
US 20060253903A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0253903 A1

Krumel (43) Pub. Date: Nov. 9, 2006

(54) REAL TIME FIREWALL/DATA PROTECTION (52) U.S. Cl. .. 726/13
SYSTEMIS AND METHODS

57 ABSTRACT
(76) Inventor: Andrew K. Krumel, San Jose, CA (57)

(US) Methods and systems for firewall/data protection that filters
data packets in real time and without packet buffering are
disclosed. A data packet filtering hub, which may be imple
mented as part of a Switch or router, receives a packet on one
link, reshapes the electrical signal, and transmits it to one or
more other links. During this process, a number of filters
checks are performed in parallel, resulting in a decision
about whether each packet should or should not be invali
dated by the time that the last bit is transmitted. To execute

(22) Filed: Mar 13, 2006 this task, the filtering hub performs rules-based filtering on
e - a 9 several levels simultaneously, preferably with a program

O O mable logic or other hardware device. Various methods for
Related U.S. Application Data packet filtering in real time and without buffering with

(63) Continuation of application No. 09/611,775, filed on programmable logic are disclosed. The system may include

Correspondence Address:
ALAN LOUDERMLK
LOUDERMLK & ASSOCATES
P.O. BOX 36O7
LOS ALTOS, CA 94024 (US)

(21) Appl. No.: 11/374,465

Jul. 7, 2000, now Pat. No. 7,013,482. constituent elements of a stateful packet filtering hub. Such
as microprocessors, controllers, and integrated circuits. The

Publication Classification system may be reset, enabled, disabled, configured, and/or
reconfigured with toggles or other physical Switches. Audio

(51) Int. Cl. and visual feedback may be provided regarding the opera
G06F 5/16 (2006.01) tion and status of the system.

DSL Router

Data protection
system

ar

Patent Application Publication Nov. 9, 2006 Sheet 1 of 14 US 2006/0253903 A1

CO

s
E
2
E

<d
r

S (6: E. O
m

"...".

Patent Application Publication Nov. 9, 2006 Sheet 2 of 14 US 2006/0253903 A1

NV le

s

S.

s i ().

Patent Application Publication Nov. 9, 2006 Sheet 3 of 14 US 2006/0253903 A1

1 E l 14 16 18 Internal I Xterna Xterna e Ca nterna

Repeater Core
Packet Nibbles

22

Packet Characteristics Logic Pass/Junk
Packet Packet Type Result Result

ANSES, ... Hir Aggregator (No Buffering)
Run Rule #1 State

Result 36-1
Entry to Rules Rules Engine #1
Look-Up N/ Get Rule

t C C Connection Connection
Cache State Result #1

#1
30 Result FN

Run Rule iN 40-1

34-N Rules Engine iN
Rules Map 36-N Get Rule

Table Characteristics
ID R

Rule Dispatching Information 40-N
State Rules Filter

Legend 42
C. Data

Store

Patent Application Publication Nov. 9, 2006 Sheet 4 of 14 US 2006/0253903 A1

12 15 20

External Bastion Internal
Network Network Network

16 ------------

Repeater
Core Packet data pass/fail for

each network

24 44

Determine packet
characteristics

(protocol, addrs,
ports, flags)

Result
Aggregator

pass/fail
Level 2 Filters Level 2 Filters 46

i?optional Level 3 Filters pass/fail (op)

Level 4 Filters pass/fail
50 :

pass/fail : Transmit
Spoof Check 52 alarm

information
OWer

Alam controller-network.
53 54 55

FIG.3 Alert LED C (

Patent Application Publication Nov. 9, 2006 Sheet 5 of 14 US 2006/0253903 A1

DSL Router/
8 Cable Modem FIG.4 S.

18

I
20 15

Network
12 56

58 Bastion External PHY
PHY Controller PHY

data nibble

s Reshape and transmit Z
62

Enable
filtering

N button

packet in real-time

Determine Unknown Level 2 Filters

Junk/Pass for each
PHY category

Result Aggregator on/off

Packet Type packet type

ARP Pass-66
RARP Is from PHYext

e. and op code = 3?
Is broadcast Dacket and from PHYext?

Check options type of 7,68, 131, or 137 i.

Pass Pass Filter IP Packet

6 4

Patent Application Publication Nov. 9, 2006 Sheet 6 of 14 US 2006/0253903 A1

Determine IP Datagram Characteristics
81 Unknown Set Fail signal-80

IGMP Set Fail signal F-82

ICMP Is from N Pass --86

84 Y 88

E"")N Set Fail signal-90

Is type 5, 8, 10 NY Set Fail
13, 15, 17? signal

N

94- Pass 98 104 102
Is Y Is protocol header N N Set Fail

fragment 02 contained in fragment/ signal
Y

Filter TCP and
UDP datagram

Pass Junk
Signal Signal FIG.5

Level 3 Filters

106

US 2006/0253903 A1 Patent Application Publication Nov. 9, 2006 Sheet 7 of 14

Patent Application Publication Nov. 9, 2006 Sheet 8 of 14 US 2006/0253903 A1

Packet Characteristics 134
ddr lookup code Rules a. Exec Mapping The O

136

mapping

s|| | Enable Web Client data
| | Enable Web Servers
|D User Defined Toggle(s)

148
- queues 2 - (N-1)->
138-1 138-N

140-1 rule
D D

toggle states 1 toggle states
data Rules data arts Engine #1 Engine HN certs
COMM state COmm State

v- 2.

rule ad tle ad
data E. data

s Es

Table #1 a Table iN
142-1 E 142-N

3 3

"E" com state 144
external host update Aggregator

Pass Junk
146 Signal Signal

Patent Application Publication Nov. 9, 2006 Sheet 9 of 14 US 2006/0253903 A1

Determine UDP and TCP | Enable Active FTP

152

Pass signals for
each network

Protocol back-end #1

Protocol front-end #1 155

Register
Controller

store and clear store and clear
signal for Reg 1 signal for Reg N

store,
clear signals

160-N
Protocol front-end FN

packet state
characteristic
match signals

State
Registers

Protocol back-end AN

Stateful Filters 154 158-N

Pass signal for
each network

Compare Pass signal for characteristics to the P each network Result alysis Aggregator
judgment 144

153 Non-Stateful Filters FIG.8

US 2006/0253903 A1 Patent Application Publication Nov. 9, 2006 Sheet 10 of 14

Patent Application Publication Nov. 9, 2006 Sheet 11 of 14 US 2006/0253903 A1

192

193

?
186-1 Nu-188 194

US 2006/0253903 A1 Patent Application Publication Nov. 9, 2006 Sheet 12 of 14

XOW puB 108 NÄS ??A 19?pºd

II’OIH

US 2006/0253903 A1 Patent Application Publication Nov. 9, 2006 Sheet 13 of 14

?U?UBJI (Z

XOW M3U 0} | ppº pub 38U N?S 19Sun

ZI’OIH

Patent Application Publication Nov. 9, 2006 Sheet 14 of 14 US 2006/0253903 A1

254

2S6

1) unset ACK and set RST flag
2) add 1 to sequence #
3) recalc checksums
4) recalc TCP, IP, Eth checksums

264

266

FIG.13

US 2006/0253903 A1

REAL TIME FIREWALLADATA PROTECTION
SYSTEMS AND METHODS

FIELD OF THE INVENTION

0001. The present invention relates to computer security
and data protection systems and methods, and more particu
larly to firewall and data protection systems and methods for
filtering packets, such as from the Internet, in real time and
without packet buffering.

BACKGROUND OF THE INVENTION

0002 The use of the Internet has exploded in recent
years. Small and large companies as well as individual users
are spending more time with their computers connected to
the Internet. With the advent of Internet technologies, such
as cable modems, digital subscriber lines, and other “broad
band' access devices, users are connecting their computers
to the Internet for extended periods of time.
0003 Such extended or “persistent” connection to the
Internet brings many advantages to users in immediate
access to the content on the Internet through the use of email,
search engines, and the like. Unfortunately, however, per
sistent access to the Internet exposes connected computers to
potential security threats, where intruders and “hackers'
may compromise proprietary systems, engage in informa
tion theft, or take control of the connected computers
remotely. With more sophisticated tools at their disposal,
hackers pose security and privacy risks to Systems with
persistent access to the Internet. Such security risks are even
present for computers connected to the Internet for limited
periods of time (such as through dial-up, modem connec
tions), though to a lesser degree than the extended access
computers.

0004 There are currently many different types of firewall
systems available on the market, including proxy servers,
application gateways, stateful inspection firewalls, and
packet filtering firewalls, each of which provides a variety of
strategies and services for data protection. Conventional
packet filters typically are computers, routers, or ASICs
based on general purpose CPUs. They perform their filtering
duties by receiving a packet, buffering the data until a
determination can be made, and forwarding the packet as
applicable for the particular system.
0005 For example, a dual-homed, Linux-based filter
with two network cards might receive a packet completely,
evaluate whether it meets specific criteria, and transmit the
packet on the other network card. In another example, a
router designed for Switch mode routing might begin buff
ering a packet until a decision is made, then forward the
packet on the applicable interface while still receiving the
packet. With most packet filters, software is used and data is
buffered.

0006 Sophisticated computer users working for medium
to large-sized companies have a variety of relatively expen
sive protection devices and tools at their disposal. Such
devices and tools typically screen data packets received
from the Internet with sophisticated software-based filtering
techniques. Using relatively complex tools for software
analysis, each packet is stored in a buffer and examined
sequentially with software-based rules, which results in each
packet being either accepted (and passed to the computer) or

Nov. 9, 2006

rejected (and disposed of by the software). This software
often requires Substantial computer knowledge and experi
ence. Users of Such devices and tools typically have an
expertise in network administration or a similar field, so they
can configure, optimize, and even build the complex filtering
and security options provided by the software.

