utilization. The method includes receiving and concentrating solar energy from the sun by a solar receiver configured for receiving solar energy from the sun; converting the concentrated energy into direct current 30 electricity by a solar energy concentrator being located at the predetermined spot area in which the solar energy reflected from said plurality of flexible mirrors is concentrated.

- 12 -

The method further includes sensing position of the sun in the sky by a solar tracking system and tilting the solar receiver for directing thereof towards the sun to receive and reflect maximum of sunlight onto the predetermined spot area.

According to an embodiment, the method further includes passing cooling air
5 through a solar energy concentrator.

According to an embodiment, the method further includes folding at least one of said plurality of flexible mirrors under unfavorable environmental conditions.

According to an embodiment, the method further includes deploying at least one of said at least one of said plurality of flexible mirrors under favorable environmental
10 conditions.

According to an embodiment, the method further includes inverting said DC electricity to AC electricity and providing said AC electricity into an electricity grid.

The system of the present invention is a "green device" because it is ecologically friendly in various aspects during its entire life cycle. It is designed and constructed to
15 reach parity in comparison with conventional fossil fuel sources of energy; and is able to produce electricity at a lower cost than other forms of energy, thus effectively breaking the parity with other energy sources. Benefits of the system include, but are not limited to low cost, usage of small amount of materials, relatively low energy consumption for the production process, relatively low weight of the device, a compact
20 shape in a collapsed state, easy installation, noiseless and harmless operation, high resistance to harmful air conditions and factors, such as rain, snow, dew, wind, sand, dust, insects etc., seldom malfunctioning with relatively easy maintenance, and long service periods of proper functioning, modular construction with easy replacement of impaired parts, recyclable at the end of the system life cycle, etc.

25 It is to be understood that the invention is not limited in its application to the details set forth in the description contained herein or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Those skilled in the art will readily appreciate that various modifications and changes can be applied to the embodiments of the invention as hereinbefore
30 described without departing from its scope, defined in and by the appended embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, 5 with reference to the accompanying drawings, in which:

Fig. 1A is a perspective sliced view of a system for solar energy utilization in a deployed (outspread) position, in accordance with an embodiment of the present invention;

Fig. 1B is a hub for securing and holding flexible mirrors of the solar receiver of 10 the system shown in Fig. 1A, in accordance with an embodiment of the present invention;

Fig. 1C is a exploded top view of the mirror holding disk and the flexible mirrors of the solar receiver of the system shown in Fig. 1A, in accordance with an embodiment of the present invention;

15 **Fig. 1D** is a schematic simplified diagram of a control system of the system of Fig. 1A, in accordance with an embodiment of the present invention;

Fig. 1E is a perspective view of a system for solar energy utilization in a collapsed position with folded flexible mirrors, in accordance with an embodiment of the present invention;

20 **Fig. 2** is a bottom part of the system shown in Fig. 1A, in accordance with an embodiment of the present invention;

Figs. 3A-3C are partial perspective sliced cross-sectional views of the system of Fig. 1A during operation of a pneumatic piston, in accordance with an embodiment of the present invention;

25 **Fig. 4**, an exploded view of the flexible mirror of the system shown in Fig. 1A is illustrated, in accordance with an embodiment of the present invention;

Figs. 5A-5D show the steps of folding the inflatable supporting member of the flexible mirror shown in Fig. 4 in the circumferential and radial directions;

30 **Fig. 6** illustrates an example of passive protection of the flexible mirrors of the system shown in Fig. 1A against wind, in accordance with an embodiment of the present invention;

- 14 -

Fig. 7 illustrates another example of passive protection of the flexible mirrors of the system shown in Fig. 1A against wind, in accordance with an embodiment of the present invention;

5 **Figs. 8A - 8D** illustrate further examples of passive protection of the flexible mirrors of the system shown in Fig. 1A against wind, in accordance with different embodiments of the present invention;

Fig. 9 is a portion of the system shown in Fig. 1A responsible for deployment and maintenance of the flexible mirrors, in accordance with an embodiment of the present invention;

10 **Fig. 10A** is a schematic optic diagram for the sun beams for a concave mirror;

Fig. 10B is a schematic optic diagram for the sun beams for the flexible mirrors of the system shown in Fig. 1A, in accordance with an embodiment of the present invention;

15 **Fig. 11** is a perspective sliced cross-sectional view of the solar energy concentrator of the system shown in Fig. 1A, according to an embodiment of the present invention;

Figs. 12A and 12B show correspondingly front and side views of the photovoltaic elements of the solar energy concentrator shown in Fig. 1A, according to an embodiment of the present invention;

20 **Fig. 13** is a perspective sliced cross-sectional view of the solar energy concentrator of the system shown in Fig. 1A, according to another embodiment of the present invention;

25 **Fig. 14** is a perspective partial sliced cross-sectional view of the system for solar energy utilization of Fig. 1A, illustrated with amplification of certain fragments, according to an embodiment of the present invention;

Figs. 15 and 16 show perspective sliced cross-sectional views of the solar tracking system of the system of Fig. 1A, illustrated with amplification of certain fragments, according to an embodiment of the present invention;

30 **Fig. 17A** illustrates an example of installation of the system of Fig. 1A on a roof area;

Fig. 17B illustrates an example of installation of the system of Fig. 1A on legs;

Fig. 17C illustrates an example of installation of the system of Fig. 1A on public lampposts;

- 15 -

Figs. 18A and 18B illustrate simplified schematic illustrations of installation of a plurality of the system of Fig. 1A on various cable systems for vertical and horizontal installations, correspondingly, in accordance with an embodiment of the present invention;

5 **Figs. 19A and 19B** are simplified schematic illustrations of vertical and horizontal configuration of cables, correspondingly, on which a plurality of the systems of Fig. 1A is mounted, in accordance with various embodiments of the present invention;

10 **Figs. 20A and 20B** show position of installation cables when altitude directions of the system of Fig. 1A are varied in a broad range of tiling angles;

Fig. 21 shows a flow chart schematically illustrating a method for converting solar energy into electric energy, into heat energy or reflecting light with the system of Fig. 1A, in accordance with an embodiment of the present invention;

15 **Fig. 22** is a simplified flowchart of a method for cooling the solar energy concentrator of the system of **Fig. 1A**, in accordance with an embodiment of the present invention;

Fig. 23 is a simplified flowchart of a method for active protection of the system **(10 in Fig. 1A)** from moving subjects, in accordance with an embodiment of the present invention;

20 **Fig. 24** is a simplified flowchart of a method for tracking the sun's movement, in accordance with an embodiment of the present invention; and

Fig. 25 is a simplified flow chart of a method for positioning the system of Fig. 1A, in accordance with an embodiment of the present invention;

25 DETAILED DESCRIPTION

The principles and operation of a system and method for solar energy utilization according to the present invention may be better understood with reference to the drawings and the accompanying description. It should be understood that these drawings are given for illustrative purposes only and are not meant to be limiting. It 30 should be noted that the figures illustrating various examples of the system of the present invention are not to scale, and are not in proportion, for purposes of clarity. It should be noted that the blocks as well other elements in these figures are intended as

- 16 -

functional entities only, such that the functional relationships between the entities are shown, rather than any physical connections and/or physical relationships. The same reference numerals and alphabetic characters will be utilized for identifying those components which are common in the imaging system and its components shown in the 5 drawings throughout the present description of the invention.

In practical applications of solar energy, based on the use of sun rays as the source of energy, in order to attain the highest economical benefits the surface of the device should be as large as possible and clean. Sun tracking in two axes (azimuthally and altitudinally) during the entire period of operation increases utilization to the 10 maximum. In the current known forms of devices, heretofore devised or proposed, dust and other pollutants cleave to their static surface and are unavoidable.

In various exemplary embodiments, the present invention provides systems and methods for collecting and converting solar energy into electrical energy, collecting and converting solar energy into heat for subsequent utilization and collecting and reflecting 15 solar energy for subsequent utilization.

The system of the present invention differs from the existing solar systems, which incorporate a great amount of materials and mechanics resulting in limitations on placement. Also a great deal of maintenance, heavyweight and numerous defects and limitations add to complication and costs.

20 The object of the present invention is to overcome these deficiencies and to effect the usage of solar energy in a more perfect manner and by a simpler and more economical means than those heretofore employed.

This is accomplished by a lightweight dynamic support system, enabling keeping a shape to a reflex operational surface and by a solar receiver equipped with a 25 passive and active air-based self-cooling mechanism. Together the system is provided with a passive (elastic) and active (folding and shutting) self protection ability.

It is well known that a flower head/corolla protects itself by shutting petals. Treetops resist gusts of wind by fragmentation of their canopy mass to many leaves and by the treetop's aerodynamic shape. The water in an aquarium is pumped by a 30 compressor utilizing, for example, an airlift or other suitable techniques.

The device is built from light weight and highly resistant materials, developed

and used earlier for construction of space satellites. The price of these materials has dropped rapidly over the past years, and these materials are now mass produced at low cost. If it is not explicitly described in the text then the connection of materials is performed by welding.

5 Reference is now made to **Fig. 1A**, which is a perspective sliced view of a system **10** for solar energy utilization in a deployed (outspread) position, in accordance with an embodiment of the present invention. The system **10** includes a solar receiver **11** configured for receiving solar energy from the sun and concentrating the received solar energy at a fixed predetermined spot area. For example, the concentration can be
10 between 80-fold to 300 fold. The system **10** also includes a solar energy concentrator **12** located at the predetermined spot area in which the solar energy is concentrated, and configured for converting the concentrated reflected energy into a direct current electric power. The system **10** further includes a solar tracking system **13** associated with the solar receiver **11** and configured for sensing position of the sun in the sky and tilting the
15 system **10** for directing the solar receiver **11** towards the sun to receive and reflect maximum of sunlight onto the spot area.

Referring to **Fig. 1A**, **Fig. 1D** and **1E** together, the system **10** includes a control system **15** that can be set to control the operation of the system **10** either automatically or manually. The control system **15** includes such known components and utilities as
20 various sensing devices and a controller **135** having, *inter alia*, a processor **141**, a power supply unit **120**, and a controller connector switch **140**.

According to an embodiment, the control system **15** includes an output voltage sensor **157**, a motion sensor **420**, a sun tracking sensor **450**, a mirror pressure sensor **185**, and a power voltage sensor **158**. The output voltage sensor **157** measures the output voltage generated by the system **10**. The motion sensor **420** is configured to detect moving objects in the vicinity of the system that might be potentially hazardous for the system **10**. The sun tracking sensor **450** is responsible for recognizing the location of the sun. The mirror pressure sensor **185** measures the air pressure that is required for deploying the solar receiver **11**. The power voltage sensor **158** measures the power supply voltage provided by the power supply unit **120** and required for operation of electric and electronic devices of the system **10**. The output voltage sensor **157** measures the output voltage generated by the photo-voltaic elements, i.e., solar cells,

(not shown) of the solar energy concentrator **11**.

The processor **141** of the controller **135** is preprogrammed by a suitable software model capable of analyzing the received sensor data and generating control signals. The power supply unit **120** is based on power capacitors (not shown) configured to receive 5 electric power from the solar energy concentrator **11**. The electrical capacitance of these power capacitors can, for example, be in the range of about 15F to 40F.

The described above sensors **157, 158, 185, 450** and **420** are electrically coupled to the controller **135** and configured to provide the controller **135** with the corresponding sensor signals. In turn, the controller **135** is configured for receiving the 10 data provided by the sensing devices **157, 158, 185, 450** and **420**, processing these data and generating control signals to a controller switch **140** to activate various operating modules of the system, such as an electromagnetic trigger **581**, an electromagnetic valve **503**, a first servo **180**, a second servo **150**, a multifunctional controllable air compressor **700**, and to a fan **136**. In operation, the controller connector switch **140** is controlled by 15 the processor **141** and configured to provide corresponding power supply voltages from a power supply unit **120** to the electromagnetic trigger **581**, the electromagnetic valve **503**, the first servo **180**, the second servo **150**, the air compressor **700**, and to the fan **136** as will be described hereinbelow in detail through the description.

The power supply unit **120** is sensed by the power voltage sensor **158**, and is 20 electrically charged when the voltage measured by the power voltage sensor **158** is less than a predetermined power supply voltage, for example less than 20% of the nominal voltage.

The power supply unit **120** and the controller **135** can be independent modules connected to a common board with slots (backboard) and thus has easily changeable 25 parts in case of malfunction. The processor unit includes an output/input interface to enable a connection to a mobile device or radio module. This additional electronic equipment enables wireless metering of the wattage generated, uploading new firmware, downloading device data, direct custom settings and direct controlling of the device etc.

30 The system **10** can include an AC inverter (not shown) responsible for managing wattage and frequency suitable for the grid. The AC inverter can be either integrated

with the system **10** or be a dedicated module located out of the system **10**.

Although in the embodiment shown in **Fig. 1A** the controller **135** is located at a bottom part **B** of the system **10**, generally, the controller **135** can be located at any suitable place, which is protected from being affected by harsh environment.

5 According to the embodiment shown in **Fig. 1A**, the solar receiver **11**, the solar energy concentrator **12** and the solar energy concentrator **12** are mounted on a pole **14** defining a main axis and a longitudinal axial direction of the device. The pole **14** includes several rods and tubes as will be described hereinbelow, and configured for holding the solar receiver **11** and the solar energy concentrator **12** at the predetermined
10 spot area.

The solar receiver **11** resembles a flower corolla and includes a plurality of flexible mirrors **200**, which resemble flower petals or leaves. The flexible mirrors **200** are configured to take in a deployed state or a collapsed state, as desired. The flexible mirrors **200** are separated and independent from each other, and are radially arranged
15 around the main axis of the system. The flexible mirrors **200** are independent from each other in the sense that each of these mirrors of the solar receiver **11** can be replaced without replacing any other mirror. For example, the diameter of the receiver corolla can be in the range of one to six meters and even more.

During operation, the flexible mirrors **200** can be fully deployed to capture
20 maximum solar energy. However, at night, in the case of harsh outside factors, such as debris, insects, dust, dirt, etc. or when the weather conditions are not appropriate for operation, such as rain storm, dew, etc., the solar receiver **11** can be collapsed to maintain the flexible mirrors **200** of the of the solar receiver **11** in a folded state close to the pole **14**. As shown in **Fig. 1E**, when the mirrors **200** are in a folded state, the
25 collapsed system **10** can be easily transported and stored.

The solar receiver **11** includes a hub **300** including a plurality of disks arranged along the main axis of the system and coupled to a central tube **500** of the pole **14**. The disks of the hub **300** are made from a rigid material suitable for holding the flexible mirrors **200** in the collapsed and deployed states. Example of the material includes, but
30 is not limited to, STYROFOAM™.

Referring to **Fig. 1B**, the hub **300** includes an upper bedplate cover disk **315a**, a

- 20 -

lower bedplate cover disk **315b** and a plurality of mirror holding disks **316** sandwiched between the upper bedplate cover disk **315a** and the lower bedplate cover disk **315b**. The mirror holding disks **316** are configured for securing and holding the flexible mirrors **200**.

5 According to the embodiment shown in **Figs. 1A and 1B**, the corolla of the solar receiver **11** includes eighteen flexible mirrors **200**, however other numbers of the flexible mirrors **200** are also contemplated. The flexible mirrors **200** are arranged in three layers formed by the holding disks **316**, differentiated by hatching.

10 Referring to **Fig. 1C**, an exploded top view of the mirror holding disk **316**, and the flexible mirrors **200** is shown, according to an embodiment of the present invention. Each mirror holding disk **316** holds six flexible mirrors **200**, however, generally the disks **316** may hold any number of the flexible mirrors **200**. Since the flexible mirrors **200** are located in a multi layer fashion, each layer of the mirrors **200** has its own 15 geometric focus, thus providing a dispersed concentration of mirrored beams on the surface of the solar energy concentrator **12** as will be described herein further in detail.

The solar receiver **11** includes a leaf locking mechanism **318** configured for holding the flexible mirrors **200** in the mirror holding disks **316**. According to an embodiment, the mirror holding disks **316** include a "female" part **318a** of the leaf locking mechanism **318** securing the flexible mirrors **200** in the radial positions around 20 the pole (**14** in **Fig. 1A**). For this purpose, each flexible mirror **200** includes a "male" part **318b** of the locking mechanism **318** mating the "female" part **318a** arranged in the corresponding holding disks **316**.

According to this embodiment, each female part **318a** of leaf locking mechanism **318** includes a corresponding slit **317** arranged in the body of the holding disk **316**. As shown in **Fig. 1C**, the inner surface of the slits **317** is not even, but rather includes one or more slit irregularities **319a** in the shape of teeth. On the other hand, each flexible mirror **200** includes corresponding leaf irregularities **319b** having a shape suitable to mate the slit irregularities **319a**.

30 The flexible mirrors **200** can be folded at any time. Thus, the surface of the solar receiver **11** can be collapsed. By folding, the mirrors **200** change shape to be compact with a low aerodynamic profile, which can provide protection from harsh outside

factors, such as strong wind, debris, insects, dust, dirt, rain, dew, snow, and other unfavorable weather conditions that can impact the system during exploitation.

Turning back to **Fig. 1A**, in order to fold up the flexible mirrors **200** in the radial direction, the solar receiver **11** includes a movable ring **520** mounted on the central tube **500** of the pole **14** and capable to slide along the main axis of the system defined by the pole **14**, folding strings **261** attached to the flexible mirrors **200**. As can be seen in **Fig. 1A**, the flexible mirrors **200** are connected by folding strings **261** to the movable ring **520** slidable along the central tube **500** of the pole **14**. The folding strings **261** can, for example, be made from fishing wire. When desired, the flexible mirrors **200** can be folded in the radial direction toward the pole **14** by moving the movable ring **520** up toward the concentrator **12**, and thereby pulling the folding strings **261**.

According to an embodiment, vertical motion of the movable ring **520** is activated by turning on a pneumatic mirror folding mechanism **16**. Referring to **Fig. 2**, the pneumatic folding mechanism **16** includes a pneumatic piston **550**, which is connected and pressurized through a piston air line **501** passing through a lower tube **618** to an air tank **502** via a controllable electromagnetic air valve **503**. The pneumatic piston **550** includes a plurality of concentric tubes **551** telescopically arranged along the main axis on the central tube **500**. It should be understood that although three telescopically arranged concentric tubes **551** are shown in **Fig. 2**, generally, the pneumatic piston **550** can include any suitable number of the concentric tubes **551**. The hub **300** is mounted in a housing **94**. The piston **550** is mounted on the top of the housing **94**.

According to some embodiments, the system **10** for solar energy utilization of the present invention includes multifunctional controllable air compressor **700**. One of the functions of the multifunctional controllable air compressor **700** is to fill, *inter alia*, the air tank **502** with atmospheric air. Other functions of the compressor **700** will be described hereinbelow. According to an embodiment, the air tank **502** can be coupled to the compressor **700** directly. According to another embodiment, the air tank **502** can be coupled to the compressor **700** via a multi-way gas flow control valve, in particular via the five-way air valve **152**, as will be described hereinbelow with reference to **Fig. 16**.

As shown in **Fig. 1A** and **Fig. 2**, the air tank **502** and the compressor **700** are

- 22 -

arranged at a bottom part B of the system **10**; however other implementations are also contemplated.

Reference is now made to **Figs. 3A-3C** together, which are partial perspective sliced cross-sectional views of the system (**10** in **Fig. 1A**) during operation of the 5 pneumatic piston **550**, in accordance with an embodiment of the present invention. As shown, the pneumatic piston **550** can operate in the three main phases. In the first phase, the flexible mirrors **200** are deployed in the open default position (see **Fig. 3A**). According to the present invention, the flexible mirrors **200** can be opened due to the 10 spring-like features of the flexible mirrors **200**. An example of the construction of the flexible mirrors **200** providing such properties will be described hereinbelow in detail with reference to **Fig. 4**. This provision provides a spread out shape of the flexible mirrors **200** in a deployed state.

In operation, when the external factors or harsh weather conditions may prevent 15 normal operation of the system, the control system (**135** in **Fig. 1A**) provides a folding control signal to the electromagnetic air valve **503** for opening thereof. The folding control signal can, for example, be generated in response to sensor signals indicative of such harsh factors and conditions. For this purpose, the control system **135** includes 20 sensors configured for sensing such harsh factors and conditions and for generating corresponding sensor signals indicative of the factors and conditions preventing normal operation of the system **10**.

As shown in **Fig. 1D**, the control system **15** includes the movement sensor **420** configured for detecting moving objects, such as a bird or other flying object in the vicinity of the system, that might be potentially hazardous. The movement sensor **420** can, for example, be arranged on a hemisphere **400** mounted on a top of the system **10**, 25 however other locations are also contemplated. The control system **15** includes the output voltage sensor **158**. Thus, when the voltage generated by the system **10** significantly decreases, this may be a result of rain, wind storm, dirt storm, etc. The controller **135** responsive to the drop of the output voltage, can generate a control system to open the valve **503**.

30 Referring to **Figs. 1D** and **3A-3C** together, when the valve **503** is open, it enables air to pass from the air tank **502** to the pneumatic piston **550** through the piston

- 23 -

air line (**501** in **Fig. 2**). The pressure pulse provided by the air passing from the air tank **502** expands the pneumatic piston **550** by unfolding its telescopic tubes **551**. Since the movable ring **520** sits on the top of the pneumatic piston **550**, the expansion of the piston **550** provides sliding of the movable ring **520** along the central tube **500**. In turn, 5 the flexible mirrors **200**, which are connected to movable ring **520** via the folding strings **261**, can follow the ring **520** and thereby fold, thus overcoming the spring's resistance of the mirrors **200**. As will be described hereinbelow, this spring's resistance can provide unfolding of the flexible mirrors **200**.

According to some embodiments, the folding mechanism **16** includes an 10 electromagnetic lock device **580** mounted on the central tube **500** of the pole **14**. In the second phase, as shown in **Fig. 3B**, the movable ring **520** reaches the lock device **580**, where it can be locked, thereby holding the flexible mirrors **200** in the folded state. The locking of the movable ring **520** within the lock device **580** can, for example, be carried out by mechanical locking.

15 Upon delivering the movable ring **520** to the electromagnetic lock device **580**, after a certain time period, the piston **550** can be returned in the folded state under gravity, due to the release of the air in the piston and corresponding decrease of pressure within the piston. As shown in **Fig. 3C**, the movable ring **520** is retained by the electromagnetic lock device **580** as long as desired, thereby maintaining the system **10** 20 in the collapsed state. The electromagnetic lock device **580**, can, for example, include a mechanical latch (not shown) for locking the movable ring **520**.

In order to deploy the folded system **10**, the lock device **580** includes an electromagnetic trigger (**584** in **Fig. 1D**) which after activation unlocks the lock device **580** and thereby releases the movable ring **520**. The electromagnetic trigger can be 25 controlled by the control system **135** responsive either to a user's instruction or to a sensor signal generated by a sensing device indicating that the harsh outside factors or bad weather conditions are over and the system can be deployed for operation. For example, the movement sensor can provide the corresponding sensor signal. When desired, the system may include a set of other sensors (not shown), such as a rain 30 sensor, a storm sensor and/or a dirt sensor that can generate the corresponding signals indicative that the harsh outside factors or bad weather conditions are over and the system can be deployed for operation.

As soon as the lock device **580** is unlocked, the flexible mirrors **200** unfold due to the spring-like feature of the mirrors, and the movable ring **520** returns to the top of the piston.

It should be understood that after activation of the pneumatic piston **550**, 5 pressure in the air tank **502** drops. In order to raise this pressure for the next piston activation and folding the mirrors, the compressor **700** can be activated at any moment after piston activation. It should be noted that when the compressed air stored in the tank **502** may be sufficient for several activation cycles of the pneumatic piston **550** without filling of the tank **502**.

