US008214429B2

a» United States Patent (0) Patent No.: US 8,214,429 B2
Chidel et al. (45) Date of Patent: *Jul. 3, 2012
(54) INTERACTIVE TELEVISION FRAMEWORK (51) Imnt.ClL
UTILIZING PROGRAM-SYNCHRONOUS GO6F 15/16 (2006.01)
TRIGGERS AND STANDARD MESSAGING (52) US.CL ... 709/203; 709/227; 709/228; 725/87
AND PRESENCE-DETECTION PROTOCOL.S (58) Field of Classification Search 709/227,
709/228, 203; 725/87
(75) Inventors: Philip Chidel, Novato, CA (US); See application file for complete search history.
Douglas H. Crawford, San Francisco, .
CA (US); John Gilles, Alameda, CA (56) References Cited
(US); Julie P.etrarca, Cleveland Heights, US. PATENT DOCUMENTS
OH (US); Michael Ryan, San Francisco,
CA (US) 7,809,816 B2 10/2010 Jo_hnson et al.
2003/0032389 Al 2/2003 Kim et al.
. . 2003/0208754 Al 11/2003 Sridhar et al.
(73) Assignee: Coincident. TV, Inc., Hillsborough, CA 2003/0229900 Al 12/2003 Reisman
(Us) 2005/0240680 Al 10/2005 Costa-Requena et al.
. . Lo . OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 U.S. Appl. No. 12/377,808, filed Feb. 24, 2011, Office Action, mailed
U.S.C. 154(b) by 0 days. Feb. 1,2012.
This patent is subject to a terminal dis- Primary Examiner — Adnan Mirza
claimer. (74) Attorney, Agent, or Firm — Hickman Palermo Truong
Becker Bingham Wong LLP
(21) Appl. No.: 12/987,453
57 ABSTRACT
(22) Filed: Jan. 10, 2011 A system for enabling nodes of a client-server network to
interact with broadcast program content, the system includes
(65) Prior Publication Data a server node that can detect the presence on the network of
one or more client nodes; a trigger extractor that can extract
US 2011/0196917 Al Aug. 11, 2011 program-synchronous triggers from within the content of a
L. broadcast program; and an application manager that, in
Related U.S. Application Data response to extraction of a program-synchronous trigger from
(63) Continuation of application No. 12/377,808, filed as a broadcast program, can facilitate interactive communica-
application No. PCT/US2007/018263 on Aug. 17 tion, relating to the broadcast program content, between the
2007. ’ server node and one or more client nodes whose presence on
the network has been detected.
(60) Provisional application No. 60/822,740, filed on Aug.

17, 2006.

125

130 135 140

Jabber
Server

Game
Manager

1L

[~]

VBI
Decoder

<4 L
<4 L

Database

s

145
100

16 Claims, 4 Drawing Sheets

1560

175a

Twe Screen
Flash Client

180 175b

Gateway té
SO Systep 4._’ Set Tap Box

U.S. Patent Jul. 3, 2012 Sheet 1 of 4 US 8,214,429 B2

125
130 135 140 150 o5,
Flash Gitent
\I;E(I:oder j l?n:,::ger:J\l/ ‘éa;!:\l/aeerr ‘
180 175b

i\../[; Gateway t&
SO Syster ‘—’ Saet Top Box

N~ e

Database

M’

145
100

FIG. 1

U.S. Patent Jul. 3, 2012

ST TN
P

~—
145

Sheet 2 of 4

US 8,214,429 B2

250

Database <{j_:>

Application
Server

HTML
Interface

VAN

225

200

TiM

300

U.S. Patent

301
310

311

Trigger List
Data-Grid

Jul. 3,2012

Sheet 3 of 4

US 8,214,429 B2

302 303
User enters the IP of User enters the Hostname of the User enters the Hosthame
the desired encoder Database server of the VIR server
ENCODER DATABASE HOST VTR HOST 305
10.101.7.251 DEVELOPER LOCAL Changes
color based
on
Q: How did Adam lose his voice? A: <drinking>B<smoking>C<talking>{10:00:00:00] | connected
Q; What rating will Xplay give this game? |A: <1 stars>B<2 stars>C<3 stars> 10:00:30:00 state

Edit the
currently
highlighted

fist item
here

312

Add a new
event to the
list

313

User
enters the
show ID
here

314

Loads
trigger list

Editable

timecode

INSERT EVENT]
[09702303]
{_SAVE SHOW |

Saves
trigger list

fram from
Database Database
315 320

Q: What rating will Xplay give this game? I 10:00:30:00 fleld

1 Star

2 Stars Live

3 Stars 10:00:33:19 timecode
window

ﬁ

Updates the editable
timecode window and
the highlighted item in

the trigger list

Trims the trigger in the

timecode window and

the highlighted item in
the trigger list

VTR
Transport
controls

Clears the trigger In the

timecode window and

the highlighted item in
the trigger list

326

300

327

328

321

322

325

U.S. Patent

410

430

Jul. 3, 2012 Sheet 4 of 4 US 8,214,429 B2
145
300
VTR \ T
___'/
TiM H
Database
VBl
Encoder N—
400

FIG. 4

US 8,214,429 B2

1
INTERACTIVE TELEVISION FRAMEWORK
UTILIZING PROGRAM-SYNCHRONOUS
TRIGGERS AND STANDARD MESSAGING
AND PRESENCE-DETECTION PROTOCOLS

This application is a continuation of U.S. application Ser.
No. 12/377,808, filed Feb. 17,2009, and claims priority under
35U.S.C. §120to PCT/US2007/018263, filed Aug. 17,2007,
which claims priority to U.S. Provisional Application No.
60/822,740, filed Aug. 17, 2006, the contents of each appli-
cation is incorporated herein by reference in its entirety.

BACKGROUND

Although interactive television (ITV) has been in an
experimental mode for decades, few if any implementations
have proven sufficiently successful to merit long-term accep-
tance. With the rapid advances in microprocessor speed,
memory capacity and various related computer and broadcast
audio and video technologies, including the advent of the
Internet into the home, it might appear that the technical
obstacles to the development of interactive television appli-
cations are diminishing.

While this may in part be the case, a number of significant
barriers to interactive television application development
remain. In particular, the lack of standards for deploying
interactive content in a client-server communications envi-
ronment has severely impeded the development of interactive
television applications.

