
USOO8214429B2

(12) United States Patent (10) Patent No.: US 8,214,429 B2
Chide et al. (45) Date of Patent: *Jul. 3, 2012

(54) INTERACTIVE TELEVISION FRAMEWORK (51) Int. Cl.
UTILIZING PROGRAM-SYNCHRONOUS G06F 5/16 (2006.01)
TRIGGERS AND STANDARD MESSAGING (52) U.S. Cl. 709/203; 709/227; 709/228; 725/87
AND PRESENCE-DETECTION PROTOCOLS (58) Field of Classification Search 709/227,

709/228, 203; 725/87
(75) Inventors: Philip Chidel, Novato, CA (US); See application file for complete search history.

Douglas H. Crawford, San Francisco,
CA (US); John Gilles, Alameda, CA (56) References Cited
(US); Julie Petrarca, Cleveland Heights, U.S. PATENT DOCUMENTS
OH (US); Michael Ryan, San Francisco,
CA (US 7,809,816 B2 10/2010 Johnson et al.

(US) 2003/0032389 A1 2/2003 Kim et al.
2003/0208754 A1 11/2003 Sridhar et al.

(73) Assignee: Coincident.TV, Inc., Hillsborough, CA 2003,0229.900 A1 12/2003 Reisman
(US) 2005/0240680 A1 10/2005 Costa-Requena et al.

- OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S. Appl. No. 12/377,808, filed Feb. 24, 2011, Office Action, mailed
U.S.C. 154(b) by 0 days. Feb. 1, 2012.

This patent is Subject to a terminal dis- Primary Examiner — Adnan Mirza
claimer. (74) Attorney, Agent, or Firm — Hickman Palermo Truong

Becker Bingham Wong LLP
(21) Appl. No.: 12/987,453

(57) ABSTRACT
(22) Filed: Jan. 10, 2011 A system for enabling nodes of a client-server network to

interact with broadcast program content, the system includes
(65) Prior Publication Data a server node that can detect the presence on the network of

one or more client nodes; a trigger extractor that can extract
US 2011/O196917 A1 Aug. 11, 2011 program-synchronous triggers from within the content of a

O O broadcast program; and an application manager that, in
Related U.S. Application Data response to extraction of a program-synchronous trigger from

(63) Continuation of application No. 12/377.808, filed as a broadcast program, can facilitate interactive communica
application No. PCT/US2007/018263 on Aug. 17 tion, relating to the broadcast program content, between the
2007. s server node and one or more client nodes whose presence on

the network has been detected.
(60) Provisional application No. 60/822,740, filed on Aug.

17, 2006.

Gare
Manager

Database

145

16 Claims, 4 Drawing Sheets

18O 175b.

Gateway to
SO System Set Top Box

U.S. Patent Jul. 3, 2012 Sheet 1 of 4 US 8,214.429 B2

Two Screen
Flas Cient

18O 175b.

Gateway tes
SO Syster Set Top Box

140

Gare Jaber
Manager

O

145

130

WEB

FIG. 1

U.S. Patent

Database

Jul. 3, 2012 Sheet 2 of 4

Application
Server

200

US 8,214.429 B2

250

HTML
Interface

300

U.S. Patent Jul. 3, 2012 Sheet 3 of 4 US 8,214.429 B2

302 303 -
User enters the P of User enters the Hostname of the User enters the Hostname
the desired encodier Database sewer of the WR server

310 \ V V 305

se
ENCOER AABASE HOST WTRHost
10.107.251 dVELOPER LOCAL Changes

color based
o

311 : How did Adam lose his voice? A: <drinking-B<smoking-catalking 10:00:00:00 connected
Q: What rating wixplay give this game? A: 31 stars B32 stars CK3 stars 10:00:30:00 state

Trigger List
Data-Grid S.

Edit the
currently
highlighted

Elst tem
here

312

Editable
timecode 321

Q: What rating will Xplay give this game? 10:00:30:00 field
Add a new

31 3. aWet to the Live
Eist 10:00:33:19 timecode 322

NINSERT EVENT window
User

314 enters the 9-E show ID T.A. or 325
here SAVE SHOW controls

Updates the editable Trims the trigger in the Clears the trigger in the
timecode window and timecode window and timecode window and
the highlighted item in the highlighted item in the highlighted item in

the trigger list the trigger list the trigger list Loads Saves

tight | triggest 326 327 328
database Database

315 320

300

U.S. Patent Jul. 3, 2012 Sheet 4 of 4 US 8,214.429 B2

145

Database

410

VB

Encode
430

400

FIG. 4

US 8,214,429 B2
1.

INTERACTIVE TELEVISION FRAMEWORK
UTILIZING PROGRAM-SYNCHRONOUS
TRIGGERS AND STANDARD MESSAGING
AND PRESENCE-DETECTION PROTOCOLS

This application is a continuation of U.S. application Ser.
No. 12/377,808, filed Feb. 17, 2009, and claims priority under
35 U.S.C.S120 to PCT/US2007/018263, filed Aug. 17, 2007,
which claims priority to U.S. Provisional Application No.
60/822,740, filed Aug. 17, 2006, the contents of each appli- 10
cation is incorporated herein by reference in its entirety.

BACKGROUND

Although interactive television (ITV) has been in an 15
experimental mode for decades, few if any implementations
have proven Sufficiently Successful to merit long-term accep
tance. With the rapid advances in microprocessor speed,
memory capacity and various related computer and broadcast
audio and video technologies, including the advent of the 20
Internet into the home, it might appear that the technical
obstacles to the development of interactive television appli
cations are diminishing.

While this may in part be the case, a number of significant
barriers to interactive television application development 25
remain. In particular, the lack of standards for deploying
interactive content in a client-server communications envi
ronment has severely impeded the development of interactive
television applications.

For example, ITV implementations typically insert spe- 30
cialized content into a broadcast program’s “VBI” (vertical
blanking interval, or metadata within the digital equivalent of
the VBI for digital broadcasts) to trigger interaction between
a program viewer and the purveyor of an interactive applica
tion (e.g., an advertiser, game provider or seller of various 35
products or services). This content could be as simple as a
URL that enables viewers to access Internet content related to
a particular segment of the broadcast program. Or it could
enable viewers to invoke and interact with a proprietary appli
cation, Such as a game, or perhaps an informational or com- 40
mercial service to research a related topic in greater depth,
obtain a mortgage or other loan, or shop for related merchan
dise.

