
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2004218700 Al
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Optimizing file replication using binary comparisons

(51)7 International Patent Classification(s)
G06F 017/30 H04L 029/06

(21)

(31)

(43)
(43)

(71)

(72)

(74)

Application No: 2004218700 (22) Date of Filing: 2004.10.08

Priority Data

Number
10/702863

(32) Date
2003.11.06

(33) Country
US

Publication Date:
Publication Journal Date:

2005.05.26
2005.05.26

Applicant(s)
Microsoft Corporation

Inventor(s)
Antonoff, Lauren Liu, Hai

Agent Attorney
Davies Collison Cave, 1 Nicholson Street, MELBOURNE, VIC, 3000



MSFT-2566/302757.1 PATENT

O ABSTRACT OF THE DISCLOSURE-q-

o Client and server based copies of a file are maintained in synchronicity as changes

00 are made to the file. Data is compared to a previous version known to both the client and

server and a highly compressed representation of the differences between the two is

generated. These differences, or "diffs", are then transmitted, and may use extensions to

the HTTP (HyperText Transport Protocol) protocol.

00



AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Optimizing file replication using binary comparisons

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-



1 A PATENT

0

O
00

FIELD OF THE INVENTION

[0001] This invention relates in general to the field of computer file replication.

00 More particularly, this invention relates to file replication using binary comparisons.

BACKGROUND OF THE INVENTION

[0002] Replication enables both local and remote access to data by keeping

client and server versions of a file or document in synchronicity. While this functionality

is valuable and critical to applications, it is also costly due to the amount of data that must

be transmitted between the clients and the server. Entire files and documents, along with

their various versions, are stored at the server, and transmitted between the server and its

clients. As such, many replication systems attempt to save bandwidth by compressing

data before transmitting it. However, this traditional form of compression encodes the

data for the entire file, even if the majority of this data was transmitted as part of a

previous version. Thus, minor changes to the data in a file or document still require the

entire file or document to be compressed and transmitted, although much of the data

already resides at the destination, in the form of an earlier received version.

[0003] In view of the foregoing, there is a need for systems and methods that

provide at least a useful alternative.

SUMMARY OF THE INVENTION

[0004] The present invention provides a mechanism for maintaining client and

server based copies of a file in synchronicity as changes are made to the file. Data is

compared to a previous version known to both the client and server and a highly

compressed representation of the differences between the two is generated.

[0005] According to one embodiment, a first copy and a second copy of a base

file are received and stored at a client. The two copies are identical the client receives

one copy and saves two instances of that copy. The client then makes changes to the first



MSFT-2566/302757.1 PATENT

O copy and a difference (such as a binary difference) is determined between the changed

first copy and the second copy. The difference is transmitted to a server that maintains

O the base file. The server accepts the difference if the base file at the server is the same as
00

the base file that was stored at the first device; otherwise the server rejects the difference.

[0006] According to aspects of the invention, if the difference is rejected at the

Sserver, then the server transmits a second difference to the client. The client then applies

00 the second difference to the second copy of the base file stored at the first device. This

Sbrings the client's base file up to date with respect to the base file that resides at the

server. The client can then make changes to this updated base file, generate a new

N 10 difference, and transmit the new difference to the server.

[0007] Additional features and advantages of the invention will be made

apparent from the following detailed description of illustrative embodiments that

proceeds with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[00081 The foregoing summary, as well as the following detailed description of

preferred embodiments, is better understood when read in conjunction with the appended

drawings. For the purpose of illustrating the invention, there is shown in the drawings

exemplary constructions of the invention; however, the invention is not limited to the

specific methods and instrumentalities disclosed. In the drawings:

[0009] Figure 1 is a block diagram showing an exemplary computing

environment in which aspects of the invention may be implemented;

[0010] Figure 2 is a flow diagram of an exemplary method of maintaining an

updated file in accordance with the present invention;

[0011] Figure 3 is a flow diagram of another exemplary method of maintaining

an updated file in accordance with the present invention;

[0012] Figure 4 shows a block diagram of an exemplary system that is helpful

in describing aspects of the present invention; and

[0013] Figures 5 and 6 are flow diagrams of another exemplary method of

maintaining an updated file in accordance with the present invention.



