发明名称
紧急状态下操作升降机的方法

摘要
一种具有至少两个升降机的升降机系统，其中这些升降机中的至少一个被指定作为一个紧急救援人员升降机。它能够被操作以允许一个消防人员出于转运多个人员到一个安全疏散楼层的目的而征用一个第二升降机。该升降机系统被配置为确定是否有源自被定位于一个建筑物的若干楼层中的一层处的该消防人员升降机的对于一个疏散升降机的要求。响应于该要求，该紧急救援人员升降机轿厢以外的一个升降机轿厢被指定为该疏散升降机轿厢。更进一步地，该疏散升降机轿厢被派遣到该紧急救援人员升降机轿厢所定位于的该楼层，并且一旦收到该消防人员发出的一个疏散要求，该疏散升降机轿厢就被派遣到一个被预先确定的疏散楼层。
1. 一种与紧急状态相关联地操作具有至少两个升降机的升降机系统的方法，其中至少
一个升降机轿厢被指定为一个紧急救援人员升降机轿厢；该方法包括：
 确定是否有源自定位于一个建筑物的若干楼层中的一层处的一个紧急救援人员升降
机轿厢的对于一个疏散升降机轿厢的要求；
 将一个升降机轿厢作为疏散升降机轿厢而派遣到该紧急救援人员升降机轿厢所定位
于的该楼层；并且
 一旦接到一个疏散命令，就将该疏散升降机轿厢派遣到一个预先确定的疏散楼层。
2. 如权利要求 1 所述的方法，其中该疏散命令源自该紧急救援人员升降机轿厢。
3. 如权利要求 1 所述的方法，其中该疏散命令源自该疏散升降机轿厢。
4. 如权利要求 1 所述的方法，进一步包括在该疏散升降机轿厢已经被派遣到的该楼层
打开该疏散升降机轿厢的一个门。
5. 如权利要求 1 所述的方法，进一步包括将一个消息发送到该紧急救援人员升降机轿
厢，其中该消息包括请求确认与升降机标识中的至少一项。
6. 如权利要求 5 所述的方法，进一步包括在该紧急救援人员升降机轿厢内对该消息进
行通讯。
7. 如权利要求 6 所述的方法，其中对该消息进行通讯包括相应于该消息产生一个视频
输出与产生一个音频输出中的至少一项。
8. 如权利要求 1 所述的方法，进一步包括响应于对于一个疏散升降机轿厢的该要求而
将该紧急救援人员升降机轿厢以外的一个升降机轿厢指定为该疏散升降机轿厢。
9. 如权利要求 8 所述的方法，其中指定一个升降机轿厢包括选择一个升降机轿厢，该
升降机轿厢被配置为到达该紧急救援人员升降机轿厢附近。
10. 如权利要求 8 所述的方法，其中指定一个升降机轿厢包括选择一个升降机轿厢，该
升降机轿厢接近于该紧急救援人员升降机轿厢所定位的该楼层并且具有接收多个乘客
的能力。
11. 一种系统，该系统用于与紧急状态相关联地操作具有至少两个升降机的一个升降
机系统，其中至少一个升降机轿厢被指定为一个紧急救援人员升降机轿厢；该系统包括：
 一个操作控制板，该操作控制板在该紧急救援人员升降机轿厢内被配置为允许输入对
于一个疏散升降机轿厢的要求；以及
 一个升降机控制系统，该升降机控制系统被连接至该操作控制板并且被配置为与该操
作控制板通讯，其中该升降机控制系统被配置为：
 确定是否有源自定位于一个建筑物的若干楼层中的一层处的一个紧急救援人员升降
机轿厢的对于一个疏散升降机轿厢的要求；
 将一个升降机轿厢作为疏散升降机轿厢而派遣到该紧急救援人员升降机轿厢所定位
于的该楼层；并且
 一旦接到一个疏散命令，就将该疏散升降机轿厢派遣到一个预定的疏散楼层。
12. 如权利要求 11 所述的系统，其中该操作控制板包括一个人机界面，该人机界面具
有用于要求该疏散升降机轿厢并用于输入该疏散命令的至少一个输入装置。
13. 如权利要求 12 所述的系统，其中该操作控制板包括至少一个输出装置以便对有关
该疏散升降机轿厢的一个状态的消息进行通讯。
14. 如权利要求13所述的系统，其中该输入装置和该输出装置被整合成一个单一的装置。