For example, ITV implementations typically insert spe-
cialized content into a broadcast program’s “VBI” (vertical
blanking interval, or metadata within the digital equivalent of
the VBI for digital broadcasts) to trigger interaction between
a program viewer and the purveyor of an interactive applica-
tion (e.g., an advertiser, game provider or seller of various
products or services). This content could be as simple as a
URL that enables viewers to access Internet content related to
a particular segment of the broadcast program. Or it could
enable viewers to invoke and interact with a proprietary appli-
cation, such as a game, or perhaps an informational or com-
mercial service to research a related topic in greater depth,
obtain a mortgage or other loan, or shop for related merchan-
dise.

Prior ITV implementations typically rely on a scheduling
mechanism, employing proprietary applications to manage
interaction and communication with viewers. For example,
such an application inserts specialized content “triggers” into
a broadcast program at specific times known to the applica-
tion. The application can then schedule intervals during
which the viewer can interact synchronously with these trig-
gers. Yet, if schedules change and content is broadcast at
different times, it is extremely difficult to synchronize the
insertion of these triggers with the appropriate segment of the
broadcast content.

In addition to the overhead and inflexibility inherent in
maintaining such triggering of interactive content, these
applications also must handle client-server communications,
including user authentication, presence detection and the
exchange of messages for each particular interactive applica-
tion.

Rather than leverage existing standards, these interactive
applications have been either proprietary, requiring extensive
development and integration within the environments of the
broadcaster and interactive content provider, or relatively
trivial, as is the case with simple URL triggers.

What is needed is a more standardized platform for the
development of interactive applications that can leverage

20

25

30

35

40

45

50

55

60

65

2

existing communications standards while still supporting
complex applications that provide viewers with a rich inter-
active experience.

SUMMARY

The present invention is an enhanced television application
that allows viewers to participate in a program-related ser-
vice, such as a quiz or a game, on their PC or their TV, using
content that is synchronous to the program they are watching.
Program-synchronous games and applications are a proven
method for boosting a program or network’s brand and
viewer loyalty.

For networks and program producers, the invention
enables a creative tool to broaden a show’s experience as well
as apractical tool to keep viewers watching longer. It provides
advertisers with new ways to target their ads to an increas-
ingly disparate television viewing audience. Viewers are thus
afforded a fun new way to get even more entertainment or
information from their favorite television programs.

The invention includes a scalable [TV application frame-
work. It utilizes triggers inserted directly into a program’s
VBI such that the program broadcast to clients and servers
within the framework includes program-synchronous trig-
gers. Upon detecting these program-synchronous triggers
(each with its own unique ID) within a broadcast program,
servers of the present invention then leverage existing com-
munication standards to interact with clients to invoke and
implement client-server ITV applications.

The framework of the present invention is built upon a
Jabber communications layer—i.e., a set of streaming XML
protocols, including the Extensible Messaging and Presence
Protocol (XMPP), that has been the subject of various RFCs
considered and approved by the Internet Engineering Task
Force (IETF). The need to detect the presence of clients and
servers, and enable them to send messages to one another is
central to virtually any ITV application. By leveraging these
communication standards, the present invention significantly
simplifies and reduces the time required for the development
of ITV applications, as well as enhancing their interoperabil-
ity.

The system is made up of the following core components:

VBI Triggers for storing program-synchronous trigger

data

Jabber communication layer

Client Applications

Jabber Software “Agents” for managing user interaction

The Trigger Manager Application (TiM)

A Content Management System (CMS)

During an enhanced broadcast, synchronous triggers are
read from the program videotape and sent to a Jabber Agent
via a socket connection using the XMPP protocol. The Jabber
Agent translates the trigger into the appropriate content and
then sends the appropriate message to the Jabber Server. The
Jabber server broadcasts the message to all of the attached
clients.

Trigger Insertion is handled via the Trigger Manager
(TiM), a Flash-based GUI which can control playback on a
video deck and insert the related triggers. Content Entry can
be done via either a web-based content entry tool or the
Trigger Manager itself. During live events, the Trigger Man-
ager can bypass the VBI to send triggers to the attached clients
via the Jabber Server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conceptual system architecture of the
present invention.

US 8,214,429 B2

3

FIG. 2 illustrates key components of a Content Manage-
ment System (CMS) of the present invention.

FIG. 3 illustrates a portion of the user interface of a Trigger
Manager (TiM) of the present invention.

FIG. 4 illustrates the conceptual interaction between the
TiM of the present invention and two server-based applica-
tions for encoding triggers into the VBI of a broadcast pro-
gram and storing on videotape the broadcast program with
these embedded program-synchronous triggers.

DETAILED DESCRIPTION

Before examining the architecture of the present invention,
it is helpful to introduce some of the key terminology used in
describing components of the system.

Definitions

VBI—Short for Vertical Blanking Interval, the VBI is the
part of a television transmission signal that is blanked, or left
clear, of viewable content, to allow time for the television’s
electron gun to move from the bottom to the top of the screen
as it scans images. The term is used herein to encompass
digital (as well as analog) transmissions, in which a digital
analogue of the VBI is represented by metadata occupying a
portion of the bitstream to be broadcast. This blank area is
currently being used to broadcast closed-caption and HTML.-
formatted information. Because the data is actually embed-
ded with the content, the VBI can be used for inserting pro-
gram-synchronous trigger data.

TCP/IP SOCKET—A TCP/IP Socket (Socket) is the core
of most internet connections. It is the virtual pipe between
two networked computers through which data is passed. The
communication on this pipe is defined by a particular protocol
(e.g., XMPP).

XMPP—XMPP is an open, XML -based protocol for near
real-time extensible messaging and presence detection. It is
the core protocol of the Jabber Instant Messaging and Pres-
ence technology. In a preferred embodiment of the present
invention, XMPP is the language that is communicated over
the TCP/IP Sockets.

JABBER—1Jabber is a set of streaming XML protocols and
technologies that enable any two entities on the Internet to
exchange messages, presence, and other structured informa-
tion in close to real time.

SERVER—A server is a computer or device on a network
that manages network resources. An example is a web server
that serves web pages or an email server that handles email.
There are three main servers in one embodiment of the
present invention: a Jabber server for handling communica-
tions, a Database server for storing data, and an Application
server for processing data.