0007 While such devices and tools can be quite effective
in providing “firewall’ protection for sophisticated users of
large office systems, they pose several barriers to unsophis
ticated users of Small office and home systems in the
growing SOHO market. Current large office systems are
expensive, difficult to set up, and require technical skills.
What is needed for SOHO systems is a relatively inexpen
sive, uncomplicated, "plug and play' type of Internet pro
tection system that can be easily connected and configured
by relatively unsophisticated users.

SUMMARY OF THE INVENTION

0008. In accordance with the present invention, devices,
methods and systems are provided for the filtering of Inter
net data packets in real time and without packet buffering. A
stateful packet filtering hub is provided in accordance with
preferred embodiments of the present invention. The present
invention also could be implemented as part of a Switch or
incorporated into a router.

0009. A packet filter is a device that examines network
packet headers and related information, and determines
whether the packet is allowed into or out of a network. A
stateful packet filter, however, extends this concept to
include packet data and previous network activity in order to
make more intelligent decisions about whether a packet
should be allowed into or out of the network. An Ethernet
hub is a network device that links multiple network seg
ments together at the medium level (the medium level is just
above the physical level, which connects to the network
cable), but typically provides no capability for packet-type
filtering. As is known, when a hub receives an Ethernet
packet on one connection, it forwards the packet to all other
links with minimal delay and is accordingly not suitable as
a point for making filtering-type decisions. This minimum
delay is important since Ethernet networks only work cor
rectly if packets travel between hosts (computers) in a
certain amount of time.

0010. In accordance with the present invention as the data
of a packet comes in from one link (port) the packets
electrical signal is reshaped and then transmitted down other
links. During this process, however, a filtering decision is
made between the time the first bit is received on the
incoming port and the time the last bit is transmitted on the
outgoing links. During this short interval a substantial num
ber of filtering rules or checks are performed, resulting in a
determination as to whether the packet should or should not
be invalidated by the time that the last bit is transmitted. To
execute this task, the present invention performs multiple
filtering decisions simultaneously: data is received; data is
transmitted; and filtering rules are examined in parallel and
in real time. For example, on a 100 Mbit/sec Ethernet
network, 4 bits are transmitted every 40 nano seconds (at a
clock speed of 25 MHz). The present invention makes a
filtering decision by performing the rules evaluations simul
taneously at the hardware level, preferably with a program
mable logic device.

US 2006/0253903 A1

0011. The present invention may employ a variety of
networking devices in order to be practical, reliable and
efficient. In addition, preferred embodiments of the present
invention may include constituent elements of a stateful
packet filtering hub, Such as microprocessors, controllers,
and integrated circuits, in order to perform the real time,
packet-filtering, without requiring buffering as with conven
tional techniques. The present invention preferably is reset,
enabled, disabled, configured and/or reconfigured with rela
tively simple toggles or other physical Switches, thereby
removing the requirement for a user to be trained in Sophis
ticated computer and network configuration. In accordance
with preferred embodiments of the present invention, the
system may be controlled and/or configured with simple
Switch activation(s).
0012. Accordingly, one object of the present invention is
to simplify the configuration requirements and filtering tasks
of Internet firewall and data protection systems.
0013 Another object is to provide a device, method and
system for Internet firewall and data protection that does not
require the use of CPU-based systems, operating systems,
device drivers, or memory bus architecture to buffer packets
and sequentially carry out the filtering tasks.
0014) A further object of the present invention is to
perform the filtering tasks of Internet firewall protection
through the use of hardware components.
0015. Another object is to utilize programmable logic for
filtering tasks.

0016 Still another object is to provide a device, method,
and system to carry out bitstream filtering tasks in real time.
0017. Yet another object is to perform parallel filtering,
where packet data reception, filtering, and transmission are
conducted simultaneously.

0018. A further object of the present invention is to
perform the filtering tasks relatively faster than current
state-of-the-art, software-based firewall/data protection sys
temS.

0019. Another object is to provide a device, method and
system for firewall protection without the use of a buffer or
temporary storage area for packet data.

0020 Still another object of the present invention is to
design a device, method and system that does not require
Software networking configurations in order to be opera
tional.

0021. A further object of the present invention is to
provide a device, method and system for Internet firewall
and data security protection that Supports partitioning a
network between client and server systems.
0022. It is a yet another object of the present invention to
provide a device, method and system for Internet firewall
and data protection that Supports multiple networking ports.

0023. Another object is to maintain stateful filtering
Support for standard data transmission protocols on a per
port basis.
0024. Still another object of is to configure network
functionality using predefined toggles or other types of
physical Switches.

Nov. 9, 2006

0025 A further object of the present invention is to
conduct packet filtering without requiring a MAC address or
IP address to perform packet filtering.
0026. Yet another object of the present invention is to
facilitate the shortest time to carry out bitstream filtering
tasks.

0027 Finally, it is another object of the present invention
to be able to perform filtering rules out of order and without
the current state-of-the-art convention of prioritizing the
filtering rules serially.

BRIEF DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0028. The present invention may be more fully under
stood by a description of certain preferred embodiments in
conjunction with the attached drawings in which:
0029 FIGS. 1A and 1B are application level diagrams
illustrating exemplary data protection systems in accordance
with the present invention:
0030 FIG. 2 is a flow diagram illustrating the compo
nents and operations of a preferred embodiment of the
present invention;
0031 FIG. 3 is a flow chart illustrating the basic func
tions of a repeater core and four filter levels in accordance
with preferred embodiments of the present invention:
0032 FIG. 4 is a diagram illustrating filtering functions
of Level 2 filters in relation to the flow of packet data from
internal and external networks in accordance with preferred
embodiments of the present invention;
0033 FIG. 5 is a flow chart illustrating packet filtering
functions of Level 3 filters in accordance with preferred
embodiments of the present invention;
0034 FIG. 6 illustrates the rules by which TCP and UDP
packets are evaluated in parallel in accordance with pre
ferred embodiments of the present invention;
0035 FIG. 7 is a diagram illustrating parallel rule evalu
ation for TCP and UDP packets in accordance with preferred
embodiments of the present invention;
0036 FIG. 8 is a flow chart illustrating packet filtering
functions of Level 4 filters in accordance with preferred
embodiments of the present invention;
0037 FIG. 9 is a block diagram of the hardware com
ponents of a preferred embodiment of the present invention;
0038 FIG. 10 is an illustration of an exemplary design of
an external case in accordance with preferred embodiments
of the present invention;
0.039 FIGS. 11 and 12 are flow diagrams illustrating
SYN flood protection in accordance with preferred embodi
ments of the present invention; and
0040 FIG. 13 is a flow chart illustrating the process of
'garbage collection' in flood lists in accordance with pre
ferred embodiments of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0041. The present invention will be described in greater
detail with reference to certain preferred and alternative

US 2006/0253903 A1

embodiments. As described below, refinements and substi
tutions of the various embodiments are possible based on the
principles and teachings herein.
0042 FIG. 1A and FIG. 1B illustrate the physical posi
tioning of a stateful packet filtering hub in accordance with
the present invention in two exemplary network configura
tions. The packet filtering hub of the illustrated embodi
ments preferably serves as an Internet firewall/data protec
tion system (hereafter “data protection system').

0043. With reference to FIG. 1A, in the illustrated
embodiment data protection system 1 is coupled through a
port to router 2 (or cable modem or other preferably broad
band, persistent network connection access device), which is
linked through a broadband connection to other computer
systems and networks, exemplified by Internet 8 and Inter
net Service Provider (ISP) 10. Packets of data are transmit
ted from an ISP such as ISP 10, via Internet 8 to router 2.
The packets are transmitted to data protection system 1,
which analyzes the packets in “real time' and without
buffering of the packets, while at the same time beginning
the process of transmitting the packet to the internal net
work(s) in compliance with the timing requirements
imposed by the Ethernet or other network standards/proto
cols. If a packet of data satisfies the criteria of the rules
based filtering performed within data protection system 1,
which is executed in a manner to be completed by the time
the entire packet has been received by data protection
system 1, then it is allowed to pass to hub 6 as a valid packet,
which may then relay the cleared packet to computers 4a,
4b, 4c, etc. on the internal network. If a packet of data fails
to meet the filtering criteria, then it is not allowed to pass as
a valid packet and is junked.” Junking is defined as
changing bits or truncating data, depending on the type of
link, in a manner Such that the packet is corrupted or
otherwise will be detected by the receiving computers as
invalid or unacceptable, etc. Without the intermediate posi
tioning of data protection system 1, the packets would be
transmitted directly to unprotected hub 6, thereby exposing
computers 4a, 4b and 4c to security risks. It should also be
noted that hub 6 is optional in accordance with the present
invention; in other embodiments, data protection system 1
may be directly connected to a single computer or may have
multiple ports that connect to multiple computers. Similar
filtering is performed on packets that are to be transmitted
from computers 4a, 4b, and 4c to Internet 8.
0044) With reference to FIG. 1B. in this illustrated
embodiment data protection system 1 is coupled via one port
to DSL router 2 (again the network access device is not
limited to a DSL router, etc.) which provides the broadband
connection to Internet 8. As with the embodiment of FIG.
IA, data protection system I also is coupled to a number of
computers 4a, 4b, etc., on the internal network, and serves
to provide filtering for packets between computers 4a and 4b
and Internet 8 in the manner described in connection with
FIG. 1A. In this embodiment, data protection system 1 is
also connected via another port to hub 6, which serves as the
main point of contact for incoming connections from the
Internet for bastion hosts 5a and 5b, etc. In accordance with
this embodiment, packets are transmitted to router 2 and
then to data protection system 1. If the packets are approved
by data protection system 1 (i.e., passing the filtering rules/
checks performed with data protection system 1 while the
packet is being received and transmitted), then the packets

