用于弹性物品的非水性涂层组合物和包含该组合物的物品

摘要
本发明涉及用于弹性物品的治疗性保湿涂层组合物，该组合物作为生产过程的一部分直接应用于所述物品的皮肤接触表面。所述涂层组合物具有热稳定性，并且当与皮肤表面接触时可接着发生转移以在佩戴该物品的过程中转变成液体“洗液”形式。作为佩戴该物品的结果，所述涂层组合物为佩戴者的皮肤提供有益治疗，例如改进皮肤保湿性、触摸柔软性，改进皮肤弹性及坚韧度，以及减少红血丝和刺激。本发明对包括检查用手套和外科用手套在内的医用手套尤其有用。
1. 用于弹性物品皮肤接触表面的治疗性涂层组合物，所述涂层组合物包含：
 至少为所述组合物 10wt%的甘油；和
 至少为所述组合物 0.1wt%的山梨醇；
 其中所述组合物是基本无水的，并在与皮肤接触时发生转移。
2. 如权利要求 1 所述的治疗性涂层组合物，其还包含水合促进剂。
3. 如权利要求 1 所述的治疗性涂层组合物，其中所述水合促进剂包括柠檬酸钠。
4. 如权利要求 3 所述的治疗性涂层组合物，其还包含有机溶剂。
5. 弹性物品，所述弹性物品的皮肤接触表面包含权利要求 1 的治疗性涂层组合物。
6. 用于弹性物品皮肤接触表面的治疗性涂层组合物，所述涂层组合物包含：
 可转移的保湿剂；和
 可转移的成膜聚合物；
 其中所述组合物与皮肤接触时可发生转移。
7. 如权利要求 6 所述的治疗性涂层组合物，其中所述成膜聚合物选自以下组成的组：多糖、纤维素和纤维素衍生物、聚乙烯吡咯烷酮和聚乙烯吡咯烷酮衍生物、及其组合。
8. 如权利要求 7 所述的治疗性涂层组合物，其中所述多糖包括壳聚糖。
9. 弹性物品，所述弹性物品的皮肤接触表面包含权利要求 6 的治疗性涂层组合物。
10. 用于弹性物品皮肤接触表面的治疗性涂层组合物，所述涂层组合物包含：
 可转移的保湿剂；和
 去角质剂；
 其中所述组合物是基本无水的，并在与皮肤接触时可发生转移。
11. 如权利要求 10 所述的治疗性涂层组合物，其中所述去角质剂包括羟基酸。
12. 如权利要求 11 所述的治疗性涂层组合物，其中所述羟基酸包括葡萄糖酸内酯。

13. 弹性物品，所述弹性物品的皮肤接触表面包含权利要求 10 的治疗性涂层组合物。

14. 用于弹性物品皮肤接触表面的治疗性涂层组合物，所述涂层组合物包含：
 水溶性保湿剂；和
 微孔颗粒；
 其中所述组合物是基本无水的，并在与皮肤接触时可发生转移。

15. 弹性物品，所述弹性物品的皮肤接触表面包含权利要求 14 的治疗性涂层组合物。

16. 弹性物品的制备方法，所述方法包括使权利要求 1 的组合物与弹性物品的至少一个表面接触。

17. 弹性物品的制备方法，所述方法包括使权利要求 6 的组合物与弹性物品的至少一个表面接触。

18. 弹性物品的制备方法，所述方法包括使权利要求 10 的组合物与所述弹性物品的皮肤接触表面接触。

19. 弹性物品的制备方法，所述方法包括使权利要求 14 的组合物与所述弹性物品的皮肤接触表面接触。
用于弹性物品的非水性涂层组合物和包含该组合物的物品

发明背景

本发明涉及医药装置领域。特别地，本发明涉及用于弹性物品中与皮肤接触表面的非水性涂层组合物。使用时与佩戴者皮肤接触的弹性物品是人们所熟知的。例如，如医用手套和避孕套的物品可由使用者长时间地佩戴。由于某些弹性物品的使用频率相对较高并且持续时间较长，所以此类物品的重要特征包括其理性质和使用舒适度。

人们熟知并可容易地从医疗领域获取各种医用手套，例如外科用手套和检查用手套。已经对此类手套中使用的弹性体的化学性质和物理性质进行了研究，并根据用途开发出了具有期望特性的手套。研究了增强其使用性和/或佩戴特征的特性（例如拉伸强度和延伸系数）以及涂层和润滑剂。另外还研究了各种弹性价聚合物的组合物，包括利用天然和合成胶乳的制剂。

当长时间佩戴手套时，手部产生的体热和汗液引起过水合，从而破坏由角质层提供的保护作用。从手上摘除手套后，汗液蒸发，手部皮肤就变的干燥、敏感并且在有些时候会发生感染。由于丧失保持皮肤水分的表皮脂质屏障层，此类不良皮肤状况可导致更严重的皮肤问题。

已经开发出在配戴手套前应用于使用者皮肤的预涂敷皮肤洗液。这种洗液通常单独地应用于皮肤，然后再佩戴手套。在摘除手套后再向皮肤施用其他洗液。Berry 在美国专利第 5,869,072 号中阐述了治疗性皮肤保湿手套，其在皮肤接触的表面上包含可被水激活的物质。在该文献中公开的可被水激活的物质包括聚乙烯醇以及如保湿剂的添加成分。Chou 在美国专利第 6,274,154 号中阐述了在干燥状态下皮肤接触表面上包含芦荟涂层的弹性手套。许多洗液或膏剂存在的一个重要问题是，由于其对弹性体的物理性质和屏障的不利作用从而使损害了手套的性能。另一个与预涂层手套相关的问题是，在生产过程和贮存中其对灭菌处理和/或升高的热环境的耐受能力。此类洗液或膏剂的再一个问题时使用了可产生不适油腻感的油性润肤剂。

某些弹性物品（例如外科用手套）要在医用过程中长时间佩戴。所以，
舒适度、皮肤水分保持和减少皮肤刺激就日益引起人们的关注。开发既具有功能性又能让使用者皮肤感到舒适的弹性手套的难点在于达到期望的物理性质（例如触感）和对使用者皮肤有益的治疗结果之间的平衡。更为困难的是，满足这些物理和舒适特性的同时还要具有热稳定性和有益的局部治疗效果。