15. 如权利要求13所述的系统，其中该输出装置被配置成产生一个视频输出与一个音频输出中的至少一项。

16. 如权利要求11所述的系统，其中该操作控制板包括一个人机界面，该人机界面具有用于要求该疏散升降机轿厢的一个第一输入装置以及用于输入该疏散命令的一个第二输入装置。

17. 如权利要求16所述的系统，其中该操作控制板包括一个第一输出装置以便在派遣该疏散升降机轿厢到该紧急救援人员升降机轿厢所定位于的该楼层后对关于该疏散升降机轿厢的一个状态的一个第一消息进行通讯，并且包括一个第二输出装置以便在派遣该疏散升降机轿厢到该预先确定的疏散楼层后对关于该疏散升降机轿厢的一个状态的一个第二信息进行通讯。

18. 如权利要求11所述的系统，其中该升降机控制系统被进一步配置成响应于对一个疏散升降机轿厢的该要求而将该紧急救援人员升降机轿厢以外的一个升降机轿厢指定为该疏散升降机轿厢。
紧急状态下操作升降机的方法

发明背景
在此描述的这些不同实施方案总体上涉及升降机系统。更具体地，在此描述的不同实施方案涉及用于在紧急状态期间对升降机系统进行操作以便从具有多个楼层的多种建筑物中疏散建筑物居民的一种系统和方法。

美国专利号 6,000,505 揭露了用于升降机的 ASME A17.1 法案的一个版本要求所有的升降机都召回，即，在火灾时状态的紧急状态下，所有大厅呼叫站（hall call station）被停电并且所有升降机（即，它的多个升降机轿厢）被自动地召回到该建筑的一个预先指定的楼层。这些升降机轿厢被以门打开的状态驻停并且这些升降机被暂时停止服务。在到达时，该消防部门通过启动一个消防部门的钥匙开关来超越这种召回功能以便单独地使用每个升降机轿厢。为提高疏散效率，美国专利号 6,000,505 揭露了一种紧急升降机疏散控制系统，该系统允许在紧急状态期间，甚至在消防部门到达之前，将这些升降机作为一种撤离和疏散的手段来使用。

然而，疏散程序可以预先规定通过升降机轿厢进行的人员疏散只能在消防部门的控制和监督下实施。根据这些程序，一个消防员会通知一个升降机的召回功能并使用这个升降机来在该建筑中穿梭以便检查这些楼层或疏散人员。在疏散人员的过程中，该升降机和消防员被保留并且因此对于其他用途而言是不可用的直到该建筑物疏散完毕。

发明概述
因此，对于提高疏散能力同时避免违反现有疏散程序存在一种需要。因此，在此披露的这些不同的实施方案阐述了用于与紧急状态相关联地操作升降机系统的一种系统和一种方法。更具体地，这些实施方案允许消防员出于将人员转运到一个安全疏散楼层的目的而征用一个第二升降机。

本发明的一个方面包括一种与紧急状态相关联地操作具有至少两个升降机的升降机系统的方法，其中至少一个升降机轿厢被指定为一个紧急救援人员升降机轿厢。该方法确定是否源自定位于一个建筑的若干楼层中的一层处的该紧急救援人员升降机的对于一个疏散升降机的要求。该方法将至少一个升降机轿厢作为一个疏散升降机轿厢而派遣到该紧急救援人员升降机所定位于的该楼层。进一步地，一旦收到一个疏散命令，该方法就将该疏散升降机轿厢派遣到一个预先确定的疏散楼层。

本发明另一个方面包括一个升降机系统，该系统具有与紧急状态相关联的至少两个升降机，其中至少一个升降机被指定为一个紧急救援人员升降机轿厢。该升降机系统在该紧急救援人员升降机轿厢内具有一个操作控制板，该操作控制板被配置成允许输入对于一个疏散升降机轿厢的要求，并且具有一个升降机控制系统，该升降机控制系统被连接至该操作控制板并且被配置成与该操作控制板通讯。该升降机控制系统被配置成确定是否有源自定位一个建筑物的若干楼层中的一层处的该紧急救援人员升降机的对于一个疏散升降机的要求，并且将至少一个升降机轿厢作为一个疏散升降机轿厢而派遣到该紧急救援人员升降机轿厢所定位于的该楼层。进一步地，该升降机控制系统被配置成一旦收到一个疏散命令，就将该疏散升降机轿厢派遣到一个预先确定的疏散楼层。
该方法和系统能够被配置成允许紧急救援人员（例如，消防人员）重复性地要求一个疏散升降机直到所有建筑物居民从一个楼层或该建筑中疏散出。