10 Referring to **Fig. 4**, an exploded view of the flexible mirror **200** is illustrated, in accordance with an embodiment of the present invention. The flexible mirror **200** includes an inflatable supporting member **250** configured for connecting to the mirror holding disks (**316** in **Figs. 1A-1C**) and a working member **220** that is mounted on the inflatable supporting member **250**. The flexible mirrors **200** are flexible, since the 15 inflatable supporting element **250** and the working element **220** are both made of flexible materials. It should be understood that inflatable supporting member **250** and the working member **220** can be constructed from various materials with many shapes and colors.

The inflatable support element **250** includes a flexible inflatable frame **282** 20 having a ladder shape and including inflatable radial beams **28a** and **28b** fortified by a plurality of inflatable cross ribs **290**. The flexible inflatable frame **282** can be fabricated of a relatively stiff yet somewhat pliant material, sufficient to hold the working member **220** when the flexible mirrors **200** are expanded in a deployed state. For example, the 25 flexible inflatable frame **282** can be constructed from a composite material containing a metal folia layer covered from outer and inner sides by plastic layers (e.g., polyvinylchloride (PVC) layers) or from some other suitable relatively strong and light materials.

The inflatable supporting member **250** of the flexible mirrors **200** includes the locking mechanism (**318a** in **Fig. 1C**) for securing an end part **291** of the inflatable 30 supporting member **250** in the holding disks (**316** in **Figs. 1B and 1C**). The proximal end **291** of the inflatable supporting member **250** includes a nipple air valve **288**

- 25 -

configured for inflation of flexible inflatable frame **282**. The air for inflation of the inflatable supporting member **250** can be provided from a compressor (**700** in **Fig. 1A**) through an air line **701**, as will be described herein further in detail.

It should be understood that the described provision of connection of the flexible 5 mirrors **200** to the holding disks **316** enables easy maintenance and repair of an impaired flexible mirror. Indeed, by deflating the inflatable supporting member **250**, a damaged flexible mirror **200** can be easily removed from the disk **316** and replaced by a faultless mirror.

According to an embodiment, the inflatable supporting member **250** is 10 enveloped by a fiber mesh **286** for fortifying the supporting member **250**. The mesh can, for example, be made from a strong material providing fortification to the inflatable supporting member **250** to withstand high pressure of the gas filling the inner cavity of the inflatable supporting member **250**. For example, the fiber mesh **286** can be a metalized mesh with diameter of the filaments in the range of 15 micrometers to 30 15 micrometers.

According to an embodiment, the inflatable supporting member **250** is covered by radial shaping strings **295** crossing the inflatable supporting member **250** in radial directions and by circumferential shaping strings **296** crossing the inflatable supporting member **250** in the circumferential direction, which is perpendicular to the radial 20 directions. The shaping strings **295** can, for example, be attached to or interlaced with the fiber mesh **286** along the radial direction, whereas the shaping strings **296** can be attached to or interlaced with the fiber mesh **286** along the ribs **290**. The shaping strings **295** and **296** enable the inflatable supporting member **250** to take and maintain a desired 25 petal shape. An example of the material suitable for the shaping strings **295** and **296** includes, but is not limited to SILON™ wire having a diameter in the range of about 30 micrometers to 500 micrometers.

In order to fold up the flexible mirrors **200** of the solar receiver **11** in the radial direction, the inflatable supporting member **250** further includes one or more folding strings **261** attached to the distal end **281** of the inflatable supporting member **250** and 30 to the movable ring (**520** in **Fig. 1A**) mounted on the central tube (**500** in **Fig. 1A**) of the pole (**14** in **Fig. 1A**) and capable to slide along the pole **14**.

The folding strings **261** can, for example, be made from fishing wire having a diameter in the range of 0.3 millimeters to 1 millimeter. The folding strings **261** pass radially from the distal end **281** towards the locking end **282** within the inflatable supporting member **250** unrestrictedly through guide tubes **287**, which are attached to 5 the fiber mesh **286** at the foldable cross ribs **290**. When desired, the inflatable supporting member **250** (and accordingly the flexible mirrors **200**) can be folded in the radial direction by activating the piston **550** that moves up the movable ring **520** that accordingly pulls the folding strings **261**, as described above with reference to **Figs. 3A - 3C**.

10 According to an embodiment, in order to decrease the surface of the flexible mirrors **200**, the inflatable supporting member **250** can be folded not only in the radial direction but also in the circumferential direction, which is orthogonal to the radial direction. **Figs. 5A - 5D** show the steps of folding the inflatable supporting member **250** in the circumferential direction (see **Figs. 5A - 5C**) and thereafter in the radial direction 15 (see **Fig. 5C**).

Thus, for folding in the circumferential direction, the foldable cross ribs **290** of the inflatable supporting member **250** include a weakened longitudinal cross-section **285**. As shown sequentially in **Figs. 5A - 5C**, the foldable cross ribs **290** can kink or buckle around this weakened longitudinal cross-section **285** to deform and move the 20 radial beams **28a** and **28b** towards each other. Then, the mirrors can be folded in the radial direction as shown in **Fig. 5C** around a weakened transverse cross-section **286** to be close to the pole **14**, thereby decreasing their sailing properties that can be required in the case of a strong wind preventing operation of the solar energy utilization system 25 of the present invention.

25 Turning back to **Fig. 4**, the working member **220** is mounted on the inflatable supporting member **250** and creates a covering layer for the upper side of the inflatable supporting member **250**. The working member **220** includes a covering mesh **229** attached to the top of the inflatable supporting member **250**. The mesh **229** is fabricated of a somewhat pliant material, which permits to fold the flexible mirrors **200**. An 30 example of the material suitable for the mesh **229** includes, but is not limited to SILON™ wire having a diameter in the range of 10 micrometers to 300 micrometers.

The working member **220** also includes a plurality of flexible reflective plates **222** attached to the covering mesh **229**. The flexible reflective plates **222** may vary in size, shape, structure and extent.

According to an embodiment, the flexible reflective plates **222** can be regularly arranged and overlap with each other, thereby to fill completely the top surface of the working member **220**. Alternatively, flexible reflective plates **222** can be sparsely dispersed within the top surface of the working member **220**. An example of the material suitable flexible reflective plates **222** includes, but is not limited to, a metalized foil such as MYLAR™ that achieves reflexivity up to 99.9 % efficiency. A thickness of the foil can, for example, be in the range of 10 micrometers to 25 micrometers.

Referring to **Fig. 6**, an example of the working member **220** is shown when the flexible reflective plates **222** are arranged in a fish scale fashion. The reflective plates **222** resemble a fish scale. Due to their flexibility, the plates **222** can be deflected from the surface of the working member **220** to form holes **221** between the plates **222** enabling an air stream, e.g., wind, to flow through these holes. When the wind subsides, the plates **222** can return to their operating position owing to their flexible properties. This kind of protection of the mirrors (**200** in **Fig. 1A**) is herein referred to as "passive fish scale protection".

During operation, the system of the present invention is in a deployed position, in which the flexible mirrors **200** are spread out. In this case, protection against dust, insects, etc. can be required. For this reason, the construction of the flexible mirror **200** permits a few types of passive protection.

Reference is now made to **Fig. 7**, in which another example of simplified schematic passive protection of the flexible mirror **200** is illustrated, in accordance with an embodiment of the present invention. Since the system **10** includes independent separate flexible mirrors **200**, natural protection against a relatively mild wind can be achieved. Thus, the arrows shown in **Fig. 7** illustrate the wind flow through the spaces between the mirrors **200**. This kind of protection of the mirrors **200** is herein referred to as "daisy protection".

Reference is now made to **Figs. 8A and 8B**, in which simplified schematic illustrations of a further example of passive protection of the mirrors **200** are illustrated,

in accordance with an embodiment of the present invention. This protection is required with a further increase of wind strength. When the quantity and speed of the flowing air increases, and it can be so large that the air mass cannot flow through the spaces between leaves and cannot flow through the holes in the mirrors **200**, the flexible mirror 5 **200** can be deflected from the basic operational position shown in **Fig. 8A**, and a gust of wind blowing against the surface of the flexible mirror **200** can thrust the leaf up shown in **Fig. 8B**. Thus, the flexible mirror **200** can be flexed by the wind. As soon as the gust subsides, the inflatable supporting member **250** can operate as a spring and thus can return the flexible mirror **200** to its fully open operational position, as a result of the 10 flexibility properties (see **Fig. 8C**). Due to this oscillating movement (see **Figs. 8C and 8D**), the energy of the wind applied to the mirror **200** can be dissipated. This process can, for example, be compared to the oscillation of leaves in palm treetops during wind insufflations. This kind of protection is herein referred to as "passive palm tree protection".

15 It shown in **Fig. 8D**, the flexible mirror **200** pivoted at one end will oscillate as a spring pendulum. The consecutive swinging with lessening amplitude creates leaf shaking. As a result of the corresponding vibrations dust and or debris collected on the mirror **200** can fall down from the mirror's surface. This type of protection of protection of the mirrors **200** is herein referred to as "Passive dust protection".

20 It should be understood that all the described kinds of mirrors' protection are passive in the sense that they do not require any special input of the user during these protection activities.

The closing of each mirror **200** can be sequential by opposite pairs of mirrors, as a result of different lengths of the folding strings **261**. Thus each layer of the mirror 25 leaves can close separately, also sequentially from the highest mirror layer to the lower mirror layer. The closing of each leaf follows a given spring resistance point of the previous leaf. This presents a lesser demand on force generated by the closing mechanism air piston **550**. The closing process of packing of the supporting segments, minimizes the leaf size, which enables maintaining the device's shape, compacts leaves 30 together, and forms the narrow, conical shape.

Dew and dust are extremely dangerous for surfaces of solar devices. In the

presence of dew, before or during sunrise, the sun's power is weak, the air temperature is low and the wind is rising. The wind starts throwing up dust, and the dust, together with the dew, create ooze which overlays the surface. When the sun begins to shine, the ooze creates a crust, which is almost impossible to remove without scratching the 5 surface of common solar devices. As will be described below, the present invention utilizes an active self protection ability based on folding and shutting at the right time and keeping a narrowly conical compact closed shape of the mirrors with an extremely low aerodynamic profile, avoiding any potential danger to the system.

Referring to **Fig. 9**, the solar receiver **11** further includes an air checking and 10 filling mechanism **90** for controllable checking pressure in the flexible inflatable frame (**282 in Fig. 4**) of the flexible mirrors, and for filling the flexible mirrors **200** with air when required. The air checking and filling mechanism **90** includes a first multi-way air 15 flow valve **91** mounted in the hub **300** and configured to supply air to the flexible mirrors **200**. The first multi-way air valve **91** is coupled to the multifunctional compressor **700** via an air pipe **96**. According to an embodiment, the air pipe **96** can be directly connected to the compressor **700**. According to another embodiment, the air pipe **96** can be coupled to the compressor **700** via a second multi-way air valve (in particular to the five-way air valve **152**, as will be described hereinbelow with reference to **Fig. 16**).

20 The compressor **700** is, *inter alia*, responsible for supplying and maintaining pressurized air inside the flexible inflatable frame (**282 in Fig. 4**) of the flexible mirrors. The multi-way valve **91** includes nozzles **92**, each nozzle coupled to the corresponding nipple air valve **288** of the flexible inflatable frame (**282 in Fig. 4**) via a filling tube **93**. A number of the nozzles **92** equals to the number of the flexible mirrors **200**. Thus, 25 since the solar receiver **11** shown in **Figs. 1A-1C** includes 18 flexible mirrors **200**, the first multi-way valve **91** is an 18-way air valve.

The solar receiver **11** further includes a first servo **180** configured for setting the first multi-way valve **91** to supply pressurized air from the compressor **700** to a selected flexible mirror **200**.

30 Referring to **Fig. 9** and **Fig. 1D** together, the air checking and filling mechanism **90** is controlled by the control system **15** that includes the mirror pressure sensor **185**

- 30 -

associated with the first multi-way valve 91 and configured for measuring pressure in the flexible inflatable frame (282 in Fig. 4) of the mirrors 200. In operation, the mirror pressure sensor 185 is coupled one by one to each of the mirrors 200 for measuring pressure therein. When the pressure sensor 185 is coupled to a certain mirror 200, it 5 generates a pressure signal indicative of the pressure therein. When the pressure is within the required limits, the controller 135 can generate a control signal for the connector switch 140 to activate the first servo 180 for coupling the pressure sensor 185 to a neighboring mirror 200 for measuring the pressure therein. On the other hand, if the pressure in the checked mirror 200 is less than a predetermined pressure value, the 10 controller 135 can generate a control signal for the connector switch 140 to activate the compressor 700 for filling the flexible inflatable frame (282 in Fig. 4) with the air up to the predetermined pressure value.

If the flexible inflatable frame is broken, the pressure during the filling with air will not change, nor increase, with the required rate. In this case, the controller 135 can 15 generate a warning signal to the user of the system 10 to repair the system and replace the impaired mirror.

According to an embodiment of the present invention, the air checking and filling mechanism 90 is arranged in the housing 94 mounted in the hub (300 in Fig. 1A), which is connected to the top end of the lower tube 618 and to the bottom end of 20 the central tube 500 of the pole 14. The housing 94 defines a chamber that includes, *inter alia*, the multi-way valve 91 and the first servo 180. The housing 94 also provides a frame on which the disks of the hub (300 in Fig. 1A) are mounted.

Reference is now made to Fig. 10A, which is a schematic optic diagram for the sun-beams for a concave mirror 101. The mirror 101 can, for example, be spherical or 25 parabolic. The mirror 101 is assumed to be rotationally symmetric about the principal axis that is normal to the centre of the mirror. Hence, a three-dimensional mirror can be represented in a two-dimensional diagram, without loss of generality. The point T at which the principal axis touches the surface of the mirror is called the vertex. The point C, on the principal axis, which is equidistant from all points on the reflecting surface of 30 the mirror, is called the centre of curvature. The distance along the principal axis from point C to point T is called the radius of curvature of the mirror. It is assumed that rays striking a concave mirror parallel to its principal axis, and not too far away from this

axis, are reflected by the mirror such that they all pass through the same point F on the principal axis. This point, which lies between the centre of curvature and the vertex, is called the focal point, or focus, of the mirror. The distance along the principal axis from the focus to the vertex is called the focal length of the mirror. However, this is only an 5 approximation, since when all light-rays which strike a mirror parallel to their principal axis (e.g., all rays emanating from the sun), and are brought to a focus at the same point, this is valid only for a parabolic mirror. It turns out in practice that as rays from a distant object depart further from the principal axis of a concave mirror they are brought to a focus even closer to the mirror. This lack of perfect focusing of a spherical mirror is 10 called spherical aberration.

Reference is now made to **Fig. 10B**, which is a schematic optic diagram for sunbeams for flexible mirrors **200**, in accordance with an embodiment of the present invention. Due to the fact that the flexible mirrors **200** are mounted to the holding disks stacked in layers, each layer of the mirrors **200** has its own geometric focus, thus 15 providing a multi-focus area with dispersed concentration of mirrored beams on the principal axis. As described above, such dispersion can also be facilitated by spherical aberration, owing to the non-parabolic surface of the flexible mirrors **200**. Accordingly, there is a certain area around a point FR that is referred herein to as an "increased focus" F'. The use of the increased focus has advantages over the "point focus" FR. For 20 instance, since the sun rays are concentrated on larger surfaces of the increased area of focus, the high temperature is not concentrated at one point. Moreover, it is easier to cool the area of the "increased focus" F'. Accordingly, this area of increased focus is used in the system **10** for location of the solar energy concentrator **12**.

Reference is now made to **Fig. 11**, in which a perspective sliced cross-sectional 25 view of the solar energy concentrator **12** is illustrated, according to an embodiment of the present invention. The solar energy concentrator **12** is arranged at the top of the system (**10** in **Fig. 1A**) at the predetermined location, where the solar energy reflected from the mirrors **200** is concentrated. The solar concentrator resides on the top of the upper tube **500** and is therefore also referred to as a "crown". The solar energy 30 concentrator **12** includes a substrate **121** having a funnel shape with a wide conical substrate mouth **122** with expansion towards the top end of the system, and a narrow stem including a sleeve connector **1004** mounted on the top of the central tube **500**. The

solar energy concentrator **12** placed as a crown on the top of the upper central tube **500** by an overlapping sleeve connector **1004**, can be easily interchangeable, when required.

According to an embodiment, the substrate **121** is axially symmetric and has a tapering angle of the conical part in the range of about 5 degrees to about 85 degrees 5 with respect to an axis of the pole (**14** in **Fig. 1A**). The expansion can start from the top of the central tube **500**, however other embodiments are contemplated. It should be understood that the expansion towards the top end can be either symmetric or asymmetric with respect to the pole **14**.

The substrate **121** has an outer surface **1007**, which is used for mounting solar 10 photovoltaic (PV) elements **1006** thereon to generate electricity. The substrate **121** can for example be made from a light and relatively strong material suitable to provide support to solar photovoltaic (PV) elements **1006**. Examples of the materials suitable for the substrate **121** include, but are not limited to, aluminum (Al), titanium (Ti), copper (Cu), etc.

15 The photovoltaic elements on the outer surface **1007** can be arranged in lines and rows. Examples of PV elements suitable for the purpose of the present invention include, but are not limited to, arsenic-germanium-indium (AsGeln) photovoltaic elements, crystalline silicone (c-Si), carbon, etc. In particular, it was shown that three thin layer plates formed from AsGeln photovoltaic elements are able to work with 20 efficiency better than 40%. In turn, a theoretical calculation for a five layers PV cell fabricated from AsGeln shows that efficiency can reach up to 86%. The photovoltaic elements on the outer surface **1007** can, for example, provide at least 0.4 KW/m² of solar energy-receiving leaves of mirrors.

The photovoltaic elements **1006** can be modular components that can be 25 interchangeable in cases where an impaired element should be replaced with a working element.

Reference is now made to **Figs. 12A and 12B**, which show front and side views of the photovoltaic elements **1006**, correspondingly, and a manner of attachment of the elements **1006** to the outer surface **1007**, in accordance with an embodiment of the 30 present invention. The photovoltaic elements **1006** can, for example, be welded to the surface **1007** at one end or screwed or to the surface **1007** at one end by using two or

more bolts **1055**, as shown **Figs. 12A and 12B**. Alternatively, the photovoltaic elements **1006** can be welded to the outer surface **1007** at their entire rear side.

Referring to **Figs. 9 and 11** together, the solar energy concentrator **12** is equipped with an air-based cooling mechanism. This cooling mechanism operates 5 passively up to the solar concentration of 30 suns and does not require a motor or any other turbine inside the upper central tube **500**. When the solar concentration is greater than 30 suns, the cooling becomes active using a fan as described below. It should be noted that the air-based cooling system of the present invention utilizes natural atmospheric air for cooling, and it thus avoids a heavy and expensive cooler since the 10 cooling medium is atmospheric air available in unlimited quantities.

According to an embodiment of the present invention, the cooling mechanism includes an inner coned tube **1005** mounted inside of the substrate **121**. Examples of the materials suitable for the inner coned tube **1005** include, but are not limited to, aluminum (Al), titanium (Ti), copper (Cu), etc.

15 The inner coned tube **124** is axially symmetric and has a tapering angle of the conical part in the range of about 5 degrees to about 85 degrees with respect to an axis of the pole (**14 in Fig. 1A**). A diameter of a top of a conical mouth of the inner coned tube **1005** is less than the diameter of the conical mouth **125** of the substrate **121**, thereby forming a circular slit **126** between the substrate **121** and the inner coned tube 20 **1005**. The circular slit **126** provides an air channel for cooling the photovoltaic elements **1006**. The air channel is formed for passing air from the area below the solar receiver **11** through upper tube **500** of the pole **14** and through the slit **126** for cooling the photovoltaic elements **1006**.

According to an embodiment, the inner coned tube **1005** is mechanically 25 connected to the substrate **121** by means of connecting members **128**. The connecting members can, for example, include rods or plates in the shape of square brackets radially extending across the circular slit **126** and attached to the walls of the inner coned tube **1005** and to the walls of the substrate **121**.

In operation, the atmospheric air from the area under the flexible mirrors **200** 30 enters through an opening **97** at the bottom of the the housing **94**, passes through the housing **94**, and through the upper central tube **500**, and then through the circular slit

126. The cooling mechanism of the solar energy concentrator **12** also includes a fan **136** located at a top of the housing **94** to enhance air flow from the area under the flexible mirrors **200** to the circular slit **126**. When desired, a speed of the fan can be controlled by the controller (135 in **Fig. ID**) on the basis of the sensor signal provided by the 5 output voltage sensor (157 in **Fig. ID**).

According to an embodiment of the invention, a wall **122** of the inner coned tube **1005** is wavy in shape, and includes threads **127** helically turning around the wall **122** from both inner and outer sides of the inner coned tube **1005**. The helical turning of the threads **127** can be either in clockwise or counterclockwise directions. The provision of 10 the threads **127** on the wall of the inner coned tube provides a whirl effect for the air passing and exiting between the substrate **121** and the inner coned tube **1005**, thereby enhancing the cooling of the photovoltaic elements **1006**.

As shown in **Fig. 11**, the solar energy concentrator **12** placed as a crown on the top of the upper central tube **500** serves as a support for the motion sensor **420** and sun 15 tracking sensor **450**. According to this embodiment, the system for solar energy utilization includes a hemispherical support **400** on which the motion and sun tracking sensors **420** and **450** are mounted. In turn, the hemispherical support **400** is mounted on a hemisphere support tube **403** that can be connected to the crown, for example to the inner coned tube **1005**. Electric cables **421** and **451** connecting the motion and sun 20 tracking sensors **420** and **450** to the controller (135 in **Fig. 1A**) pass through a lumen of the hemisphere support tube **403**, then through the upper central tube **500**, further through the housing (94 in **Fig. 9**), and finally through the lower tube (618 in **Fig. 1A**).

Reference is now made to **Fig. 13**, in which a perspective sliced cross-sectional view of the solar energy concentrator **12** is illustrated, according to another embodiment 25 of the present invention. The solar energy concentrator **12** in **Fig. 13** differs from the solar energy concentrator (12 in **Fig. 11**) in the fact that the cooling mechanism of the solar energy concentrator **12** further includes an outer coned tube **123** mounted outside of the substrate **121** on a sleeve **1008** mounted on the upper central tube **500**.

The outer coned tube **123** is made from a material transparent to the light of 30 sunbeams. Examples of the materials suitable for the outer coned tube **123** include, but are not limited to, a silicone glass that can be capable to withstand high temperatures,

even exceeding 1000°C.

The outer coned tube **123** is axially symmetric and has a tapering angle of the conical part in the range of about 5 degrees to about 85 degrees with respect to an axis of the pole (**14** in **Fig. 1A**). A diameter of a top of a conical mouth of the outer coned tube **123** is greater than the diameter of the conical mouth **125** of the substrate **121**, thereby forming other circular slit **129** between the substrate **121** and the outer coned tube **123**. The circular slit **129** provides another air channel for cooling the photovoltaic elements **1006** in addition to the air channel **126**.

As shown in **Fig. 13**, the substrate **121** is not mounted on central tube **500**, but rather mechanically connected to the outer coned tube **123** by means of connecting members **130**. Similar to the connecting members **128** connecting the inner coned tube **1005** and the substrate **121**, the connecting members **130** can include another rods or plates in the shape of square brackets attached to the walls of the outer coned tube **123** and the substrate **121**. The connecting members **130** can, for example, be aggregated together with the connecting members **130**, however, they can also be separated elements.

Reference is now made to **Fig. 14**, in which a perspective partial sliced cross-sectional view of the system **10** for solar energy utilization is illustrated with amplification of certain fragments, according to an embodiment of the present invention. The system **10** can be mounted on cables, mast, legs or other installation means, which are fixed and stationary as will be described hereinbelow with reference to **Figs. 17A** through **19B**, whereas the system **10** by itself can be turned by means of a pivot system **810** to orient the pole (**14** in **Fig. 1A**) defining an axial direction of the system **10** towards the sun so that the flexible mirrors (**200** in **Fig. 1A**) may receive maximum solar energy.

