(12) STANDARD PATENT APPLICATION (11) Application No. AU 2004218700 A1
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Optimizing file replication using binary comparisons
(51)’ International Patent Classification(s)
GO6F 017/30 HO4L 029/06
(21) Application No: 2004218700 (22) Date of Filing: 2004.10.08

(30) Priority Data

(31) Number (32) Date (33) Country
10/702863 2003.11.06 us
(43) Publication Date: 2005.05.26

(43) Publication Journal Date: 2005.05.26

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Antonoff, Lauren N.; Liu, Hai

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, MELBOURNE, VIC, 3000

2004218700 08 Oct 2004

MSFT-2566/302757.1 PATENT

ABSTRACT OF THE DISCLOSURE

Client and server based copies of a file are maintained in synchrohicity as changes
are made to the file. Data is compared to a previous version known to both the client and
server and a highly compressed representation of the differences between the two is
generated. These differences, or “diffs”, are then transmitted, and may use extensions to

the HTTP (HyperText Transport Protocol) protocol.

2004218700 08 Oct 2004

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Optimizing file replication using binary comparisons

The following statement is a full description of this invention, including the best method of performing it
known to me/us:- '

5102

2004218700 08 Oct 2004

10

15

20

25

30

1A PATENT

FIELD OF THE INVENTION

[0001] This invention relates in general to the field of computer file replication.

More particularly, this invention relates to file replication using binary comparisons.

BACKGROUND OF THE INVENTION

[0002] Replication enables both local and remote access to data by keeping

client and server versions of a file or document in synchronicity. While this functionality
is valuable and critical to applications, it is also costly due to the amount of data that must

be transmitted between the clients and the server. Entire files and documents, along with

their various versions, are stored at the server, and transmitted between the server and its

clients. As such, many replication systems attempt to save bandwidth by compressing
data before transmitting it. However, this traditional form of compression encodes the
data for the entire file, even if the majority of this data was transmitted as part of a
previous version. Thus, minor changes to the data in a file or document still require the
entire file or document to be compressed and transmitted, although much of the data
already resides at the destination, in the form of an earlier received version.

[0003] In view of the foregoing, there is a need for systems and methods that

provide at least a useful alternative.

SUMMARY OF THE INVENTION

[0004] The present invention provides a mechanism for maintaining client and

server based copies of a file in synchronicity as changes are made to the file. Data is
compared to a previous version known to both the client and server and a highly
compressed representation of the differences between the two is generated.

[0005] According to one embodiment, a first copy and a second copy of a base
file are received and stored at a client. The two copies are identical — the client receives

one copy and saves two instances of that copy. The client then makes changes to the first

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 2 PATENT

copy and a difference (such as a binary difference) is determined between the changed
first copy and the second copy. The difference is transmitted to a server that maintains
the base file. The server accepts the difference if the base file at the server is the same as
the base file that was stored at the first device; otherwise the server rejects the difference.

[0006] According to aspects of the invention, if the difference is rejected at the
server, then the server transmits a second difference to the client. The client then applies
the second difference to the second copy of the base file stored at the first device. This
brings the client’s base file up to date with respect to the base file that resides at the
server. The client can then make changes to this updated base file, generate a new
difference, and transmit the new difference to the server.

[0007] Additional features and advantages of the invention will be made
apparent from the following detailed description of illustrative embodiments that

proceeds with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing summary, as well as the following detailed description of

preferred embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there is shown in the drawings
exemplary constructions of the invention, however, the invention is not limited to the
specific methods and instrumentalities disclosed. In the drawings:

[0009] Figure 1 is a block diagram showing an exemplary computing
environment in which aspects of the invention may be implemented;

[0010] Figure 2 is a flow diagram of an exemplary method of maintaining an
updated file in accordance with the present invention;

[0011] Figure 3 is a flow diagram of another exemplary method of maintaining
an updated file in accordance with the present invention;

[0012] Figure 4 shows a block diagram of an exemplary system that is helpful
in describing aspects of the present invention; and

[0013] Figures 5 and 6 are flow diagrams of another exemplary method of

maintaining an updated file in accordance with the present invention.

2004218700 08 Oct 2004

10

20

25

30

MSFT-2566/302757.1 3 PATENT

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Overview

[0014] .The present invention is directed to maintaining the local (also referred
to herein as “client”) and server based copies of a file in synchronicity as changes are
made to the file. The exemplary systems and methods described herein are more efficient
than current techniques and keeps both the bandwidth requirements and the time element
of performing the synchronization to a minimum.

[0015] Data is compared to a previous version known to both the client and
server and a highly compressed representation of the differences between the two is
generated. These differences, or “diffs”, are then transmitted, and may use extensions to

the HTTP (HyperText Transport Protocol) protocol.