每个楼层的疏散都在消防人员的控制和授权之下发生。消防人员的权威减小了一群急于离开该楼层的惊恐的建筑物居民的恐慌的风险。如果该建筑物居民没有恐慌，搭乘该升降机轿厢就会以更加受控制的方式来发生，从而允许一个最大数量的人员搭乘。这就避免了升降机超载的问题或升降机轿厢的门被卡阻的问题，而这些问题可能妨碍升降机的运行。如果该消防人员释放了该疏散升降机轿厢例，该组控制器发送一个命令来将该疏散升降机轿厢发送到该疏散楼层并且停留在该楼层，该消防人员就能够确保这些门被关闭并且该升降机轿厢离开这个楼层。

附图的几个视图的简单描述

本发明的这些新颖的特性和方法步骤的特征在下列权利要求中陈述。然而，通过参考以下详细说明在与附图相联系地阅读时，本发明本身及其其他特征和优点将被最好地理解，在附图中：

图1示出了一个建筑物中的并且被配备成提供提高的疏散能力的一个升降机系统的一个实施方案的示意图；

图2是在一个升降机轿厢内的一个操作控制板的一个实施方案的一个示意图，该操作控制板被配置成允许紧急救援人员借用另一个升降机轿厢并且

图3是一个在紧急状态期间操作升降机系统的方法的一个实施方案的流程图。

本发明的详细说明

图1展示了安装在多层建筑物中的并且被配置成在紧急状态期间运行以便允许建筑物的居民从该多层建筑物中高效率地并且安全地疏散的一个升降机系统1的实施方案。在此描述的不同实施方案相涉及一种由火灾引起的紧急状态，其中紧急救援人员，例如，消防人员根据一个建立好的程序来检查一个建筑物并且如果需要的话从该建筑物中疏散人员。然而，考虑的是其他紧急状态可以类似地要求在紧急救援人员的控制下的从该建筑物快速并高效的疏散，比如地震、炸弹威胁、风暴等等。

建筑物的使用者和居民具有通过梯子2或通过多个单独的升降机10,10’的到该建筑物的不同楼层1,1,1,1,3的进入和离开手段。在所展示的实施方案中，升降机系统1包括所安排的两个升降机10,10’，例如，互相平行并且相邻。每个升降机10,10’包括一个相关联的升降机轿厢8,8’和一个控制系统14,14’，该控制系统作用在一个驱动器12,12’上以便使得（例如由一个或多个张力元件22,22’悬挂的）该升降机轿厢8,8’在一个升降机井20,20’内从该楼层1,1,2,2移动到另一个楼层。一个张力元件22可以是具有一个圆形横截面的一个钢丝绳或具有非圆形横截面（例如，一个三角形截面）的实施为合成材料的一组（钢或非金属的）绳索。在所展示的实施方案中，几个传感器6,6’被布置在井内20,20’中位于或接近这些楼层1,1,1,2,3处并被连接到对应的控制系统14,14’上。这些传感器6,6’被配置成检测一个升降机轿厢8,8’的接近并且产生相应的多个传感器信号。控制系统14,14’使用这些产生的传感信号来确定一个升降机轿厢8,8’的当前位置。考虑的是升降机系统1可以被配置成以不同方式确定一个升降机轿厢8,8’的位置。例如，该位置可以通过在升降机轿厢8,8’上的感测设备或通过使用在张力元件22上所提供的信息的一个系统来确定。
总体上，升降机系统1的这种物理结构对应于一个传统升降机系统的物理结构。在一个实施方案中，这种物理结构除了这些所提及的元件（控制系统14, 14’，驱动器12, 12’和张力元件22, 22’）之外还包括一个配重，用于这些升降机轿厢8, 8’和该配重的多个导轨，以及如制动器和用于门机构的安全电路的安全装置，等等。考虑到是，取决于升降机系统1的一个具体的实施方案，在竖井20, 20’中的这些系统的这种配置和布置是可以改变的。例如，驱动器12, 12’可以被安排在一个分开的机房或如所示地直接在竖井20, 20’（“无机房式升降机”）的顶部，或者在竖井20, 20’的底部。