According to an embodiment, the pivot system **810** includes a bearing socket **800** that can be connected to any installation means (not shown), and a thrust bearing **142** arranged in the bearing socket **800**. For connection to installation means the bearing socket **800** is integrated with sleeves **811** that have an opening **812** configured for inserting cables, legs or any other installation means therein.

The thrust bearing **142** includes a stationary outer race **142b** attached to the

inner surface of the bearing socket **800** and a movable inner race **142a** supporting the system **10** at a pivot point located on the lower tube **618**. Preferably, the pivot point is selected on the lower tube **618** at a center of rotation **C** of the system **10** so that the system **10** can easily rotate in altitudinal and azimuthal directions.

5 Reference is now made to **Figs. 15 and 16** together, in which a perspective sliced cross-sectional view of the solar tracking system **13** of the system (**10** in **Fig. 1A**) for solar energy utilization is illustrated with amplification of certain fragments, according to an embodiment of the present invention. The solar tracking system **13** includes three fluid communicating balance tanks **901** extending from the main axis of
10 the system in radial directions, with an angle of 120 degrees between each pair of the tank directions. The three balance tanks **901** contain liquid **905** that can be transferred between the tanks controllably via liquid communication tubes **146**, thereby shifting the center of the mass of the system **10** and tilting the main axis of the system **10** in the desired direction, for example, towards the sun.

15 The liquid **905** can, for example, be placed in balance tanks **901** during installation of the system **10**. After installation, it can circulate between the tanks **901** in close cycle. Under normal working conditions, the period for replacing or adding new liquid can be longer than one year. The fluid can, for example, be water or an antifreeze glycol mixture, which can operate at temperatures as low as - 50 °C.

20 In order to provide transferring the liquid **147** between the tanks **901**, the solar tracking system **13** includes a second multi-way gas flow control valve (at least three-way) **152** connected to the multifunctional air controllable compressor **700** via a tube **143**. The second multi-way gas flow control valve **152** is arranged under the center of rotation **C** of the system **10** and mounted in a housing **159** arranged at the bottom end of
25 the lower tube **618**.

The air from the compressor **700** can be controllably provided to any one tank selected from the tanks **901** via supporting air tubes **144** on which the tanks **901** are mounted at a proximal tank end with respect to the lower tube **618**. The supporting air tubes **144** are made from a relatively strong material suitable to provide support and
30 hold the tanks **901**. The solar tracking system **13** also includes a second servo **150** arranged within the housing **159** and configured for setting the second multi-way air

flow valve **152** to supply air from the compressor **700** to the selected tank **901** via the corresponding supporting air tube **144**.

In operation, air is provided to the second multi-way gas flow control valve **152** from the compressor **700** via the tube **143**. The valve **152** is associated with the bearings 5 **155a** and **155b** which are connected to a rotation part of the valve **152** connected to the second servo **150** via a shaft **154**. The second servo is electrically coupled to the controller **135** in **Fig. ID**. The controller **135** is responsive, inter alia, to a sun tracking signal generated by the sun tracking sensor (**450** in **Fig. 1**) and generates instruction signal to the controller connector switch **140** to activate the second servo **150** and turn 10 the rotation part of the second multi-way valve **152** for connecting the compressor **700** to one of the tubes **144**. As soon as the valve **152** connects the compressor **700** to the desired tube **144**, the controller **135** generates a signal for activation of the compressor **700** in order to pass air in the corresponding tank **901**.

The air passing in the tank increases air pressure in this tank. The increase of the 15 pressure in the tank pushes the liquid out from this tank to the other tanks via the corresponding liquid communication tube **146**, thereby shifting the center of the mass of the system **10** and tilting the main axis of the system **10** in the desired direction. After tilting and positioning the system in the desired direction, excessive air pressure in the tank is decreased. For this purpose the solar tracking system **13** includes a tank opening 20 **148** arranged at a distant end of the tank for releasing the excessive air.

According to one embodiment, the tank **901** has such a curved shape in order to keep the opening **148** always above the level of the liquid. For example, the tank **901** can have a substantially banana-like shape with a tank opening **148** arranged at a distal end of the tank **901** with respect to the lower tube **618**. Although a substantially 25 triangular shape of the transverse cross-section the tank is shown in **Fig. 15**, generally, the tank **901** can have any other desired shape of the transverse cross-section, e.g., any polygonal, round or oval shape.

According to another embodiment, in order to keep the tank opening **148** always above the level of the liquid, the opening **148** can be connected to an opening pipe **921**. 30 Thus, one end of the pipe **921** is connected to the opening **148**, whereas other opening pipe end of the opening pipe **921** is always kept above the level of the liquid by means

of a float **922**. It should be understood that for operation of the solar tracking system **13** is required that a flow rate the air passing in the tank **921** is greater than the air flow of the air that is released through the opening **148**.

According to an embodiment, in order to keep the liquid communication passing 5 below the level of the liquid and avoid transferring air between the tanks **901**, the solar tracking system **13** may further include a passing liquid pipe **934** arranged in the tank **901**. One end of the passing air pipe **934** is connected to the liquid communication tubes **146**, whereas the other end of the passing liquid pipe **934** is always kept below the level 10 of the liquid by using a sinker **933** attached to the other end of the passing liquid pipe **934**. The sinker **933** has weight sufficient to keep the other end of the passing liquid pipe **934** immersed in the liquid **905** below the liquid level.

It should be also noted that the weight of liquid inside the tanks **901** is also used as a ballast weight to shift the center of gravity of the device down to the bottom of the system, thereby to increase the system's mechanical stability.

15 As described above, the air controllable compressor **700** is responsible, *inter alia*, for supplying and maintaining pressurized air inside the flexible inflatable frame (282 in **Fig. 4**) of the flexible mirrors. Moreover, the compressor **700** is used to provide compressed gas to the air tank **502** which provides compressed air for activation of the pneumatic piston **550** as described above with reference to **Fig. 2**. Thus, according to 20 one embodiment of the present application the second multi-way gas flow control valve **152** can be a five-way gas flow control valve. In this case, three ways the five-way gas flow control valve can be used for controllable coupling the compressor **700** to the three balance tanks **901**, and two other ways of the five-way gas flow control valve can be used for controllable coupling the compressor **700** to the pressure tank **502** via a 25 pressure tank pipe **505** connected to the pressure tank **502** through a one way valve **506**, and to the first multi-way valve (91 in **Fig. 9**) via a pipe **145** for filling the flexible mirrors **200**, correspondingly.

The housing **159** arranged at the bottom end of the lower tube **618** and connected thereto can, *inter alia*, contain the compressor **700**, the controller **135**, the 30 pressure tank **502** and the one-way valve **506**. The housing **159** can be constructed from one or several pieces made of a material suitable to withstand harsh atmospheric

conditions to protect the electronic and other parts from damage.

Reference is now made to **Figs. 17A - 17C**, which schematically illustrate the possibilities of installation of the system **10**, in accordance with several embodiments of the present invention. The system **10** may have relatively low weight when compared to 5 conventional systems for utilization of solar energy. This feature enables new possible utilizations and installations, which were impossible hitherto with conventional solar systems.

Fig. 17A illustrates an example of installation of the system **10** on a roof area **1101** which is overlapped by the systems **10**, thus enabling to utilize more area for solar 10 radiation than the roof area **1101**.

Fig. 17B illustrates an example of installation of the system **10** on legs **1160**. Such an installation can, for example, be used in a garden amongst trees, in a livestock farm and even in children's playgrounds, etc. without any need for barriers or fences, because no electrical or danger from heat is created. The length of legs **1160** can be 15 adjusted to be fitted to the place of installation. When required, the system **10** can be elevated such that enough space would remain for the passage of subjects under the system **10**. The system **10** can be lightweight and has relatively small dimensions when collapsed to the closed state, thus making it portable, and allowing easy transportation and reposition. The inflatable mirrors can be detached, deflated and stored for 20 transportation. The system weight can be less than 0.5 kg/m^2 solar energy-receiving mirrors **200**.

Owing to the use of the movement sensor (**420** in **Figs 1A and 1D**) the "flower-type" system **10** can automatically close when people or livestock are approach it.

It should be understood that proper placement of the system may provide shade 25 that is useful for animals and plant vegetation. This provision allows avoiding annexation of public or private land for solar system installation, and therefore does not require uprooting life species from any given location.

Fig. 17C illustrates an example of installation of the system **10** on public lampposts **1161**.

30 Reference is now made to **Figs. 18A and 18B**, which illustrate simplified schematic illustrations of installation of the systems **10** on various cable systems for

- 40 -

vertical and horizontal installations, in accordance with an embodiment of the present invention. As shown in **Fig. 18A**, the systems **10** are positioned on vertical cables **1262** which are held up by balloon **1263**. In this way, vertical power stations may be built in such places such as skyscrapers, factories, drilling platforms and other such locations, 5 where the demand for electric consumption is rather high. **Fig. 18B** illustrates an example of horizontal installation of the systems **10** on a rope net **1265** between houses **1264**.

Reference is now made to **Figs. 19A and 19B**, which are simplified schematic illustrations of a vertical configuration of cables **1302** and a horizontal configuration of 10 cables **823** and **1314**, correspondingly, on which a plurality of the systems (**10** in **Fig. 1A**) are mounted, in accordance with various embodiments of the present invention. **Fig. 19A** shows a more detailed view for the supporting element of the three cables (**1262** in **Figs. 18A**). This kind of installation provides full stabilization and avoids rotation of the system **10** when the wind changes its direction.

15 Referring to **Figs. 14 and 19A** together, the system **10** is connected to the cables **823** through the sleeves **811** of the bearing socket **800**. The cables **823** can be fixed in the openings **812** of the sleeves **811** at one end of the cables and to the vertical cable **1302**.

20 Referring to **Figs. 14 and 19BA** together, a more detailed view for system installation on the honeycomb shape net of the cables **1314** is illustrated, in accordance with an embodiment of the present invention. The systems **10** are connected through the the sleeves **811** of the bearing socket **800** to horizontal cables **1314**.

25 It should be understood that the system of the present invention can be mechanically connected to many other cable configurations, *mutatis mutandis*, either vertically or horizontally, thus forming a line or a net.

Referring to **Figs. 20A and 20B**, during positioning, altitude directions of the system **10** can be varied at a broad range of tiling angles. When required for tracking the sun **201**, installation cables **202** can be placed between the flexible mirrors **200**, due to the petal-like shape of the solar receiver.

30 Referring to **Fig. 21**, a flow chart illustrating a method **1400** for converting solar energy into electric energy, into heat energy or reflect light with the system of **Fig. 1A**

- 41 -

is shown, in accordance with an embodiment of the present invention. Utilizations of the device include, but are not limited to, the following;

- 1) Reflecting and concentrating sun-beams like a curved mirror to the processing area, its center being on the main axis.
- 5 2) Reflecting sunrays to a distant area such as a flat mirror for exploitation. For example, in a solar tower based heat storage/electricity production facility, or in a solar tower based high temperature furnace etc.
- 3) Emplacement of a thermal heating container in the vicinity of the focal point.
- 10 4) Emplacement of any type of photovoltaic (PV) element means: using yny type of elements including cSi, AsGeln, carbon, etc. in the vicinity of the focal point.

The upper central tube **500** creates a pedestal for the solar receiver, which could be the crown **1000** already described in detail, or any other kind of heat or concentrated light processing machine, motor, electric generator, heat exchanger etc. These kinds of energy processing devices can use passive air cooling without motors or turbines. These 15 kinds of energy processing devices can use also active air cooling when a motor with a turbine is utilized to generate air flow, and could be placed inside the upper central tube **500**. The solar energy concentrator **12** (or other energy processing devices) could be totally removed in the event that the system device **10** is used only for mirroring sunlight.

20 In a closing receiving surface, step **1402** closes the receiving surface of the flower of mirrors **200** to retain surface cleanliness when no/little solar energy is present, or any danger exists.

In opening step **1404**, the flower of mirrors **200** is opened when the solar energy step is greater than a predefined threshold.

25 In a move receiving surface step **1406**, the receiving surface of the mirrors **200** is rotated about two axes to improve solar energy receipt to a maximum possible amount of energy.

In a reflecting and concentrating step **1408**, the received energy is reflected and concentrated from the receiving surface to a concentrating area on the crown **1000**.

30 In an absorbing concentrated energy step **1410**, the concentrated energy is

- 42 -

absorbed with continuous cooling.

In a conversion step **1412**, the absorbed energy is converted into **DC** energy.

In a second conversion step **1414**, the absorbed energy is converted into heat energy.

5 In a heating air step **1416**, the air is heated to increase the air flow rate **5**.

In an increasing cooling rate step **1418**, the cooling rate is increased.

In an inverting to **AC**, step **1420**, the **DC** energy from step **1412** is inverted into **AC**.

10 In a use/transporting step **1430**, the **AC** energy produced in step **1420** is used and/or transported and/or stored.

In a use or store **DC** energy step **1432**, **DC** electricity is used or stored.

In an absorbing all concentrated energy step **1424**, all concentrated energy from step **1408** is absorbed.

In a use all converted heat energy step **1428**, all converted heat energy is used.

15 In a reflecting step **1422**, received light is reflected without concentrating.

In a use reflected light step **1426**, the reflected light is used.

Reference is now made to **Fig. 22**, which is a simplified flowchart **1500** of a method for cooling the solar energy concentrator (crown) **12** of the system of **Fig. 1A**, in accordance with an embodiment of the present invention.

20 In a cold air entry step **1502**, cold air enters device **10** from the area under the mirrors **200**.

In an air flowing step **1504**, air flows under laminar flow through the central tube **500**.

In an air sucking step **1506**, air is sucked into the system.

25 In air inletting spiral cone step **1508**, air enters the circular slit (**126 in Fig. 12**) (i.e., spiral cone) of the solar energy concentrator **12** to facilitate running up a whirl process of the cooling air.

In a cold air flowing luminary step **1510**, cold air flows through the crown of the

- 43 -

solar energy concentrator **12** at a temperature range of $-50^{\circ}\text{C} > T > 50^{\circ}\text{C}$ thereby partially cooling the crown.

In a hot air flowing spirally step **1516**, hot air (at a temperate T greater than 50°C) flows spirally in the solar energy concentrator **12** (crown), thereby cooling the 5 crown.

In an air exiting step **1520**, air exits system **10** to the atmosphere.

Reference is now made to **Fig. 23**, which is a simplified flowchart **1600** of a method for active protection of the system (**10** in **Fig. 1A**) from approaching subjects that can damage the system, in accordance with an embodiment of the present 10 invention.

In sensor detecting movement step **1602**, the movement sensor (**420** in **Fig. 1D**) detects external movements.

Thereafter, in a movement checking step **1604**, the sensor checks to see if there is movement. In a processing step **1606**, the processor processes matrix data.

15 In a storing output step **1608**, the processor stores the output from step **1606**.

In a deleting step **1610**, the matrix data is deleted.

In checking danger of movement step **1612**, it is checked to see if the movement presents any danger.

If so, the system **10** is closed (collapsed) in a closing device step **1614**.

20 Reference is now made to **Fig. 24**, which is a simplified flowchart **1700** of a method for tracking the sun's movement, in accordance with an embodiment of the present invention.

In a sensing step **1702**, the sun tracking sensor (**450** in **Fig. 1D**) receives inputs relating to the sun's movements.

25 In a sensor outputting step **1704**, the sun tracking sensor **450** outputs three separate currents II, 12 and 13 from three photovoltaic cells (**1006** in **Figs. 11 and 12**).

In a processing step **1706**, the controller **135** compares quantity of II, 12 and 13.

In a first checking step **1708**, the processor checks to see if electric currents II, 12 and 13 are all less than a threshold value.

- 44 -

In a closing device, step **1710**, the solar receiver **11** is closed.

In a second current checking step **1714**, the values of II, 12 and 13 are compared by the controller **135** in dependency of mutual values. If the values are mostly same amount then the next step is performed.

5 In a proper position step **1730**, the system **10** is in a proper position and continues to wait for step **1740**.

In a second current checking step **1714**, it is ascertained if any of II, 12 and 13 are different values than others in a predefined range.

10 In an angle computation step **1716**, an angle computation is performed by processor.

In an time compare step **1718** the II, 12 and 13 values are compared with their previous values and if they changed too fast in the time, device is in strong wind

and active closing is processed.

15 In a perform rotation step **1720**, system **10** is rotated by the solar tracking system **13** as described above with reference to **Figs. 15 and 16**.

In a waiting step **1740**, the processor waits time t.

Reference is now made to **Fig. 25**, which is a simplified flow chart **1800** of a method for positioning the system (**10 in Fig. 1A**), in accordance with an embodiment of the present invention. The entire method is created by two main phases. The first 20 main phase includes a preparation step **1820** and includes computation in the processor and setting valves. No movements occur with the system **10** during this phase. The second main phase includes pumping air in the tanks **901**, and positioning **1850** the system, which are physical processes of transferring liquids between the tanks, and tilting the system **10**.

25 Phase I - preparation **1820**.

In the position data send, step **1826**, the position sensor **450** sends data to the controller **135**.

In a processor unit analyzing step **1828**, the controller **135** analyses from which tank **901** and to which other tank **901** to transfer the liquid.

- 45 -

In processor sending step 1830, the processor 141 sends electric pulse through controller connector switch 135 to power unit 120.

In power amplifying step 1834, the controller connector switch 135 prepares the electric voltage and sets (by using the second servo 150) the air valve 152 to the proper 5 tank 901 to increase the air pressure in this tank, thereby the proper tank is activated for transferring liquid to other tanks.

In pulse sending step 1836, processor 141 sends an electric pulse to power unit 120.

In power unit amplify step 1838, the controller connector switch 135 prepares 10 the electric voltage and sets the air valve 152 by the second servo 150 to the proper tank 901.

Phase I - pumping and positioning 1850.

In processor send electric pulse step 1852, processor unit 135 sends an electric pulse to the power unit 120.

15 In power amplify, step 1854, power unit amplifies the electric wattage and run the air compressor 700.

In the air flows, step 1856, the air flows in the selected tank 901 and pushes the liquid to the next tanks 901.

20 In the fluid flows step 1858, the fluid 905 flows through fluid tube 146 from the selected tank flows to another proper tank 901.

In the fluid mass step 1860, the liquid mass 905 changes the gravitational center of the system 10, and the system is rotated and redirected to a new, most accommodating position.

As such, those skilled in the art to which the present invention pertains, can 25 appreciate that while the present invention has been described in terms of preferred embodiments, the concept upon which this disclosure is based may readily be utilized as a basis for the designing of other structures and processes for carrying out the several purposes of the present invention.

- 46 -

The present invention is not limited to generation of electricity, thus the system for solar energy utilization can be also used for heating objects located in the crown area of the solar concentrator.

Also, it is to be understood that the phraseology and terminology employed 5 herein are for the purpose of description and should not be regarded as limiting.

In the method claims that follow, alphabetic characters used to designate claim steps are provided for convenience only and do not imply any particular order of performing the steps.

It is important, therefore, that the scope of the invention is not construed as 10 being limited by the illustrative embodiments set forth herein. Other variations are possible within the scope of the present invention as defined in the appended claims and their equivalents.

CLAIMS:

1. A solar energy utilization system (10) comprising:

a solar receiver (11) configured for receiving solar energy from the sun and concentrating the received solar energy at a predetermined spot area, the solar receiver 5 comprising a plurality of flexible mirrors (200) independent of each other and radially arranged around a main axis of the system, said plurality of flexible mirrors (200) being configured to be either deployed for operation or collapsed;

10 a solar energy concentrator (12) mounted on a pole (14) extending from the solar receiver (11) along the main axis of the system, the solar energy concentrator (12) being located at the predetermined spot area in which the solar energy reflected from said plurality of flexible mirrors (200) is concentrated, and configured for converting the concentrated reflected energy into electric energy;

15 a solar tracking system (13) configured for sensing position of the sun in the sky and tilting the system (10) for directing the solar receiver (11) towards the sun to receive and reflect maximum sunlight onto the predetermined spot area.

2. The solar energy utilization system of claim 1, wherein the solar receiver (11) comprises a hub (300) including a plurality of disks arranged along the main axis of the system and suitable for holding the flexible mirrors (200).

20 3. The solar energy utilization system of claim 2, wherein the hub (300) comprises an upper bedplate cover disk (315a), a lower bedplate cover disk (315b) and a plurality of mirror holding disks (316) sandwiched between the upper bedplate cover disk (315a) and the lower bedplate cover disk (315b), the mirror holding disks (316) being configured for securing and holding the flexible mirrors (200).

25 4. The solar energy utilization system of claim 3, wherein the solar receiver (11) comprises three mirror holding disks (316), and eighteen flexible mirrors (200) arranged in three layers formed by the three holding disks (316), each mirror holding disk (316) holding six flexible mirrors (200).

5. The solar energy utilization system of claim 3, wherein the solar receiver (11) comprises a leaf locking mechanism (318) configured for holding the flexible mirrors

(200) in the mirror holding disks (316), the mirror holding disks (316) comprise a "female" part (318a) of the leaf locking mechanism (318) securing the flexible mirrors (200) in the radial positions around the main axis of the system, and each flexible mirror (200) includes a "male" part (318b) of the locking mechanism (318) mating the 5 "female" part (318a) arranged in the corresponding holding disks (316).

6. The solar energy utilization system of claim 5, wherein each female part (318a) comprises a corresponding slit (317) arranged in the holding disk (316) an inner surface of the slits (317) including at least one slit irregularity (319a) in a tooth shape, and each flexible mirror (200) comprises at least one corresponding leaf irregularity (319b) 10 having a shape suitable to mate with said at least one slit irregularity (319a).

7. The solar energy utilization system of claim 2, wherein the solar receiver (11) further comprises a pneumatic mirror folding mechanism (16) comprising:

a movable ring (520) mounted on the pole (14) and capable to slide along the main axis of the system;

15 folding strings (261) attached to the flexible mirrors (200); and

a pneumatic piston (550) mounted on the top of the hub (300) and configured to lift the movable ring (520);

whereby the flexible mirrors (200) are folded in the radial direction toward the pole (14) by lifting the movable ring (520) up to pull the folding strings (261).

20 8. The solar energy utilization system of claim 7, wherein the solar receiver (11) comprises an air tank (502) coupled to the pneumatic piston (550) via an air line (501) including a controllable electromagnetic air valve (503); whereby the pneumatic piston (550) is activated by pressurized air passing from the air tank (502) after opening the controllable electromagnetic air valve (503).

25 9. The solar energy utilization system of claim 7, wherein the pneumatic piston (550) comprises a plurality of concentric tubes (551) telescopically arranged along the main axis.

10. The solar energy utilization system of claim 8, wherein the system (10) further comprises an air controllable compressor (700) coupled to the air tank (502) for filling 30 thereof with compressed air.

11. The solar energy utilization system of claim 10, wherein the air controllable compressor (700) is coupled to the air tank (502) via a multi-way gas flow control valve (152).

12. The solar energy utilization system of claim 7, wherein the folding mechanism 5 (16) includes an electromagnetic lock device (580) mounted on the pole (14) and configured to lock the movable ring (520), thereby holding the flexible mirrors (200) in the folded state.

13. The solar energy utilization system of claim 12, wherein the lock device (580) includes an electromagnetic trigger (584) configured for unlocking the lock device 10 (580) and releasing the movable ring (520).

14. The solar energy utilization system of claim 3, wherein each flexible mirror (200) comprises an inflatable supporting member (250) configured for connecting to the mirror holding disks (316), and a working member (220) that is mounted on the inflatable supporting member (250).

15. The solar energy utilization system of claim 14, wherein the inflatable support element (250) comprises a flexible inflatable frame (282) having a ladder shape and including inflatable radial beams (28a and 28b) fortified by a plurality of inflatable cross ribs (290).

16. The solar energy utilization system of claim 14, wherein the inflatable supporting member (250) of the flexible mirrors (200) comprises a leaf locking mechanism (318a) for securing an end part (291) of the inflatable supporting member (250) in the holding disks (316).