Exemplary Computing Environment

[0016] Figure 1 illustrates an example of a suitable computing system
environment 100 in which the invention may be implemented. The computing system
environment 100 is only one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or functionality of the invention.
Neither should the computing environment 100 be interpreted as having any dependency
or requirement relating to any one or combination of components illustrated in the
exemplary opefating environment 100.

[0017] The invention is operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of well
known computing systems, environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed computing environments that include
any of the above systems or devices, and the like.

[0018] The invention may be described in the general context of computer-
executable instructions, such as program modules, being executed by a computer.

Generally, program modules include routines, programs, objects, components, data

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 4 PATENT

structures, etc. that perform particular tasks or implement particular abstract data types.
The invention may also be practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked through a communications
network or other data transmission medium. In a distributed computing environment,
program modules and other data may be located in both local and remote computer
storage media including memory storage devices.

[0019] With reference to Figure 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The system bus 121 may be
any of several types of bus structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus (also known as Mezzanine bus).

[0020] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer
110 and includes both volatile and non-volatile media, removable and non-removable
media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media includes
both volatile and non-volatile, removable and non-removable media implemented in any
method or technology for storage of information such as computer readable instructions,
data structures, program modules or other data. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information and which can accessed by
computer 110. Communication media typically embodies computer readable instructions,

data structures, program modules or other data in a modulated data signal such as a

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 5 PATENT

carrier wave or other transport mechanism and includes any information delivery media.
The term “modulated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal.
By way of example, and not limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above should also be
included within the scope of computer readable media.

[0021] The system memory 130 includes computer storage media in the form of
volatile and/or non-volatile memory such as ROM 131 and RAM 132. A basic
input/output system 133 (BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as during start-up, is typically
stored in ROM 131. RAM 132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit 120. By
way of example, and not limitation, Figure 1 illustrates operating system 134, application
programs 135, other program modules 136, and program data 137.

[0022] The computer 110 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example only, Figure 1
illustrates a hard disk drive 140 that reads from or writes to non-removable, non-volatile
magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, non-
volatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a
removable, non-volatile optical disk 156, such as a CD-ROM or other optical media.
Other removable/non-removable, volatile/non-volatile computer storage media that can
be used in the exemplary operating environment include, but are not limited to, magnetic
tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to
the system bus 121 through a non-removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are typically connected to the system
bus 121 by a removable memory interface, such as interface 150.

[0023] The drives and their associated computer storage media, discussed above
and illustrated in Figure 1, provide storage of computer readable instructions, data

structures, prdgram modules and other data for the computer 110. In Figure 1, for

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 6 PATENT

example, hard disk drive 141 is illustrated as storing operating system 144, application
programs 145, other program modules 146, and program data 147. Note that these
components can either be the same as or different from operating system 134, application
programs 135, other program modules 136, and program data 137. Operating system
144, application programs 145, other program modules 146, and program data 147 are
given different numbers here to illustrate that, at a minimum, they are different copies. A
user may enter commands and information into the computer 110 through input devices
such as a keyboard 162 and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These and other input devices are
often connected to the processing unit 120 through a user input interface 160 that is
coupled to the system bus, but may be connected by other interface and bus structures,
such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other
type of display device is also connected to the system bus 121 via an interface, such as a
video interface 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected
through an output peripheral interface 195.

[0024] The computer 110 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer 180.
The remote computer 180 may be a personal computer, a server, a router, a network PC, a
peer device or other common network node, and typically includes many or all of the
elements described above relative to the computer 110, although only a memory storage
device 181 has been illustrated in Figure 1. The logical connections depicted include a
local area network (LAN) 171 and a wide area network (WAN) 173, but may also include
other networks. Such networking environments are commonplace in offices, enterprise-
wide computer networks, intranets and the Internet.

[0025] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used in a
WAN networking environment, the computer 110 typically includes a modem 172 or
other means for establishing communications over the WAN 173, such as the Internet.

The modem 172, which may be internal or external, may be connected to the system bus

2004218700 08 Oct 2004

15

20

25

30

MSFT-2566/302757.1 7 PATENT

121 via the user input interface 160, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, Figure 1 illustrates remote application programs 185 as residing on memory
device 181. It will be appreciated that the network connections shown are exemplary and

other means of establishing a communications link between the computers may be used.

Exemplary Distributed Computing Frameworks Or Architectures

[0026] Various distributed computing frameworks have been and are being
developed in light of the convergence of personal computing and the Internet. Individuals
and business users alike are provided with a seamlessly interoperable and web-enabled
interface for applications and computing devices, making computing activities
increasingly web browser or network-oriented.