在所展示的实施方案中，这两个升降机10, 10’被限定在一个组控制器16控制下的一个组或排，其中这个组控制器16被连接到每个升降机10, 10’的控制系统14, 14’上。控制系统14, 14’和组控制器16形成了一个升降机控制系统。在另一个实施方案中，该组控制器或它的功能性被整合在这些控制系统14, 14’中的至少一个中，从而使得控制系统14, 14’处理其所指配的单独的（一个）升降机10, 10’的控制以及这些升降机10, 10’的控制。如果每个控制系统14, 14’包括一个组控制器的这种功能性，并且这种功能性每次仅在一个控制系统14, 14’中被激活，在当前激活的组控制器（或功能性）失效的情况下，未激活的组控制器或它的功能性能够被激活以便接管该组的控制。有利地，这提供了这种组控制器功能性的冗余。

组控制器16和控制系统14, 14’包括多个（微）处理器以及相关联的电路，比如接口、特殊功能集成电路（ASICs）、电源和记忆/存储装置。这些处理器被编程以执行特定的控制系统和过程序。例如，当应用在一个控制系统14, 14’中时，组控制器16或它的功能被配置并编程为执行在图3的流程图中展示的这种方法并且如在此阐述地对其进行变化。在下文中，组控制器16被描述为一个分离的单元；然而，考虑到的是组控制器16的这种功能性可以如以所述地实施在控制系统14, 14’中。

总体上，对于一个或多个升降机10, 10’的多个动作和运行而言，组控制器16充当一个中心协调器。组控制器16在其管范围内收集并存储对于这些单独的升降机10, 10’的信息。单独的升降机10, 10’用关于它们对于任何组操作的可使用性、位置、速度、门状态、当前运行模式（例如，自动、手动、几个特殊用途之一，故障/不可用），以及有待处理的乘客要求（例如轿厢呼叫）等等的状态信息来更新组控制器16。

组控制器16利用接收到的信息以便确定一个“最佳的”升降机10, 10’来满足一个乘客要求（例如，楼层呼叫或基于要求的目的地）并且将所选定的升降机10, 10’派遣到发出色要求的乘客的乘客。这种派遣是一个动态过程并且组控制器16持续地最佳化这种派遣。从而使得如果出现最初被派遣的升降机10, 10’变成被一个不同的操作模式占用而被延迟运行或变为不可用的情况，组控制器16能够选择并派遣一个不同的升降机10, 10’。

组控制器16也尤其对于这个升降机组管理着特殊的操作模式。这些特殊操作模式包括但不限于火灾紧急疏散、应急电源运行、在静止期间的轿厢驻停以及为特殊的乘客要求选择轿厢。组控制器16也在与建筑物管理系统和其他升降机组的通讯与协调组操作中扮演一种积极的角色。

因此，组控制器16中“知道”每个升降机10, 10’的状态，即，升降机轿厢8, 8’的当前位置，升降机轿厢8, 8’是否响应于一个呼叫而正在向上或向下移动，当前负载以及其他的运行参数。每个升降机轿厢8, 8’的当前位置是例如通过在这些楼层1,1,2,1,3的这些传
传感器6、6’来检测的，这些传感器将位置指示信号通讯给对应的控制系统1、14’。在另一个实施方式中，一个升降机轿厢8、8’可以装备有一个产生位置指示信号的传感器，升降机系统1可以装备有提供位置信息的任何其他系统。例如，当一个乘客在楼层L1、L2、L3之一发出一个呼叫，考虑到这些运行参数，组控制器16选择一个适合的升降机10、10’来服务该呼叫。一个适合的升降机10、10’是，例如，该升降机的轿厢8、8’最接近该乘客等候的这个楼层L1、L2、L3或者该升降机的轿厢8、8’已经在乘客希望去的方向的相同的方向上移动的那个升降机从而能最小化由于停止而延迟的时间。

[0026] 每个控制系统14、14’被连接到升降机10、10’的驱动器12、12’上。如本领域中所知的，驱动器12、12’作用在张力元件22、22’上以便移动升降机轿厢8、8’。这种升降机控制系统(例如控制系统14、14’）直接地或通过组控制器16与一个位于远程服务中心、警察局、消防局和一个远程建筑物管理中心的远程控制单元通讯。在这种情况下，例如，通过有线电话网络或其他在紧急条件下可靠的网络，升降机10、10’和该建筑物的其他元件，比如多个门、灯或窗，能够在紧急状态下被远程监视并控制。