Prior ITV implementations typically rely on a scheduling
mechanism, employing proprietary applications to manage 45
interaction and communication with viewers. For example,
Such an application inserts specialized content “triggers' into
a broadcast program at specific times known to the applica
tion. The application can then schedule intervals during
which the viewer can interact synchronously with these trig- 50
gers. Yet, if schedules change and content is broadcast at
different times, it is extremely difficult to synchronize the
insertion of these triggers with the appropriate segment of the
broadcast content.

In addition to the overhead and inflexibility inherent in 55
maintaining Such triggering of interactive content, these
applications also must handle client-server communications,
including user authentication, presence detection and the
exchange of messages for each particular interactive applica
tion. 60

Rather than leverage existing standards, these interactive
applications have been either proprietary, requiring extensive
development and integration within the environments of the
broadcaster and interactive content provider, or relatively
trivial, as is the case with simple URL triggers. 65
What is needed is a more standardized platform for the

development of interactive applications that can leverage

2
existing communications standards while still supporting
complex applications that provide viewers with a rich inter
active experience.

SUMMARY

The present invention is an enhanced television application
that allows viewers to participate in a program-related Ser
vice, such as a quiz or a game, on their PC or their TV, using
content that is synchronous to the program they are watching.
Program-synchronous games and applications are a proven
method for boosting a program or network's brand and
viewer loyalty.

For networks and program producers, the invention
enables a creative tool to broadena show's experience as well
as a practical tool to keep viewers watching longer. It provides
advertisers with new ways to target their ads to an increas
ingly disparate television viewing audience. Viewers are thus
afforded a fun new way to get even more entertainment or
information from their favorite television programs.
The invention includes a scalable ITV application frame

work. It utilizes triggers inserted directly into a programs
VBI such that the program broadcast to clients and servers
within the framework includes program-synchronous trig
gers. Upon detecting these program-synchronous triggers
(each with its own unique ID) within a broadcast program,
servers of the present invention then leverage existing com
munication standards to interact with clients to invoke and
implement client-server ITV applications.
The framework of the present invention is built upon a

Jabber communications layer—i.e., a set of streaming XML
protocols, including the Extensible Messaging and Presence
Protocol (XMPP), that has been the subject of various RFCs
considered and approved by the Internet Engineering Task
Force (IETF). The need to detect the presence of clients and
servers, and enable them to send messages to one another is
central to virtually any ITV application. By leveraging these
communication standards, the present invention significantly
simplifies and reduces the time required for the development
of ITV applications, as well as enhancing their interoperabil
ity.
The system is made up of the following core components:
VBI Triggers for storing program-synchronous trigger

data
Jabber communication layer
Client Applications
Jabber Software “Agents' for managing user interaction
The Trigger Manager Application (TiM)
A Content Management System (CMS)
During an enhanced broadcast, synchronous triggers are

read from the program videotape and sent to a Jabber Agent
via a socket connection using the XMPP protocol. The Jabber
Agent translates the trigger into the appropriate content and
then sends the appropriate message to the Jabber Server. The
Jabber server broadcasts the message to all of the attached
clients.

Trigger Insertion is handled via the Trigger Manager
(TiM), a Flash-based GUI which can control playback on a
Video deck and insert the related triggers. Content Entry can
be done via either a web-based content entry tool or the
Trigger Manager itself. During live events, the Trigger Man
ager can bypass the VBI to send triggers to the attached clients
via the Jabber Server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conceptual system architecture of the
present invention.

US 8,214,429 B2
3

FIG. 2 illustrates key components of a Content Manage
ment System (CMS) of the present invention.

FIG.3 illustrates a portion of the user interface of a Trigger
Manager (TiM) of the present invention.

FIG. 4 illustrates the conceptual interaction between the
TiM of the present invention and two server-based applica
tions for encoding triggers into the VBI of a broadcast pro
gram and storing on videotape the broadcast program with
these embedded program-synchronous triggers.

DETAILED DESCRIPTION

Before examining the architecture of the present invention,
it is helpful to introduce Some of the key terminology used in
describing components of the system.
Definitions
VBI Short for Vertical Blanking Interval, the VBI is the

part of a television transmission signal that is blanked, or left
clear, of viewable content, to allow time for the televisions
electron gun to move from the bottom to the top of the screen
as it scans images. The term is used herein to encompass
digital (as well as analog) transmissions, in which a digital
analogue of the VBI is represented by metadata occupying a
portion of the bitstream to be broadcast. This blank area is
currently being used to broadcast closed-caption and HTML
formatted information. Because the data is actually embed
ded with the content, the VBI can be used for inserting pro
gram-synchronous trigger data.

TCP/IP SOCKET ATCP/IP Socket (Socket) is the core
of most internet connections. It is the virtual pipe between
two networked computers through which data is passed. The
communication on this pipe is defined by aparticular protocol
(e.g., XMPP).
XMPP XMPP is an open, XML-based protocol for near

real-time extensible messaging and presence detection. It is
the core protocol of the Jabber Instant Messaging and Pres
ence technology. In a preferred embodiment of the present
invention, XMPP is the language that is communicated over
the TCP/IP SocketS.
JABBER—Jabber is a set of streaming XML protocols and

technologies that enable any two entities on the Internet to
exchange messages, presence, and other structured informa
tion in close to real time.
SERVER A server is a computer or device on a network

that manages network resources. An example is a web server
that serves web pages or an email server that handles email.
There are three main servers in one embodiment of the
present invention: a Jabber server for handling communica
tions, a Database server for storing data, and an Application
server for processing data.
CLIENT Typically, a client is an application that runs on

a personal computer or workstation and relies on a server to
perform certain operations. For example, an email client is an
application that enables one to send and receive email. Simi
larly, a web browser is a client that interprets and displays web
pages. In client-server architectures, a client designed to be
relatively small with most of the data processing done on the
server side is considered a thin client, as opposed to larger
monolithic applications called thick clients. Most set-top
boxes are designed to be relatively thin clients.
GATEWAY. Agateway is a node on a network that serves

as an entrance to another network. In the context of the
present invention, a gateway can be used as an entrance to the
ITV systems of a “Multiple System Operator” or MSO.
Overview
By inserting program-synchronous triggers into the VBI of

a broadcast program, a server of the present invention can

10

15

25

30

35

40

45

50

55

60

65

4
extract these triggers without regard to any prior Schedule.
For example, a program might be delayed and broadcast at a
time later than was originally scheduled; yet, the program
synchronous triggers will still be broadcast during the appro
priate portions of the broadcast program, enabling commu
nication with clients at the appropriate time.