[0027] For example, Microsoft®’s .NET platform includes servers, building-
block services, such as web-based data storage, and downloadable device software.
Generally speaking, the .NET platform provides (1) the ability to make the entire range of
computing devices work together and to have user information automatically updated and
synchronized on all of them, (2) increased interactive capability for web sites, enabled by
greater use of XML rather than HTML, (3) online services that feature customized access
and delivery of products and services to the user from a central starting point for the
management of various applications, such as e-mail, for example, or software, such as
Microsoft® Office®, (4) centralized data storage, which will increase efficiency and ease
of access to information, as well as synchronization of information among users and
devices, (5) the ability to integrate various communications media, such as e-mail, faxes,
and telephones, (6) for developers, the ability to create reusable modules, thereby
increasing productivity and reducing the number of programming errors, and (7) many
other cross-platform integration features as well.

[0028] While exemplary embodiments herein are described in connection with
software residing on a computing device, one or more portions of the invention may also
be implemented via an operating system, API, or a “middle man” object between a

coprocessor and requesting object, such that services may be performed by, supported in,

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 8 PATENT

or accessed via all of .NET’s languages and services, and in other distributed computing

frameworks as well.

Exemplary Embodiments

[0029] Figure 2 is a flow diagram of an exemplary method of maintaining an
updated file in accordance with the present invention. In this exemplary embodiment, a
client modifies a file and uploads the changes to a server. At step 200, the client receives
a copy of the latest version (“Version A”) of the base file that is stored at the server. The
client makes its changes to Version A to create a Version A’, at step 210. At step 220,
the client saves a copy of the original Version A and the new Version A’. Thus, the
client maintains a copy of the last known server state, even if the user updates the file. It
is contemplated that a copy of Version A can be stored at the client either before step 210
or after step 210.

[0030] A difference, or “diff”, is then produced at step 230 by comparing
Versions A and A’. A diff is a mechanism by which two versions of a file are compared
to generate a compressed diff that can be applied to the older file to generate the newer
one. The differencing may be performed by any method, technique, or system known to
those of skill in the art for determining the difference between a base form and a modified
form. A preferred difference that is generated is a binary difference. The file is
considered to be a series of bytes. A conventional compression algorithm is used to
generate the binary difference by calculating the difference between the shadow or base
copy and the copy as amended. This difference is then sent to the server, where it is
rejected or accepted. A rejection will occur if the base on the server has changed, in
which case the difference is of no use to the server. It is contemplated that any difference
engine or technique can be used in accordance with the present invention. The use of a
binary difference technique is provided herein for exemplary purposes.

[0031] In particular, at step 240, the client sends the diff to the server. The
server, after checking to be sure that its latest version of the base file has not changed
from the Version A that the client used in making the modification, applies the diff to

Version A to generate a new, latest version of the file, Version B, at step 250. The

2004218700 08 Oct 2004

10

20

25

30

MSFT-2566/302757.1 9 PATENT

checking of versions performed by the server is described further below with respect to
Figures 3-6.

[0032] The server stores the new Version B as well as the client-provided diff
(optional), at step 260. The new Version B is considered to be the latest update of the
base file, and the diff is retained for use by other clients who may be making changes to
the original Version A, as described further below with respect to Figures 3-6. The server
optionally stores the diff in order to provide other clients with an optimized update. If
multiple revisions are made, multiple diffs may be needed to get from an older version to
the newest one. It is noted that the diff may also be useful for clients who are not intent
to make changes, but instead want to read the latest Version B and alrleady have Version
A.

[0033] At step 270, the server advises the client of the new version identifier
(e.g., “Version B”). The client then discards the diff that it had determined in step 230 as
well as the Version A it had stored, and the client marks its Version A’ with the new
version identifier, at step 280. Thus, the client renames Version A’ as Version B.

[0034] Figure 3 is a flow diagram of another exemplary method of maintaining
an updated file. In this example, a server provides a client with the latest changes in the
form of a diff file. At step 300, a client having Version A of a file requests an update of
the file. A client might make such a request, for example, because the client desires to
make changes to the latest version of the file. The client advises the server that the client
has Version A, and in response, the server returns the diff of A, at step 310. The server
may have been maintaining the diff of A from a previous client update (e.g., step 260 in
Figure 2). At step 320, the client applies the diff of A to its stored Version A to produce
the latest version of the file (e.g., “Version B”).

[0035] Figure 4 shows a block diagram of an exemplary system that is helpful
in describing aspects of the present invention, and Figures 5 and 6 show a flow diagram
of an exemplary method of maintaining an updated file when two users are making
changes to the same base file. In this example, assume a server 400 maintains a base file
(Version A), and two clients 410, 420 (referred to herein as clients 1 and 2, respectively)

both desire to make changes to the same base file.