[0027] 进一步地，在该建筑物管理中心，升降机系统1的状态可以显示在一个状态控制板上。在发生一个紧急状态下，显示的状态可以包括，例如，该消防人员升降机的位置，是否消防人员要求一个疏散升降机轿厢，是否一个疏散轿厢已经被选定并且已经运行，以及是否消防人员发出一个命令将该疏散轿厢发送到疏散楼层，或其他信息。在某些实施方案中，在建筑物管理中心的人员可以使用这些信息来控制或监视某个升降机10、10’（例如，该疏散升降机的运行）或通知/告知在建筑物处的这些消防人员。

[0028] 考虑到的是升降机系统1可以具有多于两个的升降机10、10’，并且组控制器16可以是被配置成控制一组多于两个的升降机。更进一步地，在升降机系统1的某些实施方案中，在一个楼层可以运行多于一个升升降机轿厢或一个升降机轿厢可以被配置成一个多层轿厢。

[0029] 至少一个操作控制器4、4’（也被称为着陆操作控制板（LOP））被安装在每个楼层L1、L2、L3处并且被连接至该升降机控制系统，例如，直接连接至控制系统14、14’，并且与该操作控制器4、4’通讯。取决于升降机系统1的一个具体的配置，操作控制器4、4’允许一个乘客通过按下例如“上”或“下”按钮，如通过用输入装置（例如，一个触摸屏或键盘）来输入一个希望的目的地来呼叫一个升降机轿厢。操作控制器4、4’可以包括一个电子读取装置，该装置被配置成从一个卡片或证件读取信息，为了呼叫一个升降机轿厢，乘客会被要求将该卡片或证件放置在该电子读取装置旁。该电子读取装置可以被配置成从该证件读取一个条形码或检测该证件上的一个存储RFID装置。考虑到的是操作控制器4、4’被设计并装备为适合于升降机系统1的一种具体的配置。

[0030] 在紧急状态下，由于在火灾情况下的操作控制器板出现故障的风险，操作控制器4、4’通常是不激活的或者在操作控制器4、4’上进行的任何输入都是没有用的。在升降机系统1的某些实施方案中，该建筑物的多个通讯系统中，一个楼层可以被装备有连接到该建筑物管理中心的一个单工或双工通讯系统（例如，一个扬声器和一个麦克风）。在一个紧急状态下，该通讯系统可以被用于在建筑物管理中心的人员与在该楼层的一个建筑物居民之间的通讯。

[0031] 图2是在一个升降机轿厢8、8’内的并且被配置成允许紧急救援人员征用另一个
说明书

升降机轿厢的操作控制板 18, 18' 的示意图。在每个升降机轿厢 8, 8' 内, 该操作控制板 18, 18' 被安装到或整合在一个内墙中并且被连接至控制系统 14, 14'。操作控制板 18, 18'也被称为轿厢操作控制板 (COP)。取决于升降机系统 1 的一个具体配置, 操作控制板 18, 18' 允许一个乘客键入一个希望的目的地, 例如, 通过图 2 所示的一个键盘 30。不依赖于升降机系统 1 的这种具体的配置的是操作控制板 18, 18' 的其他传统功能, 如报警或 SOS 功能, 通讯功能 (通话和收听) 以及一个用于一个楼层 (数字) 和 / 或运行方向 (“上”, “下”) 的指示器 38。

[0032] 更进一步地, 一些国家 (比如美国) 要求操作控制板 18, 18' 具有一种在紧急状态期间允许消防人员操作升降机轿厢 8, 8' 的消防部门功能。在操作控制板 18, 18' 的一个实施方案中, 该消防部门功能被集中操作控制板 18, 18' 的一个锁定的舱室 32 中。这个舱室 32 也被称作 “隐藏盒”, 它对于乘客是隐藏的并且不能接触到的。为展示的目的, 图 2 中示出了一个不带盖的该舱室 32, 从而使得一个人机界面 (MMI) 28 (下文称为 “MMI 28”) 在图 2 中是可见的。舱室 32 包括, 例如, 一个消防部门钥匙开关、用于键入一个目标楼层的多个单独的按钮、以及用于开关和门的按钮。