Nov. 9, 2006

are allowed to pass as valid packets to computers 4a, 4b and
hub 6. (The rules-based filtering process of preferred
embodiments of the present invention will be described in
more detail hereinafter.) Hub 6 may relay the packets to
other internal host computers 5a, 5b, etc., on the local area
network (LAN). These computers may include, for example,
a Web and FTP server 5a, or a streaming audio server 5b, etc.
Thus, in accordance with the illustrated embodiment, pack
ets that passed the filtering rules/checks are passed as valid
packets to computers, such as protected internal host com
puter 4a, which as illustrated may be connected to printer 7.
In this particular embodiment, a bastion port is provided that
may be used to service more than one bastion host. In other
embodiments, different network configurations may be uti
lized in accordance with the present invention.
0045 FIG. 2 illustrates the general components and
operations of certain preferred embodiments of the present
invention. Connection to external network 12 is made by
physical interface 14. Physical interface (or PHY) 14 pref
erably is implemented with commercially available, physi
cal layer interface circuits, as are known in the art (Such
physical layer interface circuits may be off-the-shelf com
ponents, as specified in the Ethernet IEEE standard 802.3u.).
At a minimum, the data protection system must contain two
PHY interfaces, one for the Internet or other external net
work connection, and one (or more) for the internal network.
It should be noted that, in preferred embodiments, PHY
controllers are utilized, which implicitly assumes Ethernet
type connections. In other embodiments in accordance with
the present invention, other types of PHY interfaces and
controllers are utilized for different networking standards.
0046 Repeater core 16 functions as an Ethernet repeater
(as defined by the network protocols of the IEEE standard
802.3) and serves to receive packets from external PHY 14,
reshape the electrical signals thereof, and transmit the pack
ets to internal PHY 18, which is coupled to internal network
20. While the packet is being received, reshaped, and
transmitted between PHY's 14 and 18, however, it is simul
taneously being evaluated in parallel with filtering rules to
determine if it should be allowed to pass as a valid packet (as
will be described in greater detail elsewhere herein). As with
the discussion regarding the PHY interfaces and controllers,
changes in networking standards may alter the components
functionality (such as the characteristics of repeater core 16),
but not the basic parallel, real time packet filtering in
accordance with the present invention. (In an alternate
embodiment, for example, the data protection system may
use Switch logic or router logic; in full duplex, the same
principles apply.) The parallel filtering preferably consists of
packet characteristics logic 22, packet type filters 26, and
state rules filters 42. Packet characteristics logic 22 deter
mines characteristics based on packet data (preferably in the
form of 4-bit nibbles from PHY 14), whereas packet type
filters 26 make filtering decisions generally based on packet
type. State rules filters 42 perform rules-based filtering on
several levels simultaneously. The results of filtering by
packet type filters 26 and state rules filters 42 are combined
by aggregator 24, which may be considered a type of logical
operation of pass/fail signals (described in greater detail
elsewhere herein). In preferred embodiments, if any one or
more of the performed filtering rules indicates that the
packet should be failed (or not allowed to pass as a valid
packet), then the output of aggregator 24 is a fail; otherwise,
the packet is allowed and the output of aggregator 24 is a

US 2006/0253903 A1

pass. Thus, as packet data is being received and transmitted
from PHY 14 to PHY 18 via repeater core 16, it is being
evaluated in parallel via packet type filters 26 and state rules
filters 42 (depending in part on packet characteristics deter
mined by logic 22 from the data received from PHY 14). In
accordance with the present invention, the results of filtering
by packet type filters 26 and state rules filters 42 are
provided to aggregator 24 by the time that the entire packet
reaches repeater core 16, so that, based on the output of
aggregator 24, the packet will either be allowed to pass as a
valid packet or will be failed and junked as a Suspect (or
otherwise invalidated) packet.
0047 Packet characteristics logic 22 receives packet data
from PHY 14 and examines the packet data to determine
characteristics, such as the packet type, datagram bound
aries, packet start, packet end, data offset counts, protocols,
flags, and receiving port. The packet type may include, for
example, what are known in the art as IP, TCP, UDP, ARP,
ICMP or IPX/SPX. Such packet characteristics data is
provided to packet type filters 26. Packet type filters 26
preferably make a decision about whether the packet should
be passed or failed, with the result being transmitted to
aggregator 24. In accordance with preferred embodiments,
packet type filters 26 do not require the use of what may be
considered an extensible rules system. The filters of packet
type filters 26 preferably are expressed as fixed state
machines or may be expressed using more flexible rules
Syntax. What is important is that packet type filtering is
performed by filters 26 in the shortest time interval possible
and in parallel with the packet data being received and
transmitted to internal PHY 18, so that a pass/fail determi
nation may be made prior to the time when the entire packet
has been received by repeater core 16.
0.048 State rules filters 42 receive packet characteristics
data from logic 22 and, based on this data as well as
cached/stored connection and communication state informa
tion, executes a plurality of rules under the control of rules
controller 28, preferably using a plurality of rules engines
36-1 to 36-N, so that a desired set of filtering decisions are
promptly made and a pass/fail determination occurs before
the entire packet has been received by repeater core 16. State
rules filters 42 preserve a cache of information 30 about past
network activity (such as IP addresses for established con
nections, port utilization, and the like), which is used to
maintain network connection state information about which
hosts have been exchanging packets and what types of
packets they have exchanged, etc. Rules controller 28 pref
erably accesses rules map table 32 based on packet charac
teristics information, which returns rules dispatch informa
tion to rules controller 28. Thus, based on the connection
state information stored in connection cache 30 and the
characteristics of the packet being examined, rules controller
28 initiates filtering rules via a plurality of rules engines 36-1
to 36-N that simultaneously apply the desired set of filtering
rules in parallel. (Preferably, N is determined by the number
of rules that need to be performed in the available time and
the speed of the particular logic that is used to implement
state rules filters 42.)
0049. As will be appreciated, while the packet pass/fail
decision is being made in real time, and thus must be
concluded by the time that the entire packet has been
received, a large of number of filtering rules must be
performed quickly and in parallel. Preferably, rules control

Nov. 9, 2006

ler 28 utilizes a plurality of rules engines 36-1 to 36-N.
which logically apply specific rules retrieved from corre
sponding storage areas 40-1 to 40-N. Rules controller 28,
based on the connection state and packet characteristics,
determines which rules should be run based on which
information. The rules to be run are then allocated by rules
controller 28 to the available rules engines 36-1 to 36-N. As
each rules engine 36-1 to 36-N may be required to execute
multiple rules in order to complete the filtering decision
process in the required time, corresponding queues 34-1 to
34-N are preferably provided. Thus, rules controller 28
determines the list of rules that should be performed (again,
depending on the stored connection state and packet char
acteristics data) and provides the list of rules (and accom
panying information to carry out those rules) to the plurality
of rules engines 36-1 to 36-N via queues 34-1 to 34-N. Rules
engines 36-1 to 36-N, based on the information from the
queues 34-1 to 34-N, look up specific rule information from
storage areas 40-1 to 40-N, carry out the rules, and prefer
ably return the results to rules controller 28. As the rules are
essentially conditional logic statements that notify the data
protection system how to react to a particular set of logical
inputs, it has been determined that providing a plurality of
rules engines may enable the necessary decision making
process to quickly provide the outcome of the rules-based
filtering by the time the entire packet has been received.
0050 Still referring to FIG. 2, rules controller 28 pref
erably uses rules map table 32 to dispatch the rules to rules
engines 36-1 and 36-N, so that a filtering decision may be
reached in the optimal amount of time. In a preferred
operation, each rules engine extracts a rule ID from its
queue, looks up the rules definition in its own rules table
40-1 to 40-N, evaluates the rule, returns the result to rules
controller 28, and looks for another rule ID in its queue 34-1
to 34-N. The results from packet type filter 26 and rules
controller 28 are combined into one result via aggregator 24:
pass or fail. If a decision is not reached before the end of the
packet is transmitted, then in preferred embodiments the
packet will be processed as an invalid packet and junked.
0051. It should be appreciated that the data protection
system must make a filtering determination before the
current packet is completely transmitted. Since the network
ing standards impose strict timing thresholds on the transit
delay of packets, filtering is performed in real time, in
parallel and without buffering the packet. (The transit delay
threshold is the time it takes to get from the transmitting
station to the receiving station.) Given that a filtering deci
sion must be made in real time (before the last bit is received
and forwarded to the applicable interfaces), the filter rules
are evaluated in parallel by rules engines that possess
independent, direct access to the rules set collected in
storage areas 40-1 and 40-N, which are preferably imple
mented as RAM tables. (In a preferred embodiment of the
data protection system, the tables are implemented using
on-chip, dual port RAM up to 4K in size. A programmable
logic device, such as Xilinx Spartan II XC2S100 has 40K
dual port synchronous block RAM. For example, an initial
110-bit segment of the rules controller RAM block may be
a range table that delineates where each look up code begins
and what the number of entries are.) Rules controller 28
dispatches the rules to each rules engine by placing a rules
ID entry in a queue. Because each rules engine is assigned
its own queue, a pipeline is created allowing the rules engine
to continuously run and operate at maximum efficiency.

US 2006/0253903 A1

0.052 To operate efficiently the rules engines must also be
capable of evaluating rules in any order. In accordance with
the preferred embodiments, each rule has a priority and the
highest priority result is accepted. Therefore, the rules must
be evaluated in any order yet still obtain the same result, as
if the rules were being evaluated serially from highest to
lowest priority. This operation is accomplished in preferred
embodiments by rules map table 32, which notifies rules
controller 28 which rule is assigned to which rules engine.
Thus, this decision is statically determined by the rules set
and the number of rules engines. It should be noted that the
rule set in general is greater than the number of rules
engines.