因此，在接触皮肤的弹性物品领域需要提高此类物品对使用者的舒适度。尤其有利的是，开发出利用热稳定的非水性治疗护肤组合物进行预涂层的弹性手套。

发明概述

本发明提供了在皮肤接触表面含有治疗性涂层组合物的弹性物品，其中可以在所述物品的生产过程中向所述物品涂覆所述治疗性涂层组合物，由此为佩戴者的皮肤提供舒适感和治疗性作用同时使物品保持期望的物理性质。已经发现一种涂层组合物，其与医用手套相容，具有热稳定性，对手套的物理性质基本没有不良作用，减少对佩戴者皮肤的刺激，无胶粘感，具有良好的表面至皮肤的转移性，并且降低了表面内和表面间的（例如弹性物品之间）的粘性。尤其令人惊讶的是，发现涂层组合物不仅减少长时间佩戴弹性物品产生的不利影响，而且还改善了佩戴者的皮肤状况。更令人惊讶的是，此种制剂可以与“耐受”所述物品（例如手套）生产条件的成分进行组合。适用于本发明的弹性物品包括工业用手套、医用手套（即检查用和外科用手套）、避孕套等。本发明对检查用和外科用手套尤其有用。

本发明提供了涂覆于弹性物品的皮肤接触表面上的治疗性非水性涂层组合物，所述涂层组合物包含保湿剂，并且其中所述涂层组合物直接涂覆于所述弹性物品的表面。在使用过程中，所述治疗性非水涂层组合物转移到佩戴者皮肤上，从而产生由所述组合物的成分提供的局部效果。

非水性涂层组合物可在脱去弹性物品后继续为皮肤提供长时间的有益疗效。所述涂层组合物与弹性物质在化学上相容，并对该物品的物理性质基本没有影响。本发明的涂层组合物具有热稳定性并能够耐受与生产和某些灭菌处理相关的高温。本发明的组合物可以与添加成分相组合，所述添加成分例如为润滑剂、防粘剂、抗菌剂和延时释放剂或缓释剂。

本发明涂层组合物的一个重要方面是涂层组合物多个成分的整体皮肤保湿功效。由于发现一些成分具有双重功能（其中至少一个功能有益于皮肤保
湿），从而使所述涂层组合物获得了皮肤治疗性性质。涂层组合物具有保湿功能依赖于其具有以下保湿作用中的至少两个。第一，组合物的一些成分发挥水溶性（或汗溶性）保湿剂例如甘油和山梨醇的作用。第二，一些成分发挥皮肤渗透性保湿剂例如泛醇（panthenol）的作用。第三，一些成分发挥长时间皮肤表面保湿剂的作用。例如成膜聚合物（例如壳聚糖）的作用。另外，可以利用上述保湿作用的组合以便适应与不同弹性物品类型相关的佩戴性质。例如，由于检查用手套的佩戴时间相对较短，因此可任选使用长时间皮肤表面保湿剂。

本发明提供了用于弹性物品皮肤接触表面的非水性涂层组合物，该组合物包含至少一种多元醇保湿剂和至少一种α-羟基内酯。优选的多元醇保湿剂为甘油、山梨醇和羟泛酸（pantothenol）。优选的α-羟基内酯为葡糖酸内酯。

本发明还提供了在所述皮肤接触表面上含有非水性涂层组合物的弹性物品，所述涂层包含至少一种多元醇保湿剂和至少一种α-羟基内酯。术语“转移”意在表示将本发明的非水性涂层组合物传送到佩戴者皮肤的手段。佩戴手套后，所述涂层会转移到佩戴者的皮肤。佩戴者的汗液和体温有利于所述涂层向皮肤的转移或传送。另外，手套与皮肤的摩擦作用也将有助于该转移。本发明提供了接触皮肤的弹性物品的制备方法，该弹性物品可向佩戴者的皮肤提供增强的治疗性，该方法包括将非水涂层组合物涂覆于弹性物品的皮肤接触表面，该涂层组合物包含至少一种多元醇保湿剂和至少一种α-羟基内酯。所述方法可用于生产检查用手套和外科用手套。本发明进一步提供了个体手部皮肤的治疗性处理的方法，该方法包含以下步骤：提供包含非水性涂层组合物的弹性手套，该组合物包含至少一种多元醇保湿剂和至少一种α-羟基内酯；将所述手套佩戴到手部；佩戴手套足够的时间以使所述涂层组合物转移到手部的皮肤表面；然后从手部摘除手套。治疗性处理包括提高皮肤保湿性，减少鳞屑（flaking），具有柔软感，提高皮肤弹性和韧性，减少变红和刺激，以及减少皱纹的出现。下文的阐述进一步体现了本发明的其它实施方案和优点。

发明详述

术语“治疗性/治疗（therapeutic）”意在表示改善皮肤相关性质（湿度、弹性、舒适度、非刺激性、保护性的皮肤屏障特性的保持等）的作用。
术语“干燥状态”或“非水性状态”表示基本上没有水分或水。

本文所使用的术语“热稳定的”和“热稳定性”，当指本发明的涂层组合物的特性时，意在表示所述涂层组合物可以耐受约90℃的高温。作为制备方法的一部分，本发明的非水性涂层组合物适合直接涂覆于弹性物品的皮肤接触表面上。处理温度包括制剂制备的温度和将制剂涂覆于手套时的温度。涂层组合物的处理温度可以在约20℃～约100℃的范围内变化。加热降低了制剂的粘性，并有助于方便地将其涂覆到手套内与皮肤相接触的一面。

本发明的涂层组合物尤其适合用于弹性物品，作为其预期用途的一部分，所述物品与佩戴者皮肤表面紧密接触并长时间地滞留在所述皮肤表面。合适的接触皮肤的弹性物品包括但不限于：手套（例如工业用手套、医用手套和外科用手套）、避孕套、指套等。依照本发明进行处理的弹性物品可以利用本领域技术人员容易获取的常规技术和设备来生产。例如，可以利用常规的成型-浸渍-固化（former-dipping-curing）技术和设备来制备弹性手套，如Yeh在美国专利第6,391,409号（其全文通过引用并入本文）中的阐述。