CLIENT—Typically, a client is an application that runs on
a personal computer or workstation and relies on a server to
perform certain operations. For example, an email client is an
application that enables one to send and receive email. Simi-
larly, a web browser is a client that interprets and displays web
pages. In client-server architectures, a client designed to be
relatively small with most of the data processing done on the
server side is considered a thin client, as opposed to larger
monolithic applications called thick clients. Most set-top-
boxes are designed to be relatively thin clients.

GATEWAY—A gateway is a node on a network that serves
as an entrance to another network. In the context of the
present invention, a gateway can be used as an entrance to the
ITV systems of a “Multiple System Operator” or MSO.
Overview

By inserting program-synchronous triggers into the VBI of
a broadcast program, a server of the present invention can

20

25

30

35

40

45

50

55

60

65

4

extract these triggers without regard to any prior schedule.
For example, a program might be delayed and broadcast at a
time later than was originally scheduled; yet, the program-
synchronous triggers will still be broadcast during the appro-
priate portions of the broadcast program, enabling commu-
nication with clients at the appropriate time.

Unique program-synchronous trigger IDs also facilitate
flexibility by enabling triggers to be independent of particular
programs or time slots, as well as the application that it
triggers. The same trigger could thus be used by different
applications, as well as different providers.

Unlike prior systems, which relied on simple URLs that a
client browser could use for navigation, or proprietary client-
server applications, which required custom communications
protocols for each application, the present invention relies on
standard communication protocols (XMPP in a preferred
embodiment) that simplify implementations of the basic
forms of communication inherent in virtually any ITV appli-
cation. These standard protocols also enable a rich set of core
features, such as the ability to track presence information—
e.g., while a user is interacting with a client application
invoked by a particular trigger.

Turning to a preferred embodiment of the system architec-
ture 100 of the present invention, as illustrated in FIG. 1, a
client-server architecture is employed in which servers 125 as
well as clients 1754 and 1755 can receive broadcast programs
(not shown)—with program-synchronous triggers already
inserted into the program being broadcast. Broadcasts can
occur over virtually any broadcast medium, including cable
(CATV), satellite (DBS) and terrestrial (OTA) systems.

Server 125 extracts program-synchronous triggers from
broadcast programs (via VBI Decoder 130) and communi-
cates with clients 175a and 1755 over the Internet 150, typi-
cally via a TCP/IP connection. Such near real-time commu-
nication enables clients to respond to triggers at appropriate
times (i.e., synchronously) while running client-server [TV
applications (typically downloaded from Server 125 over the
Internet 150).

Client devices can include personal computers running
client applications, such as two-screen Flash client 1754 (e.g.,
a PC or MAC), set-top boxes, such as client 1756 (which
communicates with the Internet 150 via MSO Gateway 180),
as well as a vast array of other specialized and integrated
computing devices, including televisions, digital video
recorders, PDAs and mobile phones.

Servers such as server 125 include various components to
perform generic core communication functions (e.g., estab-
lishing connections, authenticating users, tracking presence,
exchanging messages, etc), as well as application-specific
functionality (e.g., maintaining scores and statistics for a
game application), which may be facilitated by certain
aspects of the core functionality. Servers may be imple-
mented via different software layers for communication, dis-
play and application-specific functionality.

In a preferred embodiment, server 125 includes the follow-
ing key components: VBI Decoder 130 for extracting pro-
gram-synchronous triggers from a broadcast program, Game
Manager 135 for performing application-specific functional-
ity relating to a game application (examples of which are
discussed in greater detail below), Jabber Server 140 for
managing communications with clients 175a and 1755, and
Database 145 for storing various information relating to cli-
ents and their connections, as well as application-specific data
such as game scores and statistics. It should be noted that
these components could be implemented as part of a single

US 8,214,429 B2

5

server 125, or as separate hardware and software components
that work together (e.g., as separate devices on a LAN or
WAN).

During a synchronous event, trigger IDs are extracted from
VBI Decoder 130 and delivered to Game Manager 135, which
responds by generating the appropriate content which Jabber
(communication) Server 140 delivers to the appropriate cli-
ents. Such information typically is delivered to two-screen
Flash clients (such as client 175a) via the Internet 150, while
set-top box clients can be handled in a variety of ways. For
those set-top boxes with compatible client software, the
events can be sent directly via the Internet 150. For non-
compatible clients, the events can be sent indirectly via the
Internet 150 through an MSO gateway 180, which can then
translate the information into the appropriate format. Con-
nections to MSO gateways could also be established via the
Internet 150, as opposed to a direct point-to-point connection.

Application-specific data handling is performed in this
embodiment via Game Manager 135, which utilizes Database
145 for event translation, score handling, user maintenance,
and reporting. Due to the use of standard Jabber/XMPP pro-
tocols, Game Manager 135 can be implemented as a set of
Jabber software modules, each handling different tasks,
which greatly simplifies the development process, substan-
tially reduces development time and facilitates compatibility
both within and among ITV applications.

VBI Triggers

The core timing mechanism and trigger storage of a pre-
ferred embodiment of the present invention is achieved via
program-synchronous triggers inserted into the program’s
broadcast. This technique enables triggers to be inserted “in
time” with a broadcast. Though utilizing the VBI is essen-
tially an analog hack for transmitting information, virtually
all digital video encoding mechanisms (e.g., those from Nor-
pack Corporation in Canada) offer similar functionality.
Advantages

Inserting triggers into the actual broadcast stream offers
numerous advantages.

Triggers v Scheduling. Most currently deployed mecha-
nisms rely on a scheduling mechanism based off a net-
work’s automation system for their synchronicity. This
requires the maintenance of some sort of scheduling list.
Inserting triggers into an actual program’s broadcast
eliminates this human element.

Triggering of Advertising. Because ads are independent of
program data, most current program-synchronous appli-
cations cannot handle synchronous ads. By inserting
triggers into the ads, there will be a seamless integration
of'various synchronous advertising units with program-
synchronous applications.

Syndication. Because the trigger insertion does not require
scheduling and has no ties to networks’ proprietary auto-
mation systems, enhanced programs can continue to be
enhanced in syndication with minimal effort. This also
facilitates the ability of production houses external to the
network to provide enhanced content.