[0033] 为了使一个消防人员或任何其他紧急救援人员能够出于多个人员转运到一个安全疏散楼层以更高效地疏散该建筑物的目的而使用一个第二升降机, 操作控制板 18, 18’(或它的 “隐藏盒”) 具有除了其传统的允许一个消防人员操作升降机轿厢 8, 8' 的消防人员 MMI 28 之外还具有一个专用的功能。这个专用的功能允许消防人员要求另一个升降机轿厢到他当前的位置。该专用的功能可以有不同的方式来实施, 作为在舱室 32 内的另一个位置处或在该 BMI 28 上的至少一个分离的按钮 34, 或者钥匙开关, 或者作为一个现有按钮的附加功能 (例如, 消防人员按压他当前正在检查的楼层的按钮, 控制系统 14, 14’和 / 或组合器 16 将这理解为要求将另一个升降机轿厢 8, 8' 发送到那个楼层)。

[0034] 在一个实施方案中, 操作控制板 18, 18’ 具有一个接收器以便响应于该消防人员的要求而接收从控制系统 14, 14’ 发出的消息或信号, 并且具有至少一个输出装置 36 以便将消息通讯给该消防人员。该消息至少包括要求状态 (例如, “升降机已派遣” “升降机已经到达” 或 “没有可用升降机”) 以及标识 (例如, 一个升降机编号)、或以上信息的组合。输出装置 36 可以产生一种视频输出 (例如, 通过一个显示器或一个光源 (例如, 色彩编码的和 / 或闪烁 (LED) 灯)), 以及与该消息相应的音频输出 (一个录音的或现场通知)、或以上输出的组合。

[0035] 在图 2 的实施方案中, 输出设备 36 是被安排在按钮 34 下方的一个光源, 这样使得按钮 34 和输出装置 36 形成一对。更进一步的, 图 2 中示出了紧挨着该另外一对的另一个按钮 - 输出装置对。考虑到的是输出装置 36 或它的功能性可以被整合到按钮 34 中, 例如, 按钮 34 可以具有一个整合的光源。在那个实施方案中, MMI 28 不再具有一个分离的输出装置。

[0036] 在一个实施方案中, 该接收器、按钮 34 和输出装置 36 被整合到 MMI 28 中。然而,考虑到这是该轿厢的通讯系统或至少它的扬声器可以被作为了一个音频消息的输出装置。在那种情况下, MMI 28 可以不具有一个分离的输出装置。

[0037] MMI 28 可以用多种方式来配置。在一个实施方案中,MMI 28 具有一个按钮 34, 该按钮既用于要求一个疏散升降机又用于一旦该疏散升降机准备好被派遣到疏散楼层就释
放该疏散升降机轿厢。在控制系统14,14'和组控制器16中的至少一个的控制下，输出装置36确认对于一个疏散升降机轿厢的要求。例如，输出装置36的一个闪烁光源可以指示出所要求的疏散升降机轿厢正在途中，并且一个持续的点亮（例如，绿色）可以指示出该轿厢已经到达并且正在该楼层等待。同样地，一旦该疏散升降机轿厢已经被释放，该光源可以用一种不同的频率或不同的颜色闪烁以指示出升降机轿厢正在到达该疏散楼层的途中。一个持续的点亮指示了该轿厢抵达了该疏散楼层。

【0038】在另一个实施方案中，MMI 28具有用于要求一个疏散升降机轿厢的一个“要求”按钮34，并且具有用于释放该疏散升降机轿厢的另一个“释放”按钮34。每个按钮34具有用于将对应的要求的状态通知该消防人员的一个关联的输出装置36（分别地是“要求”和“释放”）。输出装置36的光源按照以上描述的方式运行。例如，“要求”输出装置36在派遣疏散升降机轿厢后将有关该疏散升降机轿厢的状态的一个消息进行通讯，并且“释放”输出装置36派遣疏散升降机轿厢到预先确定的疏散楼层后将有关该疏散升降机轿厢的状态的一个消息进行通讯。

【0039】更进一步地，在一个实施方案中按钮34具有（例如，数字的）拨号盘通过旋转该拨号盘来选择这些升降机10,10'中的一个升降机。一旦做出选择，按钮34被配置成由该消防人员按压以要求一个疏散升降机。