可在其上涂覆涂层组合物的弹性体和弹性物质可以包括任何天然的或合成的弹性聚合物，其与所述涂层组合物成分在化学上相容并适合于预期的用途（例如在外科环境下）。合适的弹性体包括但不限于合成的和天然的橡胶胶乳。可使用的天然橡胶包括由三叶胶树（hevea）的橡胶乳胶和银胶菊（guayule）的橡胶乳胶制备的橡胶。可使用的合成橡胶聚合物包括聚橡胶、聚氨酯、聚氯乙烯、聚氯乙烯、苯乙烯嵌段共聚物和其混合物。可使用的合成橡胶还包括丙烯酸二烯嵌段共聚物、丙烯酸橡胶、丁基橡胶、EPDM橡胶、聚丁二烯、氟硅橡胶、氟橡胶和氯橡胶。

本发明的一个重要特征是，作为生产方法的一部分，可以将非水性涂层组合物直接涂覆于所述物品的表面。所述涂层组合物在包装和贮存时，都以固态形式存在于物品表面。因此，当与皮肤表面紧密接触时，涂层组合物在佩戴过程中转变成液体“洗液”的形式。正是在这个阶段期间，所述涂层组合物发生转移并对佩戴者产生最初的治疗性和保湿效果，在摘除所述物品后所述涂层组合物仍可在皮肤表面保留一段时间。

甘油在本发明的非水性涂层组合物中具有双重功能。它同时起到载体和保湿剂的作用。术语“载体”意在表示稳定的非挥发性有机物质，其作为媒
介向手套递送非水性涂层组合物的成分。该载体在室温和/或处理温度下都为
液体。它的沸点大于 100°C，25℃时的蒸汽压在约 0.001 mm Hg～760 mm Hg
的范围内。所述非水组合物中的“载体”在本发明中具有独特的性质。

有机载体的其它实例包括：多元醇，例如聚甘油（例如二聚甘油和聚甘油-3）；
二元醇，例如乙二醇、丙二醇、丁二醇、乙二醇、丙二醇、三乙二醇和三丙二醇；
烷氧基化醇，例如甘油聚醚-7 和甘油聚醚-26；脂肪酸酯，
例如乙二醇酯（例如乙二醇硬脂酸酯、乙二醇棕榈酸酯和乙二醇油酸酯）；丙
二醇酯（例如丙二醇肉豆蔻酸酯、丙二醇月桂酸酯）；脂肪酸单甘油酯和脂肪
酸二甘油酯，例如月桂酸甘油酯、油酸甘油酯、二甘油癸酸酯（cappritate）和
二甘油油酸酯；乙氧基化三甘油酯，例如聚乙二醇辛酸/癸酸三甘油酯，聚乙
二醇辛酸/癸酸甘油酯；乙氧基化甘油酯，例如聚乙二醇脂肪酸甘油酯；聚氧
乙烯二甘油醚，例如 POE(6) 二甘油醚和 POE(40)二甘油醚；聚氧丙烯二甘油
醚，例如 POP(4) 二甘油醚和 POP(24)二甘油醚；以及聚丙烯乙二醇醚，例如
PPG-14 丁基醚和 PPG-3 肉豆蔻基醚。本发明的载体也可以由以上所列物质
的任意组合组成。

可在涂层组合物中使用的保湿剂包括多元醇润肤剂和/或多元醇保湿剂。
至少存在一种保湿剂，但是也可以使用两种或更多种保湿剂的组合。可使用
的合适的多元醇保湿剂包括但不限于甘油和山梨醇。优选使用甘油和山梨醇
的组合。可使用的甘油或 1,2,3-丙三醇的实例是 Glycon™ G 300（获自 Aldrich
Chemical Company, Milwaukee, Wisconsin）。可使用的山梨醇或 D-葡萄糖的一个
实例可以从 Aldrich Chemical Company, Milwaukee, Wisconsin 获取。

保湿剂成分的含量可以达到组合物总重量的约 95.00wt%。优选保湿剂的
含量在约 10.00wt%～约 95.00wt%的范围内。甘油保湿剂的量在非水性组合
物总重量的约 50.00wt%～约 90.00wt%的范围内，优选在约 60.00wt%～约
89.00wt%的范围内。作为保湿剂的山梨醇的量在约 0.1wt%～约 6.00wt%的范
围内，优选在约 0.50wt%～约 4.00wt%的范围内。

可以将以上所述的多元醇与其它保湿试剂联合使用。所述其它保湿试剂
也可以是多元醇。本发明的组合物优选包含羟基酸或 2,4-二羟基-N-(3-羟基丙
基)-3,3-二甲基丁酰胺（也称作前维生素 B），其在体内提高水分保持力从而提
高皮肤弹性和柔软性，减少皮肤感染和刺激，并刺激上皮形成。可以从 Aldrich
Chemical Company, Milwaukee, Wisconsin 和 Daiichi Fine Chemicals, Japan 以及 Ritapan™ DL（可由 RITA Corporation, Woodstock, Illinois 获得）获取用于本发明的合适的羟泛酸。

优选在所述组合物中使用前维生素 B 的形式羟泛酸。泛酸（pantothenoic acid）是羟泛酸的酸性形式，它是复合维生素 B 的一员，并且还是作为脂肪酸合成酶复合体基本成分的酰基载体蛋白（ACP）的结构元件。然而，泛酸的稳定性对 pH 的波动高度敏感。优选前维生素形式的羟泛酸的原因是其更稳定，易吸收，并且可在体内转化成酸性形式。所述其它保湿剂（例如羟泛酸）的含量可以在非水性组合物总重量的约 0.10wt%～约 5.00wt%的范围内，优选在约 1.50wt%～约 3.00wt%的范围内。