Jabber Communication Layer

Jabber is an open set of protocols and technologies used to
exchange messages in real time. In describing Jabber, it is
important to note that Jabber is not any one thing; instead, it
is a collection of different bits of technology that, in essence,
establishes a set of rules governing how various applications
work and interact with one another. Jabber was originally
developed as an open alternative to closed Instant Messaging
services such as AOL Instant Messenger (AIM)™ and Mira-
balis’ ICQ™. From the ground up, Jabber was designed to

10

20

25

30

35

40

45

50

55

60

65

6

overcome many of the disadvantages of these proprietary
systems, as well as to take advantage of various technological
advances.

Utilizing Jabber in a preferred embodiment of the server
provides several core services out of one box, including gam-
ing, chat, IM, and ad tracking. At the heart of Jabber is XMPP,
which defines the handling of standard tasks such as user
authentication, presence, and messaging.

Advantages

It Exists. Perhaps Jabber’s greatest strength is that Jabber
has already been developed and is a proven technology.
It has already been implemented on a variety of operat-
ing systems and for a multitude of uses. There are exist-
ing code libraries, as well as established development
houses that can be used to bootstrap development
efforts.

Designed for thin clients. Jabber has been designed for the
server side to perform most of the heavy lifting. This
translates well to the set-top-box paradigm: thin clients
on a set-top box supported by a robust backend

Scalable. Jabber has been designed from the ground up to
be a distributed system. It is designed to make it easy to
tie different implementations together in order to
increase functionality. For example, a network could
have its own implementation simply for providing two-
screen functionality to its users. If they then want to
expand for an MSO’s set-top box implementation, they
can simply place a gateway in front of the MSO’s system
for translation into their proprietary implementation.

Gateways to other application systems. Already in exist-
ence are servers that can convert Jabber communication
to AIM, YahooIlM, SMTP (e-mail) and other external
messaging solutions.

Extensible functionality. While designed for IM and Chat,
Jabber is well-suited for other applications, such as pro-
gram-synchronous content, ad tracking, and providing
real-time stock, weather and sports information.

Jabber Game Manager and Other Jabber Agents

Jabber is essentially a “dumb” (albeit highly extensible)
system. It is not so much a server as a packet router which tells
data where to go. Outside of user authentication and manage-
ment, it does very little “thinking” in its day-to-day operation.
The creation of add-on modules allows for increased func-
tionality, and is what makes Jabber a much more robust sys-
tem.

Essentially, these agents are simply automated users on the
Jabber system similar to AIM’s “chat bots”. These agents can
be written in a variety of programming languages and there
are several code libraries available to bootstrap this process.
Perhaps the most essential agent for the gaming platform of a
preferred embodiment of the present invention is the Game-
Manager agent. This agent handles game play, data handling
and scoring during a program-synchronous game.

In order to increase functionality, a variety of additional
agents handle different tasks such as user registration, the
posting of high scores, and handling of requests for supple-
mental information (such as ad handling and ad trafficking).
Clients

The use of Flash for two-screen gaming and other aspects
of the user interface provided by ITV applications provides
several advantages:

Flexible UI. Flash applications are relatively easy to
develop. Flash also offers all of the required functional-
ity, wrapped in an extremely dynamic system for creat-
ing web-based user interfaces.

US 8,214,429 B2

7

Existing Usable Code. Flash development efforts can be
jumpstarted by utilizing the XMPP Implementation for
Flash (XIFF) library.

Ubiquitous. According to macromedia.com, Flash is
installed in 98% of all web browsers.

Flash does have some limitations. The main limitation is
that it is not a secure client: there are many existing applica-
tions that allow for decompiling of Flash applications. An
additional issue is the lack of SSL. implementations over
persistent socket connections, which means users with packet
sniffing tools can intercept network traffic.

Client implementations of the gaming platform could be
installed on set-top boxes as well as two-screen clients; or,
given the extensible nature of the Jabber system and the use of
standard XML packets over a TCP/IP socket, the communi-
cation layer could be ported to existing set-top box imple-
mentations (e.g., OCAP OnRamp J2ME-based boxes). Over
time, it is expected that many set-top box systems will them-
selves include Flash implementations.

Content Management System

In order to manage the content related to a particular ITV
application, as well as to core services such as client connec-
tions and chat, a preferred embodiment of the present inven-
tion includes a distinct content management system 200,
illustrated in FIG. 2. CMS 200 includes three primary com-
ponents.

The first is a database 145. This is where all the data is
stored. The de-facto standards in this area are either Oracle on
Unix-based systems (Linux, Solaris, and Debian, sometimes
referred to as *nix). For Windows-based systems, either
Oracle or MSSQL. databases are preferred. There are open
source and free database systems such as MySQL, Postgr-
eSQL and Firebird; however, the commercial systems are
generally more robust.

The second part of CMS 200 is an application server 225.
There are a vast variety of application servers available run-
ning virtually any programming language. This is where the
majority of the CMS development work is done. Currently in
the front running for the primary application server on *nix-
based enterprise level systems are Java Server Pages (usually
running the Tomcat JSP engine), developed by the open
source Apache development group. Application server 225
handles both business and display logic for most content
management systems.

The final part of CMS 200 is the Content Management
Application (CMA). CMA 250 is the interface that users
utilize to insert, edit and delete data. This typically takes the
form of a standard HTML web-based interface. In one
embodiment, however, trigger management tool (TiM) 300
(discussed in greater detail below) would be a Flash applica-
tion.

Trigger Manager

The Trigger Manager (TiM) 300, illustrated in FIG. 3, is the
application used by the content producer to coordinate the
interactive content and insert program-synchronous triggers
into the broadcast. TiM is actually a collection of small parts
in a preferred embodiment of the present invention. The first
is its main UI, which is built in Flash. This interface is where
the user enters data and seeks the necessary time placements
for trigger insertion.

Utilizing Flash for trigger management offers several
advantages to some current systems. The first: it is far supe-
rior to a standard web-based interface (currently used as
GoldPocket’s content producer). As a rich Internet applica-
tion, it is an improved method for handling dynamic data. The
second advantage: it is a deployed application across the web,
making an entire system very easy to update.

20

25

30

35

40

45

50

55

60

65

8

In this embodiment, system “users” (i.e., authors of [TV
applications) can select hostname and IP addresses of con-
nected devices, such as the desired VBI encoder IP address
301, the Database hostname 302 and the hostname 303 of the
VTR server (for recording the program with encoded pro-
gram-synchronous triggers on videotape). The connected
state 305 of these devices can be reflected, e.g., by a color
change from red (disconnected) to green (connected).