17. The solar energy utilization system of claim 14, wherein the proximal end (291) of the inflatable supporting member (250) includes a nipple air valve (288) configured 25 for inflation of flexible inflatable frame (282).

18. The solar energy utilization system of claim 14, wherein the system (10) further comprises an air controllable compressor (700) coupled to the inflatable supporting member (250) for filling thereof.

- 50 -

19. The solar energy utilization system of claim 14, wherein the inflatable supporting member (250) is enveloped by a fiber mesh (286) for fortifying the supporting member (250).

20. The solar energy utilization system of claim 19, wherein the inflatable supporting member (250) is covered by radial shaping strings (295) crossing the inflatable supporting member (250) in radial directions and by circumferential shaping strings (296) crossing the inflatable supporting member (250) in the circumferential direction, which is perpendicular to the radial directions.

21. The solar energy utilization system of claim 20, wherein the shaping strings (295) are interlaced with the fiber mesh (286) along the radial direction, whereas the shaping strings (296) are interlaced with the fiber mesh (286) along the ribs (290).

22. The solar energy utilization system of claim 21, wherein shaping strings (295 and 296) include SILON™ wire.

23. The solar energy utilization system of claim 19, wherein the inflatable supporting member (250) further includes at least one folding string (261) attached to a distal end (281) of the inflatable supporting member (250).

24. The solar energy utilization system of claim 23, wherein the inflatable supporting member (250) comprises guide tubes (287), which are attached to the fiber mesh (286) at the foldable cross ribs (290) and configured to provided passage of the folding strings (261) unrestrictedly therethrough.

25. The solar energy utilization system of claim 15, wherein the foldable cross ribs (290) of the inflatable supporting member (250) include a weakened longitudinal cross-section (285) around which the foldable cross ribs (290) kink or buckle to deform and move the radial beams (28a) and (28b) towards each other.

26. The solar energy utilization system of claim 15, wherein the working member (220) includes a covering mesh (229) attached to the top of the inflatable supporting member (250).

- 51 -

27. The solar energy utilization system of claim 26, wherein the working member (220) includes a plurality of flexible reflective plates (222) attached to the covering mesh (229).

28. The solar energy utilization system of claim 27, wherein the flexible reflective plates (222) are regularly arranged and overlap with each other, thereby filling completely the top surface of the working member (220).

29. The solar energy utilization system of claim 27, wherein the flexible reflective plates (222) are sparsely dispersed within the top surface of the working member (220).

30. The solar energy utilization system of claim 27, wherein the flexible reflective plates (222) are arranged in a fish scale fashion.

31. The solar energy utilization system of claim 27, wherein the flexible reflective plates (222) are deflectable from the surface of the working member (220), thereby forming holes (221) between the plates (222) to enable an air stream to flow through these holes, and returning the flexible reflective plates (222) to their operating position during the absence of the air stream.

32. The solar energy utilization system of claim 27, wherein a space is provided between flexible mirrors (200) enabling an air stream to flow through them.

33. The solar energy utilization system of claim 15, wherein the solar receiver (11) includes an air checking and filling mechanism (90) configured for controllable checking pressure in the flexible inflatable frame (282) of the flexible mirrors (200), and for filling the flexible mirrors (200) with air when required, the air checking and filling mechanism (90) comprises a first multi-way air flow valve (91) configured to supply air to the flexible inflatable frame (282).

34. The solar energy utilization system of claim 33, wherein the first multi-way air valve (91) is coupled to the air controllable compressor (700) via an air pipe 96 connected to the compressor (700) via a second multi-way air valve (152).

35. The solar energy utilization system of claim 33, wherein the solar receiver (11) further includes a first servo (180) configured for setting the first multi-way valve (91) to supply pressurized air from the compressor (700) to a selected flexible mirror (200).

36. The solar energy utilization system of claim 1, wherein the solar energy concentrator (12) comprises a substrate (121) having a funnel shape with a wide conical substrate mouth (122) with expansion towards a top end of the system, and a narrow stem including a sleeve connector (1004) mounted on the pole (14).

5 **37.** The solar energy utilization system of claim 36, wherein the substrate (121) is axially symmetric and has a tapering angle of the conical part in the range of about 5 degrees to about 85 degrees with respect to an axis of the pole (14).

10 **38.** The solar energy utilization system of claim 37, wherein the substrate (121) has an outer surface (1007) configured for mounting solar photovoltaic (PV) elements (1006) thereon to generate electricity.

39. The solar energy utilization system of claim 38, wherein the solar photovoltaic (PV) elements (1006) are photovoltaic elements including at least one material selected from arsenic-germanium-indium (AsGeln), crystalline silicone (c-Si) and carbon.

15 **40.** The solar energy utilization system of claim 1, wherein the solar energy concentrator (12) comprises an air-based cooling mechanism.

20 **41.** The solar energy utilization system of claim 37, wherein the solar energy concentrator (12) comprises an air-based cooling mechanism, the cooling mechanism comprises an inner coned tube (1005) mounted inside of the substrate (121), the inner coned tube (124) being axially symmetric and having a diameter of a top of a conical mouth of the inner coned tube (1005) less than the diameter of the conical mouth (125) of the substrate (121) to form a circular slit (126) between the substrate (121) and the inner coned tube (1005), thereby an air channel is formed for passing air to cool the photovoltaic elements (1006), the air channel enables the air to pass from the area below the solar receive (11), through the pole, and finally through the slit (126).

25 **42.** The solar energy utilization system of claim 41, wherein the cooling mechanism further comprises a fan (136) located along said air channel and configured to facilitate air flow in the air channel.

43. The solar energy utilization system of claim 41, wherein the inner coned tube (1005) is mechanically connected to the substrate (121) by means of connecting

members (128).

44. The solar energy utilization system of claim 43, wherein the connecting members are selected from rods and plates in the shape of square brackets radially extending across the circular slit (126) and attached to the walls of the inner coned tube 5 (1005) and the substrate (121).

45. The solar energy utilization system of claim 41, wherein a wall (122) of the inner coned tube (1005) is wavy in shape and includes threads (127) helically turning around the wall (122) from both inner and outer sides of the inner coned tube (1005), thereby to provide a whirl effect for the air passing and exiting between the substrate 10 (121) and the inner coned tube (1005) to enhance cooling of the photovoltaic elements (1006).

46. The solar energy utilization system of claim 41, wherein the cooling mechanism further comprises an outer coned tube (123) mounted outside of the substrate (121) on a sleeve (1008) mounted on the pole (14) and is made from a material transparent to the 15 light of sun-beams, the outer coned tube (123) being axially symmetric and having a diameter of a top of a conical mouth of the outer coned tube (123) greater than the diameter of the conical mouth (125) of the substrate (121), thereby forming another circular slit (129) between the substrate (121) and the outer coned tube (123), whereby said another circular slit (129) provides another air channel for cooling the photovoltaic 20 elements (1006) in addition to the air channel (126).

47. The solar energy utilization system of claim 1, further comprising a pivot system (810) for orienting the main axis of the system (10) towards the sun, the pivot system (810) comprising a bearing socket (800) integrated with sleeves (811) having an opening (812) configured for inserting installation members, and a thrust bearing (142) 25 arranged in the bearing socket (800), the thrust bearing (142) including a stationary outer race (142b) attached to the inner surface of the bearing socket (800) and a movable inner race (142a) supporting the system (10) at a pivot point located on the pole (14) at a center of rotation (C) of the system (10).

48. The solar energy utilization system of claim 1, wherein the solar tracking system 30 (13) includes three fluid communicating balance tanks (901) extending from the main

axis of the system in radial directions with an angle of 120 degrees between each pair of the tank directions; said three balance tanks (901) contain liquid (905) being transferred between the tanks controllably via liquid communication tubes (146), thereby shifting the center of the mass of the system (10) and tilting the main axis of the system (10) in a 5 desired direction.

49. The solar energy utilization system of claim 48, wherein the solar tracking system (13) includes a second multi-way gas flow control valve (152) coupled to an air compressor (700) and configured for controllably providing air to one tank selected from the tanks (901) to increase pressure in the selected tank and thereby to push the 10 liquid out from the selected tank into the other tanks (901); and a second servo (150) configured for setting the second multi-way air flow valve (152) to supply air from the air compressor (70) to a desired tank (901).

50. The solar energy utilization system of claim 49, wherein each tanks (901) of the solar tracking system (13) includes a tank opening (148) arranged at a distant end of the 15 tank (901) for releasing excessive air.

51. The solar energy utilization system of claim 48, wherein the solar tracking system (13) includes an opening pipe (921) arranged in the tank (901) and having one pipe end being connected to the tank opening (148) and other pipe end being always kept above the level of the liquid (905); and a float (902) configured to float on the 20 liquid (905) and support said other pipe end of the tank opening (148) above the level of the liquid (905).

52. The solar energy utilization system of claim 48, wherein the solar tracking system (13) includes a passing liquid pipe (934) arranged in each tank (901), the passing liquid pipe (934) having one pipe end connected to the liquid communication tube (146) 25 and other pipe end being always kept below the level of the liquid (905); and a sinker (933) attached to the other pipe end configured to keep the other pipe end immersed in the liquid (905).

53. The solar energy utilization system of claim 1, comprising an air compressor (700) configured for providing pressurized gas for activation of folding the mirrors and 30 tracking the sun; the solar receiver (11) comprises an electromagnetic trigger (581)

configured for unlocking the flexible mirrors (200) when the mirrors are in a folded state; an electromagnetic valve (503) configured for providing compressed air for folding the flexible mirrors (200), a first servo (180) associated with a first multi-way valve (91) and configured for setting the first multi-way valve (91) to supply 5 pressurized air from the compressor (700) to a selected flexible mirror (200) for filling the selected mirror with air when required, a second servo (150) associated with a second multi-way air flow valve (152) and configured for setting the second multi-way air flow valve (152) to supply air from the compressor (700) to the solar tracking system (13), and a fan (136) configured for providing air for cooling the solar tracking system 10 (13).

- 54.** The solar energy utilization system of claim 53, further comprising:
a control system (15) configured for control of the operation of the system (10),
the control system comprising:
a power supply unit (120) configured to provide electric power required
15 for operation of electric and electronic modules of the system;
at least one sensor selected from the group consisting of:
a output voltage sensor (157) configured for measuring the output
voltage generated by the system (10);
a motion sensor (420) configured for detecting moving objects in
20 the vicinity of the system that might be potentially hazardous for the
system (10);
a sun tracking sensor (450) configured for recognizing the
location of the sun;
a mirror pressure sensor (185) configured for measuring the air
25 pressure that is required for deploying the solar receiver (11);
a power voltage sensor (158) configured for measuring the power
supply voltage provided by the power supply unit (120);
an output voltage sensor (157) configured for measuring output voltage
generated by the solar energy concentrator (11)
30 a controller (135) coupled to at least one of the sensors and configured
for analyzing the received sensor data and generating control signals to the
controller connector switch (140) to controllably provide electric power supply

- 56 -

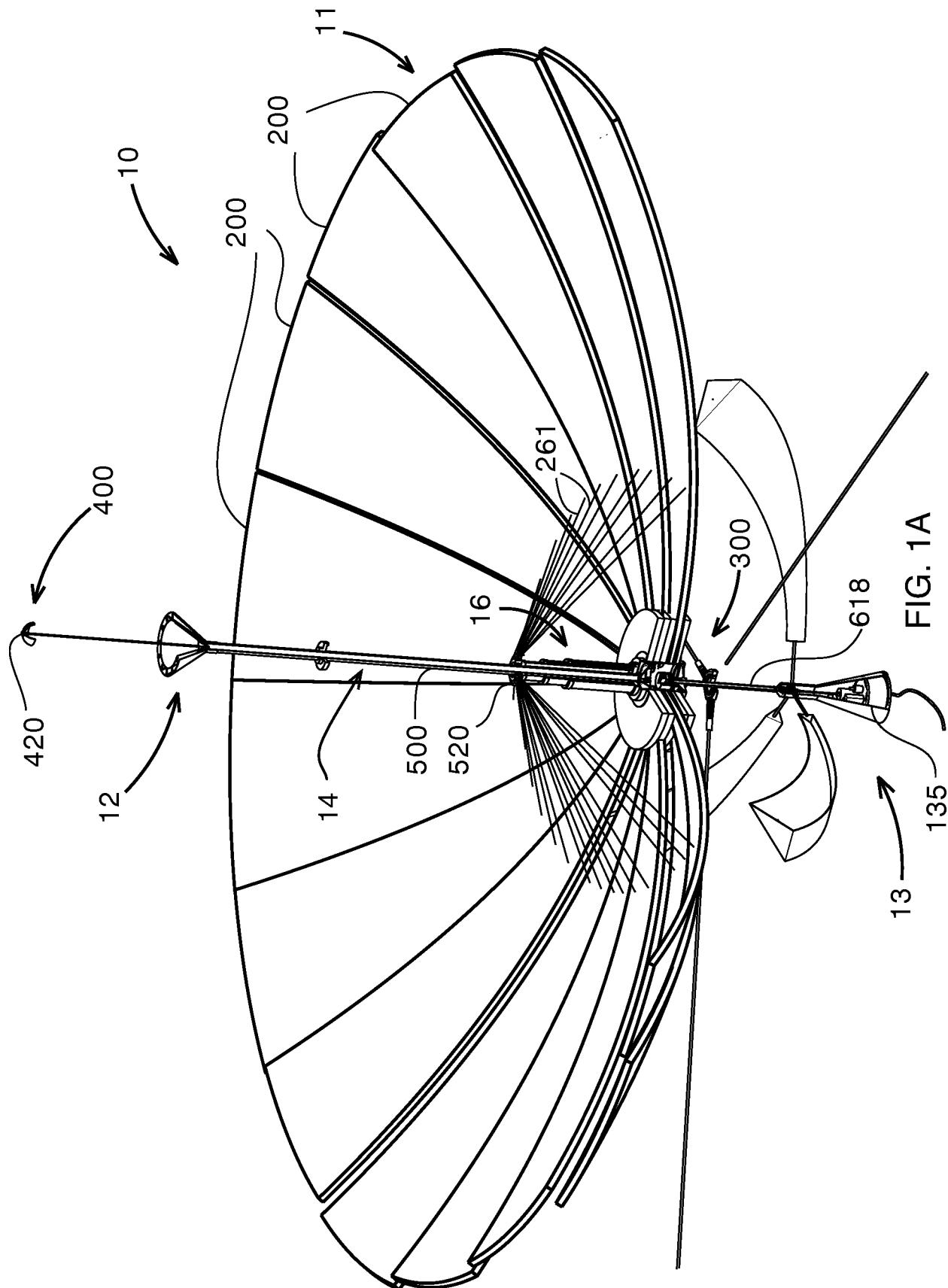
voltages from a power supply unit (120) to at least one device selected from the group consisting of: the electromagnetic trigger (581), the electromagnetic valve (503), the first servo (180), the second servo (150), the air compressor (700), and to the fan (136);

5 thereby to control operation of the system.

55. A method for dynamic solar energy utilization, the method comprising:

- a) receiving solar energy from the sun by a solar receiver configured for receiving solar energy from the sun; the solar receiver comprising a plurality of flexible mirrors independent of each other and radially arranged around a main axis of the system, said plurality of flexible mirrors being configured to be either deployed for operation or collapsed and
- b) concentrating the received solar energy at a predetermined spot area;
- c) converting the concentrated energy into direct current electricity by a solar energy concentrator being located at the predetermined spot area in which the solar energy reflected from said plurality of flexible mirrors is concentrated.

56. The method according to claim 55, further comprising passing cooling air through the solar energy concentrator.


57. The method according to claim 55, further comprising sensing position of the sun in the sky by a solar tracking system and tilting the solar receiver for directing thereof towards the sun to receive and reflect maximum sunlight onto the predetermined spot area.

58. A method according to claim 55, further comprising folding at least one of said plurality of flexible mirrors under unfavorable environmental conditions.

59. A method according to claim 55, further comprising deploying at least one of said 25 at least one of said plurality of flexible mirrors under favorable environmental conditions.

60. A method according to claim 55, further comprising inverting said DC electricity to AC electricity and providing said AC electricity into an electricity grid.