非水性涂层组合物还可以包含作为皮肤去角质剂（exfoliant）的羟基酸。羟基酸增强皮肤细胞的增殖并增加神经酰胺生物合成角化细胞，调节表皮厚度并改善脱屑脱皮现象，从而使皮肤更光滑，显得更年轻。可使用的合适的羟基酸包括一元羧酸、二元羧酸和多羟基酸，以及其分子内内酯、酯和盐的形式。一元羧酸的实例包括 α 形式和 β 形式。优选葡糖酸内酯或 D-葡糖酸-1,5-内酯，原因是其具有相对较小的皮肤刺激性并可提供治疗性作用。可使用的葡糖酸内酯的一个实例是葡糖酸-δ-内酯，可以自 Daniels Archer Midland/DL, United Kingdom 或 Jungbunzlauer, Newton Center, Massachusetts。羟基酸（例如葡糖酸内酯）的含量可以在非水性组合物总重量的约 0.10wt%～约 5.00wt%的范围内，优选在约 0.10wt%～约 2.00wt%的范围内。

可使用的佩戴剂（donning agent）包括还具有抗菌特性的季铵卤化物盐。优选的季铵卤化物盐是十六烷基氯化吡啶（cetylpyridinium chloride 或 1-hexadecylpyridinium chloride）。可使用的十六烷基吡啶鎓的一个实例是可从 Zeeland Chemicals, Zeeland, Michigan 获取的 CPC。

可使用的其它佩戴剂包括硅基化合物（包括聚烷基硅氧烷）。可使用的聚烷基硅氧烷的一个实例是聚二甲基硅氧烷分散体。可以使用具有皮肤保护剂功能的其它与硅相关的佩戴剂，例如聚二甲基硅氧烷。

如十六烷基氯化吡啶的佩戴剂的含量可以在非水性组合物总重量的约 0.00wt%～约 8.00wt%的范围内，优选在约 0.10wt%～约 6.00wt%的范围内。其它佩戴剂的含量可以在非水性组合物总重量的约 0.10wt%～约 8.00wt%的范围内。
范围内，优选在约 0.10wt%～约 0.25wt%的范围内。涂层组合物还可以包含 pH 调节剂，该调节剂可以是无机酸、有机酸或其组合。当然，所加的 pH 调节剂的量可以变化，但是优选所选择的化合物及其量可将 pH 值调节至约 pH4～约 pH7 的范围内。优选的是非刺激性 pH 调节剂，例如柠檬酸或 2-羟基-1,2,3-丙烷-三羧酸（可由 Aldrich Chemical Company, Milwaukee, Wisconsin 获取）。例如柠檬酸的 pH 调节剂的含量可以在非水性组合物总重量的约 0wt%～约 2.00wt%的范围内。

可在涂层组合物中使用的防粘剂包括聚硅氧烷(silicones)，例如硅油、硅树脂、硅胶和聚硅氧烷弹性体；阳离子聚合物，例如聚二乙基二甲基氯化铵；脂肪酸盐和酯，例如硬脂酸钾和三羟甲基丙烷三异硬脂酸酯；羟烷基酰胺的羧酸酯，例如芥酸酰胺的羧酸酯；氟化化合物，例如 PTFE（聚四氟乙烯）；和磷酸盐，例如烷基磷酸铵（例如可从 R.T. Vanderbilt, Norwalk, Connecticut 获取的 Darvan L™）。防粘剂的含量可以在非水性组合物总重量的约 0.25wt%～约 8.00wt%的范围内。

本发明的非水性涂层组合物优选包含水合促进剂(hydration promoter)，以促进“活化”涂层组合物所需的局部(topical)水分（水）的摄取和吸收。优选的水合促进剂包括那些存在时还发挥酸性 pH 调节剂的缓冲剂作用的试剂，例如柠檬酸钠。一个实例是 1,2,3-丙烷三羧酸三钠盐，例如可从 Aldrich Chemical Company, Milwaukee, Wisconsin 获取的二水合柠檬酸钠。如柠檬酸钠的水合促进剂的含量可以在非水性组合物总重量的约 0wt%～约 8.00wt%的范围内，优选在约 0.5%～约 4.00%（重量）的范围内。

还可以使用其它治疗性和化妆用试剂，例如“抗衰老”化合物。可以使用的化妆用试剂包括视黄醇和/或那些还可以发挥去角质剂作用的试剂，例如α-羟基内酯（例如葡萄酸内酯）。所述的非水性涂层制剂中还可以使用香料和颜料以使该组合物更吸引使用者。

作为另一个实施方案，涂层组合物可以包含增塑剂以促进均匀分布。优选的增塑剂含酯，例如柠檬酸三乙酯，原因是其在制剂中还具有作为缓冲剂的化学功能。合适的柠檬酸三乙酯或 1,2,3-丙烷-三羧酸 2-羟基三乙酯的一个实例是可从 Cognis, Cincinnati, Ohio 获取的 Hydagen™ CAT。如 Hydagen™ CAT 的增塑剂的含量可以在组合物总重量的 0wt%～约 1.00wt%的范围内，
优选约 0wt%～约 0.50wt%的范围内。

在向弹性物品表面涂抹前，需要加热本发明的非水性涂层组合物从而使其以液态涂覆到所述表面。在涂抹至手套前可以将所述非水性涂层组合物加热至约 20℃～至少约 100℃。可以使用各种涂覆技术进行涂覆。合适的涂覆技术包括浸涂和喷涂。随后，作为生产工艺的一部分，涂层组合物被冷却至高粘状态或固态。可在本发明中使用的涂覆和整理工艺包括滚涂法和喷涂法。制备外科医生用套套或外科用手套时优选喷涂法。制备检查用手套时优选滚涂法。实施例包含对所述各个方法进行更详细的说明。

本发明涂层组合物的一个重要方面是多个涂层组合物成分的皮肤保湿功效的集合，并且本发明涂层组合物的一些成分可以具有双重功能。涂层组合物具有保湿功能的前提是具有以下保湿作用中的至少两个。第一，组合物的一些成分发挥保湿剂的作用，例如甘油和山梨醇。第二，一些成分发挥皮肤渗透性保湿剂的作用，例如羟基酸。第三，一些成分发挥长时间皮肤表面保湿剂的作用，例如成膜聚合物（例如壳聚糖）。另外，可以利用以上保湿作用的组合以便适应与不同弹性物品类型相关的特性。例如，由于检查用手套佩戴的时间相对较短，因此可任选使用长时间皮肤表面保湿剂。