2004218700 08 Oct 2004

15

20

25

30

MSFT-2566/302757.1 10 PATENT

[0036] At step 500, both client 1 and client 2 request and receive the latest
version (“Version A”) of the base file from the server 400 (i.e., clients 1 and 2 download
the base file). It is contemplated that clients 1 and 2 can make the changes to the base file
concurrently, or sequentially in time. However, only one client will be first in getting its
changes to the original base file to the server. These changes are applied to the original
base file. Thus, the first client who sends the difference to the server has that difference
accepted by the server. A subsequent client’s difference based on the base file will be
rejected by the server. Therefore, the client that sends its changes to the original base file
later must first receive the updated base file, and then make changes to that updated base
file, as described below in more detail.

[0037] Assuming client 1 makes its changes first, the method proceeds similar
to steps 200 through 260 as set forth in Figure 2. That is, client 1 makes its changes to
Version A to create a Version A’, at step 505. At step 510, client 1 saves a copy of the
original Version A and the new Version A’. It is contemplated that a copy of Version A
can be stored at client 1 either before step 505 or after step 505. A diff (preferably, a
binary diff) is then produced at step 515 by comparing Versions A and A’.

[0038] At step 520, client 1 sends the diff to the server 400. When
synchronizing changes back to the server, the client verifies that the server supports the
diff mechanism and then uploads the “diff”, along with the version information
specifying the version of the original file. The server 400, after checking to be sure that
its latest version of the base file has not changed from the Version A that the client used
in making the modification, applies the client 1-provided diff of Version A to generate a
new, latest version of the file, Version B, at step 525.

[0039] The server stores the new Version B as well as the client 1-provided diff,
at step 530. The new Version B is considered to be the latest update of the base file, and
the diff is retained for use by other clients (e.g., client 2) who may be making changes to
the original Version A.

[0040] Similar to steps 270 and 280, although not shown in Figure 5, the server
400 advises client 1 of the new version identifier (e.g., “Version B”). Client 1 then

discards the diff that it had determined as well as its stored Version A, and the client

2004218700 08 Oct 2004

15

20

25

30

MSFT-2566/302757.1 11 PATENT

marks its Version A’ with the new version identifier. Thus, the client renames Version
A’ as Version B.

[0041] Meanwhile, at step 535, client 2 modifies the original base file Version
A it has received to create a new version, Version A’’. At step 540, client 2 saves a copy
of the original Version A and the new Version A*’. It is contemplated that a copy of
Version A can be stored at client 2 either before step 540 or after step 540. A diff is then
produced at step 545 by comparing Versions A and A",

[0042] At step 550, client 2 sends its diff of Version A to the server 400. The
server 400 checks to see whether the base file that it is storing has changed from the base
file that client 2 has used as the basis for client 2’s modifications.

[0043] If the server state of the base file has been cached in the local store
associated with the requesting client, a comparison takes place between the file in the
local store with.the state of the corresponding file on the server. This comparison is
conducted in order to determine whether the copy of the file stored in the local store is
the most recent version or whether a more recent version exists at the server. In other
words, the comparison addresses the possibility that another client has modified and
updated the requested file since the last time that the requesting client has obtained the
copy of the file. It should be noted that the comparison desirably includes the
transmission of an identifier representing the state of the file, without requiring
transmission of the entire file between client and server. In this manner, the comparison
reduces the network traffic that might otherwise be required and avoids transmitting the
same version of the file more than once.

[0044] Thus, at step 555, the server checks to be sure that its latest version of
the base file has not changed from the Version A that client 2 used in making the
modification. If the base file had not changed, then at step 590, the server 400 applies the
client 2-provided diff to the server-stored base file to generate a new, latest version of the
file, which the server stores along with the client 2-provided diff at step 595. The server
400 would advise client 2 of the new version identifier, and client 2 would then discard
the diff that it had determined as well as its stored Version A, and mark its modified

Version A’’ with the new version identifier.

2004218700 08 Oct 2004

15

20

25

30

MSFT-2566/302757.1 12 PATENT

[0045] However, in this example, client 1 has already provided changes to the
server 400, so the base file stored at the server has changed to Version B. Client 2 does
not have a copy of Version B, and made its modifications to Version A of the file.
Therefore, because the base file has changed, the server 400 rejects the client 2-provided
diff, at step 560, and sends client 2 the client 1-provided diff to Version A that the server
400 had earlier received and stored (at step 530).

[0046] At step 565, client 2 applies the client 1-provided diff of Version A to its
stored Version A to get the latest server-stored version of the file (here, Version B).
Client 2 then determines the diff between the latest version and its modified Version A’’,
and sends the diff to the server 400, at steps 570 and 575, respectively. The server 400
applies the new diff to its stored latest version (Version B), at step 580, to generate the
new, latest version (here, Version C). At step 585, the server 400 stores the new, latest
version as well as the newly received diff. Similar to steps 270 and 280, although not
shown in Figure 5, the server 400 advises client 2 of the new version identifier (e.g.,
“Version C”). Client 2 then discards the diff that it had determined as well as its stored
version, and the client marks its Version A’’ with the new version identifier. Thus, the
client renames Version A’’ as Version C.