MSFT-2566/302757.1 PATENT

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

SOverview

O [0014] The present invention is directed to maintaining the local (also referred
000to herein as "client") and server based copies of a file in synchronicity as changes are

made to the file. The exemplary systems and methods described herein are more efficient

Sthan current techniques and keeps both the bandwidth requirements and the time element

of performing the synchronization to a minimum.
00

[00151 Data is compared to a previous version known to both the client and

server and a highly compressed representation of the differences between the two is

generated. These differences, or "diffs", are then transmitted, and may use extensions to

the HTTP (HyperText Transport Protocol) protocol.

Exemplary Computing Environment

[0016] Figure 1 illustrates an example of a suitable computing system

environment 100 in which the invention may be implemented. The computing system

environment 100 is only one example of a suitable computing environment and is not

intended to suggest any limitation as to the scope of use or functionality of the invention.

Neither should the computing environment 100 be interpreted as having any dependency

or requirement relating to any one or combination of components illustrated in the

exemplary operating environment 100.

[0017] The invention is operational with numerous other general purpose or

special purpose computing system environments or configurations. Examples of well

known computing systems, environments, and/or configurations that may be suitable for

use with the invention include, but are not limited to, personal computers, server

computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based

systems, set top boxes, programmable consumer electronics, network PCs,

minicomputers, mainframe computers, distributed computing environments that include

any of the above systems or devices, and the like.

[0018] The invention may be described in the general context of computer-

executable instructions, such as program modules, being executed by a computer.

Generally, program modules include routines, programs, objects, components, data



MSFT-2566/302757.1 PA'TENT

0 structures, etc. that perform particular tasks or implement particular abstract data types.

The invention may also be practiced in distributed computing environments where tasks

O are performed by remote processing devices that are linked through a communications
00

network or other data transmission medium. In a distributed computing environment,

program modules and other data may be located in both local and remote computer

Sstorage media including memory storage devices.

0019] With reference to Figure 1, an exemplary system for implementing the00

invention includes a general purpose computing device in the form of a computer 110.

Components of computer 110 may include, but are not limited to, a processing unit 120, a

system memory 130, and a system bus 121 that couples various system components

including the system memory to the processing unit 120. The system bus 121 may be

any of several types of bus structures including a memory bus or memory controller, a

peripheral bus, and a local bus using any of a variety of bus architectures. By way of

example, and not limitation, such architectures include Industry Standard Architecture

(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video

Electronics Standards Association (VESA) local bus, and Peripheral Component

Interconnect (PCI) bus (also known as Mezzanine bus).

[0020] Computer 110 typically includes a variety of computer readable media.

Computer readable media can be any available media that can be accessed by computer

110 and includes both volatile and non-volatile media, removable and non-removable

media. By way of example, and not limitation, computer readable media may comprise

computer storage media and communication media. Computer storage media includes

both volatile and non-volatile, removable and non-removable media implemented in any

method or technology for storage of information such as computer readable instructions,

data structures, program modules or other data. Computer storage media includes,, but is

not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-

ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes,

magnetic tape, magnetic disk storage or other magnetic storage devices, or any other

medium which can be used to store the desired information and which can accessed by

computer 110. Communication media typically embodies computer readable instructions,

data structures, program modules or other data in a modulated data signal such as a



MSFT-2566/302757.1 PATENT

0 carrier wave or other transport mechanism and includes any information delivery media.

The term "modulated data signal" means a signal that has one or more of its

O characteristics set or changed in such a manner as to encode information in the signal.
00

C By way of example, and not limitation, communication media includes wired media such

as a wired network or direct-wired connection, and wireless media such as acoustic, RF,

infrared and other wireless media. Combinations of any of the above should also be

00 included within the scope of computer readable media.