【0040】在又另一个实施方案中，MMI 28被配置成向消防人员提供更多信息。例如，MMI 28可以具有一个显示器或其他输出装置以显示该消息，例如“升降机已派遣”“升降机已经到达”或“没有可用升降机”，和/或任何其他被认为对消防人员和他的检查任务必要的信息。

【0041】图3是在紧急状态期间，对图1的示例性升降机系统1进行操作的一种方法的一个实施方案的流程图。例如，当安装在该建筑物中作为该建筑物火警系统的一部分的这些探测器中的一个被烟雾、热、瓦斯或任何其他表明一个火灾或一个开始起火的参数触发时，一个紧急状态发生并且产生表明火灾状态的一个信号。在这个状态下，升降机系统1通过控制系统14,14'和组控制器16从一个正常运行模式切换到一个紧急状态模式。这种方法的这些步骤在此针对一个火灾状态并且从组控制器16的角度来进行阐述，该组控制器被配置成根据该方法来操作。该方法从步骤S1开始到步骤S13结束。

【0042】参见一个步骤S2，升降机系统1以正常运行模式运行，其中组控制器16连续地监测每个升降机10,10'的状态。由于这种监测，组控制器16如上所述地“知道”这些升降机10,10'的不同运行参数，并且能够响应于一个呼叫而指派一个适合的升降机10,10'。

【0043】进行到一个步骤S3，该方法确定是否有影响升降机系统1的安全运行的一个火灾状态或任何其他状态存在。如果没有这样的警报，该方法沿着“否”支流流程返回到步骤S2。然而，如果该建筑物的火警系统发出一个警报，该方法沿着该“是”支流流程进行到步骤S4。

【0044】在步骤S4，组控制器16将所有升降机轿厢8,8’找回到该建筑物中的一个预先指定的疏散（“疏散”）楼层，例如，带有建筑物出口的大厅。这些升降机轿厢8,8’被以门打开的状态驻停，并且这些升降机10,10’被暂时停止服务。一旦到达，消防部门能够通过激活该消防部门钥匙开关来超越这种召回功能从而单独地使用一个升降机轿厢8,8’。在一组升降机中，至少一个升降机被典型地指定作为一个消防升降机。该消防升降机被装备以便在火灾状态下运行，例如，该消防升降机具有防火阻燃材料和/或在多个通风孔安装有（附加
的) 多个过滤器。

【0045】 进行到一个步骤 S5, 一旦消防人员使用升降机轿厢 8, 8’ 内的控制面板 18, 18’
超越了召回功能, 组控器 16 就仅允许该消防升降机运行。消防人员使用该消防升降机以
逐个楼层查看该建筑物, 例如, 上至被报告有火情的楼层之下的一层或两层。就是说, 消防
人员在在每个楼层 L1, L2, L3 停下该升降机轿厢 8, 8’, 检查是否可以安全打开该升降机轿
厢 8, 8’, 并且如果安全的话, 检查是否有建筑物居民需要被疏散。

【0046】 进行到一个步骤 S6, 组控制器 16 确定是否已经发出对于一个疏散升降机轿厢
的一个要求。如在此描述的, 消防人员使用的升降机轿厢 8, 8’ 被配置成允许消防人员通过
MMI 28 来要求将一个疏散升降机轿厢派遣到他的当前位置(楼层), 如消防人员要求有
一个疏散升降机轿厢来疏散建筑物居民, 那么该消防人员按压, 例如, 一个在舱室 32（隐藏盒)
中的一个指定的按钮（例如, 图 2 中的按钮 34), 并且该方法沿着“是”支线流程进行到步骤
S7。如果不要求疏散, 则不发出要求; 该方法保留在步骤 S6 中的一个等待模式 (“否”支线
流程)。

【0047】 在步骤 S7, 组控制器 16 确定该消防升降机的位置。如参见步骤 S2 中提到的, 组控
制器 16 知道任何升降机 10, 10’ 在运行中的状态。例如, 组控制器 16 将每个升降机包括位
置的状态信息存储在一个存储器中, 如果被要求, 该位置信息可以从该存储器取出。

【0048】 进行到步骤 S8, 组控制器 16 将相对于该消防升降机的位置合适的升降
机轿厢指定为一个疏散升降机轿厢, 在一个实施方案中, 该疏散升降机轿厢是驻停在该被
预先指定的疏散楼层中的这些升降机轿厢中的一个。