Trigger-based events 310 can be listed in grid 311. Indi-
vidual events can be edited in grid 312, while new events can
be added via button 313 and assigned unique IDs 314. A
particular list of triggers can be loaded and saved, respec-
tively, via buttons 315 and 320.

Once the desired trigger events are created, they can be
inserted into the appropriate portions of the program’s vid-
eotape, via editable timecode field 321 (to jump to the appro-
priate point on the videotape), live timecode window 322
(showing the current location on the videotape) and VIR
transport controls 325 (REW, STOP, PLAY, FFWD, etc).
MARK IN button 326 updates the timecode and adds the
highlighted trigger item to the appropriate point on the vid-
eotape. Buttons 327 trim the highlighted trigger (i.e., insert-
ing it for a shorter or longer duration, making for a better fit
with the program content), while button 328 clears the high-
lighted trigger.

In addition to the Flash-based Ul, there are a few small
software components used to extend Flash’s capabilities,
illustrated in FIG. 4. They are two server applications in this
embodiment: one 430 that the Flash-based UI connects to via
a socket connection that controls the VBI Encoder, and a
second small application 410 that controls the Video Tape
Recorder (VTR).

Use Scenarios

To better illustrate how the components of the present
invention work together, embodiments of various “use sce-
narios” in the context of a trivia game application are pre-
sented below, including a “two-screen” game, a “one-screen”
set-top box game and a “one screen” “walled garden” (ie,
limited content) game.

Two Screen Jabber Trivia Game Embodiment
Introduction

In the context of this “two-screen” program-synchronous
gaming application, the client application is a web-based
flash application, and communication is achieved via a TCP/
IP connection. The application is a trivia game based on
information supplied by the associated program. From the
user’s perspective, the user will launch the application prior to
the start of the broadcast program. Once launched, the client
application will logon and be authenticated with the Jabber
server using a user-supplied username and password. At this
point, there will be a persistent session created with constant
communication between the client and server applications.

There will be three main types of client-server communi-
cation: Chat communication between the client application
and the server, Trigger and Game information sent from the
server to the client, and Presence information sent from the
clientto the server. All communication is asynchronous and is
in the form of Jabber XMPP packets. Identification of all
Jabber elements is in the form of a MD (Jabber ID).
Initialization
Opening of Communication Layer

Upon the start of the client application, a TCP/IP socket
connection is made from a Flash client to the Jabber server.
The client will have the ability to attempt to connect to a
number of named servers in order. Server names can be main-
tained in a list local to the client. This will enable a client to
overcome a service outage on the main Jabber server. If the

US 8,214,429 B2

9

client cannot connect to the primary listed server, the client
will simply try one of the next listed backup servers.

The core of the communication will be handled via Flash’s
XMLHTTPSocket Objects and are transparent to the user.
Once the communication layer is open, the first exchange of
XMPP header packets are sent. These packets open and ini-
tialize the XMPP stream. The stream is not fully open, how-
ever, at this point. No messaging occurs until the registration
and authentication phases are complete.

Registration Phase (Optional)

Immediately following the exchange of XMPP headers,
the optional registration phase begins. In the case of an exist-
ing user, no registration occurs; instead, the process skips
ahead to the authentication phase. All communication during
this phase is accomplished via the XMPP protocol. To create
an account, the client initially makes a request to discover
which information is required from the server. The server then
sends a list of required data. The client then responds with
user-supplied data. The server then validates this data, and the
registration is either denied or accepted. Following the regis-
tration phase, the client is passed to the authentication phase.
At this point, there is still not a full session until the authen-
tication is complete.

Authentication Phase

In the case of an existing user, where the registration phase
is bypassed, authentication is performed via a user-supplied
username and password. In the case where a new user is
created, authentication is accomplished via a username and
password supplied from the registration phase. In this phase,
the username and password is passed to the server. The pass-
word can either be passed via plaintext or via a list of server-
accepted encryption schemes. When authentication fails, the
user can either re-enter user information or restart from the
registration phase. Upon successful authentication, the user
session is then created.

Queued Message Processing

Following successful authentication, any queued messages
are then processed. These might be server-based “Message of
The Day” messages, or currently active game events. At this
point, the session is fully initialized and standard messaging
can occur.

Gameplay

As noted above, gameplay involves three primary types of
messaging: Chat, Gameplay messages and Presence mes-
sages. Chat messages enable game players to chat with one
another during gameplay. In addition to handling existing
substantive chat messages, chat room exploratory messages
and room creation and administrative messages are also pro-
cessed. Gameplay messages are handled via a specially
defined type of XMPP Messaging packets and involve the
required gameplay triggers and game data. Presence packets
are used for two purposes. These packets are used by the
server to determine whether or not the connection needs to be
maintained, as well as for collecting usage statistics.

Chat

In a chat situation, there are two main types of Messaging
packets. The first are “message” packets. Message packets
can contain the following types of data. The recipient is
specified in the form of a RD, which identifies the current chat
room There is a “type” attribute that determines which type of
packet is being sent. The “from” attribute identifies the chat
room from which the message is sent. The “body” attribute
contains the actual text of the message. Finally there is an
“error” message for error messaging. The message packets
are the core of chat communication. In one embodiment, a
common message packet looks like the following:

20

25

30

35

40

45

50

55

60

65

10

Sample Chat Message Packet:

<message to="someone@gameserver.com”
from="chatroom! @gameserver.com’ type="message’>
<body>Hey what’s the next question?</body>
</message>

The second type of chat-related packets are Information
Query (1Q) packets. These IQ packets are used by the client to
query information from the server. In addition to the “to”,
“from”, “body” and “error” types also common to message
packets, the 1Q packets can be used to modify state informa-
tion on the server or to query the server for chat room and user
information. IQ packets generally come in the form of “set”
or “get” messages. “Get” messages are used to acquire infor-
mation from the server, while “set” messages transmit infor-
mation to the server.

Sample IQ Packet:

<iq id="get__roster_ 0001 type="get’>
<query xmlns="jabber:iq:roster’ />
</ig>

Chat messaging is extensible via custom development,
though current Jabber chat-messaging protocols are sufficient
for the functionality discussed in this embodiment.
Gameplay

In this embodiment, Gameplay messaging is implemented
by extending existing Jabber messaging XML packets to add
anew “game” message type attribute and extend “x” messag-
ing child nodes. “X” child nodes describe a message child
node that can use either Jabber-defined custom namespaces or
user-defined namespaces. [Note: a namespace is defined by a
colon in XML so <x:0op> would define an oop namespace,
and x:stuntrocket another.]