[0021] The system memory 130 includes computer storage media in the form of

volatile and/or non-volatile memory such as ROM 131 and RAM 132. A basic

N 10 input/output system 133 (BIOS), containing the basic routines that help to transfer

information between elements within computer 110, such as during start-up, is typically

stored in ROM 131. RAM 132 typically contains data and/or program modules that are

immediately accessible to and/or presently being operated on by processing unit 120. By

way of example, and not limitation, Figure 1 illustrates operating system 134, application

programs 135, other program modules 136, and program data 137.

[0022] The computer 110 may also include other removable/non-removable,

volatile/non-volatile computer storage media. By way of example only, Figure 1

illustrates a hard disk drive 140 that reads from or writes to non-removable, non-volatile

magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, non-

volatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a

removable, non-volatile optical disk 156, such as a CD-ROM or other optical media.

Other removable/non-removable, volatile/non-volatile computer storage media that can

be used in the exemplary operating environment include, but are not limited to, magnetic

tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state

RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to

the system bus 121 through a non-removable memory interface such as interface 140, and

magnetic disk drive 151 and optical disk drive 155 are typically connected to the system

bus 121 by a removable memory interface, such as interface 150.

[0023] The drives and their associated computer storage media, discussed above

and illustrated in Figure 1, provide storage of computer readable instructions, data

structures, program modules and other data for the computer 110. In Figure 1, for



MSFT-2566/302757.1 PATENT

O example, hard disk drive 141 is illustrated as storing operating system 144, application

programs 145, other program modules 146, and program data 147. Note that these

O components can either be the same as or different from operating system 134, application
00

programs 135, other program modules 136, and program data 137. Operating system

144, application programs 145, other program modules 146, and program data 147 are

Sgiven different numbers here to illustrate that, at a minimum, they are different copies. A

0 user may enter commands and information into the computer 110 through input devices

such as a keyboard 162 and pointing device 161, commonly referred to as a mouse,

trackball or touch pad. Other input devices (not shown) may include a microphone,

N 10 joystick, game pad, satellite dish, scanner, or the like. These and other input devices are

often connected to the processing unit 120 through a user input interface 160 that is

coupled to the system bus, but may be connected by other interface and bus structures,

such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other

type of display device is also connected to the system bus 121 via an interface, such as a

video interface 190. In addition to the monitor, computers may also include other

peripheral output devices such as speakers 197 and printer 196, which may be connected

through an output peripheral interface 195.

[0024] The computer 110 may operate in a networked environment using

logical connections to one or more remote computers, such as a remote computer 180.

The remote computer 180 may be a personal computer, a server, a router, a network PC, a

peer device or other common network node, and typically includes many or all of the

elements described above relative to the computer 110, although only a memory storage

device 181 has been illustrated in Figure 1. The logical connections depicted include a

local area network (LAN) 171 and a wide area network (WAN) 173, but may also include

other networks. Such networking environments are commonplace in offices, enterprise-

wide computer networks, intranets and the Internet.

[0025] When used in a LAN networking environment, the computer 110 is

connected to the LAN 171 through a network interface or adapter 170. When used in a

WAN networking environment, the computer 110 typically includes a modem 172 or

other means for establishing communications over the WAN 173, such as the Internet.

The modem 172, which may be internal or external, may be connected to the system bus



MSFT-2566/302757.1 PATENT

O 121 via the user input interface 160, or other appropriate mechanism. In a networked

environment, program modules depicted relative to the computer 110, or portions thereof,

O may be stored in the remote memory storage device. By way of example, and not
00

limitation, Figure 1 illustrates remote application programs 185 as residing on memory

device 181. It will be appreciated that the network connections shown are exemplary and

Sother means of establishing a communications link between the computers may be used.

00
Exemplary Distributed Computing Frameworks Or Architectures

[0026] Various distributed computing frameworks have been and are being

developed in light of the convergence of personal computing and the Internet. Individuals
and business users alike are provided with a seamlessly interoperable and web-enabled

interface for applications and computing devices, making computing activities

increasingly web browser or network-oriented.