根据本发明，也可使用以上成分的变体或加入其它成分，前提是不存在损伤所述制剂对皮肤的治疗性作用。所述涂层组合物的成分在合并时，必须能够参与对佩戴者皮肤的治疗性、保湿性、非刺激性的保湿作用。

当需要长时间佩戴弹性物品（例如外科医生用手套）时，优选涂层组合物还包含水溶性成膜聚合物。可使用的合适的水溶性成膜聚合物包括天然的或合成的成膜聚合物，优选为载体可溶性的阳离子成膜聚合物。根据本发明，
可使用的合适的成膜聚合物包括但不限于纤维素或纤维素衍生物，聚乙烯吡咯烷酮（PVP）和聚乙烯吡咯烷酮衍生物，以及多糖。优选多糖作载体可溶性的成膜聚合物，最优选的成膜聚合物是壳聚糖。

可以由天然存在的甲壳质制备壳聚糖，其中甲壳质可从甲壳动物以及昆虫外骨骼物质中获得。壳聚糖还指脱乙酰甲壳质、聚-D-葡萄胺、聚氨葡萄、β-1,4-聚-D-葡萄胺和β-(1,4)-2-氨基-2-脱氧-D-葡萄糖。根据本发明，可以使用壳聚糖及其衍生物。可以使用的一种壳聚糖是可溶于/可分散在本发明载体中的脱乙酰甲壳质及其衍生物。存在成膜聚合物（例如壳聚糖）时，其含量可以在组合物总重量的约 0.00wt%～约 1.00wt%的范围内。

不应有任何显著量的水。优选水的含量最多为本发明涂层组合物总重量的约 1.0wt%。本领域的技术人员可以理解，所述制剂的载体和成分并不是绝对无水的。总之，可以调节所述成分的比例和量的变化，前提是此类变化基本不损害所得制剂的期望特性。

在另一个实施方案中，也可以将涂层组合物与颗粒技术联合使用以进一步增强本发明的整体益处和特性。特别地，可以在制剂中包含微孔颗粒以产生其它一些特性，例如成分的持续释放或延时释放(time release)。优选地，可以使用的微孔颗粒是包含可被引入本发明涂层的护肤成分的那些微孔颗粒。可作为本发明涂层组合物的成分使用的微孔颗粒技术包括在以下专利中阐述的技术：美国再公告专利第 33,429 号、美国专利第 4,873,091 号、美国专利第 4,690,825 号、美国专利第 5,028,435 号、美国专利第 5,035,890 号、美国专利第 5,968,543 号、美国专利第 5,955,109 号、美国专利第 5,073,365 号、美国专利第 5,135,740 号、美国专利第 5,145,675 号、美国专利第 5,145,685 号、美国专利第 5,156,843 号、美国专利第 5,316,774 号、美国专利第 5,458,890 号、美国专利第 5,840,293 号、美国专利第 5,871,722 号和美国专利第 5,851,538 号，其全文通过引用并入本文。感兴趣的一个微海绵颗粒（microsponge particle）是 Microsponge 5700（Cardinal Health, Inc., Somerset, New Jersey），其可以通过扩散作用控制被颗粒吸收的聚二甲基硅氧烷。

本发明的涂层组合物还可以包含其它有益成分，前提是这些成分和本发明的组合物在化学上相容并且不会对所述组合物的期望治疗性特性产生不利的影响。可以包含在涂层组合物中的其它成分包括但不限于抗菌剂、抗炎剂、
局部清洁剂、抗排汗剂、有机溶剂等。

也可以利用弹性物品生产领域技术人员易获取的常规装置和技术（包括在线技术和离线技术，例如浸涂、喷涂、滚涂等）将本发明的涂层组合物涂覆到弹性物品表面。对于带有涂层的外科医生用手套的制备，优选的涂覆方法是离线喷涂。对于带有涂层的检查用手套的制备，优选的在线涂覆方法是浸涂，优选的离线方法是滚涂法。

以外科医生用手套为例，使用者从分配器或包装中取出手套。在佩戴手套前，使用者通常用手套擦洗溶液擦洗手部，然后用水洗涤。在用无菌毛巾擦干手后，使用者通过将其手部放置在手套中从而戴上手套，这样手套通常与使用者的手部形状一致。此时来自使用者皮肤的水分和热与涂层组合物相互作用从而水合并融化所述组合物，使其转变成液体“洗液”型状态。涂层组合物水合后，即可实现舒适和有益的治疗，例如皮肤的保湿。另外，在摘除手套后，涂层组合物保留在使用者皮肤上从而为皮肤提供持续的有益治疗。

以下实施例进一步举例说明本发明。除非另外指出，%意在表示非水性组合物总重量的重量百分比。

实施方案

实施例 1-用于外科用手套的涂层组合物的现有水性制剂

首先利用常规的成分量计算方法确定每种成分的量，从而制备现有水性涂层。

各成分的量确定后，将全部量的水加入到烧杯中并在持续搅拌下加入各个成分。将组合物在室温下搅拌至少约 1 小时直至形成稳定且均匀的溶液。根据 ASTM E70-97（利用玻璃电极测定水溶液 pH 的标准检测方法）和 ASTM D5225-98（利用微差粘度计测定聚合物溶液粘度的标准检测方法）测定组合物的 pH 和粘度。利用这些方法测定 pH 为 4.8～6.0；在室温下使用转速为 60 rpm 的 4 号转轴测定粘度为 15cps～45 cps。然后将所得到的组合物放入玻璃容器中并加盖封口。

所得到的液体涂层制剂具有以下成分：

配方 1
成分：	量（w/w％）
壳聚糖 | 0.10
柠檬酸 | 0.10
甘油 | 0.25
山梨醇 | 0.75
羟泛酸 | 0.50
葡糖酸内酯 | 0.25
柠檬酸三乙酯 | 0.50
十六烷基氯化吡啶 | 1.00
聚硅氧烷分散体 | 0.25
柠檬酸钠 | 0.40
烷基磷酸铵盐 | 1.00
去离子水 | 94.90
共计： | 100.00