Unique program-synchronous trigger IDs also facilitate
flexibility by enabling triggers to be independent of particular
programs or time slots, as well as the application that it
triggers. The same trigger could thus be used by different
applications, as well as different providers.

Unlike prior systems, which relied on simple URLs that a
client browser could use for navigation, or proprietary client
server applications, which required custom communications
protocols for each application, the present invention relies on
standard communication protocols (XMPP in a preferred
embodiment) that simplify implementations of the basic
forms of communication inherent in virtually any ITV appli
cation. These standard protocols also enable a rich set of core
features, such as the ability to track presence information—
e.g., while a user is interacting with a client application
invoked by a particular trigger.

Turning to a preferred embodiment of the system architec
ture 100 of the present invention, as illustrated in FIG. 1, a
client-server architecture is employed in which servers 125 as
well as clients 175a and 175b can receive broadcast programs
(not shown)—with program-synchronous triggers already
inserted into the program being broadcast. Broadcasts can
occur over virtually any broadcast medium, including cable
(CATV), satellite (DBS) and terrestrial (OTA) systems.

Server 125 extracts program-synchronous triggers from
broadcast programs (via VBI Decoder 130) and communi
cates with clients 175a and 175b over the Internet 150, typi
cally via a TCP/IP connection. Such near real-time commu
nication enables clients to respond to triggers at appropriate
times (i.e., synchronously) while running client-server ITV
applications (typically downloaded from Server 125 over the
Internet 150).

Client devices can include personal computers running
client applications. Such as two-screen Flash client 175a (e.g.,
a PC or MAC), set-top boxes, such as client 175b (which
communicates with the Internet 150 via MSO Gateway 180),
as well as a vast array of other specialized and integrated
computing devices, including televisions, digital video
recorders, PDAs and mobile phones.

Servers such as server 125 include various components to
perform generic core communication functions (e.g., estab
lishing connections, authenticating users, tracking presence,
exchanging messages, etc), as well as application-specific
functionality (e.g., maintaining scores and statistics for a
game application), which may be facilitated by certain
aspects of the core functionality. Servers may be imple
mented via different software layers for communication, dis
play and application-specific functionality.

In a preferred embodiment, server 125 includes the follow
ing key components: VBI Decoder 130 for extracting pro
gram-synchronous triggers from abroadcast program, Game
Manager 135 for performing application-specific functional
ity relating to a game application (examples of which are
discussed in greater detail below), Jabber Server 140 for
managing communications with clients 175a and 175b, and
Database 145 for storing various information relating to cli
ents and their connections, as well as application-specific data
Such as game scores and statistics. It should be noted that
these components could be implemented as part of a single

US 8,214,429 B2
5

server 125, or as separate hardware and software components
that work together (e.g., as separate devices on a LAN or
WAN).

During a synchronous event, trigger IDs are extracted from
VBI Decoder 130 and delivered to Game Manager 135, which
responds by generating the appropriate content which Jabber
(communication) Server 140 delivers to the appropriate cli
ents. Such information typically is delivered to two-screen
Flash clients (such as client 175a) via the Internet 150, while
set-top box clients can be handled in a variety of ways. For
those set-top boxes with compatible client software, the
events can be sent directly via the Internet 150. For non
compatible clients, the events can be sent indirectly via the
Internet 150 through an MSO gateway 180, which can then
translate the information into the appropriate format. Con
nections to MSO gateways could also be established via the
Internet 150, as opposed to a direct point-to-point connection.

Application-specific data handling is performed in this
embodiment via Game Manager 135, which utilizes Database
145 for event translation, score handling, user maintenance,
and reporting. Due to the use of standard Jabber/XMPP pro
tocols, Game Manager 135 can be implemented as a set of
Jabber software modules, each handling different tasks,
which greatly simplifies the development process, Substan
tially reduces development time and facilitates compatibility
both within and among ITV applications.
VBI Triggers
The core timing mechanism and trigger storage of a pre

ferred embodiment of the present invention is achieved via
program-synchronous triggers inserted into the programs
broadcast. This technique enables triggers to be inserted "in
time' with a broadcast. Though utilizing the VBI is essen
tially an analog hack for transmitting information, virtually
all digital video encoding mechanisms (e.g., those from Nor
pack Corporation in Canada) offer similar functionality.
Advantages

Inserting triggers into the actual broadcast stream offers
numerous advantages.

Triggers V Scheduling. Most currently deployed mecha
nisms rely on a scheduling mechanism based off a net
work's automation system for their synchronicity. This
requires the maintenance of some sort of scheduling list.
Inserting triggers into an actual program's broadcast
eliminates this human element.

Triggering of Advertising. Because ads are independent of
program data, most current program-synchronous appli
cations cannot handle synchronous ads. By inserting
triggers into the ads, there will be a seamless integration
of various synchronous advertising units with program
synchronous applications.

Syndication. Because the trigger insertion does not require
Scheduling and has no ties to networks proprietary auto
mation systems, enhanced programs can continue to be
enhanced in syndication with minimal effort. This also
facilitates the ability of production houses external to the
network to provide enhanced content.

Jabber Communication Layer
Jabber is an open set of protocols and technologies used to

exchange messages in real time. In describing Jabber, it is
important to note that Jabber is not any one thing; instead, it
is a collection of different bits of technology that, in essence,
establishes a set of rules governing how various applications
work and interact with one another. Jabber was originally
developed as an open alternative to closed Instant Messaging
services such as AOL Instant Messenger (AIM)TM and Mira
balis ICOT.M. From the ground up, Jabber was designed to

5

10

15

25

30

35

40

45

50

55

60

65

6
overcome many of the disadvantages of these proprietary
systems, as well as to take advantage of various technological
advances.