[0047] Rather than automatically saving a modified version at a server, it is
contemplated that a user, such as an administrator, could determine how changes should
be integrated. This may avoid content conflicts with a previous user’s changes.

[0048] It is noted that the diff can be determined either before or after the server
has indicated approval to accept the diff. Thus, for increased efficiency, the client may
wait until the server has indicated that the client has made changes to the same version of
the base file that the server is currently maintaining as the latest version. Only then
would the client determine the diff and provide it to the server. Desirably, the server does
not calculate the difference, and instead only applies the difference.

[0049] A situation is contemplated in which one client makes multiple uploads,
before another client connects with the server to provide its changes. For example,
assume the original base file is version A. Client 1 then makes changes and these
changes are accepted as version B. If client 1 makes further changes and provides them

to the server, this new, latest version will be saved as Version C. Desirably, the server

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 13 PATENT

saves the difference between Versions A and B, and the difference between Versions B
and C. Thus, when another client makes its changes, the server will send the difference
between Versions A and B, and the difference between Versions B and C to that client,
preferably in the same message. The client then recreates Version B, then Version C, and
determines the difference between Version C and its changes, and provides this
difference to the server.

[0050] If an out of date client connects to the server to get the latest version, it
tells the server which version it has, and if the stored diffs date back to that version, the
appropriate diff or diffs are returned along with the current version ID. Preferably, the
server maintains all the diffs between the various versions that it receives during
processing, in order to accommodate those clients who may be still making changes to
old versions (i.e., to be “backward compatible” to old versions of the base file).
However, at some point, the server can delete or otherwise remove previously stored diffs
that it has been maintaining. Such action may be prompted, for example, by date or
storage capacity.

[0051] Desirably, HyperText Transport Protocol (HTTP) is used to transmit the
diffs. In particular, protocol extensions may be used to alert the server that a diff is being
transmitted or otherwise implemented or incorporated within the message.

[0052] HTTP has emerged as the standard mechanism by which information is
transported over TCP/IP (Transmission Control Protocol/Internet Protocol) compatible
networks, such as the Internet, intranets, and extranets. HTTP is more specifically an
application-level protocol for distributed, collaborative, hypermedia information systems.
It is a generic, stateless, protocol that can be used for many tasks beyond its use for
hypertext, such as name servers and distributed object management systems, through
extension of its request methods, error codes and headers. It is referred to as a transport
protocol, because information is transported according to its specifications, and is also
referred to as a request-response protocol, since information is exchanged by a client
making a request of a server, which generates a response thereto. HTTP as referred to
herein refers generally to any standard of HTTP, and available on the website

http://www.w3.org.

2004218700 08 Oct 2004

20

25

MSFT-2566/302757.1 14 PATENT

[0053] A common use of HTTP is the transport of information formatted
according to a markup language. For example, a popular application of the Internet is the
browsing of world-wide-web pages thereof. In such instances, typically the information
retrieved is in HyperText Markup Language (HTML) format, as transported according to
HTTP. However, other standard markup languages are emerging. One such markup
language is eXtensible Markup Language (XML). XML describes a class of data objects
that are referred to as XML documents, and partially describes the behavior of computer
programs that process them. A primary difference between HTML and XML is that
within the former, information content is intertwined with the layout of the content,
making their separation difficult, for example. Conversely, within XML a description of
the storage layout and logical structure of content is maintained separate from the content
itself. However, both XML and HTML are derivatives of a markup language known as
Standard Generalized Markup Language (SGML). XML as referred to herein refers
generally to any standard of XML, as described on the website http://www.w3.org.

[0054] To maintain backward compatibility and interoperability, for example,
an extended HTTP header in an OPTIONS response may be used to allow the client to
discover that the server supports binary diffs. An extended header in GET requests
notifies the server that the client accepts diffs.

[0055] Either the client or the server can choose not to use the binary diff. In
some cases, it may be possible that the message sending the diff (e.g., the HTTP binary
diff header) will be larger than the file itself. In such a case, it may be more desirable to
send the document instead of the diff between the server and the clients. The client may
determine that the diff size is bigger than the new file. This can happen, for example, if
the new file has 0 bytes. The server can decide to discard the diffs to save storage space.
If a diff is not used, the whole file is sent. To signal when a diff is sent, the client may
send the extended header(s) with its PUT request to indicate the presence of a binary diff
in the body and the version number of the base file the diff is generated from. The server
sends the extended header(s) with its GET response to indicate the presence of a binary

diff chain, the version number of the base file, and the number of diffs in the chain.