【0049】 进行到一个步骤 S9, 组控制器将该指定的疏散升降机轿厢派遣到消防人员的位置
并且以门打开的状态将该疏散升降机轿厢驻停。现在需要被疏散的建筑物居民可以在消
防人员的控制和授权下搭乘该轿厢。

【0050】 进行到一个步骤 S10, 组控制器 16 确定是否有一个疏散命令已经发出, 一旦所
有居民已经登上该轿厢, 或者该轿厢已经满载, 消防人员从该消防升降机轿厢或从该疏散
升降机轿厢发出该疏散命令。例如, 该疏散升降机轿厢一开始向疏散楼层运行, 消防人员就
可以继续检查该建筑物。可替代地, 如果仍然有居民在该楼层, 消防人员可以要求将另一个
疏散升降机轿厢发送到该楼层。该方法于是再次进行步骤 S8 到 S10。如果组控制器 16 确
定该消防人员发出了一个疏散命令, 该方法沿着“是”支线流程进行到步骤 S11, 否则它等待
(“否”支线流程)。

【0051】 进行到步骤 S11, 组控制器 S11 将该疏散升降机轿厢送到疏散楼层, 在该疏散楼
层, 被疏散的建筑物居民由其他消防人员接收。一旦该疏散升降机轿厢是空载, 如步骤 S12
所示, 该疏散升降机轿厢被释放。

【0052】 在步骤 S13, 该方法结束。然而, 该方法可以如一条引至步骤 S6 的虚线所指明的来
重复。

【0053】 已经描述了升降机系统 1 的某些实施方案以及在紧急状态期间操作升降机系统 1
的这种方法, 考虑到的是该升降机系统 1 和 / 或该操作方法可以根据某些要求来修改。例
如, 升降机系统 1 可以被配置成允许消防人员同时要求多于一个的疏散升降机轿厢到其当
前楼层。这在下面的这些情况下是令人希望的; 即, 消防人员到达的楼层有许多居民在等
待, 或者已经提前接到(例如, 通过该轿厢的通讯系统) 有许多居民正在等待的信息。
为对这样的情况做好准备，MMI 28 可以具有几个按钮 34 和输出装置 36，每一对被指派给一个不同的升降机。这些按钮 34 可以用这些升降机的标识（例如，字母或数字）来标记。消防人员可以被指示去选择一个相邻的升降机，或组控制器 16 被配置成指派在该消防升降机附近到达的一个升降机轿厢，例如，一个相邻的升降机，但在另一个通道中的升降机，从而使得消防人员能够监督所有疏散升降机轿厢的搭乘，这例如在由于烟雾导致的视野有限的情况下是有利的。

更进一步地，作为在步骤 S8 中描述的指定驻停在该疏散楼层的一个轿厢的一个替代，组控制器 16 可以指定任何其他合适的升降机轿厢作为一个疏散升降机。例如，组控制器 16 可以选择接近于消防人员的当前位置并且还有能力接收到额外的乘客的一个升降机轿厢。例如，该升降机轿厢可以由另外一个消防人员来操作。

明显的是已经披露的一种系统和用于在紧急状态期间操作升降机系统的方法，它们完全满足在此之前提到的这些目标、手段和优点。例如，紧急救援人员能够高效地疏散一个建筑物并且反复地要求一个疏散升降机轿厢直到所有建筑物居民都从一个楼层或该建筑物中疏散出。一旦紧急救援人员释放了该疏散升降机轿厢，紧急救援人员就能够继续检查该建筑物而不必使用用于疏散的消防升降机。

更进一步地，考虑到的是升降机系统 1 和 / 或它的组控制器 16 可以被配置成允许一个建筑物即使在所指定的消防升降机变得不可操作时仍然允许高效和安全的疏散。在那种情况下，消防人员能够使用 MMI 28 来要求一个疏散升降机，并且一旦该疏散升降机到达，消防人员就将消防人员钥匙从现在不可操作的消防升降机中移除并离开这个消防升降机。然后，消防人员能够将该消防人员钥匙插入该疏散升降机轿厢的控制板中，由此来超越疏散功能并且将该升降机登记为该新的被指定的消防升降机。
图 1
图 2
图 3