1/27

2/27

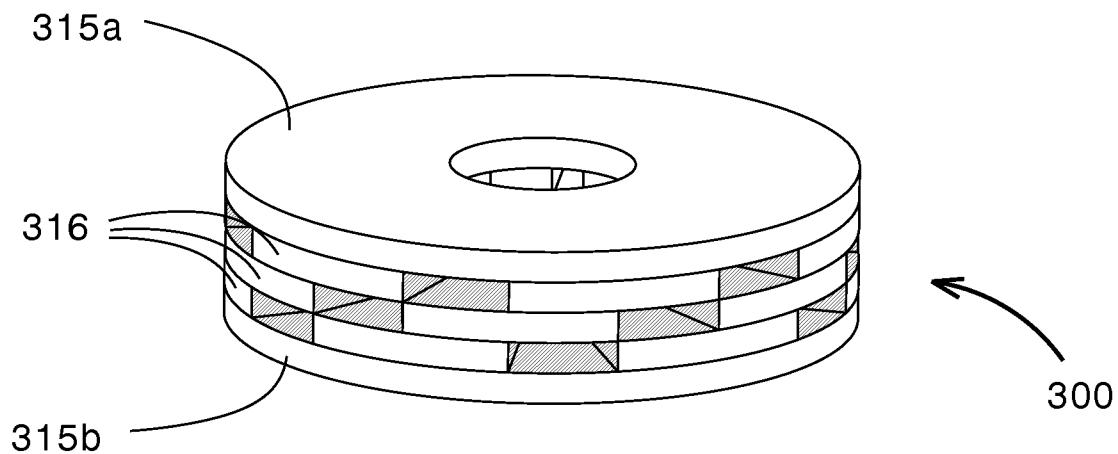


FIG. 1B

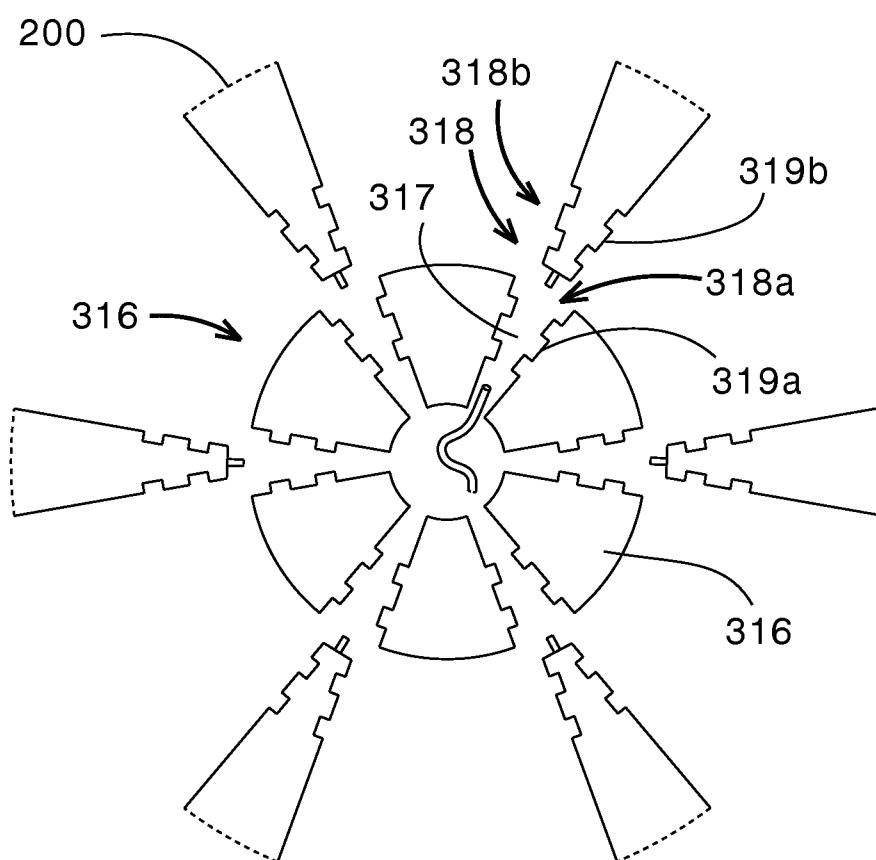


FIG. 1C

3/27

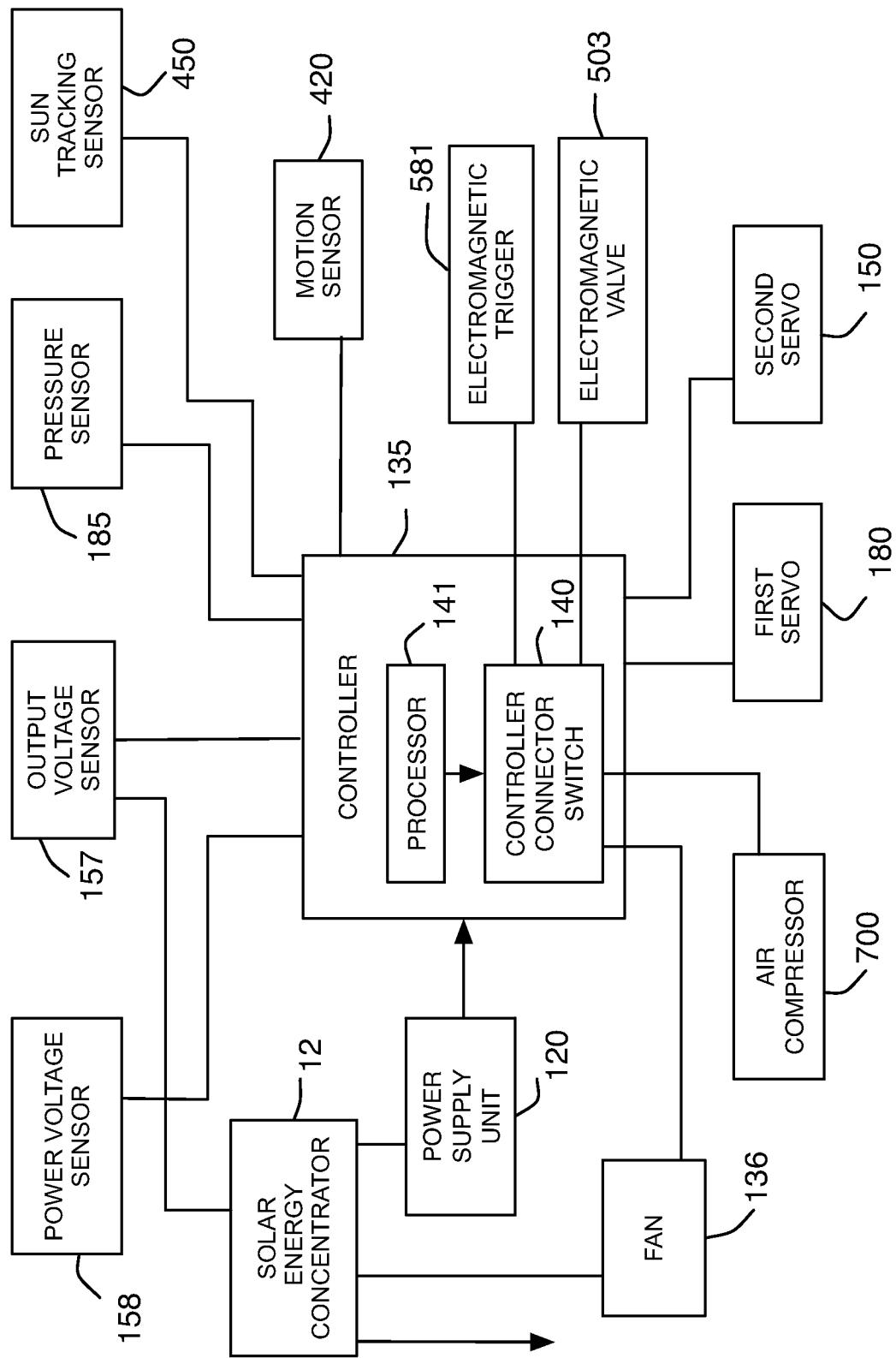


FIG. 1D

4/ 27

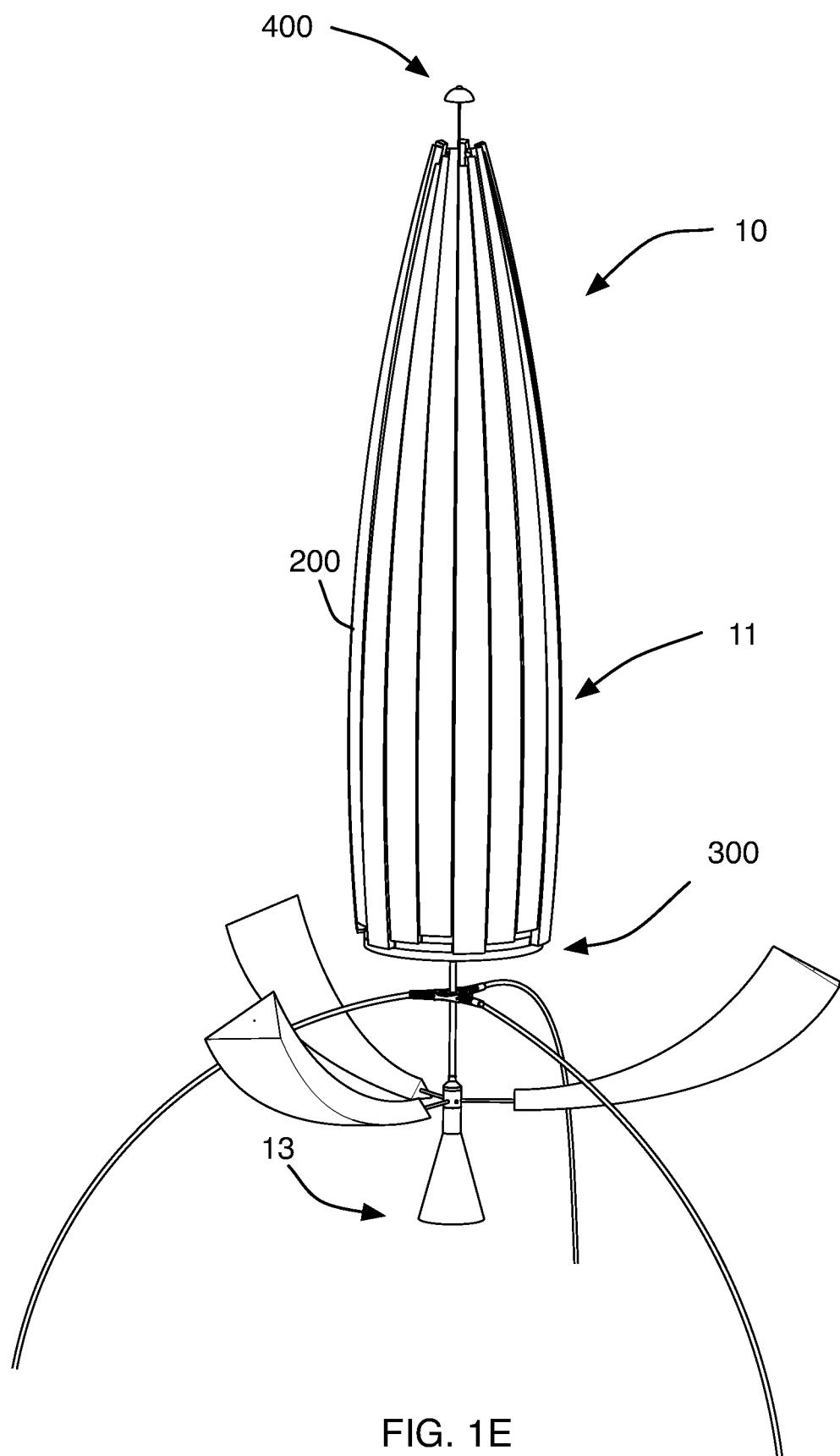
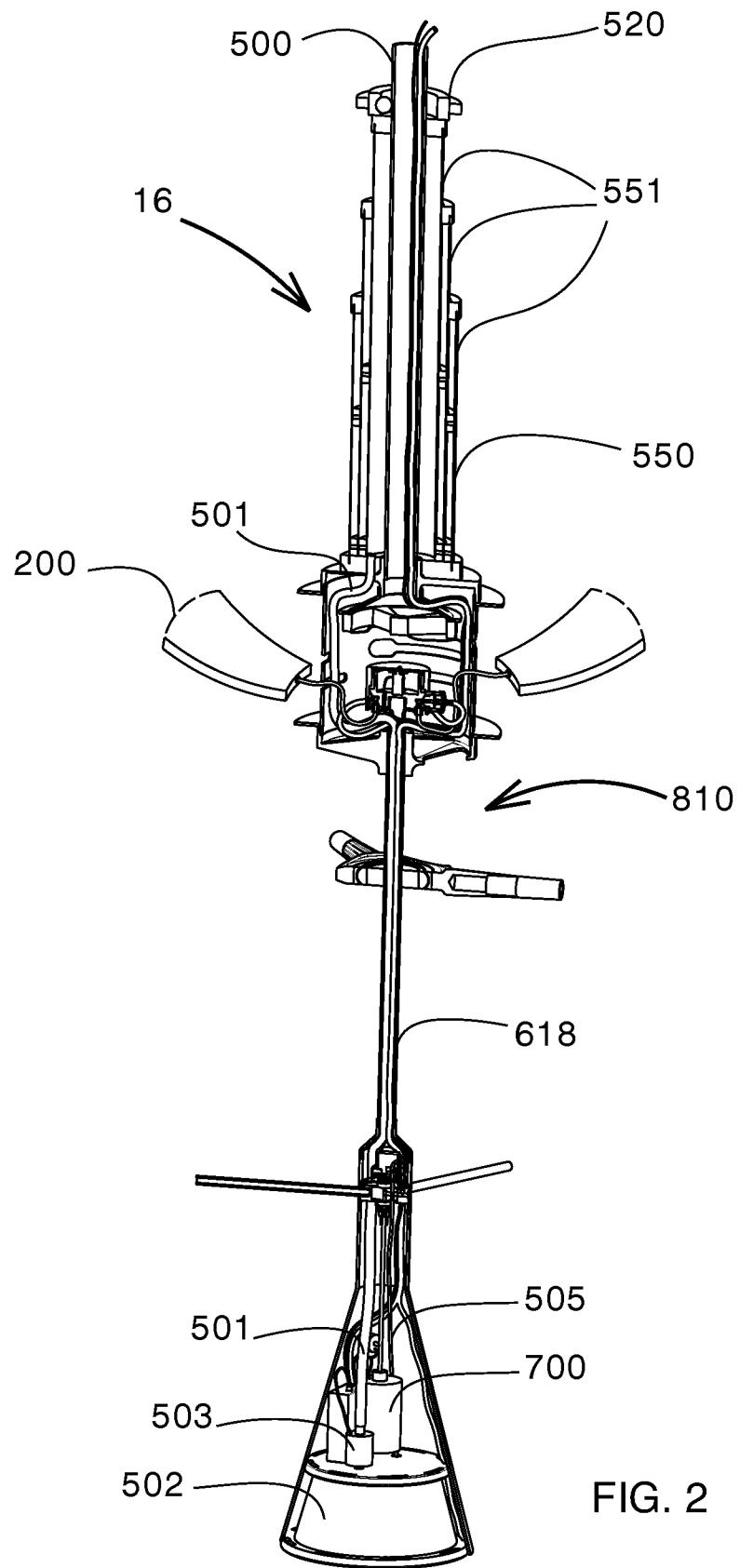



FIG. 1E

5/27

6/27

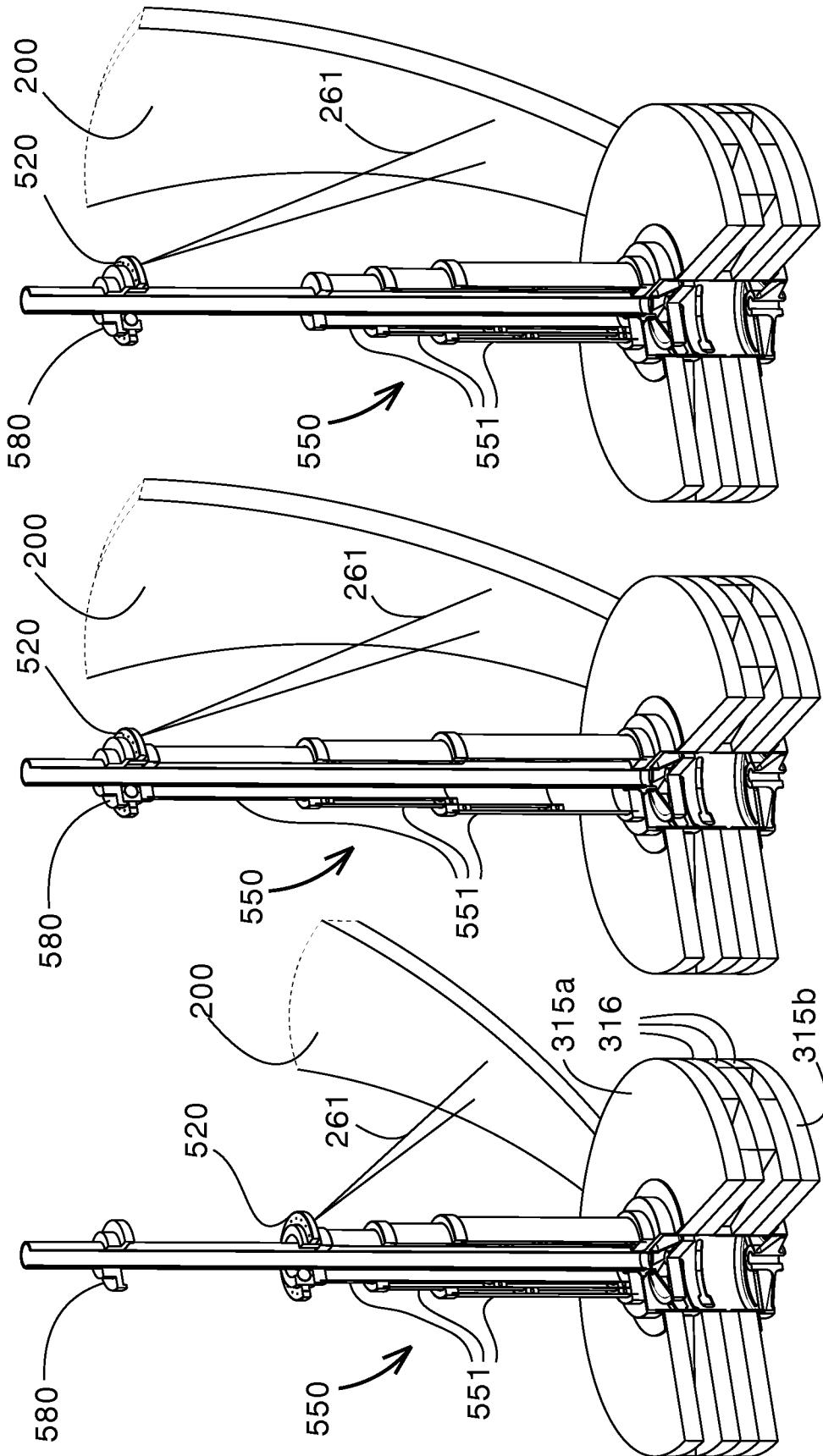


FIG. 3A

FIG. 3C

FIG. 3B

7/27

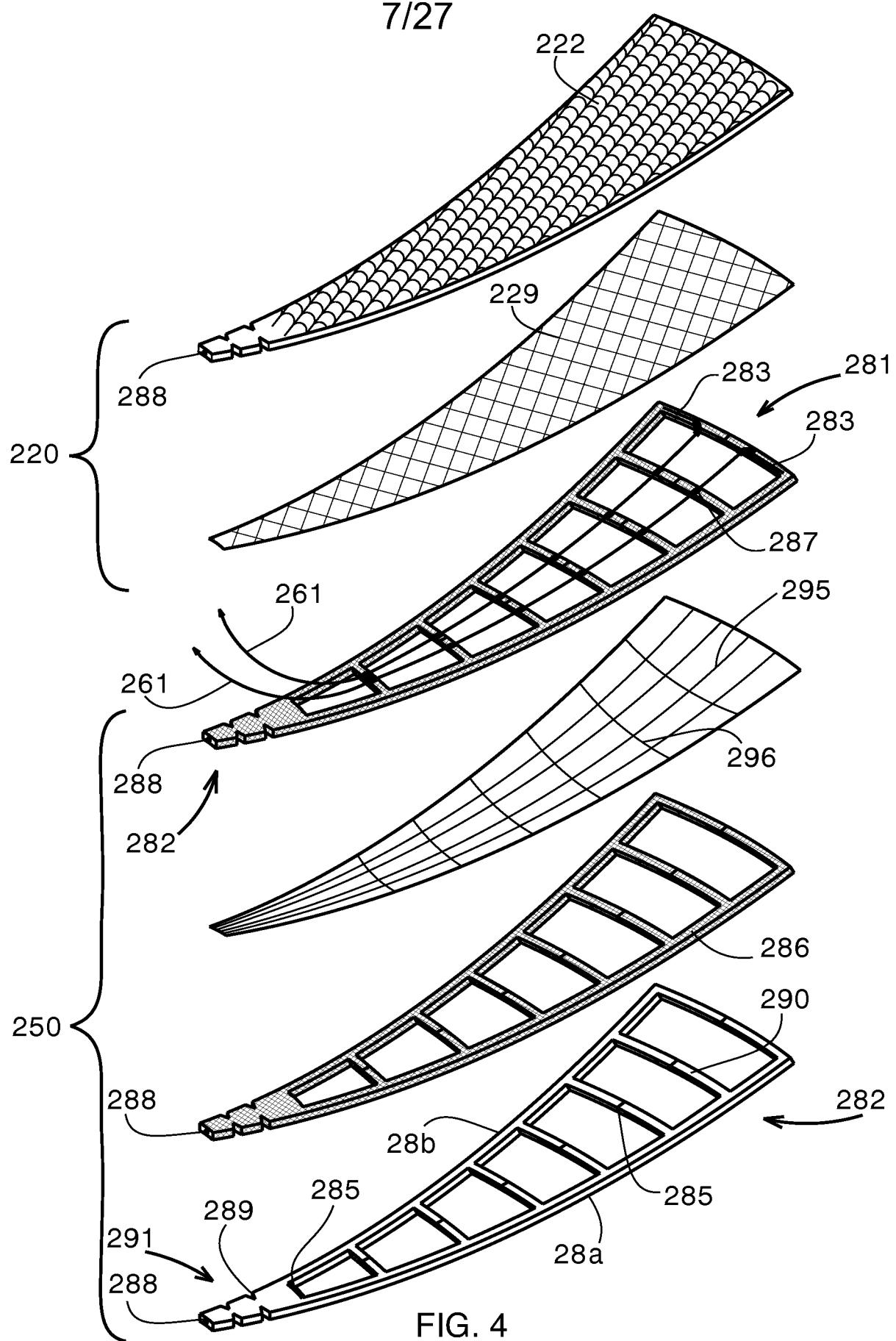
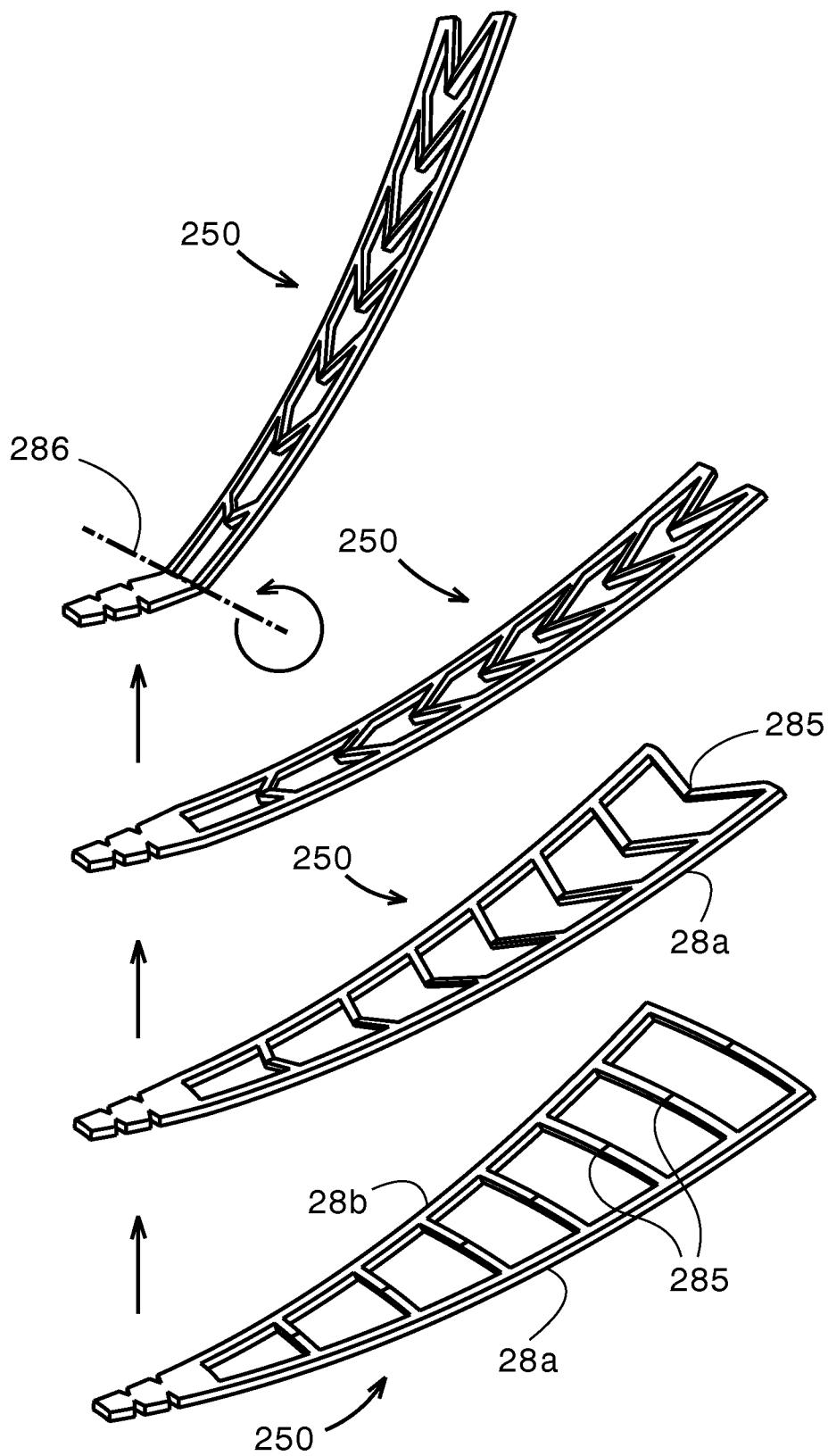