Gameplay messaging includes 3 primary types in this
embodiment: Server-to-Client communication of timed trig-
ger events and event data, Client-to-Server communication of
event responses and Server-to-Client communication of
related game data such as high scores and ad updates.

Server-to-Client communication of timed trigger events

and event data is sent synchronized with the program content.
A trigger sent in the context of a two-screen game using a
Flash client will synchronize the transmission of the question
data with the associated broadcast. For one-screen set-top box
applications, the question data will be preloaded and simply
triggered by the event.
Event triggers will be read on playback of an encoded tape. As
the episode is being broadcast, the event trigger will be read
by the decoder. The VBI decoder will read the trigger from the
tape and transmit the trigger to the Game Manager applica-
tion. The Game Manager will then create a new game event
message to transmit to attached clients.

Sample Game Event Message:

<message type="game’ to="player@gamebox.com’
from="gamemanager@gamebox.com’>
<x:channel:question>
<question>What’s the host wearing now?</question>
<answer>A red shirt</answer>
<answer>A purple shirt</answer>

US 8,214,429 B2

11

-continued

Sample Game Event Message:

<answer>Nothing</answer>
</x:channel:question>
</message>

Presence

The final type of messaging utilizes presence packets. Pres-
ence packets are used to manage players’ availability and
status during the game. Very basic in nature, these packets
consist of two primary message components. The first is the
“type” which sets a user’s status. Sample values are “away”,
“present”, “playing” and “chatting”. The second is a “from”
attribute that is used to identify the sender of the packet.

Sample Presence Packet:

<presence type="playing’ from="player@gamebox.com/>
One-Screen Trivia Embodiment
Introduction

In contrast to the two-screen Flash client discussed above,
now consider a “one-screen” (e.g., set-top box client) pro-
gram-synchronous gaming application in which the client
application resides on a user’s set-top box, and communica-
tion is performed via a broadcast carousel/socket connection.

The application is again a trivia game based on information
supplied by the associated program. From the user’s perspec-
tive, the application will be launched upon navigation to the
appropriate channel. Once the application has been loaded
and launched, the user is prompted to login. Authentication is
performed by the Jabber communication server. Once authen-
ticated, a persistent connection to the Jabber server is estab-
lished, at which point the Jabber server exchanges the appro-
priate game data with the client application running on the
client set-top box.

Once this point has been reached, there are again three
primary forms of client-server communication. Chat commu-
nication between the client application and the server, Trigger
and Game information sent from the server to the client, and
Presence information sent from the client to the server. All
communication is asynchronous and is in the form of Jabber
XMPP packets. Identification of all Jabber elements is imple-
mented via a JID (Jabber ID).

Communication Among the Set-top Box (STB), Jabber
Server Farm, and Broadcase Facility Trigger Server

Communication between the STB and the Jabber commu-
nication server is handled by one of two primary methods in
this embodiment. STBs that contain an integrated cable
modem (e.g., Cablevision) communicate via standard Inter-
net protocols, including a standard TCP/IP connection. Oth-
erwise, a broadcast carousel is used to transport applications
and data.

This broadcast carousel method involves bundling, at the
cable head-end, the associated application, data, and optional
media sources, identified by unique Packet IDs (PID), all
encoded into an MPEG stream for transport up the broadcast
channel to the STB. The PIDs are used by the application to
identify packets within the MPEG stream and are indepen-
dent of the Jabber messaging packets.

Because access to these files typically is accomplished via
a channel change, which can happen at any time, the appli-
cation and data is constantly sent end to end. Packets can then
be picked up mid stream and reassembled into an application
and associated data once the carousel completes a circuit.

In certain systems (e.g., Satellite/Wink) which contain a
limited back-channel for communication back to the head-
end, this method has been used as a “store-and-forward”

20

25

30

35

40

45

50

55

60

65

12

method where the application is fully loaded from the broad-
cast stream and allows for limited communication back, usu-
ally via a late-night call to a communication service. While
this method is not preferable, many of the most advanced
services (OCAP) still use a combination of these two services
for handling full two-way communication. The application is
streamed via the broadcast carousel to the STB where it can
be assembled into an application. For return data, a socket
connection can be established and data transmitted via TCP/
IP. Once the socket connection is made, media data can still be
pushed up the broadcast carousel while other forms of smaller
data packets can then be pushed up the socket connection. Far
preferable, however, are the fully integrated cable modem
boxes (Cablevision) and the advanced back-channel (OCAP)
boxes.

The standard method for communication via the broadcast
carousel typically involves the following steps. Upon a chan-
nel change to the desired application channel, the STB begins
assembling the application and storing all related resource
data on the local file system. Once the application is loaded,
the STB opens up a communication socket to a server located
at the cable system’s head-end. At this point, the server at the
head-end opens up another socket connection to a Jabber
server, either located local to the server or at a separate facil-
ity. Jabber XMPP packets are then transmitted from the Jab-
ber server to the server located at the head-end.

At this point, the time-sensitive data can be transmitted
back up the socket connection to the STB application. Other
forms of communication (ad resources, images, audio/video
elements, etc.) can also be bundled by the head-end server for
transmission up the broadcast carousel. One key difference
between this application and the walled garden application
discussed below is the possible insertion of an additional
Jabber server located at the originating broadcast facility.
Opening of Jabber Stream
Registration Phase (Optional)

Immediately following the exchange of XMPP headers,
the optional registration phase begins. In the case of an exist-
ing user, no registration occurs; instead, the process skips
ahead to the authentication phase. All communication at this
phase is implemented via the XMPP protocol. To create an
account, the client makes a request to discover which infor-
mation is required from the server. The server then sends a list
of required data. The client then responds with user-supplied
data. The server then validates this data, and the registration is
either denied or accepted. Following the registration phase,
the client is passed to the authentication phase. At this point,
there is still not a full session until authentication is complete.
Authentication Phase

In the case of an existing user where the registration phase
is bypassed, authentication will be done via a user-supplied
username and password. In the case where a new user is
created, authentication is done via a username and password
supplied from the registration phase. In this phase the user-
name and password is passed to the server. The password can
either be passed via plaintext or via a list of server accepted
encryption schemes. When authentication fails the user can
either re-enter their user information or restart from the reg-
istration phase. On successful authentication the user session
is then created.