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 15 : PATENT

[0056] When multiple diffs are needed to bring the client file up to date, the
server can choose either to chain the diff together in a single reply or if the sum of the
diff is bigger than the new version, send back the new version itself.

[0057] An engine for calculating and applying the diffs is preferably provided
within the clients and/or server(s). Protocol for discovery and diff/version management
is also preferably implemented. Extended HTTP headers allow the client and server to
express their capability with respect to differencing. For example, the client sends the
extended header(s) with its PUT request to indicate the presence of a binary diff in the
body and the version number of the base file the diff is generated from. The server sends
the extended header(s) with its GET response to indicate the presence of a binary diff
chain, the version number of the base file, and the number of diffs in the chain

[0058] The server code desirably is capable of managing diffs to apply (using
the engine), store, and return diffs, and each client preferably has the ability to maintain
server state, generate diffs, transmit diffs to server, and apply returned diffs.

[0059] Replication is broadly used by a wide variety of applications, but the
cost and performance of these systems is a constant challenge. The present invention
leverages the nature of replication (known client/server state) to make a major leap in
efficiency of the system. The present invention can be applied to systems replicating
large files that are routinely updated, such as products that allow server-based documents
or files to be accessed offline.

[0060] As mentioned above, while exemplary embodiments of the present
invention have been described in connection with various computing devices, the
underlying concepts may be applied to any computing device or system.

[0061] The various techniques described herein may be implemented in
connection with hardware or software or, where appropriate, with a combination of both.
Thus, the methods and apparatus of the present invention, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions) embodied in tangible
media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable
storage medium, wherein, when the program code is loaded into and executed by a
machine, such as a computer, the machine becomes an apparatus for practicing the

invention. In the case of program code execution on programmable computers, the

2004218700 08 Oct 2004

15

20

25

MSFT-2566/302757.1 16 PATENT

computing device will generally include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. The program(s) can be implemented in
assembly or machine language, if desired. In any case, the language may be a compiled
or interpreted language, and combined with hardware implementations.

[0062] The methods and apparatus of the present invention may also be
practiced via communications embodied in the form of program code that is transmitted
over some transmission medium, such as over electrical wiring or cabling, through fiber
optics, or via any other form of transmission, wherein, when the program code is received
and loaded into and executed by a machine, such as an EPROM, a gate array, a
programmable logic device (PLD), a client computer, or the like, the machine becomes
an apparatus for practicing the invention. When implemented on a genéral-purpose
processor, the program code combines with the processor to provide a unique apparatus
that operates to invoke the functionality of the present invention. Additionally, any
storage techniques used in connection with the present invention may invariably be a
combination of hardware and software.

[0063] While the present invention has been described in connection with the
preferred embodiments of the various figures, it is to be understood that other similar
embodiments may be used or modifications and additions may be made to the described
embodiments for performing the same function of the present invention without deviating
therefrom. Therefore, the present invention should not be limited to any single
embodiment, but rather should be construed in breadth and scope in accordance with the
appended claims.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" or
"comprising", will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of

integers or steps.

2004218700 08 Oct 2004

MSFT-2566/302757.1 17 PATENT

The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgment or any form of suggestion that that prior art forms part of the

common general knowledge in Australia

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 18 PATENT

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of maintaining an updated file, comprising:

storing a first copy and a second copy of a base file at a first device;

receiving changes to the first copy at the first device;

determining a first difference between the changed first copy and the second
copy;

transmitting the first difference to a server; and

accepting the first difference at the server if the base file at the server is the same
as the base file that was stored at the first device, otherwise rejecting the first difference

at the server.

2. The method of claim 1, further comprising receiving the first copy of the file at the
first device from the server, and making a second copy of the file at the first device, prior

to storing the first copy and the second copy of the file at the first device.

3. The method of claim 1, wherein determining the first difference comprises using

binary comparisons between the changed first copy and the second copy.

4. The method of claim 1, wherein the first difference is a binary diff.

5. The method of claim 1, wherein if the difference is rejected at the server, then
transmitting a second difference from the server to the first device, and applying the

second difference to the second copy of the base file stored at the first device.

6. The method of claim 1, further comprising determining if the base file at the server is

the same as the base file that was stored on the first device.

7. The method of claim 1, wherein transmitting the first difference comprises utilizing

extensions to the HTTP protocol.

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 19 PATENT

8. The method of claim 1, further comprising:

storing a first copy and a second copy of the base file at a second device;

receiving changes to the first copy at the second device;

determining a second difference between the changed first copy and the second
copy;

transmitting the second difference to the server; and

accepting the second difference at the server if the base file at the server is the
same as the base file that was stored at the second device, otherwise rejecting the second

difference at the server.