FIG. 4

8/27

9/27

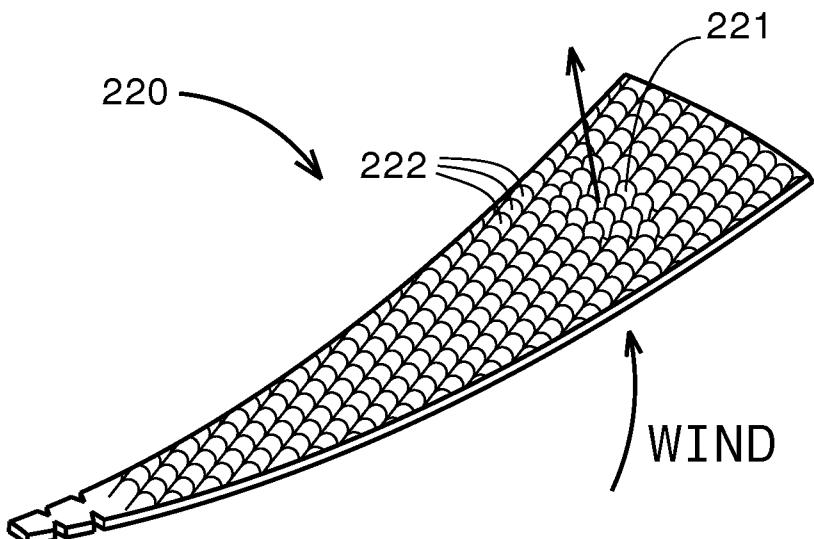


FIG. 6

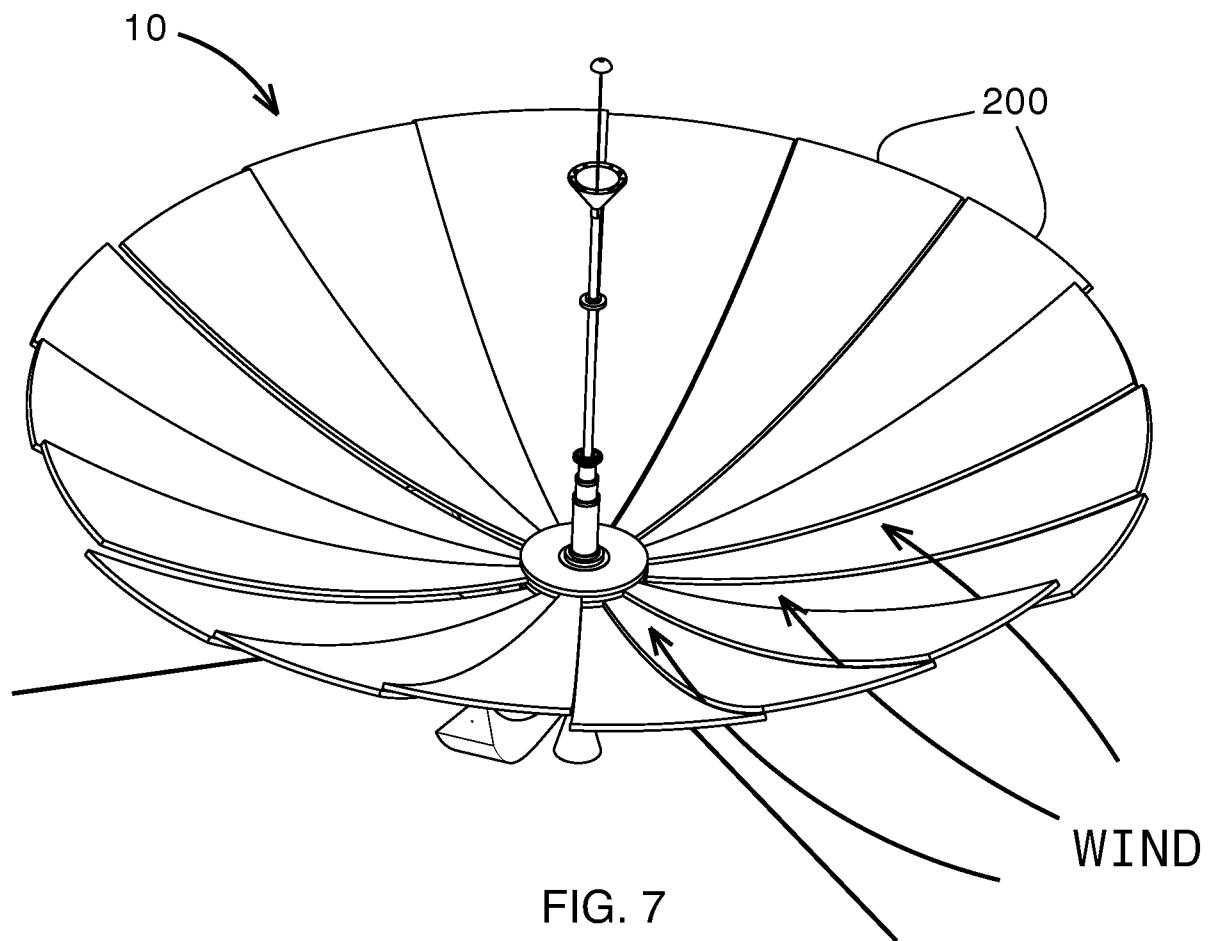
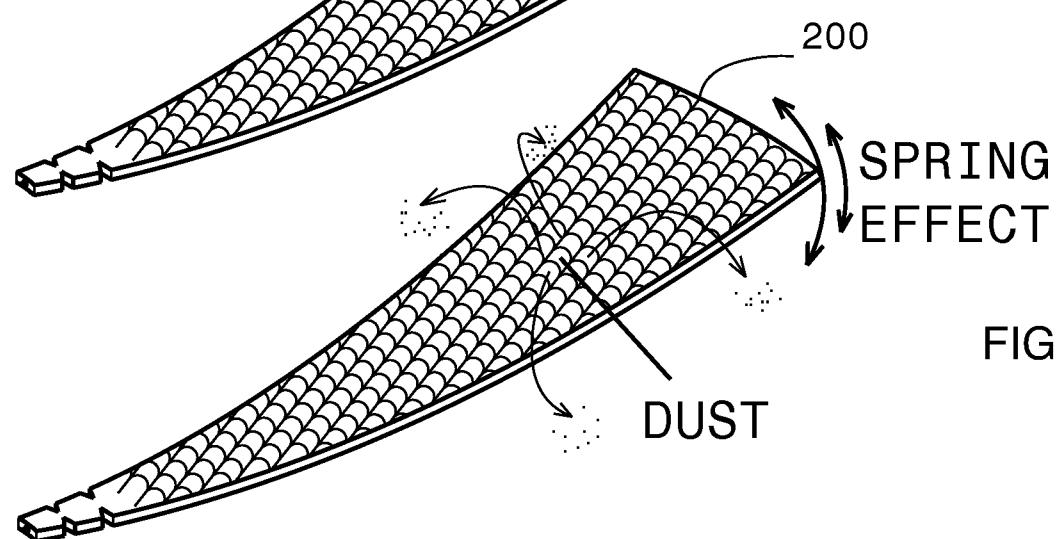
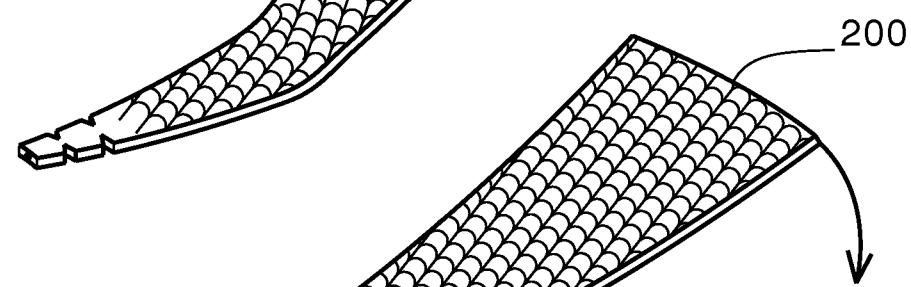
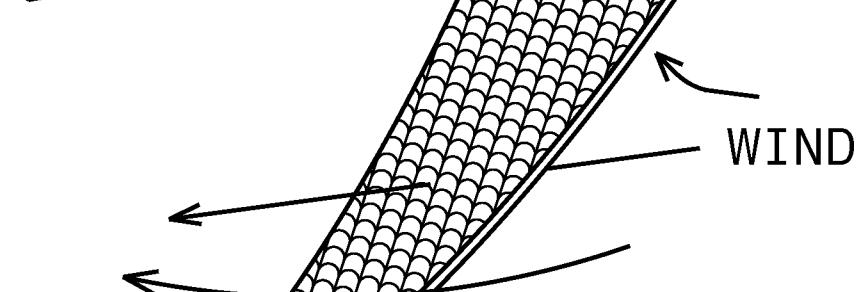
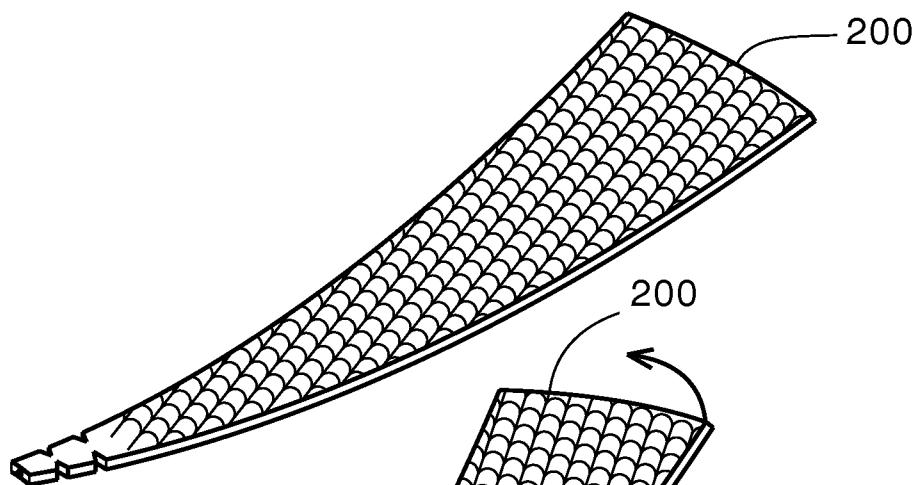
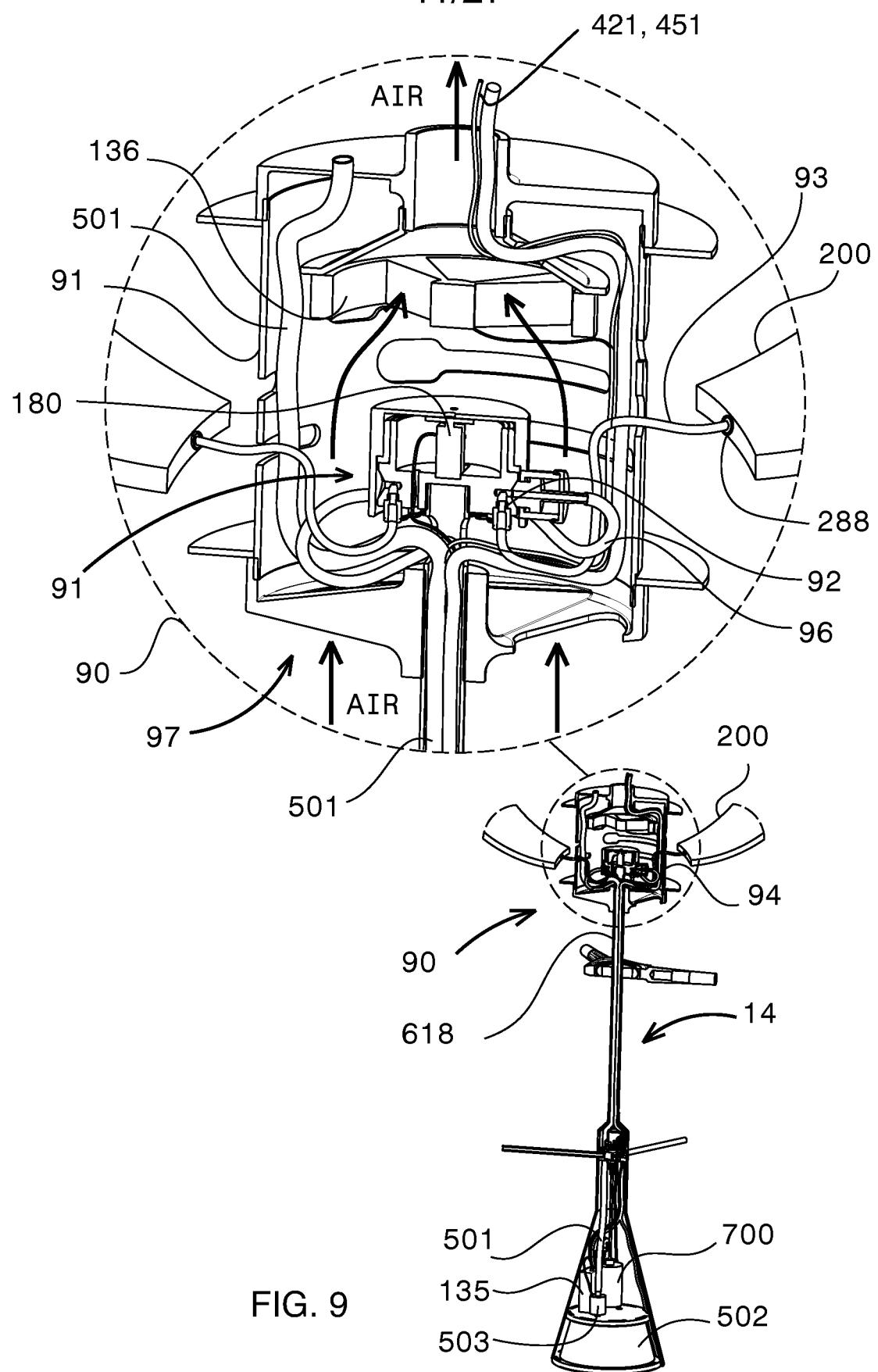