Utilizing Jabber in a preferred embodiment of the server
provides several core services out of one box, including gam
ing, chat, IM, and adtracking. At the heart of Jabber is XMPP.
which defines the handling of standard tasks such as user
authentication, presence, and messaging.
Advantages

It Exists. Perhaps Jabber's greatest strength is that Jabber
has already been developed and is a proven technology.
It has already been implemented on a variety of operat
ing systems and for a multitude of uses. There are exist
ing code libraries, as well as established development
houses that can be used to bootstrap development
efforts.

Designed for thin clients. Jabber has been designed for the
server side to perform most of the heavy lifting. This
translates well to the set-top-box paradigm: thin clients
on a set-top box supported by a robust backend

Scalable. Jabber has been designed from the ground up to
be a distributed System. It is designed to make it easy to
tie different implementations together in order to
increase functionality. For example, a network could
have its own implementation simply for providing two
screen functionality to its users. If they then want to
expand for an MSO's set-top box implementation, they
can simply place agateway in front of the MSO's system
for translation into their proprietary implementation.

Gateways to other application systems. Already in exist
ence are servers that can convert Jabber communication
to AIM, YahooIM, SMTP (e-mail) and other external
messaging solutions.

Extensible functionality. While designed for IM and Chat,
Jabber is well-suited for other applications, such as pro
gram-synchronous content, ad tracking, and providing
real-time stock, weather and sports information.

Jabber Game Manager and Other Jabber Agents
Jabber is essentially a “dumb' (albeit highly extensible)

system. It is not so much a server as a packet router which tells
data where to go. Outside of user authentication and manage
ment, it does very little “thinking in its day-to-day operation.
The creation of add-on modules allows for increased func
tionality, and is what makes Jabber a much more robust sys
tem.

Essentially, these agents are simply automated users on the
Jabber system similar to AIM's “chatbots’. These agents can
be written in a variety of programming languages and there
are several code libraries available to bootstrap this process.
Perhaps the most essential agent for the gaming platform of a
preferred embodiment of the present invention is the Game
Manager agent. This agent handles game play, data handling
and scoring during a program-synchronous game.

In order to increase functionality, a variety of additional
agents handle different tasks Such as user registration, the
posting of high scores, and handling of requests for Supple
mental information (Such as ad handling and ad trafficking).
Clients
The use of Flash for two-screen gaming and other aspects

of the user interface provided by ITV applications provides
several advantages:

Flexible UI. Flash applications are relatively easy to
develop. Flash also offers all of the required functional
ity, wrapped in an extremely dynamic system for creat
ing web-based user interfaces.

US 8,214,429 B2
7

Existing Usable Code. Flash development efforts can be
jumpstarted by utilizing the XMPP Implementation for
Flash (XIFF) library.

Ubiquitous. According to macromedia.com, Flash is
installed in 98% of all web browsers.

Flash does have some limitations. The main limitation is
that it is not a secure client: there are many existing applica
tions that allow for decompiling of Flash applications. An
additional issue is the lack of SSL implementations over
persistent Socket connections, which means users with packet
Sniffing tools can intercept network traffic.

Client implementations of the gaming platform could be
installed on set-top boxes as well as two-screen clients; or,
given the extensible nature of the Jabber system and the use of
standard XML packets over a TCP/IP socket, the communi
cation layer could be ported to existing set-top box imple
mentations (e.g., OCAP OnRamp J2ME-based boxes). Over
time, it is expected that many set-top box systems will them
selves include Flash implementations.
Content Management System

In order to manage the content related to a particular ITV
application, as well as to core services such as client connec
tions and chat, a preferred embodiment of the present inven
tion includes a distinct content management system 200,
illustrated in FIG. 2. CMS 200 includes three primary com
ponents.
The first is a database 145. This is where all the data is

stored. The de-facto standards in this area are either Oracle on
Unix-based systems (Linux, Solaris, and Debian, sometimes
referred to as *nix). For Windows-based systems, either
Oracle or MSSQL databases are preferred. There are open
source and free database systems such as MySQL, Postgr
eSQL and Firebird; however, the commercial systems are
generally more robust.
The second part of CMS 200 is an application server 225.

There are a vast variety of application servers available run
ning virtually any programming language. This is where the
majority of the CMS development work is done. Currently in
the front running for the primary application server on *nix
based enterprise level systems are Java Server Pages (usually
running the Tomcat JSP engine), developed by the open
Source Apache development group. Application server 225
handles both business and display logic for most content
management Systems.
The final part of CMS 200 is the Content Management

Application (CMA). CMA 250 is the interface that users
utilize to insert, edit and delete data. This typically takes the
form of a standard HTML web-based interface. In one
embodiment, however, trigger management tool (TiM) 300
(discussed in greater detail below) would be a Flash applica
tion.
Trigger Manager
The Trigger Manager (TiM)300, illustrated in FIG.3, is the

application used by the content producer to coordinate the
interactive content and insert program-synchronous triggers
into the broadcast. TiM is actually a collection of small parts
in a preferred embodiment of the present invention. The first
is its main UI, which is built in Flash. This interface is where
the user enters data and seeks the necessary time placements
for trigger insertion.

Utilizing Flash for trigger management offers several
advantages to Some current systems. The first: it is far Supe
rior to a standard web-based interface (currently used as
GoldPockets content producer). As a rich Internet applica
tion, it is an improved method for handling dynamic data. The
second advantage: it is a deployed application across the web,
making an entire system very easy to update.

10

15

25

30

35

40

45

50

55

60

65

8
In this embodiment, system “users” (i.e., authors of ITV

applications) can select hostname and IP addresses of con
nected devices, such as the desired VBI encoder IP address
301, the Database hostname 302 and the hostname 303 of the
VTR server (for recording the program with encoded pro
gram-synchronous triggers on videotape). The connected
state 305 of these devices can be reflected, e.g., by a color
change from red (disconnected) to green (connected).