9. The method of claim 8, further comprising, if rejecting the second difference at the
server, then transmitting a third difference to the second client, and applying the third

difference to the second copy of the base file stored at the second device.

10. The method of claim 8, further comprising receiving the first copy of the file at the
second device from the server, and making a second copy of the file at the second device,

prior to storing the first copy and the second copy of the file at the second device.

11. The method of claim 8, wherein determining the second difference comprises using
binary comparisons between the changed first copy and the second copy at the second
device.

12. The method of claim 8, wherein the second difference is a binary diff.

13. The method of claim 8, further comprising determining if the base file at the server is

the same as the base file that was stored on the second device.

14. The method of claim 8, wherein transmitting the second difference comprises

utilizing extensions to the HTTP protocol.

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 20 PATENT

15. A computer-readable medium having stored thereon computer-executable
instructions for performing a method of maintaining an updated file, comprising:

storing a first copy and a second copy of a base file at a first device;

receiving changes to the first copy at the first device;

determining a first difference between the changed first copy and the second
copy;

transmitting the first difference to a server; and

accepting the first difference at the server if the base file at the server is the same
as the base file that was stored at the first device, otherwise rejecting the first difference

at the server.

16. The computer-readable medium of claim 15, further comprising computer-executable
instructions for receiving the first copy of the file at the first device from the server, and
making a second copy of the file at the first device, prior to storing the first copy and the

second copy of the file at the first device.

17. The computer-readable medium of claim 15, wherein determining the first difference

comprises using binary comparisons between the changed first copy and the second copy.

18. The computer-readable medium of claim 15, wherein the first difference is a binary
diff.

19. The computer-readable medium of claim 15, further comprising computer-executable
instructions for, if the difference is rejected at the server, transmitting a second difference
from the server to the first device, and applying the second difference to the second copy

of the base file stored at the first device.

20. The computer-readable medium of claim 15, further comprising computer-executable
instructions for determining if the base file at the server is the same as the base file that

was stored on the first device.

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 21 PATENT

21. The computer-readable medium of claim 15, wherein transmitting the first difference

comprises utilizing extensions to the HTTP protocol.

22. The computer-readable medium of claim 15, further comprising computer-executable
instructions for:

storing a first copy and a second copy of the base file at a second device;

receiving changes to the first copy at the second device;

determining a second difference between the changed first copy and the second
copy;

transmitting the second difference to the server; and

accepting the second difference at the server if the base file at the server is the
same as the base file that was stored at the second device, otherwise rejecting the second

difference at the server.

23. The computer-readable medium of claim 22, further comprising computer-executable
instructions for, if the second difference is rejected at the server, transmitting a third
difference to the second client, and applying the third difference to the second copy of the

base file stored at the second device.

24. The computer-readable medium of claim 22, further comprising computer-executable
instructions for receiving the first copy of the file at the second device from the server,
and making a second copy of the file at the second device, prior to storing the first copy

and the second copy of the file at the second device.

25. The computer-readable medium of claim 22, wherein determining the second
difference comprises using binary comparisons between the changed first copy and the

second copy at the second device.

26. The computer-readable medium of claim 22, wherein the second difference is a

binary diff.

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 22 PATENT

27. The computer-readable medium of claim 22, further comprising computer-executable
instructions for determining if the base file at the server is the same as the base file that

was stored on the second device.

28. The computer-readable medium of claim 22, wherein transmitting the second

difference comprises utilizing extensions to the HTTP protocol.

29. A system for use in a file synchronization system, comprising:
a storage device for storing a first copy and a second copy of a base file;
an input device for receiving changes to the first copy of the base file; and
a processor for changing the first copy based on the received changes, and

determining a difference between the changed first copy and the second copy.

30. The system of claim 29, wherein the difference is a binary difference.

31. The system of claim 29, wherein the base file resides on a server, and further

comprising an output device for transmitting the difference to the server.

32. The system of claim 29, wherein the difference is transmitted to the server using

extensions to the HTTP protocol.

33. The system of claim 29, further comprising a device for receiving a second
difference, wherein the processor applies the second difference to the second copy of the
base file to generate a modified second copy, applies the received changes to the
modified second copy to generate a third copy, and determines a third difference between

the third copy and the modified second copy.

34. The system of claim 33, further comprising an output device for transmitting the

third difference to a server.

35. A system for use in a file synchronization system, comprising:

2004218700 08 Oct 2004

10

15

20

25

30

MSFT-2566/302757.1 23 PATENT

a storage device for storing a base file;

an input device for receiving a difference from a client device; and

a processor for determining if the difference is applicable to the stored base file,
and if so, applying the difference to the base file, otherwise indicating to the client device

that the difference is rejected.
36. The system of claim 35, wherein the difference is a binary difference.