实施例 2A-具有现有水性涂层的手套的制备（喷涂法）

按照以下方法制备在皮肤接触表面含现有水性涂层组合物的外科医生用手套：

根据常规的手套制备技术和设备制备无涂层手套。产生一个手套形状的模型，用促凝剂组合物进行涂层，随后干燥。然后将促凝剂涂层模型浸到聚异戊二烯乳胶中以对模型进行涂层，然后用水漂洗乳胶，涂布粉末层并使其固化在带涂层的模型上。固化之后，洗涤、干燥聚异戊二烯手套并将其从模型上摘除下来。

在进行涂层前，将手套的内面外翻，预洗涤并用含氯溶液（氯强度为约300 ppm～约1000 ppm）的氯化器进行氯化。氯化后，在进行涂层前对手套进行最后洗涤。

为了对手套进行涂层，将氯化手套从氯化器中取出，将内面外翻从而露出与皮肤接触的表面，并将其放置在装有喷嘴的转筒里。然后对手套进行喷涂。接着，以足够长的时间干燥手套。

为了保证手套表面涂层的平坦均一，转筒的设计是手套制备中的一个重要方面。例如，就直径约 43 英寸、全长约 25 英寸的鼓形圆筒而言，在其长度上可以具有约 11.5 英寸的带孔区域和约 13.5 英寸的其余不带孔区域。需要
鼓型圆筒的不带孔区域，这样放入鼓型圆筒内的一些手套停留在不带孔区域进行润滑处理，并且使该区域内的吸入气流减少。可以改变旋转速度。例如，可以使用在约 25 rpm～约 35 rpm 范围内的旋速，优选在约 31 rpm～约 32 rpm 范围内的旋速。

在约 32℃～约 50℃的温度下初始干燥约 15 分钟。在转动约 15 分钟后可进行首次喷涂。首次喷涂后，再转动手套 60 秒，然后进行约 170 秒的第二次喷涂，并再次转动 60 秒。第三次喷涂进行约 170 秒，然后在 60℃的温度下转动约 2 分钟以冷却。重复喷涂步骤直至手套带有期望量的涂层，随后热转动 25 分钟并冷却循环 2 分钟。

在转动阶段结束后，从转筒取出手套以进入翻转阶段。在翻转过程中，手工将手套内面外翻，然后在约 55℃的温度下进行约 15 分钟的最后干燥。接着对手套进行 3 分钟的冷却。然后，在约 34℃的温度下进行约 20 分钟的干燥。然后，将含有处于干燥状态的现有水性涂层组合物的手套进行包装和灭菌。

实施例 2B-具有现有水性涂层的手套的制备（滚涂法）

按照以下方法制备在皮肤接触表面含有现有水性涂层组合物的检查用手套：

在进行涂层前，通过氯化对手套进行后处理。首先，把手套的内面外翻从而露出与皮肤接触的表面，并将其放置在氯化器中。然后，预洗涤手套并用含氯化溶液（氯强度为约 400 ppm～约 700ppm）的氯化器进行氯化。氯化后，在涂层前对手套进行后洗涤。

为了进行涂层，将氯化手套从氯化器中取出，并放置在转筒中进行水性涂层和加热干燥步骤。通过旋转手套约 5 分钟清除手套中的过量水分。接着，向转筒中装满实施例 3 的配方 2 或实施例 4 的配方 3 的洗液水溶液。接着，手套在组合物中转动约 10 分钟。然后，将组合物从转筒中排出。接着，将手套在转筒中以约 50℃的温度的加热循环干燥约 30 分钟，随后在冷却循环中冷却约 5 分钟。接着，从转筒中取出手套并手工将内面外翻。接着，在干燥器中以约 60℃的温度再次干燥约 60 分钟，然后在室温下冷却约 10 分钟。

在本发明带有涂层物品的制备中，除了省略干燥步骤外，其方法类似于
用于检查用手套的实施例 2B 和用于外科医生用手套的实施例 2A 的方法。在涂覆非水性涂层后开始进行冷却。本领域的普通技术人员可以对以上方法的参数进行调整和改进以使其适合于特定的环境。

实施例 3-用于检查用天然橡胶手套的现有水性洗液制剂

配方 2

<table>
<thead>
<tr>
<th>成分</th>
<th>量 (w/w %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柠檬酸</td>
<td>0.10</td>
</tr>
<tr>
<td>甘油</td>
<td>0.10</td>
</tr>
<tr>
<td>山梨醇</td>
<td>0.30</td>
</tr>
<tr>
<td>羟泛酸</td>
<td>0.20</td>
</tr>
<tr>
<td>葡糖酸内酯</td>
<td>0.20</td>
</tr>
<tr>
<td>柠檬酸钠</td>
<td>0.40</td>
</tr>
<tr>
<td>聚硅氧烷分散体</td>
<td>0.12</td>
</tr>
<tr>
<td>烷基磷酸铵盐</td>
<td>0.74</td>
</tr>
<tr>
<td>水</td>
<td>97.84</td>
</tr>
<tr>
<td>共计：</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 4-本发明的非水性涂层

本发明的配方 3

<table>
<thead>
<tr>
<th>成分</th>
<th>量 (w/w %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柠檬酸</td>
<td>0.40</td>
</tr>
<tr>
<td>甘油</td>
<td>87.87</td>
</tr>
<tr>
<td>山梨醇</td>
<td>3.03</td>
</tr>
<tr>
<td>羟泛酸</td>
<td>2.02</td>
</tr>
<tr>
<td>葡糖酸内酯</td>
<td>1.01</td>
</tr>
<tr>
<td>二水合柠檬酸三钠</td>
<td>1.62</td>
</tr>
<tr>
<td>烷基磷酸铵盐</td>
<td>4.04</td>
</tr>
<tr>
<td>共计：</td>
<td>100.00</td>
</tr>
</tbody>
</table>