Trigger-based events 310 can be listed in grid 311. Indi
vidual events can be edited in grid 312, while new events can
be added via button 313 and assigned unique IDs 314. A
particular list of triggers can be loaded and saved, respec
tively, via buttons 315 and 320.
Once the desired trigger events are created, they can be

inserted into the appropriate portions of the program's vid
eotape, via editable timecode field 321 (to jump to the appro
priate point on the videotape), live timecode window 322
(showing the current location on the videotape) and VTR
transport controls 325 (REW, STOP, PLAY, FFWD, etc).
MARK IN button 326 updates the timecode and adds the
highlighted trigger item to the appropriate point on the Vid
eotape. Buttons 327 trim the highlighted trigger (i.e., insert
ing it for a shorter or longer duration, making for a better fit
with the program content), while button 328 clears the high
lighted trigger.

In addition to the Flash-based UI, there are a few small
Software components used to extend Flash's capabilities,
illustrated in FIG. 4. They are two server applications in this
embodiment: one 430 that the Flash-based UI connects to via
a socket connection that controls the VBI Encoder, and a
second small application 410 that controls the Video Tape
Recorder (VTR).
Use Scenarios
To better illustrate how the components of the present

invention work together, embodiments of various “use sce
narios’ in the context of a trivia game application are pre
sented below, including a “two-screen” game, a “one-screen'
set-top box game and a "one screen’ “walled garden' (ie,
limited content) game.
Two Screen Jabber Trivia Game Embodiment
Introduction

In the context of this “two-screen” program-synchronous
gaming application, the client application is a web-based
flash application, and communication is achieved via a TCP/
IP connection. The application is a trivia game based on
information Supplied by the associated program. From the
user's perspective, the user will launch the application prior to
the start of the broadcast program. Once launched, the client
application will logon and be authenticated with the Jabber
server using a user-supplied username and password. At this
point, there will be a persistent session created with constant
communication between the client and server applications.

There will be three main types of client-server communi
cation: Chat communication between the client application
and the server, Trigger and Game information sent from the
server to the client, and Presence information sent from the
client to the server. All communication is asynchronous and is
in the form of Jabber XMPP packets. Identification of all
Jabber elements is in the form of a MD (Jabber ID).
Initialization
Opening of Communication Layer
Upon the start of the client application, a TCP/IP socket

connection is made from a Flash client to the Jabber server.
The client will have the ability to attempt to connect to a
number of named servers in order. Server names can be main
tained in a list local to the client. This will enable a client to
overcome a service outage on the main Jabber server. If the

US 8,214,429 B2

client cannot connect to the primary listed server, the client
will simply try one of the next listed backup servers.

The core of the communication will be handled via Flash's
XMLHTTPSocket Objects and are transparent to the user.
Once the communication layer is open, the first exchange of
XMPP header packets are sent. These packets open and ini
tialize the XMPP stream. The stream is not fully open, how
ever, at this point. No messaging occurs until the registration
and authentication phases are complete.
Registration Phase (Optional)

Immediately following the exchange of XMPP headers,
the optional registration phase begins. In the case of an exist
ing user, no registration occurs; instead, the process skips
ahead to the authentication phase. All communication during
this phase is accomplished via the XMPP protocol. To create
an account, the client initially makes a request to discover
which information is required from the server. The server then
sends a list of required data. The client then responds with
user-supplied data. The server then validates this data, and the
registration is either denied or accepted. Following the regis
tration phase, the client is passed to the authentication phase.
At this point, there is still not a full session until the authen
tication is complete.
Authentication Phase

In the case of an existing user, where the registration phase
is bypassed, authentication is performed via a user-Supplied
username and password. In the case where a new user is
created, authentication is accomplished via a username and
password Supplied from the registration phase. In this phase,
the username and password is passed to the server. The pass
word can either be passed via plaintext or via a list of server
accepted encryption schemes. When authentication fails, the
user can either re-enter user information or restart from the
registration phase. Upon Successful authentication, the user
session is then created.
Queued Message Processing

Following successful authentication, any queued messages
are then processed. These might be server-based “Message of
The Day’ messages, or currently active game events. At this
point, the session is fully initialized and standard messaging
Cal OCC.

Gameplay
As noted above, gameplay involves three primary types of

messaging: Chat, Gameplay messages and Presence mes
sages. Chat messages enable game players to chat with one
another during gameplay. In addition to handling existing
Substantive chat messages, chat room exploratory messages
and room creation and administrative messages are also pro
cessed. Gameplay messages are handled via a specially
defined type of XMPP Messaging packets and involve the
required gameplay triggers and game data. Presence packets
are used for two purposes. These packets are used by the
server to determine whether or not the connection needs to be
maintained, as well as for collecting usage statistics.
Chat

In a chat situation, there are two main types of Messaging
packets. The first are “message’ packets. Message packets
can contain the following types of data. The recipient is
specified in the form of a RD, which identifies the current chat
room There is a “type' attribute that determines which type of
packet is being sent. The “from' attribute identifies the chat
room from which the message is sent. The “body’ attribute
contains the actual text of the message. Finally there is an
'error” message for error messaging. The message packets
are the core of chat communication. In one embodiment, a
common message packet looks like the following:

5

10

15

25

30

35

40

45

50

55

60

65

10

Sample ChatMessage Packet:

<message to=someone.(cv)gameserver.com
from=chatroom1(c)gameserver.com type='message

<body>Hey what's the next question?--body>
</message->

The second type of chat-related packets are Information
Query (IQ) packets. These IQ packets are used by the client to
query information from the server. In addition to the “to’,
“from, “body' and "error' types also common to message
packets, the IQ packets can be used to modify state informa
tion on the server or to query the server for chat room and user
information. IQ packets generally come in the form of “set'
or 'get' messages. "Get' messages are used to acquire infor
mation from the server, while “set’ messages transmit infor
mation to the server.

Sample IQ Packet:

<iqid=get roster 0001 type='get's
<query Xmlins=jabber:iq:roster f>

</iq>

Chat messaging is extensible via custom development,
though current Jabberchat-messaging protocols are sufficient
for the functionality discussed in this embodiment.
Gameplay

In this embodiment, Gameplay messaging is implemented
by extending existing Jabber messaging XML packets to add
a new 'game' message type attribute and extend 'X' messag
ing child nodes. “X” child nodes describe a message child
node that can use either Jabber-defined custom namespaces or
user-defined namespaces. Note: a namespace is defined by a
colon in XML so <X:oop would define an oop namespace,
and X:Stuntrocket another.
Gameplay messaging includes 3 primary types in this

embodiment: Server-to-Client communication of timed trig
ger events and event data, Client-to-Server communication of
event responses and Server-to-Client communication of
related game data such as high scores and ad updates.