Queued Message Processing

Following successtul authentication, any queued messages
are then processed. In the case of a one-screen trivia applica-
tion, this would be the requisite game data.

US 8,214,429 B2

13

Gameplay/Chat/Presence Messaging

This messaging is accomplished in the same manner as
discussed above with respect to the two-screen Flash appli-
cation.

Triggers

One of the primary differences between the two-screen and
one-screen applications is trigger handling. In the two-screen
application, the triggers need to be processed by the Game
Manager application located at the broadcast facility (in this
embodiment) and then sent to the primary Jabber server farm
for transmission to the attached clients via the Internet. The
problem with this method is that there is a potential lack of
synchronization between the reception of the triggers and the
actual broadcast. In a one-screen application, there exist at
least two methods of enabling tighter control of the synchro-
nization between the trigger reception and the broadcast.

A preferred method is to integrate VBI-decoding function-
ality into the STB application layer. The triggers can then
simply be read by the STB client itself as the broadcast is
being played back. All content will already be loaded onto the
box, ready for the appropriate trigger. Another preferred
method is to have a VBI decoder at the head-end server. This
server can then decode the triggers and transport them up the
socket connection to the attached clients. Because of the
proximity of the head-end server to the STB client, any lags
will be negligible.

One-Screen Walled Garden Embodiment
Introduction

Finally we consider a “walled garden” application in which
a customized news and information portal is accessible from
a set-top box (STB) application. This STB application sports
a custom user interface permitting the user can gain access to
customized news, sports, stock and other information ser-
vices.

Communication is performed in two phases. The first
phase is communication between the STB and the Jabber
communication server. The Jabber server can either be
located at the Multiple Systems Operator’s (MSO—<cable
operator) head-end or, via an MSO’s communication routing
system, located at a co-location facility. This server will then
communicate via either HTTP or XMPP to other data
retrieval services to retrieve customized data and information
such as news, or sports scores, which can then be passed back
up the broadcast carousel to the STB for display.
Communication between STB and Jabber Comm Server

Communication between the STB and the Jabber commu-
nication server is handled primarily by one of the two meth-
ods discussed above (standard Internet protocols for STBs
containing an integrated cable modem, and the broadcast
carousel for others).

Opening of Jabber Stream

The underlying communication layer will be opened as
previously discussed. Following the opening of the commu-
nication layer, the standard steps for opening a Jabber stream
are performed.

Registration Phase

In this embodiment, all STB applications will be started
with a default user/password combination unique to the STB.
Initial loading of the application will load this default user’s
preferred news set. During the initial load of the application,
the registration phase will always be bypassed. Registration
will only occur upon the creation of a new user once the
application has been loaded.

Authentication Phase

During the initial load of the application, the authentication
phase will be bypassed. On user change, the new user will be
authenticated.

20

25

30

35

40

45

50

55

60

65

14

Queued Message Processing.

Once the authentication phase is complete, the queued
message processing phase will occur. It is at this point that the
client application will process all the message packets (e.g.,
from the broadcast carousel stream). These messages will
consist of the default news data set in the form of XMPP
message packets. These packets will be transported via the
broadcast carousel in a data stream identified by a unique
PID.

Application-Jabber Communication

Once the application has been loaded, there are three main
types of news information that will be accessible. Static data
is a set of data sent to all applications for use once the appli-
cation launches. Custom data is created and added to the
broadcast stream based on user preferences. Static and cus-
tom data are created and inserted into the broadcast stream
and transported into the constantly updating broadcast carou-
sel. Alert data is data pushed in the form of real-time alerts to
a loaded application via the socket connection.

All data are stored in an XMPP packet format for use by the
loaded client application. In the context of this application,
while the applications still follows the standard method for
creating a Jabber stream, some of the phases are simplified to
be transparent to the user. Apart from the updating of user
preferences (which are stored on the server), communication
primarily involves pushing data to the user, with very little
communication from the user to the Jabber server.

Standard Messaging

During standard operation, the client application can
receive two main types of messaging packets. The first
involves updates to the broadcast carousel. The client appli-
cation constantly monitors the data stream identified by a PID
that contains the currently stored news stories. When a change
occurs in this data stream, the client application processes the
XMPP-formatted messages and reloads the currently dis-
played news stories.

The alternate form of messaging involves real-time alerts
based on communication over the socket connection. These
alerts represent real-time data in the form of XMPP-format-
ted messages. Upon receipt of these messages, the client
application signals the user and displays the new message
accordingly.

Jabber Application Modules

The processing of data by the Jabber server utilizes three
primary custom Jabber modules. The Jabber Portal Manager
handles the processing of external news sources for creating
the broadcast carousel data sets. The Jabber Alert module
handles the real-time alerts. Finally, the Jabber Preferences
Module handles the updating of user preference information.
Jabber Portal Manager Module

The Jabber Portal Manager is the primary application for
data retrieval and packaging for insertion into the broadcast
carousel. The Portal Manager resides as a daemon application
on the Jabber server. The daemon regularly checks and
retrieves news data from partnered news and information
XML feeds. It packages this data as the appropriate XMPP
packet data.

Once the data is packaged, the Portal Manager has two
main tasks. First it creates a default data set for all client
streams. This default data set is combined with preference-
based data sets and then passed to the head-end server for the
creation of the broadcast carousel streams. Once it accom-
plishes this task, it passes all packaged data to the Jabber Alert
Module for the creation of custom alerts to be passed to the
currently attached clients. These packets are transported from
the Portal Manager to the Alert Manager as if from one user to
another in a standard chat application.