0053 FIG. 3 is a flow chart illustrating further aspects of
preferred embodiments of the present invention. As previ
ously described, preferred embodiments of the data protec
tion system utilize programmable logic, or other Suitable
preferably hardware-based logic, to perform a large number
of filter rules in parallel and at high speed. Such embodi
ments may be considered to provide an external interface,
for instance, to the Internet, to external network 12, and one
or more internal network interfaces, such as to internal
network 20 and/or to bastion network 15 (see, for example,
FIGS. 1A and 1B). As repeater core 16 (or the PHYs in
FIG. 2) receives and transmits packet data, the packet is
simultaneously subjected to a plurality of filtering rules. At
step 44, the packet characteristics are determined (which, as
previously described, may include protocol, addresses,
ports, flags, etc.). The filtering rules are based on the packet
characteristics, connection state information (depending
upon the particular rules), and/or toggle or other 30 physical
Switch state information. This filtering process may be
represented by filtering steps 46, 48, 50 and 52, which, as
depicted in FIG. 3, are performed at least in substantial part
in parallel, and thus can make filtering decisions by the time
the packet has been completely received.
0054 As illustrated, after the packets are transmitted to
repeater core 16, their characteristics are analyzed at step 44.
Data packets generally consist of several layers of protocols
that combine to make a protocol stack. Preferably, each layer
of the stack is decoded and the information is passed to
various filter blocks, as exemplified in steps 46, 48, 50 and
52. In accordance with the present invention, this filtering
process is executed in parallel and in real time. In other
embodiments, a variety of filter blocks or rules-based filters
may be employed, incorporating parallel execution, real
time filtering, etc., as may be necessary to complete the
filtering decision in the required time.
0.055 Referring again to preferred embodiments illus
trated in FIG. 3. Level 2 filters at step 46 may examine
information in the link layer header for all incoming packets
and decide whether a packet should be junked based on the
packet protocol. Level 3 filters at step 48 may examine
information in the networking layer headers. (For the IP
protocol, these headers would equate to the ARP RARP, IP,
ICMP and IGMP protocol headers.) While Level 2 filters
preferably distinguish the packet type, Level 3 filters at step
48 and Level 4 filters at step 50 preferably distinguish IP
datagram characteristics. Level 4 filters at step 50 preferably
operate by examining IP, TCP and UDP headers along with
data transmitted between the client and server processes,
utilizing two techniques: stateful and non-stateful packet
filtering. (Level 2, 3 and 4 filters are described in greater

Nov. 9, 2006

detail elsewhere herein.) Preferably a spoof check filter at
step 52 detects whether the packet originated from an
authorized IP address or not. To determine whether the
packet should be allowed to pass as a valid packet, the filters
must implement rules in parallel preferably based on pro
grammable logic and register one of two values: pass or fail.
After the values are registered, the outcome is collected in
result aggregator 24, which logically combines the results to
determine if the packet should be allowed to pass as a valid
packet or should be denied as an invalid one. If the packet
is passed, then repeater core 16 continues to send correct
bits. If the packet is failed, then it is junked.
0056. In accordance with preferred embodiments of the
present invention as illustrated in FIG. 3, a spoof check is
performed at step 52 on all packets entering a port. To
prevent IP spoofing, the spoof check filtering of step 52
monitors IP addresses from the internal network and dis
cards any incoming packets with IP source addresses that
match internal IP addresses. A spoof check ensures that a
host on one network is not trying to impersonate a computer
on another network, Such as a computer on the Internet
assuming the IP address of a computer connected to an
internal port. In accordance with preferred embodiments,
spoofed packets are always junked by the data protection
system. In such embodiments, the data protection system
performs this check by keeping track of the IP addresses of
packets arriving on the internal and bastion ports. The source
and destination addresses of each packet are checked against
the known port addresses to ensure they are valid for the
appropriate port.
0057 FIG. 3 also illustrates alarm controller 53, which
preferably is coupled to result aggregator 24. Alarm con
troller 53, which could be a separate-logic block or: within
the result aggregator, receives signals indicating when pack
ets are being rejected, either directly from the logic per
forming the filtering or from result aggregator 24. As
described in greater detail elsewhere herein, alarm controller
53 desirably is utilized to provide visual feedback of the
system status or operation (such as whether the data pro
tection system is under attack) via LED(s) 54 (or other light
Source, LCD or other type of alphanumeric or graphic
display, etc.). For instance, a LCD may provide an additional
mechanism for entering security configurations, such as
specific protocols to allow a reference clock. Alarm control
ler 53 also may be coupled to an audio feedback device, such
as speaker 55, which similarly may be used to provide audio
feedback of the system status or operation. For example, if
a packet is rejected, a first visual indication may be provided
via LED(s) 54 (e.g., yellow light); if packets are being
rejected in a manner or at a rate that Suggests an internal
computer is under attack then a second visual indication may
be provided via LED(s) 54 (e.g., a red light). Similarly, first
and second tones or other audible indicators (different tones,
Volumes, sequences, etc.) may be provided via speaker 55 to
indicate the detected condition). In preferred embodiments,
Such feedback, audio and/or visual, may maintain the alert
state until reset by the user. Such as by depressing a toggle.
Thus, if the internal system has been determined to be under
attack while the user is away, this fact will be made known
to the user when the user returns and sees and/or hears the
visual and/or audio feedback. It also should be noted that
alarm controller 53 also may generate a UDP packet (indi
cated by the dashed line that is coupled to internal network
20) that informs the internal client computer of the attack or

US 2006/0253903 A1

Suspected attack, thereby providing an additional optional
mechanism to inform the user of Suspect activity.
0.058 FIG. 4 illustrates exemplary packet filtering func
tions of Level 2-type filtering in relation to the flow of
packet data from internal and external networks. External
PHY 12 receives packet electrical signals off the physical
wire or other medium. Similarly, internal PHY's 18 and 58
receive packet electrical signals from internal network 20 or
bastion network 15, respectively. Packet data comes in from
one of PHY's 12, 18 or 58 to PHY controller 56. PHY
controller 56 in general receives incoming data from net
work PHY's 12, 18 or 58, detects collisions, indicates the
start and end of packet data, and forwards the packet data to
other appropriate components of the data protection system
(such as described herein). From PHY controller 56, data
from the packet being received, along with information
indicating which PHY's are active (i.e., on which PHY a
packet is being received and to which PHY's the packet is
being transmitted, etc.), and the packet is reshaped and
transmitted in real-time via block 60 (i.e., the packet is not
received into a buffer, after which it is sequentially pro
cessed to determine if the packet should be allowed to pass,
etc., as in conventional firewalls). In the case of a packet
received from Internet 8, the packet is received by PHY
controller 56 from external PHY 12, and reshaped and
transmitted in real-time to the internal PHY 18 and/or
bastion PHY 58.

0059) As will be appreciated, block 60 in essence per
forms the repeater functionality of passing the incoming data
to the non-active PHY's after reformatting the preamble.
Block 60 also preferably receives junk” or “pass' signals
from the filtering components and a collision detection
signal from PHY controller 56. In preferred embodiments, a
jam signal is propagated to each PHY upon detection of a

collision. A packet is invalidated for all PHY's that belong to
a network category that receives a "junk' signal. (For
example, if the packet is invalidated for internal networks,
then the packet is invalidated for all internal network ports.)
Preferably, block 60 also receives a single output signal from
result aggregator 24 for each PHY category (i.e., internal or
external). As will be explained in greater detail hereinafter,
result aggregator 24 generates the signals provided to block
60 depending on junk” or “pass' signals from each filter
component.

0060. In accordance with the present invention, the
packet is also simultaneously routed through a plurality of
filtering steps. In the exemplary illustration of Level 2 filters
in FIG. 4, the packet type is determined at step 64. At step
64, the network packet is examined to determine the
enclosed Level 3 datagram type, such as ARP RARP, IP, or
IPX. This information is used to perform Level 2 filtering
and to decide how to deconstruct the enclosed datagram to
perform Level 3 filtering. If an unknown packet type is
received from the external network, then the packet prefer
ably is junked if filtering is enabled. Unknown packet types
received from the internal network preferably are forwarded
to other hosts on the internal network and may be forwarded
to the bastion port but are not forwarded to the external
network.

0061. If it is a known packet type, then it is routed
through additional filtering steps based on particular packet
protocols. In the illustrated embodiment, at step 66, if the

Nov. 9, 2006

packet is an Address Resolution Protocol (ARP) type packet,
then it is passed. At step 68, if the packet is a Reverse
Address Resolution Protocol (RARP) type packet and is
from external PHY 12 and the op code is 3, then it is junked;
otherwise, it is passed as indicated at step 70. As is known
in the art, RARP generally is a protocol used by diskless
workstations to determine their address; in accordance with
preferred embodiments, RARP responses are the only RARP
packets allowed to enter internal networks from external
hosts. At step 72, if the packet is an Internet Protocol (IP)
type packet, is from the external PHY and has been broad
cast, then it is junked. (For example, broadcast packets from
the external network preferably are not allowed; a broadcast
packet is determined by examining the IP address or the
physical layer address). Otherwise, the process proceeds to
step 74. Step 74 preferably examines the IP header, which
contains a protocol fragment where an application can place
handling options. Certain options (such as the illustrated list)
may be considered to provide internal, potentially sensitive
network information, and thus packets that contain these
options preferably are not allowed into the internal network.
At step 74, if a handling option of 7, 68, 131, or 137 is
present, then the packet is junked; if these options are not
present, then the process proceeds to filter IP packet step 76
(exemplary details of step 76 are explained in greater detail
hereinafter). If the packet passes the filtering rules applied in
filter IP packet step 76, then the packet is passed, as
indicated by step 78. If the packet does not pass the filtering
rules applied in filter IP packet step 76, then the packet is
junked.