Server-to-Client communication of timed trigger events
and event data is sent synchronized with the program content.
A trigger sent in the context of a two-screen game using a
Flash client will synchronize the transmission of the question
data with the associated broadcast. For one-screen set-top box
applications, the question data will be preloaded and simply
triggered by the event.
Event triggers will be read on playback of an encoded tape. As
the episode is being broadcast, the event trigger will be read
by the decoder. The VBI decoder will read the trigger from the
tape and transmit the trigger to the Game Manager applica
tion. The Game Manager will then create a new game event
message to transmit to attached clients.

Sample Game Event Message:

<message type=game to=player(a)gamebox.com
from=gamemanager(oil)gamebox.com >

<x:channel:Question>
<question>What's the host wearing now?-question>
<answers-Ared shirt-answers
<answers. A purple shirt</answers

US 8,214,429 B2
11

-continued

Sample Game Event Message:

<answers-Nothing.</answers
<x:channel:Question>

</message->

Presence
The final type of messaging utilizes presence packets. Pres

ence packets are used to manage players availability and
status during the game. Very basic in nature, these packets
consist of two primary message components. The first is the
“type' which sets a user's status. Sample values are “away”.
“present”, “playing and “chatting. The second is a “from
attribute that is used to identify the sender of the packet.

Sample Presence Packet:
<presence type-playing from=player(a)gamebox.com/>

One-Screen Trivia Embodiment
Introduction

In contrast to the two-screen Flash client discussed above,
now consider a “one-screen” (e.g., set-top box client) pro
gram-synchronous gaming application in which the client
application resides on a user's set-top box, and communica
tion is performed via abroadcast carousel/socket connection.

The application is again a trivia game based on information
Supplied by the associated program. From the user's perspec
tive, the application will be launched upon navigation to the
appropriate channel. Once the application has been loaded
and launched, the user is prompted to login. Authentication is
performed by the Jabber communication server. Once authen
ticated, a persistent connection to the Jabber server is estab
lished, at which point the Jabber server exchanges the appro
priate game data with the client application running on the
client set-top box.
Once this point has been reached, there are again three

primary forms of client-server communication. Chat commu
nication between the client application and the server, Trigger
and Game information sent from the server to the client, and
Presence information sent from the client to the server. All
communication is asynchronous and is in the form of Jabber
XMPP packets. Identification of all Jabber elements is imple
mented via a JID (Jabber ID).
Communication Among the Set-top Box (STB), Jabber
Server Farm, and Broadcase Facility Trigger Server

Communication between the STB and the Jabber commu
nication server is handled by one of two primary methods in
this embodiment. STBs that contain an integrated cable
modem (e.g., Cablevision) communicate via standard Inter
net protocols, including a standard TCP/IP connection. Oth
erwise, a broadcast carousel is used to transport applications
and data.

This broadcast carousel method involves bundling, at the
cable head-end, the associated application, data, and optional
media sources, identified by unique Packet IDs (PID), all
encoded into an MPEG stream for transport up the broadcast
channel to the STB. The PIDs are used by the application to
identify packets within the MPEG stream and are indepen
dent of the Jabber messaging packets.

Because access to these files typically is accomplished via
a channel change, which can happen at any time, the appli
cation and data is constantly sent end to end. Packets can then
be picked up mid stream and reassembled into an application
and associated data once the carousel completes a circuit.

In certain systems (e.g., Satellite/Wink) which contain a
limited back-channel for communication back to the head
end, this method has been used as a “store-and-forward'

10

15

25

30

35

40

45

50

55

60

65

12
method where the application is fully loaded from the broad
cast stream and allows for limited communication back, usu
ally via a late-night call to a communication service. While
this method is not preferable, many of the most advanced
services (OCAP) still use a combination of these two services
for handling full two-way communication. The application is
streamed via the broadcast carousel to the STB where it can
be assembled into an application. For return data, a socket
connection can be established and data transmitted via TCP/
IP. Once the socket connection is made, media data can still be
pushed up the broadcast carousel while otherforms of smaller
data packets can then be pushed up the socket connection. Far
preferable, however, are the fully integrated cable modem
boxes (Cablevision) and the advanced back-channel (OCAP)
boxes.
The standard method for communication via the broadcast

carousel typically involves the following steps. Upon a chan
nel change to the desired application channel, the STB begins
assembling the application and storing all related resource
data on the local file system. Once the application is loaded,
the STB opens up a communication socket to a server located
at the cable systems head-end. At this point, the server at the
head-end opens up another socket connection to a Jabber
server, either located local to the server or at a separate facil
ity. Jabber XMPP packets are then transmitted from the Jab
ber server to the server located at the head-end.
At this point, the time-sensitive data can be transmitted

back up the socket connection to the STB application. Other
forms of communication (ad resources, images, audio/video
elements, etc.) can also be bundled by the head-end server for
transmission up the broadcast carousel. One key difference
between this application and the walled garden application
discussed below is the possible insertion of an additional
Jabber server located at the originating broadcast facility.
Opening of Jabber Stream
Registration Phase (Optional)

Immediately following the exchange of XMPP headers,
the optional registration phase begins. In the case of an exist
ing user, no registration occurs; instead, the process skips
ahead to the authentication phase. All communication at this
phase is implemented via the XMPP protocol. To create an
account, the client makes a request to discover which infor
mation is required from the server. The server then sends a list
of required data. The client then responds with user-supplied
data. The serverthen validates this data, and the registration is
either denied or accepted. Following the registration phase,
the client is passed to the authentication phase. At this point,
there is still not a full session until authentication is complete.
Authentication Phase

In the case of an existing user where the registration phase
is bypassed, authentication will be done via a user-supplied
username and password. In the case where a new user is
created, authentication is done via a username and password
Supplied from the registration phase. In this phase the user
name and password is passed to the server. The password can
either be passed via plaintext or via a list of server accepted
encryption schemes. When authentication fails the user can
either re-enter their user information or restart from the reg
istration phase. On Successful authentication the user session
is then created.
Queued Message Processing

Following Successful authentication, any queued messages
are then processed. In the case of a one-screen trivia applica
tion, this would be the requisite game data.