US 8,214,429 B2

15

Jabber Portal Manager Packets assume the following for-
mat in one embodiment:

<message to="foo@bar.com’ type="niormal”>
<x xmlns:foo:topic>
<x:foo:topic>Sports</x:foo:topic>
<x:foo:topic>Baseball</x:foo:topic>
<x:foo:topic>Barry Bonds</x:foo:topic>
</x>
<subject>News headline One</subject>
<body>Yadda Yadda Yadda</body>
</message>

Jabber Alert Module

The Jabber Alert Module is another omnipresent software
daemon that acts on an event model based on communication
from the Jabber Portal Manager Module. When the Jabber
Alert Module receives data from the Portal Manager, the Alert
Module processes the incoming packet against the prefer-
ences list of the currently attached clients. When a match is
discovered, the Alert Module re-addresses and forwards the
packet to the head-end server, which then routes the packet
via a socket connection to the appropriate attached client.
Jabber Alert Packets utilize the same format as do Portal
Manager Message packets, but with type="headline’.
Jabber Preferences Module

The Jabber Preferences Module is used for the storage of
user preferences. All user preferences are stored on the Jabber
Server for ease and security. When users updates their pref-
erences, the updated preference data is sent, via the socket
connection to the head-end, to the Jabber Server in the form of
an XMPP “iq” packet. The data is sent in the form of a
jabber:iq:private iq packet. This packet takes advantage of a
built-in jabber mechanism for storing private user data (usu-
ally buddy lists) on the server itself.

These 1Q packets assume the following format.

<iq id="private-89’ type="set ">
<query xmlns="jabber:iq:private’>
<topics xmlns="news:topics’>Sports</topic>
<topics xmlns="news:topics’>Baseball</topic>
<topics xmlns="news:topics’>Barry Bonds</topic>
</query>
</ig>

While we have illustrated and described various embodi-
ments of this invention, these are by way of illustration only
and various changes and modifications may be made within
the contemplation of this invention and within the scope of the
following claims.

What is claimed is:

1. A data processing method for enabling nodes of a client-
server network to interact with broadcast program content,
the method comprising:

detecting, using a server node, the presence on the network

of one or more client nodes;

extracting, using a trigger extractor, program-synchronous

triggers from within the content of a broadcast program;
using an application manager, in response to extraction of
a program-synchronous trigger from a broadcast pro-
gram, facilitating interactive communication, relating to
the broadcast program content, between the server node
and one or more client nodes whose presence on the
network has been detected by sending, from the server
node to the one or more client nodes, data packets in

20

25

35

40

45

50

55

60

65

16

Extensible Messaging and Presence Protocol (XMPP)
and comprising trigger information based on the pro-
gram-synchronous triggers and by receiving, from the
one or more client nodes, other XMPP data packets
comprising presence information relating to the one or
more client nodes;

using a game manager configured to perform application-

specific functionality relating to a game, using a struc-
tured information exchange server configured to man-
age managing communications with the one or more
client nodes, and using a database for storing informa-
tion relating to the one or more client nodes and their
connections;

using the server node to extract, during a synchronous

event, the program-synchronous triggers and to deliver
the program-synchronous triggers to the game manager,
and using the game manager to respond by generating
content, and using the structured information exchange
server to deliver the content to the one or more client
nodes.

2. The method of claim 1, further comprising sending, from
the server node to the one or more client nodes, additional
XMPP data packets comprising game information.

3. The method of claim 1, further comprising sending and
receiving, between the server node to the one or more client
nodes, additional XMPP data packets comprising chat com-
munication.

4. The method of claim 1, further comprising inserting the
program-synchronous triggers into the broadcast program
content before broadcasting the broadcast program over a
broadcast medium.

5. The method of claim 1, wherein each of the one or more
client nodes comprises any one or more of a personal com-
puter, a two-screen Flash client, a set-top box, and/or an
integrated computing device.

6. The method of claim 1, wherein the program-synchro-
nous triggers are in advertising segments of the broadcast
program.

7. The method of claim 1, further comprising using a struc-
tured information exchange server configured to manage
communications with the one or more client nodes.

8. The system of claim 7, further comprising using a struc-
tured information exchange portal manager to process exter-
nal news sources for creating broadcast carousel data sets; a
structured information exchange alter module that is config-
ured to process real-time alerts; and a structured information
exchange preference module that is configured to process
updating user preference information.

9. The method of claim 1, further comprising reading,
during an enhanced broadcast, the program-synchronous
triggers from a program videotape and sending the program-
synchronous triggers to a structured information exchange
Agent via a socket connection using an XMPP protocol, and
using the structured information exchange Agent to translate
the program-synchronous trigger into content and to a mes-
sage to the structured information exchange Server, which
broadcasts the message to each of the one or more client
nodes.

10. The method of claim 1, further comprising inserting the
program-synchronous triggers using a trigger manager com-
prising a Flash-based graphical user interface (GUI) that is
configured to control playback on a video deck and to insert
the program-synchronous triggers.

11. A data processing method for enabling nodes of a
client-server network to interact with broadcast program con-
tent, the method comprising:

US 8,214,429 B2

17

detecting the presence on the network of one or more client
nodes;

extracting program-synchronous triggers from within the
content of a broadcast program;

in response to extraction of a program-synchronous trigger
from a broadcast program, facilitating interactive com-
munication, relating to the broadcast program content,
with one or more client nodes whose presence on the
network has been detected by sending, to the one or
more client nodes, data packets in Extensible Messaging
and Presence Protocol (XMPP) and comprising trigger
information based on the program-synchronous triggers
and by receiving, from the one or more client nodes,
other XMPP data packets comprising presence informa-
tion relating to the one or more client nodes;

using a game manager configured to perform application-
specific functionality relating to a game, using a struc-
tured information exchange server configured to man-
age managing communications with the one or more
client nodes, and using a database for storing informa-
tion relating to the one or more client nodes and their
connections;

using the server node to extract, during a synchronous
event, the program-synchronous triggers and to deliver
the program-synchronous triggers to the game manager,
and using the game manager to respond by generating

20

25

18

content, and using the structured information exchange
server to deliver the content to the one or more client
nodes.

12. The method of claim 11, further comprising sending,
from the server node to the one or more client nodes, addi-
tional XMPP data packets comprising game information.

13. The method of claim 11, further comprising sending
and receiving, between the server node to the one or more
client nodes, additional XMPP data packets comprising chat
communication.

14. The method of claim 11, wherein the program-synchro-
nous triggers are in advertising segments of the broadcast
program.

15. The method of claim 11, further comprising using a
structured information exchange server configured to manage
communications with the one or more client nodes.

16. The method of claim 11, further comprising reading,
during an enhanced broadcast, the program-synchronous
triggers from a program videotape and sending the program-
synchronous triggers to a structured information exchange
Agent via a socket connection using an XMPP protocol, and
using the structured information exchange Agent to translate
the program-synchronous trigger into content and to a mes-
sage to the structured information exchange Server, which
broadcasts the message to each of the one or more client
nodes.