0062. As illustrated in FIG. 4, any signals indicating that
the packet should be junked are provided to result aggrega
tor 24, as indicated by line 73. The filtering results are thus
routed to result aggregator 24, which records whether any of
the packets were junked and thus invalidated. Result aggre
gator 24 provides one or more signals to the logic of block
60 at a time early enough so that a Frame Check Sequence
(FCS) character may be altered to effectively invalidate the
packet. Therefore, prior to complete forwarding of the
packet, the filtering decision is made and the FCS character
is either altered in order to ensure that it is corrupted, if the
packet is to be junked, or forwarded unchanged, if the packet
is to be passed. In effect, a system in accordance with the
present invention acts like a hub or repeater by receiving
packet nibbles (2 or 4 bits at a time) on one interface wire
and by broadcasting those nibbles on other interfaces. Thus,
the data protection system cannot make a decision about a
packet before forwarding the nibbles on the non-receiving
interfaces since this may result in an inoperable Ethernet
network. If the system is enabled to filter a packet, it must
still transmit data while receiving data to ensure the Ethernet
network functions correctly and efficiently. The data protec
tion system filters packets by transmitting a nibble on the
non-receiving interfaces for each collected nibble on the
receiving interface, but ensures that the Ethernet packet FCS
character is not correct if the packet is Suspect. Thus, the
sending station may perceive that it successfully transmitted
the packet without collision, but in fact all receiving stations
will discard the corrupted packet. It should be noted that, in
alternative embodiments, in lieu of or in addition to the
selective alteration of a FCS or checksum-type value, the
data contents of the packet also may be selectively corrupted
in order to invalidate packets. In such embodiments, the
packet contents are selectively altered to corrupt the packet

US 2006/0253903 A1

(e.g., ensure that the checksum is not correct for the for
warded packet data or that the data is otherwise corrupted)
if the packet did not pass the filtering rules.
0063 FIG. 4 also illustrates physical switch or toggle 62,
the state of which can be used to enable or control packet
filtering in accordance with the present invention. The state
of Switch/toggle 62 is coupled to the data protection system
in a manner to enable or disable packet filtering. In the
illustrated example, the state of Switch/toggle 62 is coupled
to the logic of block 60; if, for example, packet filtering is
disabled, then block 60 can receive and forward packets
while disregarding the output of result aggregator 24 (alter
natively, result aggregator 24 can be controlled to always
indicate that the packet should not be invalidated, etc.). In
other embodiments, the state of Such a Switch/toggle can
control result aggregator 24 or all or part of the particular
filtering steps. As will be appreciated in accordance with the
present invention, the data protection system may be con
trolled and configured without requiring the implementation
of complex software. The data protection system preferably
utilizes toggle buttons or other physical Switches to selec
tively enable various functions. Such as Internet client appli
cations, Internet server applications, and filtering features.
The system, for example, also may contain a button for
retrieving updated core logic or filtering rules from a data
Source. The data source for Such updating of the core logic
may include a wide range of forms of digital media, includ
ing but not limited to a network server, a floppy disk, hard
drive, CD, ZIP disk, and DVD.Configuration, therefore, may
be determined by physical interface components attached or
linked to the system.
0064) Referring to FIG. 5, additional details of preferred

filter IP packet step 76 will now be described. FIG. 5 is a
flow chart illustrating the packet filtering functions of the
Level 3 filters first illustrated in FIG. 3. At step 81, the Level
3 filtering processes determine the IP datagram characteris
tics, which preferably include: datagram type (ICMP, IGMP.
TCP, UDP, unknown); source and destination IP addresses;
fragment offset; and fragment size. Based on the IP datagram
characteristics, further filtering operations are performed.
Preferred functions for Level 3 filtering will now be
described in greater detail.
0065. At step 80, if the IP datagram type is unknown,
then the fail signal is set, sending a signal to the result
aggregator that the packet should be invalidated. At step 82.
if the IP datagram type is Internet Group Management
Protocol (IGMP), then the fail signal is set, preventing
IGMP packets from passing. At step 84, if the type is Internet
Control Message Protocol (ICMP) and the packet is from the
external PHY, then the filtering proceeds to step 88. At step
84, if the type is ICMP and the packet is not from the
external PHY, then the packet is passed as indicated by step
86. At step 88, if the type is ICMP, and the packet is from
the external PHY and does not contain a fragment offset of
0, then the fail signal is set, preventing fragmented ICMP
packets from passing, as indicated by step 90; otherwise, the
filtering proceeds to step 92. At step 92, if the type is ICMP.
the packet is from the external PHY and contains a fragment
offset of 0, then the packet type is further evaluated for
request and exchange data. This data preferably includes one
of the following ICMP message types: 5 for redirect: 8 for
echo request; 10 for router solicitation; 13 for timestamp
request; 15 for information request; or 17 for address mask

Nov. 9, 2006

request. Accordingly, if the packet type satisfies the criteria
for step 92, then the fail signal is set as indicated by step 96.
Otherwise, the packet is allowed to pass, as indicated by step
94. As will be appreciated, the ICMP filtering branch serves
to keep potentially harmful ICMP packets from entering
from the external network. (The listed message types rep
resent an exemplary set of ICMP packets that may expose
the internal network topology to threats or cause routing
table changes.)
0066. If IP datagram characteristics indicate that the
packet is a Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) packet, then the filtering proceeds
to step 98. At step 98, it is determined whether the packet is
a fragment 0 packet. If it is not, then the packet is allowed
to pass, as indicated by step 100. This filtering process
follows the convention of filtering only the first fragments,
as subsequent fragments will be discarded if the first one is
not allowed to pass; in other words, the data protection
system ignores all but the first packet of a TCP or UDP
datagram. At step 104, if the packet is TCP or UDP and is
a first fragment packet, then it is determined whether a
proper protocol header is included in the fragment; if it is
not, then the fail signal is set as indicated by step 102 (in the
illustrated embodiment all TCP and UDP packets that have
improper headers are junked). If the packet is TCP or UDP,
is a first fragment, and a proper protocol header is included
in the packet, then the filtering proceeds to step 106 (further
exemplary details of which will be described in connection
with FIG. 6).
0067 FIG. 6 is a flow chart that illustrates a preferred
example of how TCP and UDP packets are evaluated in
parallel in accordance with the present invention (see, e.g.,
the multiple rules engines and related discussion in connec
tion with FIG. 2 and the Level 4 filters of FIG. 3). As is
known, TCP and UDP are host-to-host protocols located in
the Transport Layer of the protocol stack. FIG. 6 illustrates
how packet data 108 is unbundled and decoded for packet
characteristics at step 110 (e.g., IP addresses, ports, flags,
etc.) as well as for packet type and PHY activity at 112 (i.e.,
whether it is an internally generated packet or an externally
generated one). In the preferred embodiments, the packets
are evaluated in parallel according to the following rules.
0068. As indicated at step 114, if the internal port number

is 68 and the external port number is 67, then the packet is
passed, regardless of whether it originated on the internal
network or the external network. As indicated at step 116, if
the packet type is TCP, the server-mode is enabled (such as
may be controlled by a toggle or other physical Switch), the
external PHY is active, and the internal port number is 80,
then the packet is passed to the internal network(s). (The
server mode is explained in greater detail in connection with
FIG. 7 below). As indicated at step 118, if the packet type
is TCP and either the Acknowledge (“ACK) bit or Final
(“FIN) bit is set, then the packet is passed, regardless of
whether it originated on the internal network or the external
network. As indicated at step 120, if the packet type is TCP
and an internal PHY is active, then the packet is passed to
the external network. As indicated at step 122., if the packet
type is UDP, an internal PHY is active, and the external port
number is 53, then the packet is passed to the external
network and the communication state (e.g., source and
destination port numbers) is stored as indicated by comm or
communication state store 124. As indicated at step 126, if

US 2006/0253903 A1

the packet type is UDP, the external PHY is active and the
external port number is 53, then the packet is passed to the
internal network(s) if there is a match in the communication
state. As indicated at step 128, if the packet type is TCP, an
internal PHY is active, the external port number is 21, the
Synchronize Sequence Numbers (“SYN') bit is not set but
the ACK bit is set, and the packet is a PORT command, then
the packet is passed to the external network and the client
(internal network) active port is determined and the com
munication state is stored. As indicated at step 130, if the
packet type is TCP, the external PHY is active, the external
port number is 20, and the SYN bit is set but the ACK bit
is not set, then the packet is passed to the internal network(s)
if there is a communication state match. As indicated at step
132, if all checks have been completed, then a complete
signal is set, and signals indicative of whether the packet
passes to internal or external network(s) as previously
described are bitwise logically ORed to generate pass inter
nal and pass external signals, as illustrated.
0069. In preferred embodiments, if the completion signal

is not generated by the time that the packet has been
completely received, then the packet is junked. It should be
noted that the use of Such a completion signal and packet
junking can be extended to the diagrams and description,
etc. of other figures, such as FIGS. 2, 3, 4, 5, 7 and 8. If the
filtering process has not been completed by the time that the
packet has been completely received, then the packet is
preferably junked.