FIG. 7

10/27

11/27

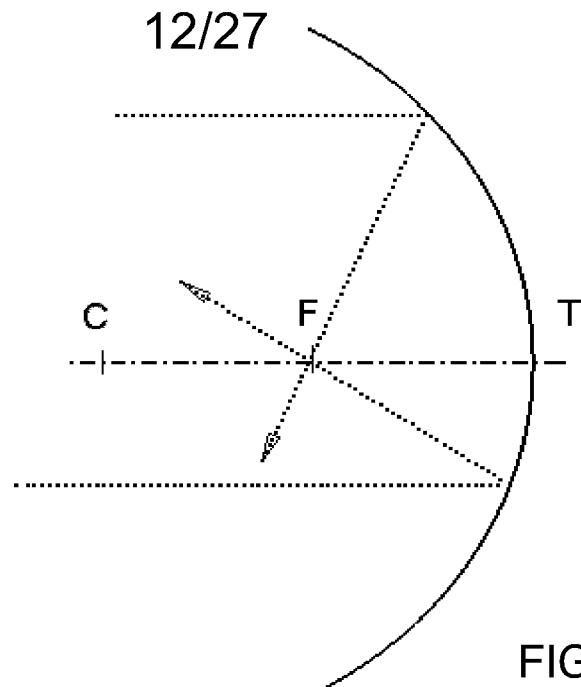


FIG. 10A

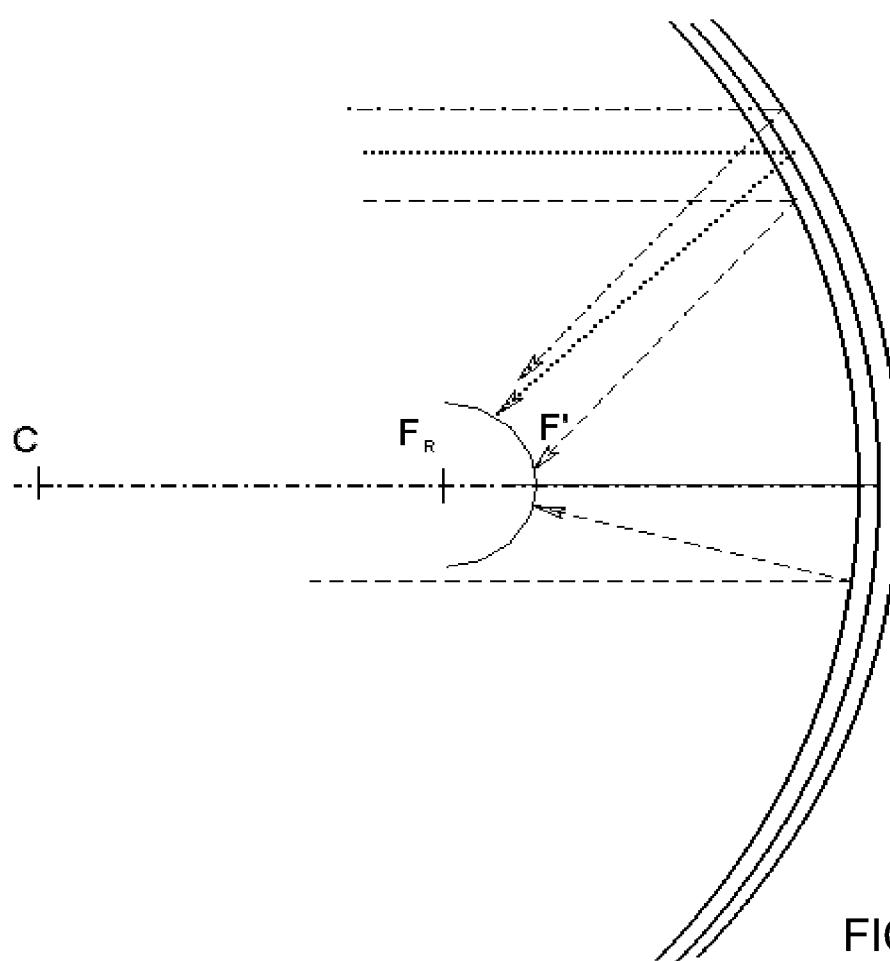


FIG. 10B

13/27

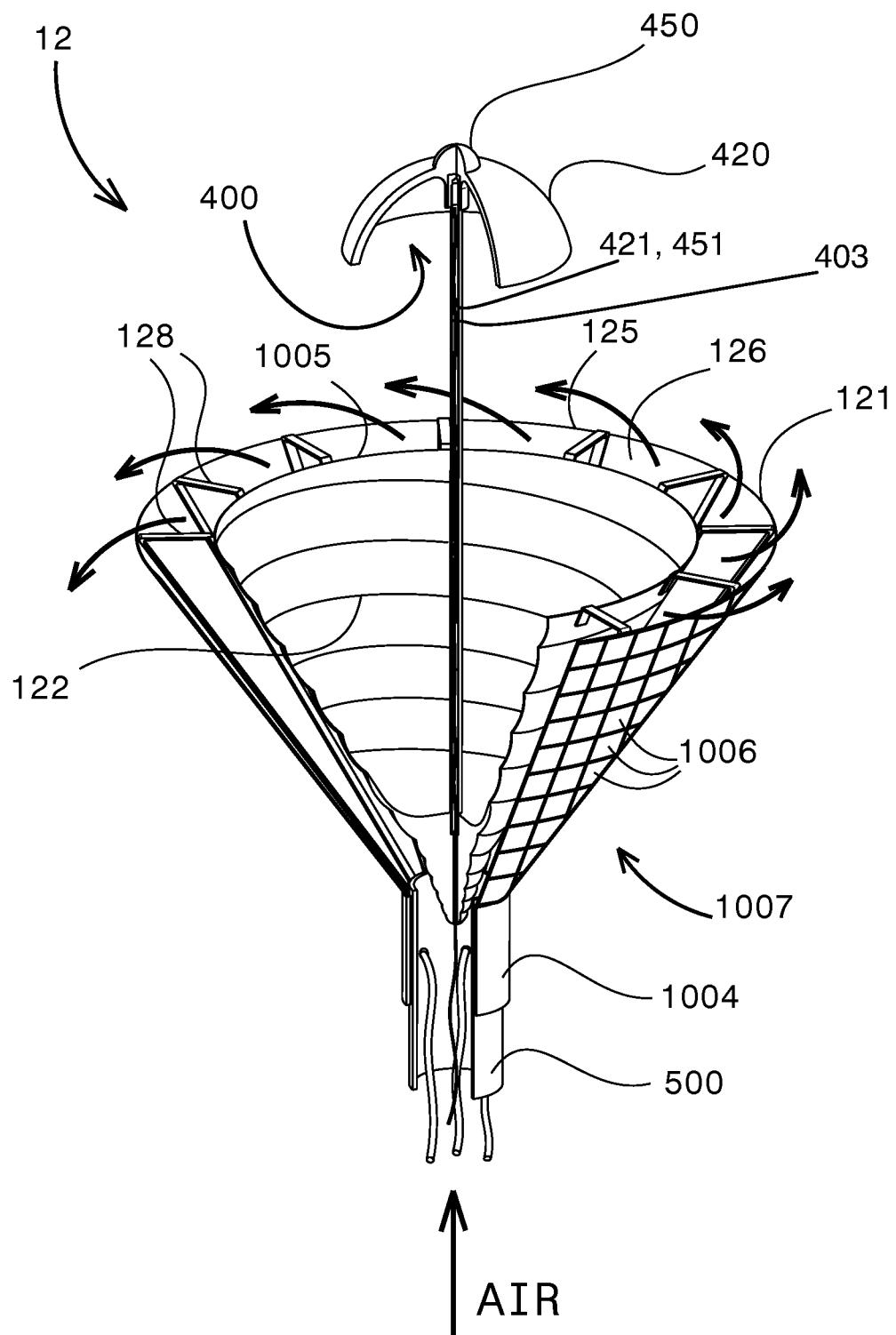


FIG. 11

14/27

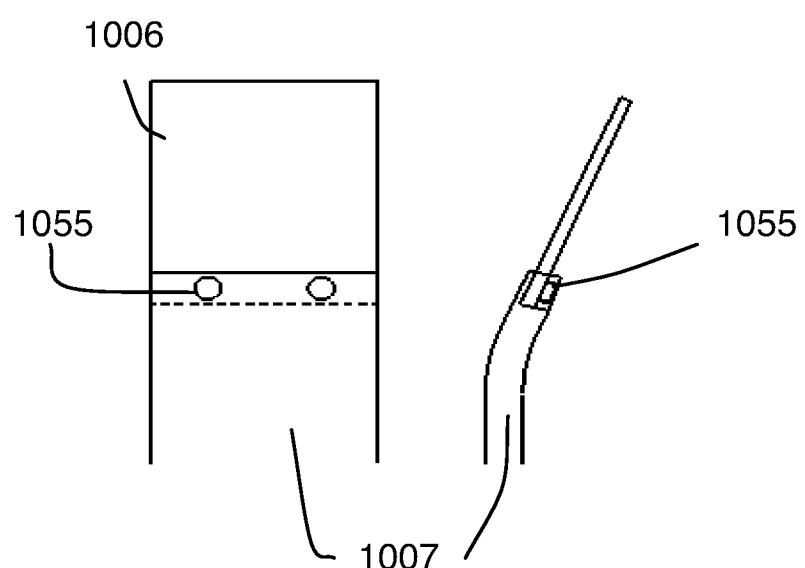


FIG. 12A

FIG. 12B

15/27

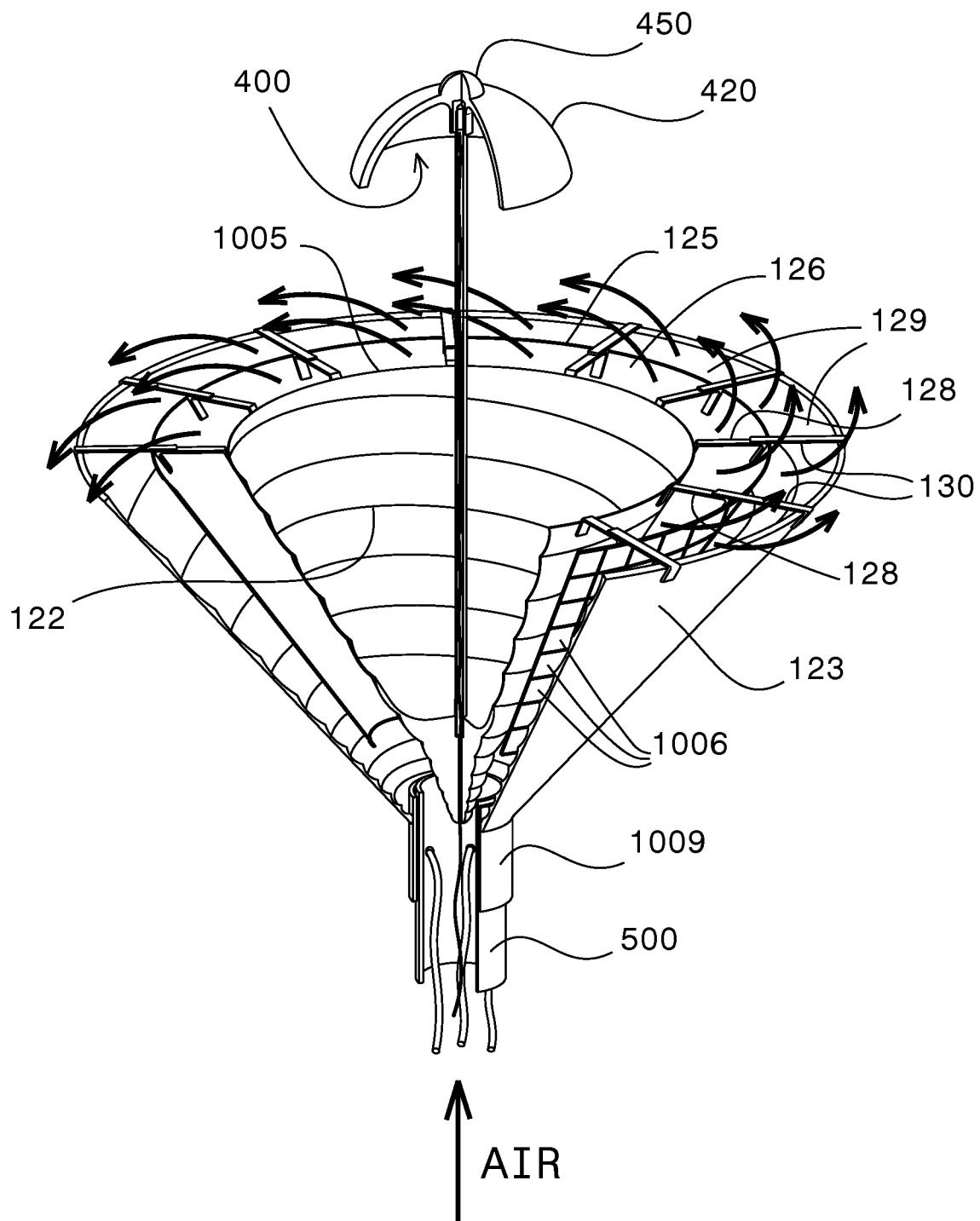


FIG. 13

16/27

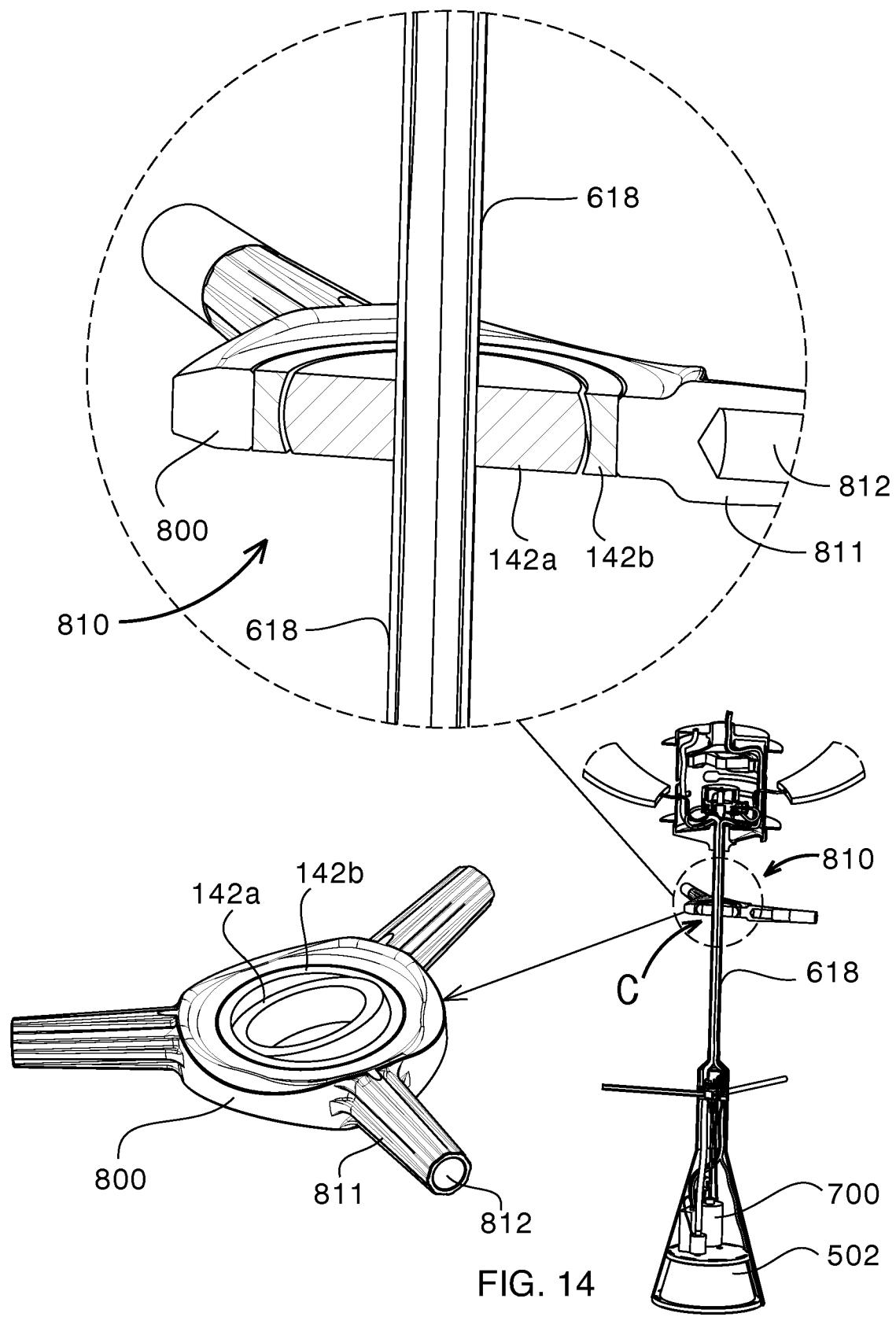


FIG. 14

17/27

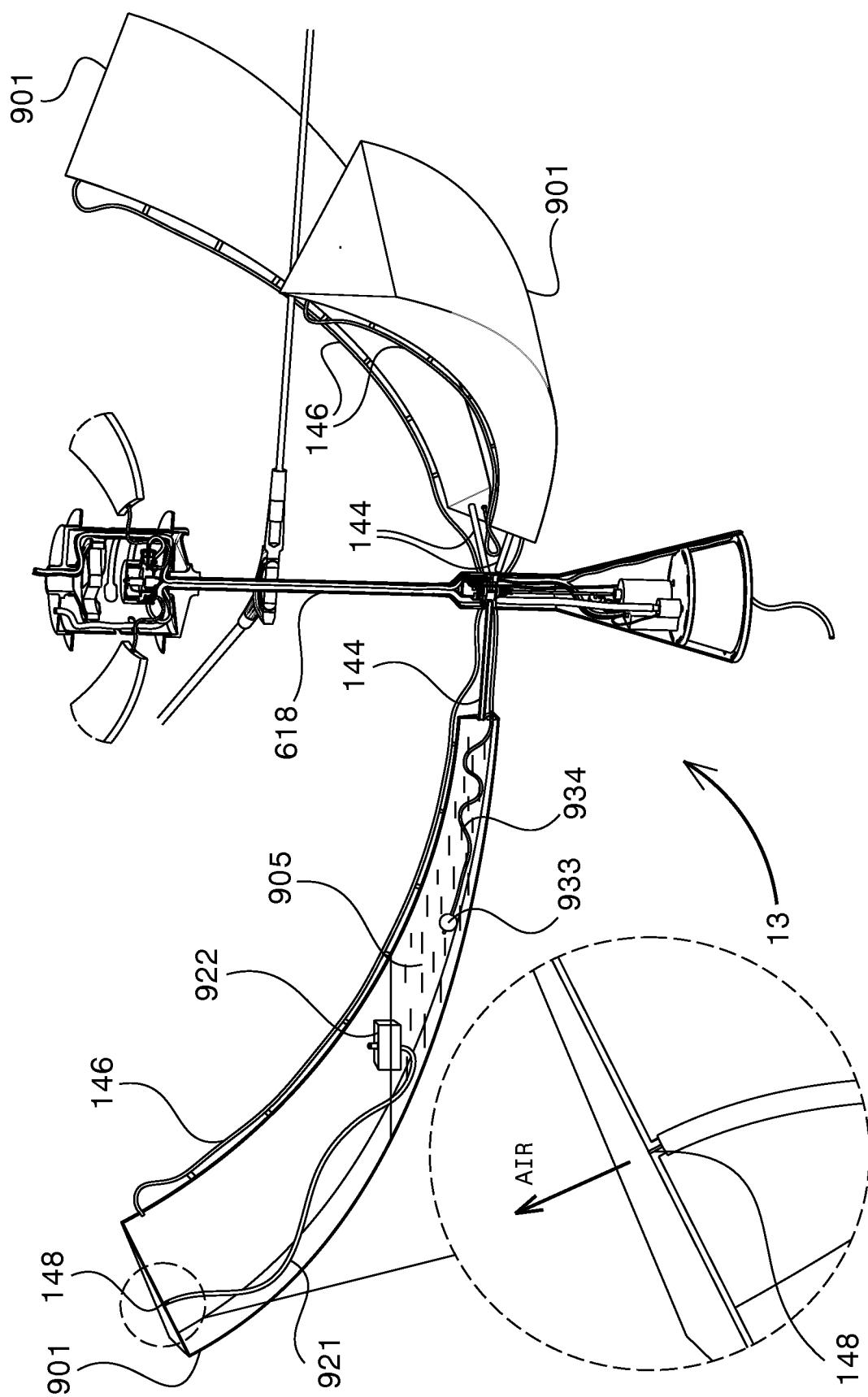


FIG. 15

18/27

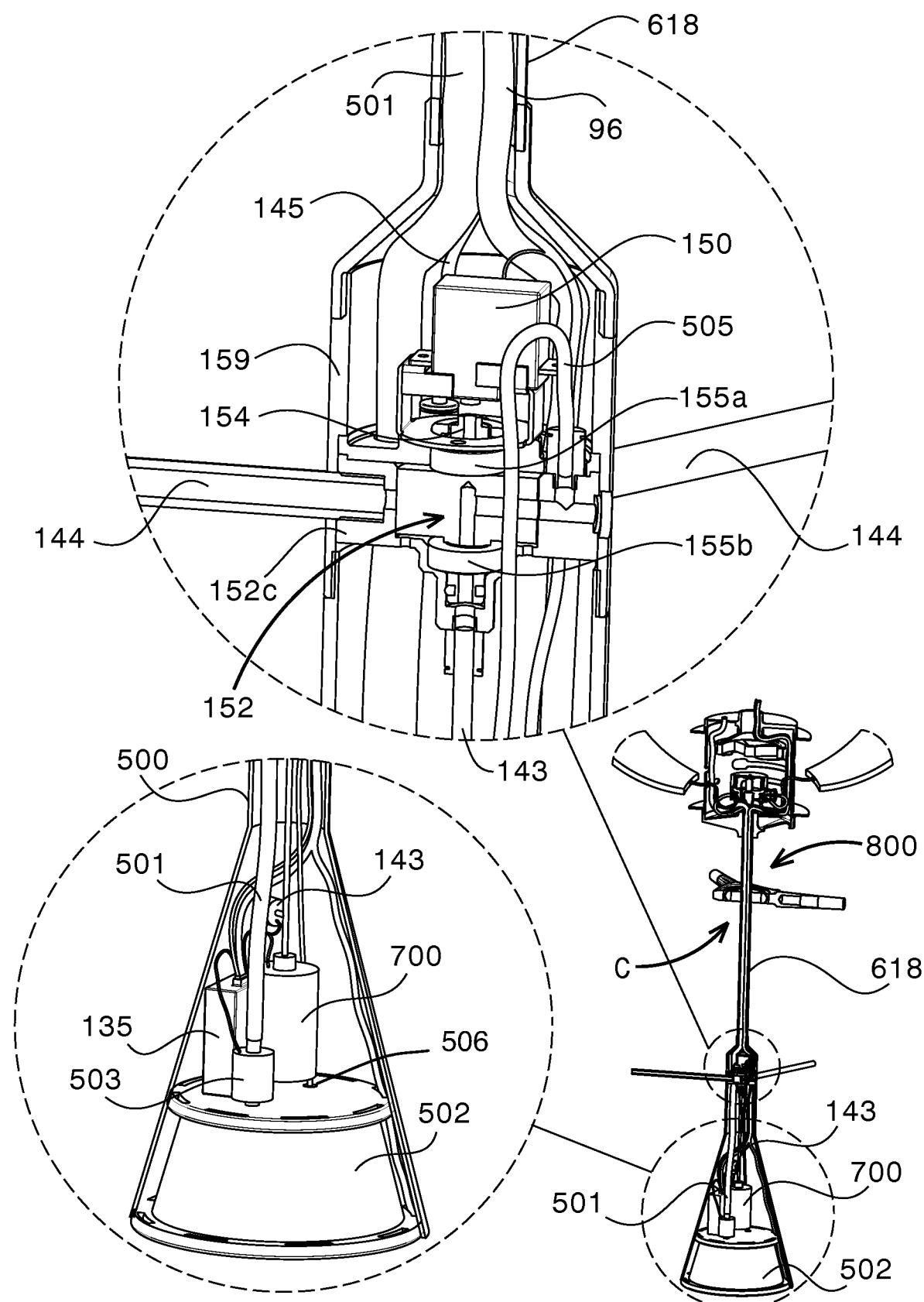


FIG. 16

19/27

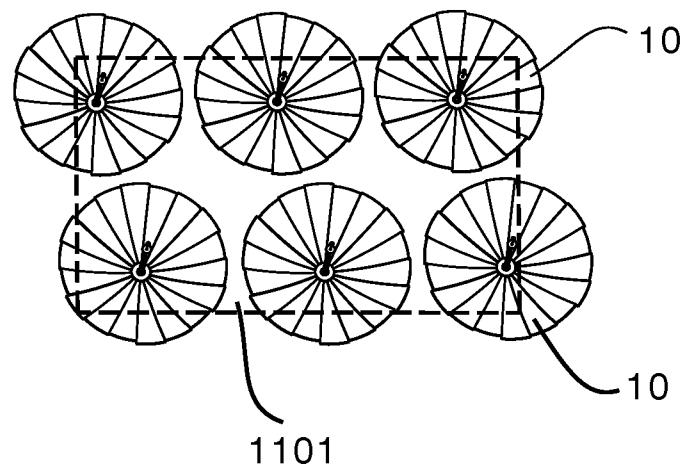


FIG. 17A

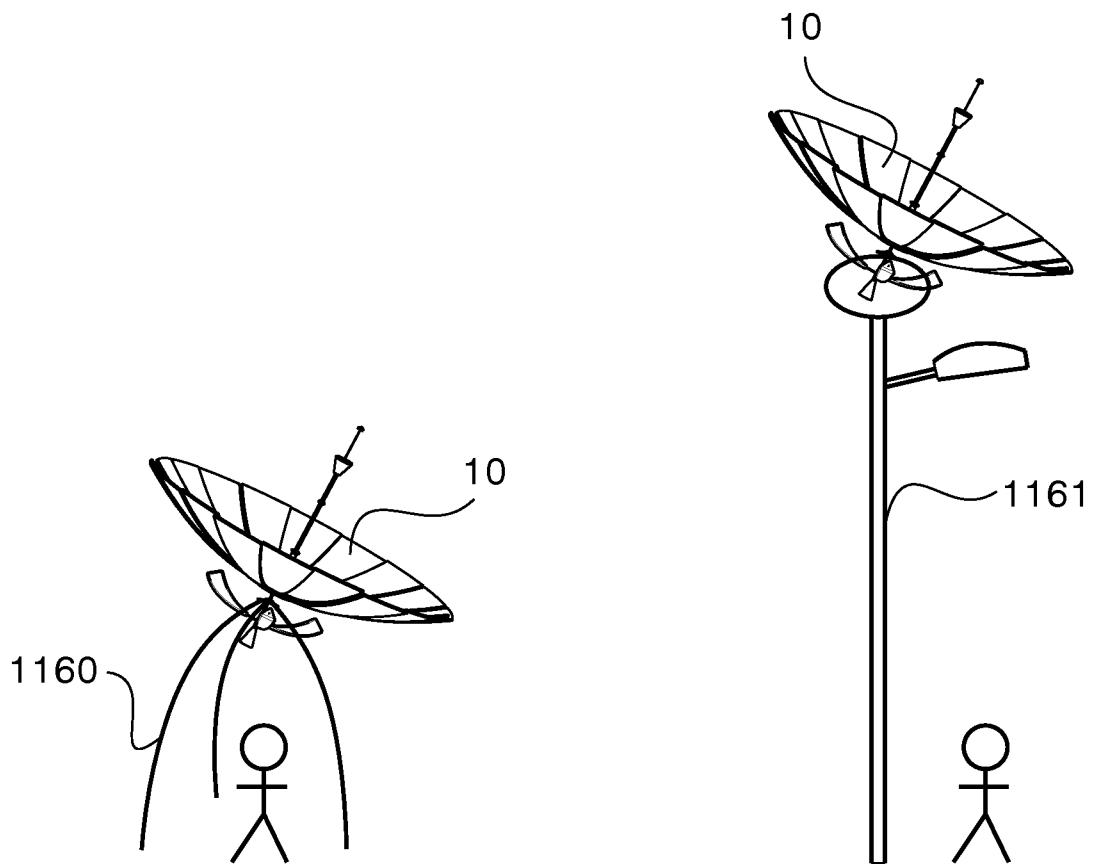
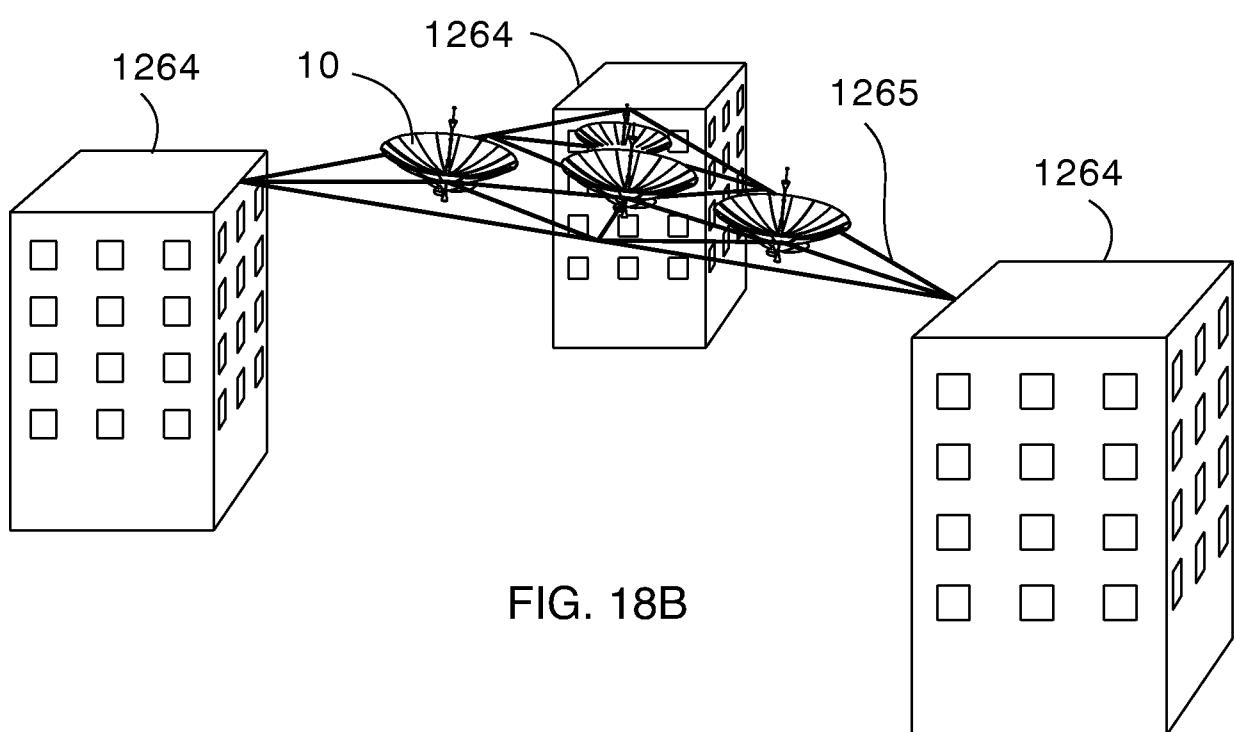
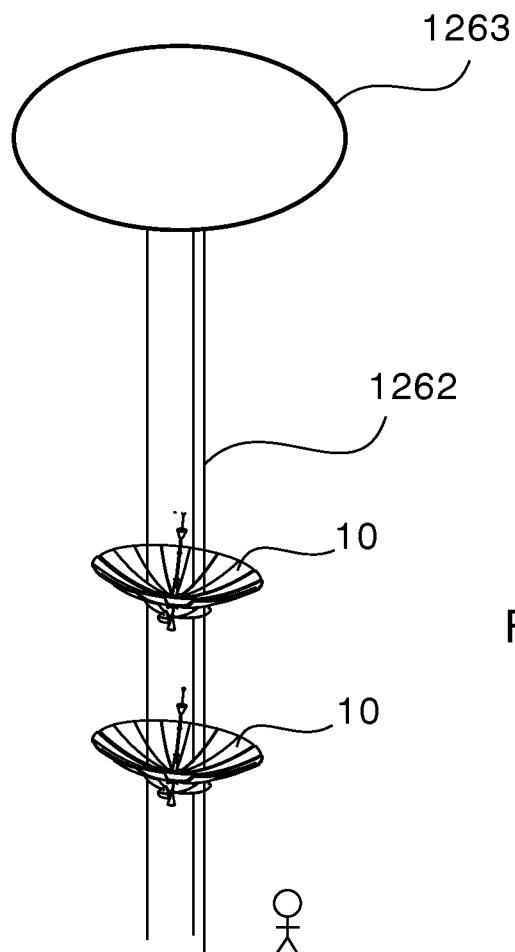