US 8,214,429 B2
13

Gameplay/Chat/Presence Messaging
This messaging is accomplished in the same manner as

discussed above with respect to the two-screen Flash appli
cation.
Triggers
One of the primary differences between the two-screen and

one-screen applications is trigger handling. In the two-screen
application, the triggers need to be processed by the Game
Manager application located at the broadcast facility (in this
embodiment) and then sent to the primary Jabber server farm
for transmission to the attached clients via the Internet. The
problem with this method is that there is a potential lack of
synchronization between the reception of the triggers and the
actual broadcast. In a one-screen application, there exist at
least two methods of enabling tighter control of the synchro
nization between the trigger reception and the broadcast.
A preferred method is to integrate VBI-decoding function

ality into the STB application layer. The triggers can then
simply be read by the STB client itself as the broadcast is
being played back. All content will already be loaded onto the
box, ready for the appropriate trigger. Another preferred
method is to have a VBI decoder at the head-end server. This
server can then decode the triggers and transport them up the
Socket connection to the attached clients. Because of the
proximity of the head-end server to the STB client, any lags
will be negligible.
One-Screen Walled Garden Embodiment
Introduction

Finally we considera “walled garden' application in which
a customized news and information portal is accessible from
a set-top box (STB) application. This STB application sports
a custom user interface permitting the user can gain access to
customized news, sports, Stock and other information ser
vices.

Communication is performed in two phases. The first
phase is communication between the STB and the Jabber
communication server. The Jabber server can either be
located at the Multiple Systems Operator's (MSO cable
operator) head-end or, via an MSO's communication routing
system, located at a co-location facility. This server will then
communicate via either HTTP or XMPP to other data
retrieval services to retrieve customized data and information
Such as news, or sports scores, which can then be passed back
up the broadcast carousel to the STB for display.
Communication between STB and Jabber Comm Server

Communication between the STB and the Jabber commu
nication server is handled primarily by one of the two meth
ods discussed above (standard Internet protocols for STBs
containing an integrated cable modem, and the broadcast
carousel for others).
Opening of Jabber Stream
The underlying communication layer will be opened as

previously discussed. Following the opening of the commu
nication layer, the standard steps for opening a Jabber stream
are performed.
Registration Phase

In this embodiment, all STB applications will be started
with a default user/password combination unique to the STB.
Initial loading of the application will load this default user's
preferred news set. During the initial load of the application,
the registration phase will always be bypassed. Registration
will only occur upon the creation of a new user once the
application has been loaded.
Authentication Phase

During the initial load of the application, the authentication
phase will be bypassed. On user change, the new user will be
authenticated.

5

10

15

25

30

35

40

45

50

55

60

65

14
Queued Message Processing.
Once the authentication phase is complete, the queued

message processing phase will occur. It is at this point that the
client application will process all the message packets (e.g.,
from the broadcast carousel stream). These messages will
consist of the default news data set in the form of XMPP
message packets. These packets will be transported via the
broadcast carousel in a data stream identified by a unique
PID.
Application-Jabber Communication
Once the application has been loaded, there are three main

types of news information that will be accessible. Static data
is a set of data sent to all applications for use once the appli
cation launches. Custom data is created and added to the
broadcast stream based on user preferences. Static and cus
tom data are created and inserted into the broadcast stream
and transported into the constantly updating broadcast carou
sel. Alert data is data pushed in the form of real-time alerts to
a loaded application via the Socket connection.

All data are stored in an XMPP packet format for use by the
loaded client application. In the context of this application,
while the applications still follows the standard method for
creating a Jabber stream, Some of the phases are simplified to
be transparent to the user. Apart from the updating of user
preferences (which are stored on the server), communication
primarily involves pushing data to the user, with very little
communication from the user to the Jabber server.
Standard Messaging

During standard operation, the client application can
receive two main types of messaging packets. The first
involves updates to the broadcast carousel. The client appli
cation constantly monitors the data stream identified by a PID
that contains the currently stored news stories. When a change
occurs in this data stream, the client application processes the
XMPP-formatted messages and reloads the currently dis
played news stories.
The alternate form of messaging involves real-time alerts

based on communication over the Socket connection. These
alerts represent real-time data in the form of XMPP-format
ted messages. Upon receipt of these messages, the client
application signals the user and displays the new message
accordingly.
Jabber Application Modules
The processing of data by the Jabber server utilizes three

primary custom Jabber modules. The Jabber Portal Manager
handles the processing of external news sources for creating
the broadcast carousel data sets. The Jabber Alert module
handles the real-time alerts. Finally, the Jabber Preferences
Module handles the updating of user preference information.
Jabber Portal Manager Module
The Jabber Portal Manager is the primary application for

data retrieval and packaging for insertion into the broadcast
carousel. The Portal Manager resides as a daemon application
on the Jabber server. The daemon regularly checks and
retrieves news data from partnered news and information
XML feeds. It packages this data as the appropriate XMPP
packet data.
Once the data is packaged, the Portal Manager has two

main tasks. First it creates a default data set for all client
streams. This default data set is combined with preference
based data sets and then passed to the head-end server for the
creation of the broadcast carousel streams. Once it accom
plishes this task, it passes all packaged data to the Jabber Alert
Module for the creation of custom alerts to be passed to the
currently attached clients. These packets are transported from
the Portal Manager to the Alert Manager as if from one user to
another in a standard chat application.

US 8,214,429 B2
15

Jabber Portal Manager Packets assume the following for
mat in one embodiment:

<message to=foo(abar.com type=normal
<x Xmlins:foo:topics

<x:foo:topic-Sports</x:foo:topics
<x:foo:topic-Baseball-ix:foo:topics
<x:foo:topics-Barry Bonds</x:foo:topics

<x>
<subject>News headline One</subject>
<body>Yadda Yadda Yadda-/body>

</message->

Jabber Alert Module
The Jabber Alert Module is another omnipresent software

daemon that acts on an event model based on communication
from the Jabber Portal Manager Module. When the Jabber
Alert Module receives data from the Portal Manager, the Alert
Module processes the incoming packet against the prefer
ences list of the currently attached clients. When a match is
discovered, the Alert Module re-addresses and forwards the
packet to the head-end server, which then routes the packet
via a socket connection to the appropriate attached client.
Jabber Alert Packets utilize the same format as do Portal
Manager Message packets, but with type="headline.
Jabber Preferences Module
The Jabber Preferences Module is used for the storage of

userpreferences. All user preferences are stored on the Jabber
Server for ease and security. When users updates their pref
erences, the updated preference data is sent, via the socket
connection to the head-end, to the Jabber Server in the form of
an XMPP “iq packet. The data is sent in the form of a
jabberiq private id packet. This packet takes advantage of a
built-in jabber mechanism for storing private user data (usu
ally buddy lists) on the server itself.