0070 Referring now to FIG. 7, Level 4 filtering in
accordance with the present invention, will be further
described. The embodiment of FIG. 7 is a table-based filter,
which uses an approach similar to that described in connec
tion with FIG. 2. This approach preferably utilizes a pro
grammable logic device (PLD) that includes low latency,
high-speed ROM and RAM blocks.
0071. As previously described, Level 4 filtering is based
on TCP and UDP packet characteristics, the determination of
which is illustrated in FIG. 7 by block 133. TCP and UDP
characteristics, as noted elsewhere herein, may include not
only source and destination port numbers, but also the state
of the SYN, ACK, FIN and/or RESET flags in the case of
TCP packets. The TCP/UDP characteristics are determined
by the TCP/UDP header information. The TCP/UDP char
acteristics and active PHY information are used in the
generation of a lookup code, which in the embodiment of
FIG. 7 is coupled to rules dispatcher 134. Rules dispatcher
134 uses a lookup code to determine the filtering rules to be
applied to a packet and then places the identifiers of the rules
to be run in queues 138-1 to 138-N for each of the rules
engines 140-1 to 140-N. Mapping table 136 is coupled to
and receives address data from rules dispatcher 134.
0072 Mapping table 136 preferably is a ROM block that
identifies the rules associated with each lookup code and the
rules engine for which each rule is to be dispatched. The
mapping data for the rules and rules engines are returned to
rules dispatcher 134.
0073. The identifiers of the rules to be run are dispatched
by rules dispatcher 134 to the appropriate queues 138-1 to
138-N, which are preferably FIFO-type structures that hold
the rule identifiers for corresponding rules engines 140-1 to
140-N. Queues 138-1 to 138-N not only enable rules dis
patcher 134 to assign rules at maximum speed, but also

Nov. 9, 2006

allow each rules engine to retrieve rules as each one is
evaluated. The rules engines 140-1 to 140-N are a plurality
of filtering engines/logic:that use a rule table to read a
definition specifying whether a rule applies to a packet and
whether the packet passes or fails the rule test. Rules tables
142-1 to 142-N preferably are ROM blocks that contain a
definition of a set of filtering rules that are controllably run
by the rules engines 140-1 to 140-N. Rules tables 142-1 to
142-N may contain different rules as may be appropriate to
provide all of the rules necessary to adequately filter packets
within the timing constraints imposed by the real time
filtering of the present invention, and the speed of the
hardware used to implement the data protection system.

0074. In addition, as illustrated in FIG. 7, rules engines
140-1 to 140-N may receive as inputs signals indicative of
a stored communication state, IP datagram characteristics, or
physical Switch/toggle states. As indicated by block 148,
toggles may be utilized for a variety of features. Such as
enabling web client, web servers or other user-defined
features. With at least some of the executed rules based on
the stored communication state, Stateful rules are imple
mented with the illustrated embodiment. A communication
state table or cache is provided. A cache of communication
state information between different hosts provides a set of
bits that represent rule defined state information. For
example, Source and destination port information may be
stored in the cache and used for state-dependent filtering.

0075. In the illustrated embodiment, communication
state information from rules engines 140-1 to 140-N may be
provided to result aggregator 144, which in turn may store
the communication state information to the communication
state cache or storage area. Result signals, representing pass
or fail of the packet based on the applied rules, also are
provided to result aggregator 144. Result aggregator 144
combines the pass/fail results signals and provides a pass or
junk signal or signals, which may be provided to the repeater
core or to another result aggregator.

0.076 FIG. 8 illustrates an alternative preferred embodi
ment, in which the Level 4 filtering is implemented with a
register-based filtering methodology. As with the Level 4
filtering of FIG. 7, both stateful filters 154 and non-stateful
filters 153 may be implemented. As with the embodiment of
FIG. 7, Level 4 filtering requires that TCP and UDP packet
characteristics be determined as illustrated by box 150. In
addition to the Level 3 packet characteristics, Level 4 filters
in accordance with this embodiment also require the Source
and destination port numbers and the TCP header values for
the SYN, RST, FIN flags and the ACK value. This infor
mation preferably is used by both non-stateful and stateful
filters 153 and 154. The implementation of the non-stateful
filters is executed with a state machine or other logic
preferably in the PLD that compares characteristics to the
allowed non-stateful rules and makes a judgement as to
whether the packet should be passed or failed. The non
stateful rules engine/logic uses a set of Static rules to decide
if a packet is allowed to pass through the firewall. These
rules preferably are specified using a combination of control
inputs, active PHY, and network packet characteristics.

0077 Stateful filters are implemented to handle commu
nication channel interactions that span multiple transmis
sions between hosts. The interactions typically occur at the
Application Layer of the protocol stack, where examples

US 2006/0253903 A1

may include FTP. RealAudio, and DHCP. These interactions
may also take place at lower levels in the protocol stack,
such as ARP and ICMP request/response.
0078. In this embodiment, stateful filters 154 use protocol
front-end and protocol back-end logic, along with a plurality
of State registers to implement state-dependent filters. Each
protocol that requires Stateful packet filtering preferably has
protocol handlers in the form of front-end and back-end
logic, which decide when to issue a pass signal for a packet
or store the identifying characteristics of a bitstream for later
reference. Front-end logic 160-1 to 160-N monitors the
network traffic to identify when the current communication
state needs to be stored, deleted or updated. Front-end logic
160-1 to 160-N informs a corresponding back-end logic
158-1 to 158-N that a register will be allocated for storage
for a bitstream. All store and delete state register requests are
sent to back-end logic 158-1 to 158-N so it may update its
internal information. Register controller 155 controls the
actual selection of registers in state registers 156 and
informs the corresponding back-end logic 158-1 to 158-N.
Back-end logic 158-1 to 158-N monitors which state regis
ters are dedicated to its protocol and issues a pass signal for
packets that match an existing bitstream, as indicated by the
appropriate packet characteristics and a matching state reg
ister. It should be noted that in alternate embodiments,
different organizations of the functions of the programmable
logic may be implemented in accordance with the present
invention, incorporating various types of protocol handlers
and State registers, as may be necessary.
0079 Register controller 155 consolidates multiple store
and clear signals from the various front-end logic 160-1 to
160-N and directs them to the appropriate registers in state
registers 156. Register controller 155 also informs the vari
ous back-end logic 158-1 to 158-N which registers of state
registers 156 are to be used for storage. The registers of state
registers 156, under control of register controller 155, store
the communication state of a bitstream; for example, a
particular register records information about the two com
munication ends of the bitstream and also monitors each
network packet to see if it matches the stored end-point
characteristics. State registers 156 then sets a signal when its
state matches the current packet characteristics. A 'garbage
collection’ function also is implemented (as further illus
trated in FIG. 13 below) to help free up state registers when
the protocol information during the three-way handshake is
not accessed within specific time frames.
0080. As is known in the art, many protocols provide a
way of identifying the end of a communication session.
Accordingly, in preferred embodiments the data protection
system detects when a stateful stream ends and frees up the
associated State registers. Since clients and servers do not
always cleanly terminate a communication session, the
system preferably implements session time-outs to free state
registers after a period of bitstream activity and to prevent
indefinite state register exhaustion. If the network experi
ences a high rate of bitstreams requiring stateful inspections,
the system's resources, which are allocated to tracking
application data, can become exhausted. In this case, the
system preferably resorts to allowing network traffic based
on a set of static rules to pass through the non-stateful rules
designed specifically for each protocol. This stateful to
non-stateful transition is called “stateful relaxation. To
maintain maximum security, a protocol handler that cannot

Nov. 9, 2006

gain access to an open state register will free up all of its
state registers to help prevent other protocol handlers from
entering into a relaxation state. The system will then wait for
a state register to open, start a timer, and record protocol
communication data in the state registers, while relying on
the static rules. When the timer expires, the state filter will
cease relying upon the static rules and approve packets
solely on state register information.

0081 FIG. 8 also illustrates toggle 152, which, in the
additional illustrated example, selectively enables FTP (File
Transfer Protocol) communications based on the switch
state. Protocol back-end logic 158-1 to 158-N, as appropri
ate, utilize Such toggle state information to selectively
generate the pass/fail signals for the applicable protocols.
For example, when the toggle switch is enabled, which is the
default mode in most FTP client applications, it may send a
signal to the internal FTP server to open a TCP connection
to the client. Front-end logic 160-1 monitors the network
traffic for data from the internal network, PORT command,
Source port number (greater than 1024) and destination port
number (equal to 21). When this information is matched,
front-end logic 160-1 requests state register controller 155 to
store both the PORT command IP address and the port
number as the destination end and the destination IP address,
as well as store port 20 as the source end of a future
communication packet. (In other embodiments, additional
checks may be conducted to ensure the active connection IP
address is the same as the current source IP address.) When
back-end logic 158-1 recognizes the storage request, it waits
for the allocated state register in state registers 156 to be sent
by register controller 155. For example, when the state
register number is set as register #1, then it records that
register #1 is dedicated to allowing active FTP connections
through the data protection system. Back-end logic 158-1
then waits for register #1 to signify that the current packet
matches its stored state. When back-end logic 158-1 recog
nizes that the three-way TCP handshake has been completed
for the new connection, it will notify front-end logic 160-1
to delete the state register. If the state register is junked, then
back-end logic 158-1 records that register #1 is no longer
dedicated to active FTP connections, allowing register con
troller 155 to allocate that register to a different protocol or
network connection in the future.

0082 FIG. 9 illustrates a preferred physical implemen
tation of one embodiment of the present invention. In this
embodiment, one external network connection and one
internal network connection are provided. It will be appre
ciated that the components of FIG. 9 can be altered to
implement, for example, bastion network connections and
multiple internal network connections, etc.

0083. The Internet connection, for example, via a cable
modem, DSL router or other network interface, preferably is
coupled with a physical cable to connector 168, which may
be an RJ-45 connector. The signals received via connector
168 are coupled to and from PHY 170, which provides the
physical interface for the data signals received from, or
coupled to, the external network. Signals are coupled
between PHY 170 and PLD 162, and signals are coupled
between PLD 162 and PHY 172, which couples signals
between connector 174 (which again may be an RJ-45
connector). The connection to the internal network may be
made through connector 174.