FIG. 17B

FIG. 17C

20/27

21/27

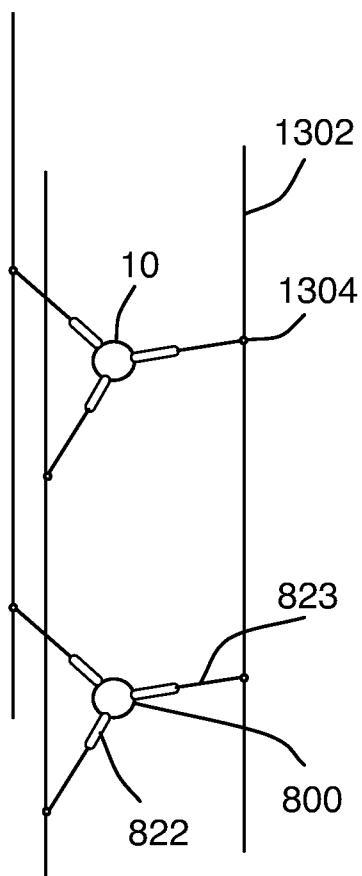


FIG. 19A

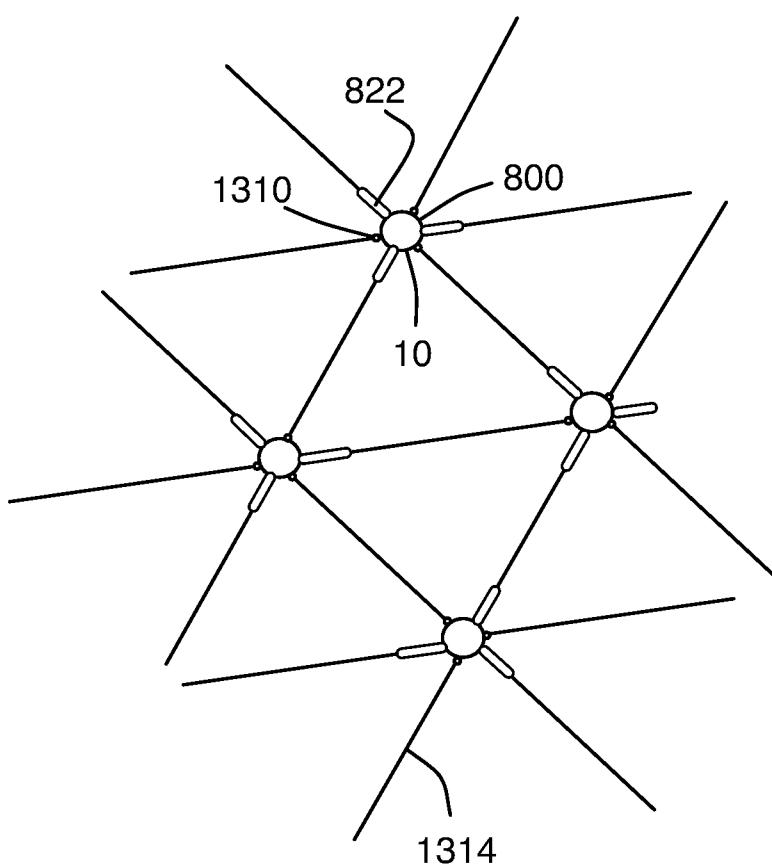


FIG. 19B

22/27

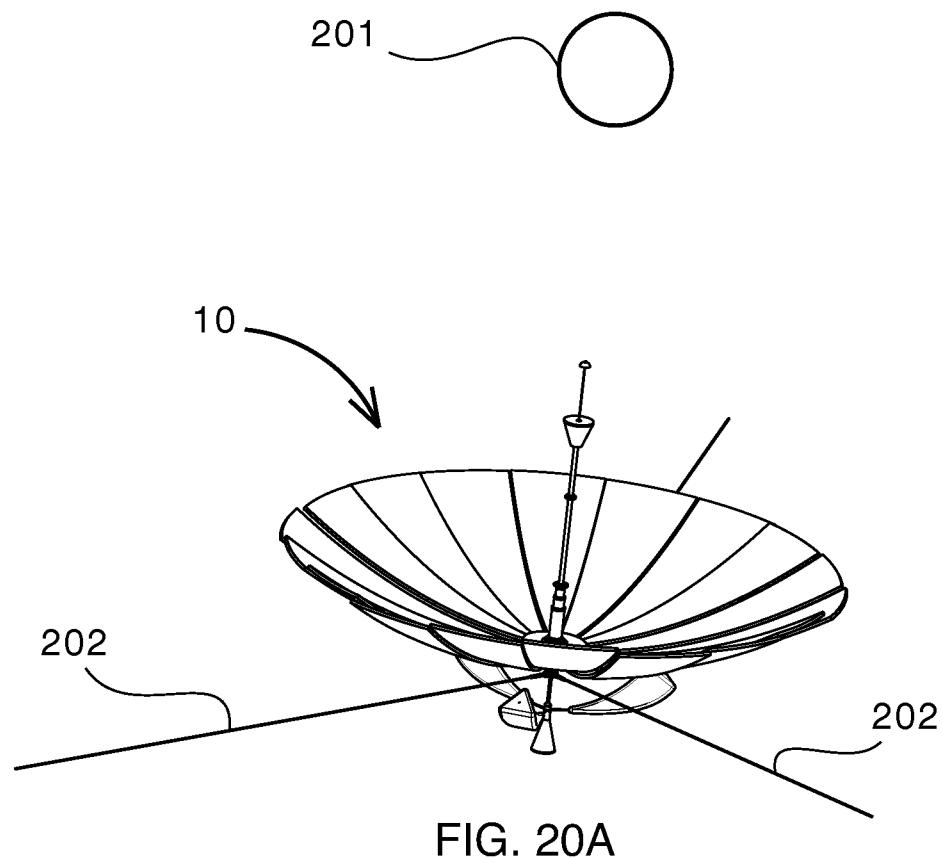


FIG. 20A

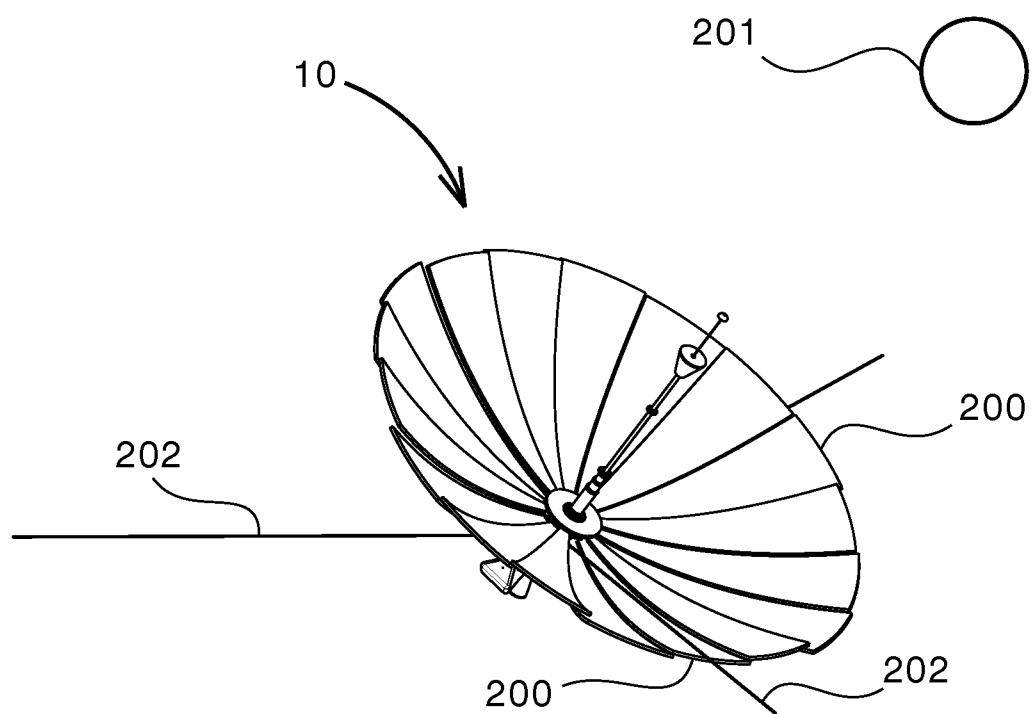


FIG. 20B

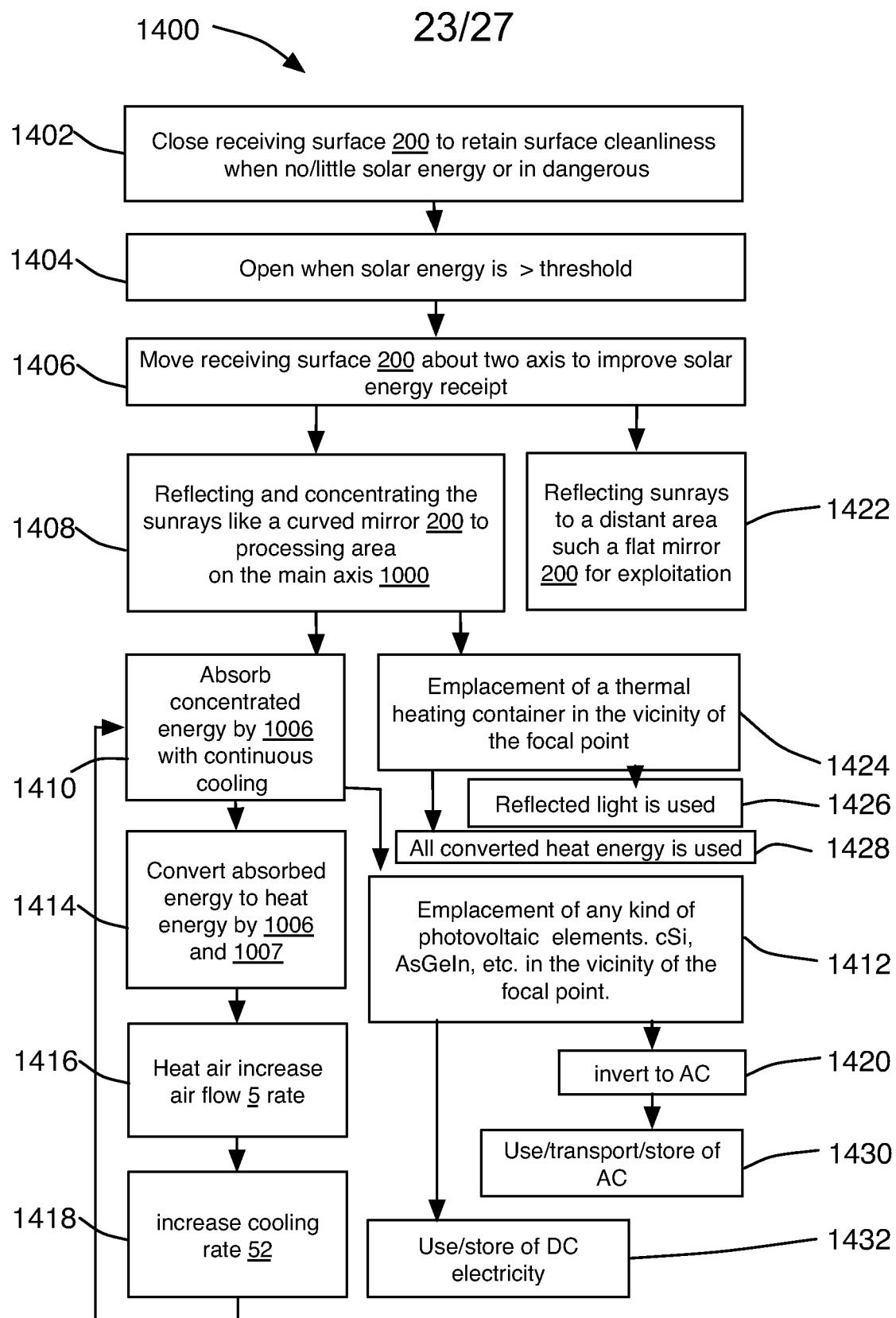


FIG. 21

24/27

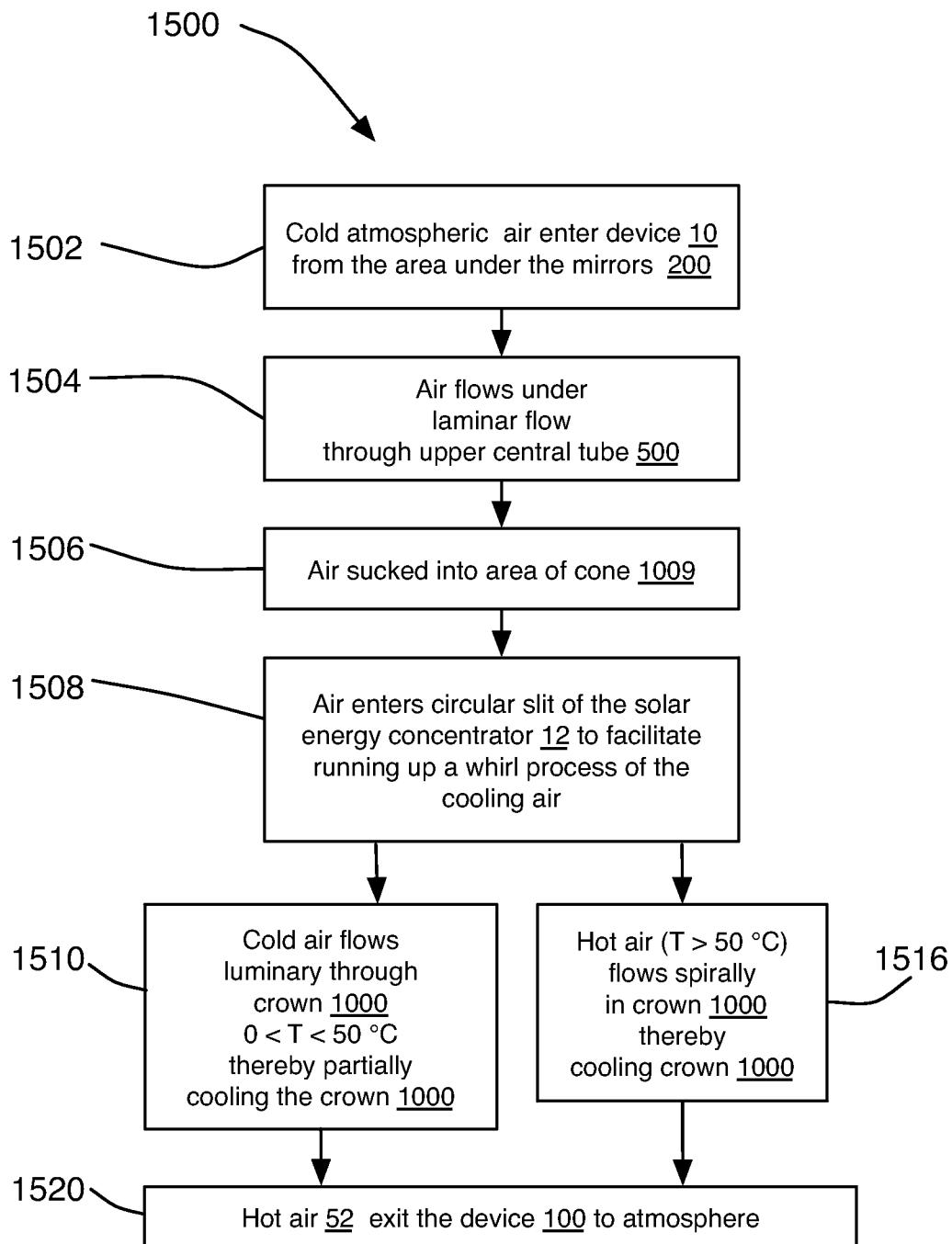


FIG. 22

25/27

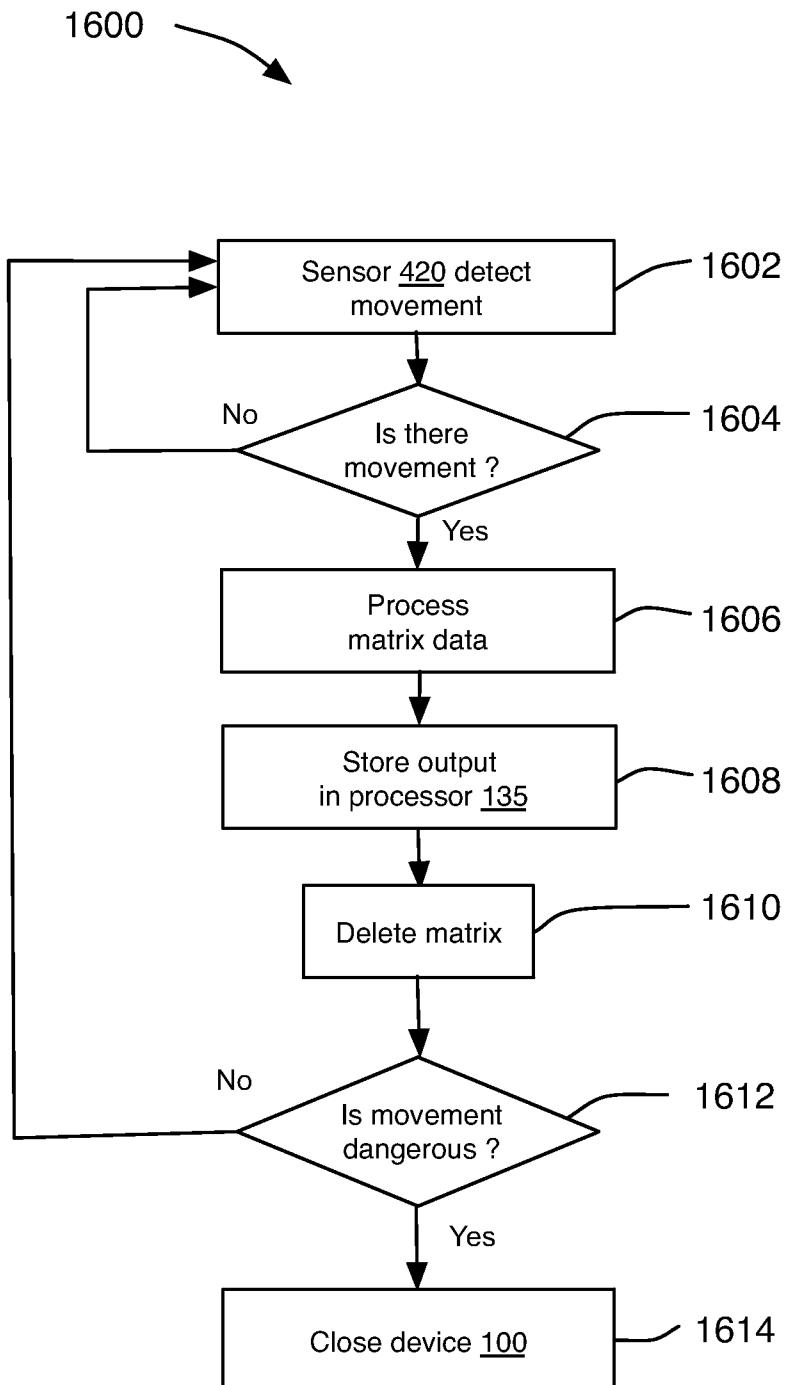


FIG. 23

26/27

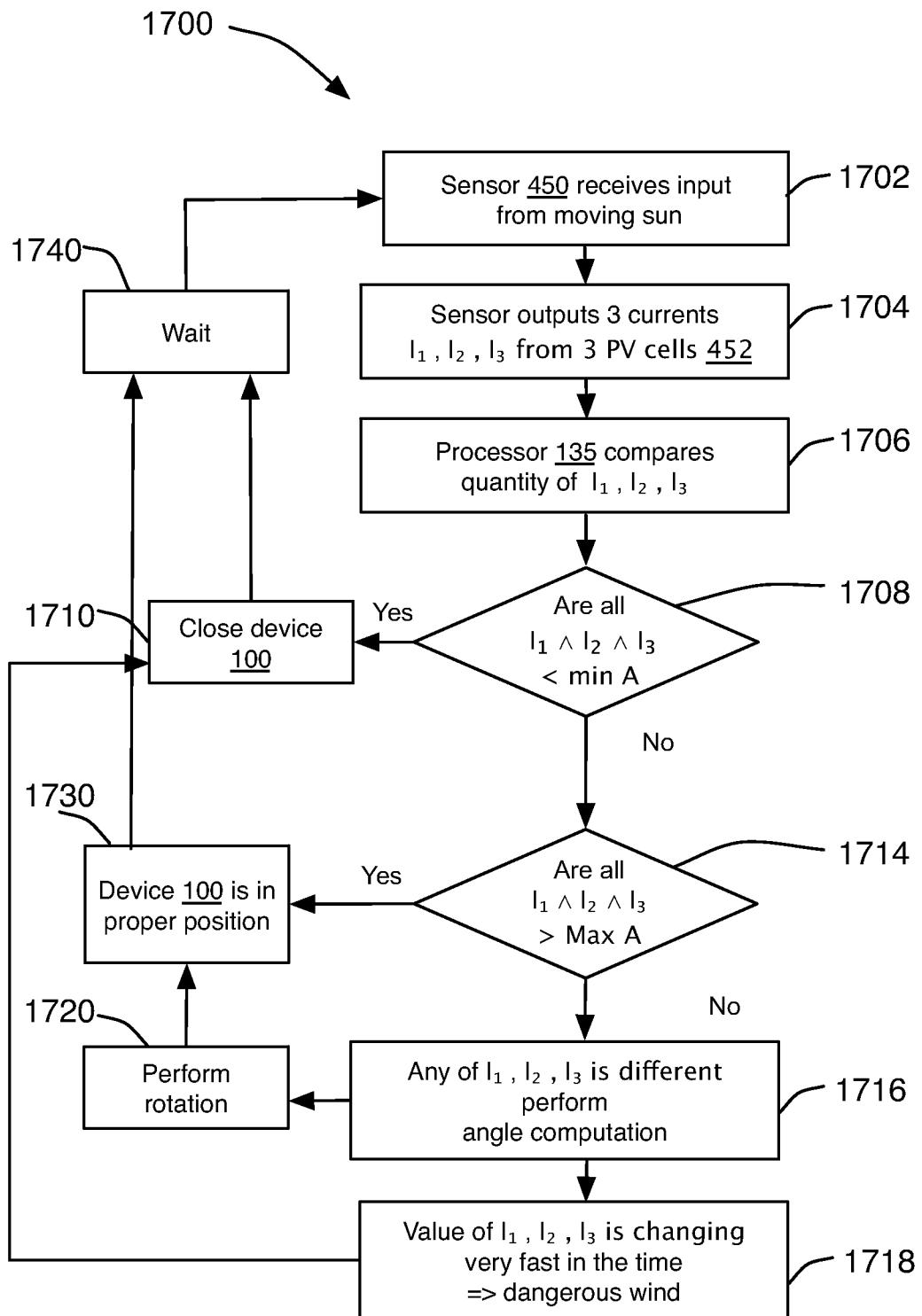


FIG. 24

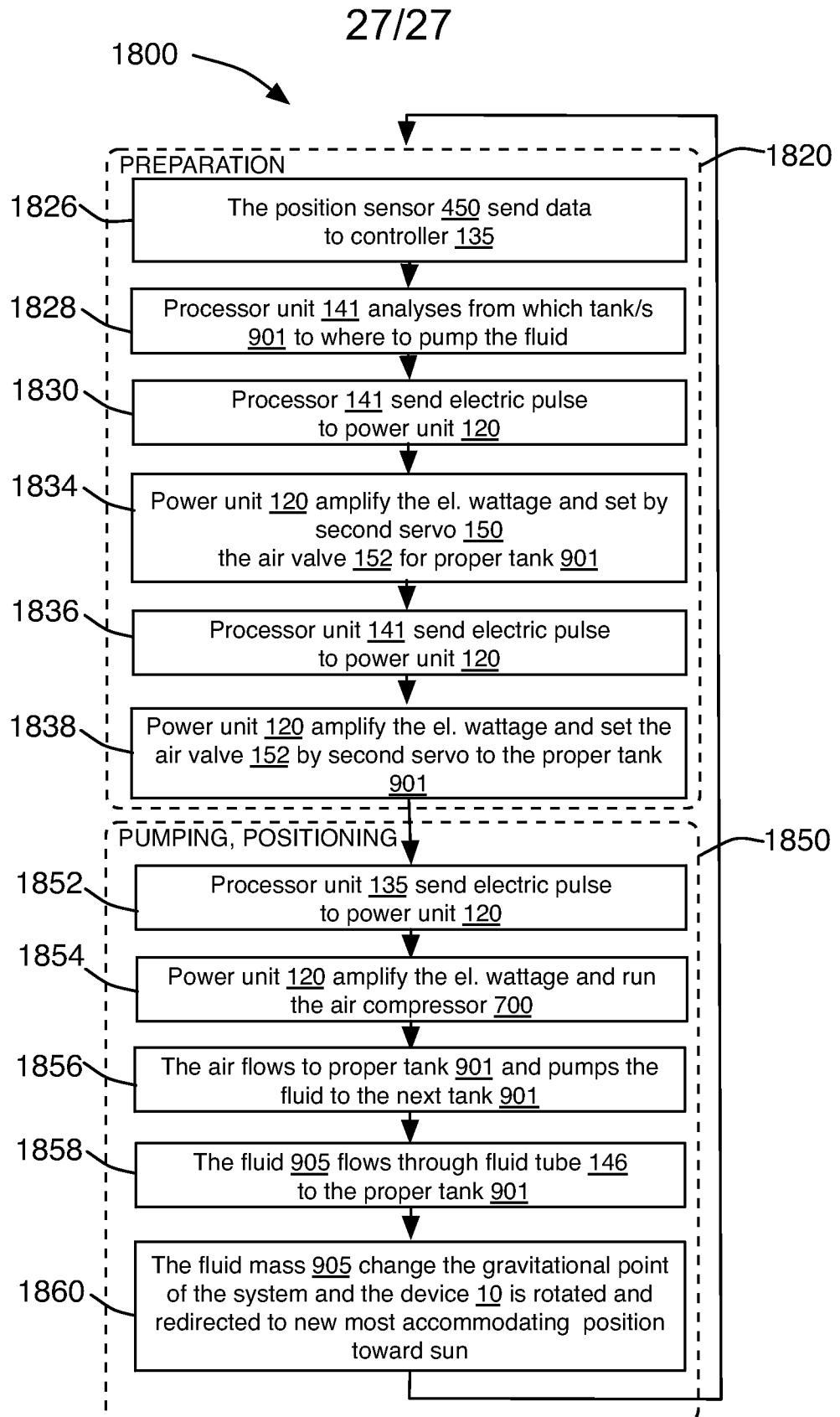


FIG. 25

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IL2012/050530

A. CLASSIFICATION OF SUBJECT MATTER

IPC (2013.01) F24J 1/00, B64G 1/44, H01Q 15/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (2013.01) F24J 1/00, H01L, G01C, B64G 1/44, H01Q 15/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Databases consulted: USPTO, THOMSON INNOVATION, Esp@cenet, Google Patents, FamPat database

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4947825 A ROCKWELL INTERNATIONAL CORPORATION 14 Aug 1990 (1990/08/14) The whole document	55,58,59
Y	The whole document	1-54,56,57,60
Y	US 5198832 A COMTECH ANTENNA SYSTEMS INC 30 Mar 1993 (1993/03/30) The whole document	2-6,8-35,37-39, 41-46,48-54,60
Y	WO 0154228 A1 MEDZMARIASHVILI ELGUDJA V; GOGAVA ZURAB V; KIZIRIA GIVI V 26 Jul 2001 (2001/07/26) The whole document	3,4,6-35,37-39, 41-46,48-54,60
Y	JP 4160803 A MITSUBISHI ELECTRIC CORP 04 Jun 1992 (1992/06/04) The whole document	3,4,6,8-39,41-46, 48-54,60

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

11 Apr 2013

Date of mailing of the international search report

14 Apr 2013

Name and mailing address of the ISA;

Israel Patent Office

Technology Park, Bldg.5, Malcha, Jerusalem, 9695101, Israel

Facsimile No. 972-2-5651616

Authorized officer

LAHAV Ronen

Telephone No. 972-2-5651732

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IL2012/050530

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 1852919 A SOLFOCUS, INC; PALO ALTO RESEARCH CENTER INCORPORATED 07 Nov 2007 (2007/1 1/07) The whole document	3,4,6,8-35,37-46, 48-54,56,60
Y	US 2010236539 A1 D-REV DESIGN FOR THE OTHER NINETY PERCENT 23 Sep 2010 (2010/09/23) The whole document	3,4,6,8-35,37-39, 41-46,48-54,57,60

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/IL2012/050530

Patent document cited search report			Publication date		Patent family member(s)		Publication Date				
US	4947825	A	14 Aug 1990	DE	4017438	A1	14 Mar 1991				
				FR	265 1871	A1					
				FR	265 1871	B1					
				JP	H03 104800	A					
				US	4947825	A					
<hr/>											
US	5198832	A	30 Mar 1993	US	5198832	A	30 Mar 1993				
<hr/>											
WO	0154228	A1	26 Jul 2001	WO	0154228	A1	26 Jul 2001				
<hr/>											
JP	4160803	A	04 Jun 1992	NONE							
<hr/>											
EP	1852919	A	07 Nov 2007	NONE							
<hr/>											
US	2010236539	A1	23 Sep 2010	US	2010236539	A1	23 Sep 2010				
				US	8274030	B2	25 Sep 2012				
<hr/>											