37. The system of claim 35, wherein the difference is received in the form of extensions

to the HTTP protocol.
38. The system of claim 35, wherein if the difference is rejected by the processor, a
second difference is retrieved from the storage device and transmitted to the client device

via an output device.

39. The system of claim 38, wherein the second difference is received from a second

client device.
40. The system of claim 35, wherein the difference is applicable to the stored base file if
the base file is the same as a client base file that the client device used to generate to

the difference.

41. A method substantially as hereinbefore described with reference to the drawings.

42. A system substantially as hereinbefore described with reference to the drawings.

43. A computer-readable medium substantially as hereinbefore described with reference

to the drawings.

2004218700 08 Oct 2004

10

15

20

25

MSFT-2566/302757.1 24 PATENT

44, The steps, features, compositions and compounds disclosed herein or referred
to or indicated in the specification and/or claims of this application,
individually or collectively, and any and all combinations of any two or more

of said steps or features.

DATED this EIGHTH day of OCTOBER 2004
Microsoft Corporation

by DAVIES COLLISON CAVE
Patent Attorneys for the applicant(s)

2004218700 08 Oct 2004

Computing Environment

Fig. 1

REMOTE
APPLICATION

100
__ |
System Memo '
oysem Vemo Y1 130 :
(ROM) 131 | =
190 T
l BIOS 133’ L/ Monitor 191
(RAM) 132 Proce§sing ‘ Output |
0 - Unit Video . ! -
perating Interface Peripheral ' Printer 196
System 134 120 190 Interface 195 :
4 A A
. ! »
Application P System Bus 121 i Speakers 47
Programs q35(| :
y y A 1
Non-Removable Removable]
Oth;:):;?egsram Non-Volatile Non-Volatile User Input Network I Local Area
136 Memory Memory Interface Interface . Network
Interface 140 Interface q5dt 160 170)
Program C t
Data 137 \ : 171
- 141] =
o] {ooocooo] [oo 1—5(‘{5% :
Wide Area Network
y
OPERATING | APPLICATION PlggggiM PROGRAM CSEAASSER
SYSTEM PROGRAMS DATA Mouse
144 145 MODS.14¢ 147 161 Keyboard 162 180

PROGRAMS 185

<

5| - 81
[o] [ooooo0] [o0]

9/1

2004218700 08 Oct 2004

200

Client receives Version A

|

210
N

Client modifies Version A
to create Version A’

l

220
\

Client preserves Version
A and Version A’

l

230
N

Client compares Versions
A and A’ to produce
Diff of A

l

240
N

Client sends Diff of A to
server

l

2/6

Server applies Diff of A to
original Version A to
generate Version B

250
<

l

Server stores Version B
and Diff of A

260
/

l

Server advises client of
new version iD

270
/

l

Client discards Diff of A
and Version A and marks
Version A’ as Version B

280
/

2004218700 08 Oct 2004

3/6

Client with Version A
requests an update

300
/

l

Server returns Diff of A

310
/

l

Client applies Diff of A to
its Version A to produce
Version B

320
/

2004218700 08 Oct 2004

4/6

400

OEE oEo \
. B -

Server
Base file A
=

\n!llL|-J
Fo——————————

_ | _ |
Client 1 Client 2
Changes Ato A’ Changes Ato A”

2004218700 08 Oct 2004

500
\

Client 1 and 2 each
receive Version A

l

905
N

Client 1 modifies Version
A to create Version A’

l

510
N

Client 1 preserves
Version A and Version A’

l

515
\

Client 1 compares
Versions A and A’ to
produce Diff of A

l

520
N\

Client 1 sends Diff of A to
server

l

925
N\

Server applies Diff of A to
original Version A to
generate Version B

l

530
N

Server stores Version B
and Diff of A

L

5/6

'

Client 2 modifies Version
A to create Version A”

535

l

Client 2 preserves
Version A and Version A”

540
/

l

Client 2 compares
Versions A and A" to
produce Diff of A

545
L/

l

Client 2 sends Diff of A to
server

550
Y

2004218700 08 Oct 2004

555

6/6

Base changed?

Yes

No

560
N

Server rejects the client 2
Diff to A, and sends the
client 1 Diff of A to client 2

l

565
N\

Client 2 applies the client
1 Diff of A to its stored
Version A to get the latest

l

570
N

Client 2 determines the
Diff between the latest
and client 2 Version A” .

l

575
N\

Client 2 sends new Diff to
server

l

580
N\

Server applies new Diff to
Version B to generate
Version C

l

585
N

Server stores Version C
and new Diff

—>

Server applies Diff of A to
original Version A to
generate Version B

590
/

l

Server stores Version B
and Diff of A

595
/

	Abstract
	Description
	Claims
	Drawings