US 2006/0253903 A1

0084. In the preferred embodiment, PLD 162 implements
the various levels of filtering as previously described. PLD
162 provides logic/hardware based, parallel filtering rules
logic/engines, which make a decision about whether the
packet should be allowed to pass or fail prior to the time that
the packet is passed on by the repeater core portion of PLD
162 (as described elsewhere herein). The logic of PLD 162
to implement the filtering rules is programmed/loaded by
controller 164, which may be a RISC CPU such as a MIPS,
ARM, SuperH-type RISC microprocessor or the like. The
PLD code preferably is stored in memory 166, which
preferably is a re-programmable, non-volatile memory. Such
as FLASH or EEPROM. In this manner, the PLD code may
be updated by reprogramming memory 166, and the updated
PLD code may then be programmed/loaded in to PLD 162
under control of processor 164.
0085 FIG. 9 also illustrates the use of LEDs 177, 178
and 179 to provide visual feedback of the data protection
system status. In accordance with the present invention, the
use of Such displays or light sources may be used to convey
various types of information to the user. For example, LEDs
177 and 179 may be provided to indicate that PHY's 170 and
172 are detecting an active network connection (and thus
provide an indication that the network connections are
present and functioning properly). LED 178 preferably
provides alarm type information. For example, LED 178
may be provided in the form of a multi-color LED, which
may provide a first colored light (e.g., yellow) if the data
protection system has rejected one or more packets (thereby
indicating that the system may be detecting an attack), and
which may provide a second colored light (e.g., red) if the
data protection system is continually rejecting packets or
rejecting packets at a high rate (thereby indicating that the
system is likely under attack). Such visual indicators, which
may be coupled with audio feedback as described elsewhere
herein, serve to inform the user that the user's computer or
network may be under attack, thereby enabling the user to
take further action, such as disconnecting from the network.
0086. It should be noted that such visual feedback may be
implemented in a variety of forms. In addition to multi-color
or multiple LEDs or other lights Sources or displays, a single
LED could be provided, with the LED blinking at a rate that
indicates the level of severity as predicted by the data
protection system. For example, if no packets have been
rejected, then the LED may be in an off or safe (e.g., green)
state. If packets have been rejected but not on a continual or
high rate basis, then the LED (e.g., red) may be controlled
to blink on and off at a first, preferably lower speed rate. If
packets are being rejected on a continual or high rate basis
(or otherwise in a manner that that system believes is
suspect), then the LED may be controlled to blink on and off
at a second, preferably higher speed rate. Thus, the LED
blink rate desirably may be controlled to blink at a rate that
corresponds to the level of severity of the security threat that
is determined by the data protection system. Optionally
coupled with audio feedback, Such visual indicators may
provide the user with alarm and status information in a
simple and intuitive manner.
0087 As further illustrated in the preferred embodiments
of FIG.9, a variety of physical switches or toggles 176, 180,
181 and 182 may be coupled to PLD 162 or controller 164.
As illustrated by update button 176, toggles may be used to
control the updating of the PLD code (for instance, to

Nov. 9, 2006

reconfigure or update the system, providing updated filtering
algorithms). As illustrated by buttons 180 and 181, toggles
may be used to selectively activate/deactivate filtering steps
depending on whether a protected computer is enabled to
operate in either a server mode or client mode (the state of
Such toggles preferably being used to control filtering deci
sions made within the filtering logic). As illustrated by reset
button 182, toggles may also be used to control the reset of
the data protection system (for example, to cause the PLD
code to be re-loaded, as when the system enters an inoper
able state caused by power Supply irregularities or other
unusual circumstances). The use of Such physical Switches/
toggles allows the data protection system to be controlled in
a straightforward manner, simplifying the user operability of
embodiments of the present invention.

0088. With reference to FIG. 9, additional details of
preferred update program and protocols will now be
described. The data protection system may be controlled to
operate in an update mode by pressing update button or
toggle 176, which preferably is provided on an external case
(further described in FIG. 10 below). In accordance with
preferred embodiments, during the interval when the update
button is pressed by the user and the update either completes
or is canceled by the user, the data protection system will not
forward any packets (i.e., filtering is not active, so packet
transmission is blocked). The user may then run an update
program (which may be a browser-based or stand-alone
application) from an internal host computer.

0089. In the illustrated embodiment, it is assumed that the
user previously downloaded a system update or is down
loading an update through a browser. The update program
preferably breaks the update into 1K size packets and
forwards them, using a limited broadcast destination address
(for example, 255.255.255.255). The source and destination
ports are set to a predetermined value. Such as 1 (1-4 are
currently unassigned according to RFC 1010), and an IP
option is set in the IP header. The program data preferably
is preceded by the system update header that has the
following structure in the illustrated embodiment: ID (1)/
count (1)/bit length (2). The numbers in parentheses repre
sent the field size in bytes. The ID for the entire transaction
remains unchanged, except for the count field increments for
each packet. In a preferred embodiment, the data protection
system may receive the packets in order and perform several
checks, such as ensuring the ID and count fields are correct,
verifying the UDP checksum, and storing the configuration
data in non-volatile memory. Preferably, these checks may
be controlled by controller 164. Thereafter, the updated PLD
code may be loaded into the PLD, with the filtering opera
tions being based on this updated code.

0090. As a result of the parallel filter rules evaluation as
previously described, packets do not need to be buffered,
except, for example, to create octets that facilitate determin
ing protocol elements. (AS is known, data needs to be
combined into 8-bit, 16-bit, or 32-bit words because header
and packet data often exist in these sizes or straddle a 4-bit
nibble boundary.) Instead of buffering each packet, the data
protection system generates another distinct data packet or
chunk. This process of packet generation occurs while a
plurality of filtering rules are applied in real time and in
parallel, producing improved data protection systems and
methods.

US 2006/0253903 A1

0091 FIG. 10 illustrates a preferred embodiment of an
exemplary design of an external case of a data protection
system in accordance with the present invention (it being
noted that the particular Switches, lights, etc., and their
physical arrangements being exemplary). For example,
external case 184 may be a molded plastic box in the shape
of a “U” or folded tube as illustrated. The exemplary features
of this external case may include ports, buttons (or toggle
Switches), LEDs, a clock, a removable logo disk, and a
power supply connector. Home (internal) port 186, Internet
(external) port 188, and power supply connector 190 are
preferably located on the same side of external case 184 with
power supply connector 190 set between the two ports.
Home port 186 connects to the internal network via cable
192: Internet port 188 connects to the external network via
cable 194. Power supply connector 190 is coupled to an
external DC power supply via cable 193. The PHY of each
port preferably is coupled to a link LED, such as previously
described: home port 186 is coupled to internal link LED
196; and Internet port 188 is coupled to external link LED
198. The link LEDs are thus coupled to the internal and
external PHYs, respectively, and serve to indicate whether
the PHY's have detected a network connection.

0092. In the preferred embodiment, on the internal net
work side of the U-shaped case, server mode button 200 is
provided to allow the user to selectively enable filtering
depending on whether the internal computer is allowed to
operate in a server mode (thus, the State of server mode
button 200 may be used to selectively control filtering
decisions based on whether internal computers will be
operating in a server mode, etc.). Server mode button 200
preferably includes server mode LED 202. When illumi
nated (e.g., green), server mode LED 202 indicates that the
internal computers are enabled to operate in a server mode
and the filtering decisions will be controlled accordingly.
Server mode button 200 and server mode LED 202 are
coupled to PLD 162, as described in FIG. 9. In the illus
trated embodiment, parallel to server mode button 200 on
the external side of the case is alert button 204, which
contains alert LED 206. Alert LED 206 is coupled to alarm
controller 53, which preferably is implemented as a part of
PLD 162 (as illustrated in FIGS. 3 and 9, respectively).
Alert LED 206 may contain a single or multi-colored LED,
which, when illuminated, indicates the data protection sys
tem is under attack and is rejecting Suspect packets. The data
protection system preferably registers the frequency of
attacks and sends signals to alert LED 206 based on such
information. In a preferred embodiment, alert LED 206 may
contain a LED (e.g., red), which remains consistently illu
minated during irregular attacks or blinks at regular intervals
under heavy attack. In another preferred embodiment, alert
LED 206 may contain a multi-colored LED, which similarly
indicates when the system is under attack and is rejecting
packets. However, with a multi-colored LED, the increase in
frequency or intervals of attacks may be indicated by a
change in color: for example, green (indicating no registered
attacks by Suspect packets) to yellow (indicating a few
irregular attacks) to red (indicating more frequent attacks) to
blinking red (indicating a heavy attack). The alert alarm may
be reset by depresseing alert button 204.
0093. In a preferred embodiment, speaker 55 or some
form of audio transducer may be coupled to alarm controller
53 to also indicate the presence or severity of attacks (as
described in connection with FIG. 3). For example, when