These IQ packets assume the following format.

<iqid=private-89 type=sets
<query Xmlins=jabber:iq:privated

<topics Xmlins=news:topics’ >Sports</topics
<topics Xmlins=news:topics’ >Baseball-topics
<topics Xmlins=news:topics’ >Barry Bonds</topics
< query>

</iq>

While we have illustrated and described various embodi
ments of this invention, these are by way of illustration only
and various changes and modifications may be made within
the contemplation of this invention and within the scope of the
following claims.

What is claimed is:
1. A data processing method for enabling nodes of a client

server network to interact with broadcast program content,
the method comprising:

detecting, using a server node, the presence on the network
of one or more client nodes;

extracting, using a trigger extractor, program-synchronous
triggers from within the content of a broadcast program;

using an application manager, in response to extraction of
a program-synchronous trigger from a broadcast pro
gram, facilitating interactive communication, relating to
the broadcast program content, between the server node
and one or more client nodes whose presence on the
network has been detected by sending, from the server
node to the one or more client nodes, data packets in

10

15

25

35

40

45

50

55

60

65

16
Extensible Messaging and Presence Protocol (XMPP)
and comprising trigger information based on the pro
gram-synchronous triggers and by receiving, from the
one or more client nodes, other XMPP data packets
comprising presence information relating to the one or
more client nodes;

using a game manager configured to perform application
specific functionality relating to a game, using a struc
tured information exchange server configured to man
age managing communications with the one or more
client nodes, and using a database for storing informa
tion relating to the one or more client nodes and their
connections;

using the server node to extract, during a synchronous
event, the program-synchronous triggers and to deliver
the program-Synchronous triggers to the game manager,
and using the game manager to respond by generating
content, and using the structured information exchange
server to deliver the content to the one or more client
nodes.

2. The method of claim 1, further comprising sending, from
the server node to the one or more client nodes, additional
XMPP data packets comprising game information.

3. The method of claim 1, further comprising sending and
receiving, between the server node to the one or more client
nodes, additional XMPP data packets comprising chat com
munication.

4. The method of claim 1, further comprising inserting the
program-synchronous triggers into the broadcast program
content before broadcasting the broadcast program over a
broadcast medium.

5. The method of claim 1, wherein each of the one or more
client nodes comprises any one or more of a personal com
puter, a two-screen Flash client, a set-top box, and/or an
integrated computing device.

6. The method of claim 1, wherein the program-synchro
nous triggers are in advertising segments of the broadcast
program.

7. The method of claim 1, further comprising using a struc
tured information exchange server configured to manage
communications with the one or more client nodes.

8. The system of claim 7, further comprising using a struc
tured information exchange portal manager to process exter
nal news sources for creating broadcast carousel data sets; a
structured information exchange alter module that is config
ured to process real-time alerts; and a structured information
exchange preference module that is configured to process
updating user preference information.

9. The method of claim 1, further comprising reading,
during an enhanced broadcast, the program-synchronous
triggers from a program videotape and sending the program
synchronous triggers to a structured information exchange
Agent via a socket connection using an XMPP protocol, and
using the structured information exchange Agent to translate
the program-synchronous trigger into content and to a mes
sage to the structured information exchange Server, which
broadcasts the message to each of the one or more client
nodes.

10. The method of claim 1, further comprising inserting the
program-synchronous triggers using a trigger manager com
prising a Flash-based graphical user interface (GUI) that is
configured to control playback on a video deck and to insert
the program-synchronous triggers.

11. A data processing method for enabling nodes of a
client-server network to interact with broadcast program con
tent, the method comprising:

US 8,214,429 B2
17

detecting the presence on the network of one or more client
nodes;

extracting program-synchronous triggers from within the
content of a broadcast program;

in response to extraction of a program-synchronous trigger
from a broadcast program, facilitating interactive com
munication, relating to the broadcast program content,
with one or more client nodes whose presence on the
network has been detected by sending, to the one or
more client nodes, data packets in Extensible Messaging
and Presence Protocol (XMPP) and comprising trigger
information based on the program-synchronous triggers
and by receiving, from the one or more client nodes,
other XMPP data packets comprising presence informa
tion relating to the one or more client nodes;

using a game manager configured to perform application
specific functionality relating to a game, using a struc
tured information exchange server configured to man
age managing communications with the one or more
client nodes, and using a database for storing informa
tion relating to the one or more client nodes and their
connections;

using the server node to extract, during a synchronous
event, the program-synchronous triggers and to deliver
the program-synchronous triggers to the game manager,
and using the game manager to respond by generating

5

10

15

25

18
content, and using the structured information exchange
server to deliver the content to the one or more client
nodes.

12. The method of claim 11, further comprising sending,
from the server node to the one or more client nodes, addi
tional XMPP data packets comprising game information.

13. The method of claim 11, further comprising sending
and receiving, between the server node to the one or more
client nodes, additional XMPP data packets comprising chat
communication.

14. The method of claim 11, wherein the program-synchro
nous triggers are in advertising segments of the broadcast
program.

15. The method of claim 11, further comprising using a
structured information exchange server configured to manage
communications with the one or more client nodes.

16. The method of claim 11, further comprising reading,
during an enhanced broadcast, the program-synchronous
triggers from a program videotape and sending the program
synchronous triggers to a structured information exchange
Agent via a socket connection using an XMPP protocol, and
using the structured information exchange Agent to translate
the program-synchronous trigger into content and to a mes
sage to the structured information exchange Server, which
broadcasts the message to each of the one or more client
nodes.