研究了上述本发明配方在不同温度下测定的粘度，并与纯甘油和去离子水进行比较。根据 ASTM D 2196-05 进行本试验。令人感兴趣的是，发现基
于甘油的配方 3 在 20℃～90℃的温度范围内一直具有较高的粘度。更特别的是，在 20℃，本发明基于甘油的制剂粘度为约 2200cP，而纯甘油的粘度为约 1750cP。这证明本发明的制剂具有高粘度，在室温下几乎为固体组合物。本发明的一个方面在于发现了能够用于弹性物品的皮肤接触表面的非水性洗液制剂。通过新型非脱水方法涂覆本发明的组合物，其中所述洗液组合物可以在佩戴弹性物品的过程中或在佩戴弹性物品之后转移到皮肤上。本发明的非脱水方法和本发明的组合物使弹性物品的功效增强，并且不损害手套的特性，例如屏障强度、佩戴简易度、柔软度和耐久性。

参照下文进行本发明涂层组合物的制备。在 50℃～65℃持续搅拌的同时，向甘油中加入以下成分：羟基酸、葡萄糖内酯、柠檬酸、二水合柠檬酸三钠、山梨醇和 Darvan L。在各个成分的加入之间有 10 分钟间隔。在约 1 小时内将温度由约 60℃增至约 90℃的同时搅拌组合物。形成稳定、均一澄清的溶液。测定的 pH 为 5.6～5.7，粘度为 16s（ASTM D 4212）。

实施例 5-本发明的方法

进行此试验以确定在涂覆过程中是否存在质量损失。参考实施例 1～4。本实施例阐述了对外科用手套和检查用手套的处理。

根据本领域技术人员已知的常规手套制作方法和设备制备未处理的聚异戊二烯外科用手套。在进行涂层前，预洗淋手套并用约 300 ppm～约 400 ppm 的氯进行氯化。氯化后，预洗淋手套并在涂层前用润滑剂进行预处理。

为了对手套进行处理，将手套内面外翻从而露出与皮肤接触的表面。然后将手套放置在装有喷嘴的转筒里。在转筒中将手套加热至约 70℃约达 5 分钟。接着用本发明的配方 3 喷涂手套，喷涂的时间约为 20 秒。喷涂结束时，在 60℃冷却约 30 分钟以使涂层固化在手套上。接着在约 3 分钟内将手套冷却至室温并外翻。外科用手套的涂层重量为每只手套约 50 mg 至每只手套约 180 mg。然后，包装手套并灭菌。在下文中这些经处理的外科用聚异戊二烯手套被称为样本 1。

在对检查用腈手套进行涂层前，用强度约 600 ppm～约 700 ppm 的氯预洗淋手套。氯化后，在进行涂层前预洗淋手套。检查用腈手套的处理方式类似于上述外科用手套的处理方式。同样利用本发明在配方 3 中列出的制剂对
检查用腈手套进行涂层。唯一的区别在于 60℃固化 35 分钟。因此，可将非脱水方法应用于多种手套。检查用手套的涂层重量为每只手套约 5 mg 至每只手套约 80 mg。

实施例 6-本发明的非水性涂层

本发明的配方 4

<table>
<thead>
<tr>
<th>成分</th>
<th>量（w/w %）</th>
</tr>
</thead>
<tbody>
<tr>
<td>柠檬酸</td>
<td>0.39</td>
</tr>
<tr>
<td>甘油</td>
<td>84.46</td>
</tr>
<tr>
<td>山梨醇</td>
<td>2.91</td>
</tr>
<tr>
<td>CPC</td>
<td>3.89</td>
</tr>
<tr>
<td>脯泛酸</td>
<td>1.94</td>
</tr>
<tr>
<td>葡糖酸内酯</td>
<td>0.97</td>
</tr>
<tr>
<td>二水合柠檬酸三钠</td>
<td>1.55</td>
</tr>
<tr>
<td>烷基磷酸铵盐</td>
<td>3.89</td>
</tr>
<tr>
<td>总共</td>
<td>100.00</td>
</tr>
</tbody>
</table>

利用本发明的配方 4 和本发明实施例 5 的方法（没有润滑剂预处理）制备样本 2。

实施例 7-涂层重量的测定

利用提取（extraction）过程测定手套的涂层重量。首先，将十只经处理的手套和十只未经处理的手套在干燥器中放置 30 分钟。对每组手套进行称重，并外翻以使皮肤接触面能够得到洗涤。洗涤手套并在大容器中用水剧烈转动约 2.5 分钟。除去水并将手套再洗涤和转动三次。然后，手套在 60℃干燥 30 分钟。接着，外翻手套并在 60℃再次干燥 30 分钟。然后将手套在干燥器中放置 30 分钟并再次称重。

检查用手套的洗涤过程在三个方面不同于外科用手套。第一，在放入干燥器前，检查用手套在约 75℃预干燥约 30 分钟。第二，在洗涤手套前用橡胶带捆绑检查用手套的袖口。第三，检查用手套在 80℃干燥 30 分钟。

很多因素都会影响涂覆到手套的涂层组合物的量（负载水平），例如手套
温度、组合物温度、喷涂次数、手套距喷嘴的距离、组合物的总固体含量。可以由洗液的喷涂总量和负载尺寸（手套数量）计算涂层（每只手套的洗液）的量。喷涂机的设置也影响涂层过程，包括气缸压力、液体压力、气体压力和气帽（air cap）类型。手套制造业内的技术人员可以选择调整适当的或最佳的生产参数。

实施例 8-对本发明手套的评价

手套性能：

A：经处理的手套和未经处理的手套的比较

通过 9 人评价小组检测手套的性能，该小组的成员按指示穿戴经本发明制剂处理的手套和未经任何处理的手套。在评价手套的性能前，未经处理手套和经处理手套（样本 1）都以 34kGy～40kGy 灭菌并老化（在 40℃）7 天。小组成员用潮湿的手佩戴未经洗液处理的手套和经洗液处理的手套（样本 1）15 分钟。在评估中需要个人对手套的可佩戴性、转移、快速干燥和柔滑感特性在 1～4 的衡量水平上做出评估，1 表示性能差，4 表示性能优异。湿佩戴是对个人佩戴手套的简易性进行的测量。转移是佩戴手套后转移至手部的涂层的量。皮肤干燥是在佩戴并摘除手套后手部的干燥速度。手套的柔滑感定义为佩戴手套后感觉光滑并没有胶粘感。利用外科用手套的研究结果显示于下表：