Nov. 9, 2006

the data protection system is under heavy attack and alert
LED 206 is blinking (e.g., red), an alarm signal may be
transmitted to speaker 55 to emit audio information to
indicate a suspected severe attack or emergency. Alarm-type
information may also be coupled to the internal network
(such as via a UDP packet, as described elsewhere herein),
and thus transmit alarm information over the network to a
software interface on the desktop. In other embodiments of
the data protection system, an array of different features,
including buttons, LEDs, alarms, and graphical user inter
faces, may be utilized to indicate the class, frequency and
severity of attacks on the system.
0094. Adjacent to alert button 204 on the external net
work side of the case preferably is protection button 208,
which is coupled to protection-on LED 212 and protection
off LED 214. When protection button 208 is set in the “on”
position, protection-on LED 212 preferably illuminates red
and the filtering system is enabled; when protection button
208 is set in the “off position, protection-off LED 214
preferably illuminates yellow and the filtering system is
disabled. As will be appreciated, the particular colors uti
lized are exemplary.
0.095 Still referring to FIG. 10, power LED 210 is
coupled in a manner to indicate power is being provided via
power supply connector 190. When power LED 210 is
illuminated (e.g., green), it indicates the power Supply is
providing power to the data protection system. It should be
noted that in the illustrated embodiment, the present inven
tion does not require an on/off Switch for the power Supply
because the system is designed to be enabled once a DC
power Supply is provided. As previously described, reset
button 182 is coupled to controller 164 and may be used to
initiate loading or re-loading of the PLD code.
0096). Adjacent to reset button 182 is update button 176,
which is coupled to update-enabled LED 218 and update
disabled LED 220, as well as PLD 162 (as illustrated in FIG.
9). As previously described, an update program preferably is
utilized to update the logic programming and rules tables.
Preferably, after pressing update button 176, the data pro
tection system is automatically restarted, causing the new
PLD code to load. The load version bit preferably will be set
in the flash configuration header, which causes the system to
load using the new program file. In a preferred embodiment,
update-enabled LED 218 will illuminate in green to indicate
the data protection system is ready to receive the new
updated programming. After the update begins, the system
may continually flash update-enabled LED 218 until the
successful completion of the update; LED 218 is extin
guished upon Successful completion of this process. How
ever, if an update is incomplete and fails to occur, update
failed LED 220 may illuminate in red and blink. The user
extinguishes LED 220 by pressing the update button a
second time. If possible, the data protection system may
generate a UDP packet to inform the internal client of the
reason for the failure. As an additional example, if the
system contains an LCD, it may display an error code. The
data protection system will continue to filter packets after
update-failure LED 220 is extinguished. LED 216 is pref
erably provided to be illuminated when the system is oper
ating and filtering packets in the manner described. In
addition to the various toggles in a preferred embodiment of
the present invention, additional types of components may
be used to enter filtering criteria and/or selectively enable or

US 2006/0253903 A1

control the filtering, such as a LCD display coupled with
input buttons, a touch screen, an audio input for speech
recognition, and/or a clock. Thus, filtering decisions may be
made based on Such Switch inputs, audio commands, time of
day or date, etc.
0097 As further illustrated in FIG. 10, a removable logo
disk 222 may be located on a preferred embodiment of the
case. This removable disk may include a company logo,
registered trademark, and/or other copyrighted material that
may be valuable for branding and marketing the data pro
tection system under a separate wholesaler. The disk is thus
removable and replaceable for a variety of branding pur
poses.

0098. In an alternate embodiment, security levels switch
223 may be implemented to prevent stateful relaxation, in
which a stateful to non-stateful transition may occur during
state register exhaustion. As illustrated in FIG. 8, security
levels switch 223 may preferably include a variety of
features that prevent stateful relaxation, Such as timers,
protocol-specific filters, and other rules-based filters. For
example, switch 223 may be configured for three positions:
one which allows FTP protocols, but does not allow DNS
protocols; another which allows DNS protocols, but does
not allow FTP; and a third which may serve as an emergency
back-up feature and block all network traffic.
0099. In other embodiments, different designs may be
used in accordance with the present invention, incorporating
various buttons, Switches, LEDs, ports, cables, slots, con
nectors, plug-ins, speakers, and other audio transducers,
which in turn may be embodied in a variety of external case
shapes, as may be necessary. As will be appreciated, the
filtering criteria may be dependent upon physical Switch
position, packet characteristics, clock time, and/or user
specified criteria, all of which may be entered through one
or more physical input device(s). Such a physical input
device, for example, may be comprised of one or more
Switches (such as a toggle Switch, button Switch, or multi
state Switch), an audio input device, or display input device.
The user-specified criteria may be transferred from the
configuration Software to the system using a network pro
tocol, infrared port, or cable attachment.
0100 FIGS. 11 and 12 are flow diagrams illustrating
examples of “SYN flood protection in accordance with
preferred embodiments of the present invention. Such SYN
flood protection is optionally provided as an additional
computer protection mechanism in accordance with certain
preferred embodiments.

0101. As is known in the art, SYN flood is a common
type of “Denial of Service' attack, in which a target host is
flooded with TCP connection requests. In the process of
exchanging data in a three-way handshake, Source addresses
and source TCP ports of various connection request packets
are random or missing. In a three-way handshake, the
system registers a request from an IP address, then sends a
response to that address based on its source, and waits for the
reply from that address.
0102 As illustrated in FIG. 11, the data protection sys
tem waits for a packet from external PHY 14 (as illustrated
in FIG. 2) at step 224. When the system receives a packet
from the external PHY, it compares the IP address and ports
to the flood list entries at step 226, then proceeds to step 228.

Nov. 9, 2006

At step 228, the system determines whether the packet type
is TCP, the ACK bit is set, and the packet matches an entry
in the flood list. If these criteria are met, then the system
proceeds to step 230, where the packet is removed from the
flood list. If the packet is removed from the flood list, then
the system returns to step 224 and waits for the next packet
from the external PHY. Otherwise, if the criteria at step 228
are not met, then the system proceeds to step 232, where the
system determines whether the packet type is TCP, the SYN
bit is set and the ACK bit is not set. If the criteria at step 232
are met, then the system proceeds to step 2.34; otherwise, the
system returns to step 224. At step 234, the system deter
mines if the flood list is full and if the client has reached the
maximum connection requests. If the flood list is not full,
then the system returns to step 224 to wait for more packets
from the external PHY. However, if the flood list is full at
step 234, then the system proceeds to step 236, where the
packet is junked and the system returns to step 224.
0.103 As illustrated in FIG. 12, the data protection sys
tem also waits for a packet from internal PHY 18 (as
illustrated in FIG. 2) at step 238. When the system receives
a packet from the internal PHY, it accesses the flood list
location and writes the bits into the list, swapping ACK bits
as well as MAC, IP and port addresses. The system then
proceeds to step 242, where it determines if the packet type
is TCP and the SYN and ACK bits are set. If the criteria at
step 242 are met, then the system proceeds to step 244; if
not, then the system returns to step 238 and waits for another
packet from the internal PHY. At step 244, the SYN flag is
unset and number 1 is added to the new ACK number. The
system then proceeds to step 246, where it determines if the
flood list is full. If the flood list at step 246 is full, then the
Reset flag is set, the checksums for TCP, IP and Ethernet
protocols are recalculated, and the Reset packet is transmit
ted. The system then returns to step 238. However, if the
flood list at step 246 is not full, then the system proceeds to
step 248, where the checksums for TCP, IP and Ethernet
protocols are recalculated and the ACK packet is transmit
ted. The system then proceeds to step 252, where the
recalculated packet is added to the flood list and the system
returns to step 238, where it waits for another packet from
the internal network.

0104. In accordance with the present invention, SYN
flood protection as described does not require either an IP or
MAC address. The data protection system uses the destina
tion MAC address as the source Ethernet address when
framing the response packet that completes the TCP three
way handshake. In all cases, when forming the new packet,
the source and destination header information is Swapped, so
that the source IP address and port become the destination IP
address and port. It should be appreciated that SYN flood
protection, as preferably implemented by the system, does
not buffer the incoming packet, but builds the TCP response
packet in real-time. The new TCP packet is placed in a queue
for transmission at the earliest time possible based on the
rules dictated by the link level protocol.
0105. As illustrated in FIG. 13, in order to keep the flood
lists from filling up with stale entries, the data protection
system must free up state registers when the protocol
information is not accessed within specific time frames. Such
as when a three-way handshake is initiated by a client, but
the transaction is not closed. After the system receives a
packet, it for one second at Step 254, then proceeds to step

US 2006/0253903 A1

256, where the packet is checked against each flood list entry
and passed to step 258. At step 258, the system checks for
stale entries (or garbage collection) in the flood lists and
proceeds to step 260, where it determines if time has
expired. If time has expired at step 260, then the packet
proceeds to step 262; if not, then the system returns to step
256 to check each flood entry list again. At step 262, the
system unsets the ACK bit and sets the Reset flag, adds I to
the sequence number, recalculating the checksums, and then
recalculates the checksums for TCP, IP, and Ethernet pro
tocols. The system proceeds to step 264, where the Reset
packet is transmitted; it then proceeds to step 266 and
removes the packet from the flood list. The system then
proceeds to step 256. It should be noted that if time expires
for the request, then the system sends the Reset flag,
terminating the connection.
0106 Although the invention has been described in con
junction with specific preferred and other embodiments, it is
evident that many Substitutions, alternatives and variations
will be apparent to those skilled in the art in light of the
foregoing description. Accordingly, the invention is
intended to embrace all of the alternatives and variations that
fall within the spirit and scope of the appended claims. For
example, it should be understood that, in accordance with
the various alternative embodiments described herein, vari
ous systems, and uses and methods based on Such systems,
may be obtained. The various refinements and alternative
and additional features also described may be combined to
provide additional advantageous combinations and the like
in accordance with the present invention. As will also be
understood by those skilled in the art based on the foregoing
description, various aspects of the preferred embodiments
may be used in various Subcombinations to achieve at least
certain of the benefits and attributes described herein, and

Nov. 9, 2006

Such Subcombinations also are within the scope of the
present invention. All Such refinements, enhancements and
further uses of the present invention are within the scope of
the present invention.

1. A method for communicating data between an external
computing system and an internal computing system over a
packet-based network, comprising the steps of

receiving a communication packet from the external com
puting system over the network, the packet having at
least a first portion and an end portion, and transmitting
the packet to the internal computing system;

in parallel with the step of receiving and transmitting the
packet, determining characteristics of the packet from
the first portion;

in parallel with the step of receiving and transmitting the
packet, performing a plurality of checks on the packet,
wherein at least certain of the plurality of checks are
performing in parallel with other of the plurality of
checks;

in parallel with the step of receiving and transmitting the
packet, determining if the packet should be a valid
packet or an invalid packet based on the plurality of
checks; and

after receiving the end portion of the packet, selectively
altering the end portion of the packet based on whether
the packet has been determined to be a valid packet or
an invalid packet, wherein the packet is selectively
altered to be invalid if it was determined that the packet
should be an invalid packet.

2-66. (canceled)