<table>
<thead>
<tr>
<th>手套号</th>
<th>湿佩戴</th>
<th>转移</th>
<th>皮肤干燥</th>
<th>柔滑感</th>
</tr>
</thead>
<tbody>
<tr>
<td>未经处理</td>
<td>2.9</td>
<td>2.7</td>
<td>3.4</td>
<td>2.8</td>
</tr>
<tr>
<td>经处理（样本 1）</td>
<td>3.1</td>
<td>3.0</td>
<td>2.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>

以上评价证明，经本发明非水性制剂处理的手套（样本 1）与未经处理的手套相比具有惊人好的湿佩戴性能。另外，其向皮肤转移的洗液较多。皮肤以较低的速率干燥进一步证明了该作用。洗液向手部转移较多并没有负面影响手套的柔滑感。

B：非水性组合物与水性组合物的比较

根据上述实施例 5 利用配方 3（非水性涂层组合物）制备外科用手套（样本 2），并与经水性涂层组合物（专利实施例 5 的配方 4）处理的样本 3 进
行比较。在评价手套性能前，未经处理的手套组和经处理的手套组（样本 1）都以 34kGy～40kGy 灭菌并老化（在 40°C）七天。根据以上 A 部分描述的方法评价这些手套。本研究的结果显示于下表：

<table>
<thead>
<tr>
<th>手套号</th>
<th>湿佩戴</th>
<th>转移</th>
<th>皮肤干燥</th>
<th>柔滑感</th>
</tr>
</thead>
<tbody>
<tr>
<td>经非水性组合物处理（样本 2）</td>
<td>2.3</td>
<td>2.6</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>经水性组合物处理（样本 3）</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

以上评价证明，经本发明非水性涂层组合物处理的手套（样本 2，配方 4）性能与经水性涂层组合物处理的手套（样本 3，参见配方 1）性能相似。在使用过程中治疗性非水性涂层组合物转移到佩戴者皮肤上，从而产生局部益处，例如良好的湿佩戴性、转移性、皮肤快干和柔滑感，这些益处由主要由甘油载体组成的组合物的成分提供。

物理特性：

评价了涂层的物理特性对手套物理性能的影响。ASTM D 3577-0la 用于外科用手套，ASTM D 6319-00 用于检查用手套。以下是在 70°C 老化 24 小时前后的数值。将经处理的手套与未经处理的手套进行比较。还测量了拉伸强度，以及在 300% 和 500% 定伸下的应力。可在下表中找到这些试验结果。

<table>
<thead>
<tr>
<th>样本 1（外科用）</th>
<th>老化前</th>
<th>未处理</th>
<th>处理</th>
<th>老化后</th>
<th>未处理</th>
<th>处理</th>
</tr>
</thead>
<tbody>
<tr>
<td>拉伸强度（MPa）</td>
<td>≥17</td>
<td>23.0</td>
<td>22.5</td>
<td>≥12</td>
<td>21.0</td>
<td>23.3</td>
</tr>
<tr>
<td>300%定伸下的应力（MPa）</td>
<td>N/A</td>
<td>1.27</td>
<td>1.27</td>
<td>N/A</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>500%定伸下的应力（MPa）</td>
<td>≤7.0</td>
<td>2.26</td>
<td>2.06</td>
<td>N/A</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>伸长率（%）</td>
<td>≥650</td>
<td>1042</td>
<td>1052</td>
<td>≥490</td>
<td>1002</td>
<td>1002</td>
</tr>
<tr>
<td>样本 2 （检查用）</td>
<td>老化前</td>
<td>老化后</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM D 6319-00a<sup>e3</sup></td>
<td></td>
<td>ASTM D 6319-00a<sup>e3</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>拉伸强度（MPa）</td>
<td>≥14</td>
<td>15.4</td>
<td>15.7</td>
<td>≥14</td>
<td>15.3</td>
<td>17.2</td>
</tr>
<tr>
<td>300%定伸下的应力（MPa）</td>
<td>N/A</td>
<td>3.33</td>
<td>3.43</td>
<td>N/A</td>
<td>3.04</td>
<td>4.3</td>
</tr>
<tr>
<td>500%定伸下的应力（MPa）</td>
<td>N/A</td>
<td>10</td>
<td>8.34</td>
<td>N/A</td>
<td>9.22</td>
<td>16.1</td>
</tr>
<tr>
<td>伸长率（%）</td>
<td>≥500</td>
<td>540</td>
<td>569</td>
<td>≥400</td>
<td>550</td>
<td>510</td>
</tr>
</tbody>
</table>

*对经处理的外科用手套和未经处理的手套在 70℃老化 24 小时，这与 ASTM 方法在 70℃老化 7 天不同。

经处理的外科用手套和检查用手套的手套拉伸强度与伸长率不仅与未经处理的手套相似，还满足外科用手套和检查手套的 ASTM 标准。本发明的非水性涂层对经处理的手套的物理特性没有产生任何负面影响。

本发明的涂层可以应用于各种基底，包括但不限于利用不同材料（例如天然橡胶，聚异戊二烯、聚氯乙烯、腈橡胶、聚氯丁二烯橡胶、热塑性弹性体等）制备的医用手套。另外，也可能是这些材料的任意组合。

工业实用性

本发明提供了用于弹性物品皮肤接触表面的涂层组合物，该组合物对佩戴者的皮肤产生有益的治疗性效果。本发明的优点对于需要长时间佩戴的弹性物品特别有用，例如由于长时间佩戴可损害皮肤性质的外科用手套。除了医疗领域外，根据本发明制备的弹性物品还可用于多种领域，例如食品加工领域或化妆品使用领域。因此，根据本发明制备的手套不仅降低了通常与弹性手套长时间佩戴相关的对佩戴者皮肤的副作用，还提高了佩戴者皮肤的状况。

利用多个特定的实施方案和技术作为参考在以上对本发明进行了阐述。然而本领域的普通技术人员可以理解，可以对这些实施方案和技术进行合理的改变和改进，而基本不脱离在以下权利要求书中定义的本发明的精神或范围。