[0027] For example, Microsoft®'s .NET platform includes servers, building-

block services, such as web-based data storage, and downloadable device software.

Generally speaking, the .NET platform provides the ability to make the entire range of

computing devices work together and to have user information automatically updated and

synchronized on all of them, increased interactive capability for web sites, enabled by

greater use of XML rather than HTML, online services that feature customized access

and delivery of products and services to the user from a central starting point for the

management of various applications, such as e-mail, for example, or software, such as

Microsoft® Office®, centralized data storage, which will increase efficiency and ease

of access to information, as well as synchronization of information among users and

devices, the ability to integrate various communications media, such as e-mail, faxes,

and telephones, for developers, the ability to create reusable modules, thereby

increasing productivity and reducing the number of programming errors, and many

other cross-platform integration features as well.

[0028] While exemplary embodiments herein are described in connection with

software residing on a computing device, one or more portions of the invention may also

be implemented via an operating system, API, or a "middle man" object between a

coprocessor and requesting object, such that services may be performed by, supported in,



MSFT-2566/302757.1 PATENT

or accessed via all of .NET's languages and services, and in other distributed computing

Sframeworks as well.

00
Exemplary Embodiments

[0029] Figure 2 is a flow diagram of an exemplary method of maintaining an

Supdated file in accordance with the present invention. In this exemplary embodiment, a

client modifies a file and uploads the changes to a server. At step 200, the client receives00
a copy of the latest version ("Version of the base file that is stored at the server. The

client makes its changes to Version A to create a Version at step 210. At step 220,

1 0 the client saves a copy of the original Version A and the new Version Thus, the

client maintains a copy of the last known server state, even if the user updates the file. It

is contemplated that a copy of Version A can be stored at the client either before step 210

or after step 210.

[0030] A difference, or "diff', is then produced at step 230 by comparing

Versions A and A diff is a mechanism by which two versions of a file are compared

to generate a compressed diff that can be applied to the older file to generate the newer

one. The differencing may be performed by any method, technique, or system known to

those of skill in the art for determining the difference between a base form and a modified

form. A preferred difference that is generated is a binary difference. The file is

considered to be a series of bytes. A conventional compression algorithm is used to

generate the binary difference by calculating the difference between the shadow or base

copy and the copy as amended. This difference is then sent to the server, where it is

rejected or accepted. A rejection will occur if the base on the server has changed, in

which case the difference is of no use to the server. It is contemplated that any difference

engine or technique can be used in accordance with the present invention. The use of a

binary difference technique is provided herein for exemplary purposes.

[0031] In particular, at step 240, the client sends the diff to the server. The

server, after checking to be sure that its latest version of the base file has not changed

from the Version A that the client used in making the modification, applies the diff to

Version A to generate a new, latest version of the file, Version B, at step 250. The



MSFT-2566/302757.1 PATENT

O checking of versions performed by the server is described further below with respect to

Figures 3-6.

O [0032] The server stores the new Version B as well as the client-provided diff
000(optional), at step 260. The new Version B is considered to be the latest update of the

base file, and the diff is retained for use by other clients who may be making changes to

Sthe original Version A, as described further below with respect to Figures 3-6. The server

00" optionally stores the diff in order to provide other clients with an optimized update. If

multiple revisions are made, multiple diffs may be needed to get from an older version to(N
the newest one. It is noted that the diff may also be useful for clients who are not intent

to make changes, but instead want to read the latest Version B and already have Version

A.

[0033] At step 270, the server advises the client of the new version identifier

"Version The client then discards the diff that it had determined in step 230 as

well as the Version A it had stored, and the client marks its Version A' with the new

version identifier, at step 280. Thus, the client renames Version A' as Version B.

[0034] Figure 3 is a flow diagram of another exemplary method of maintaining

an updated file. In this example, a server provides a client with the latest changes in the

form of a diff file. At step 300, a client having Version A of a file requests an update of

the file. A client might make such a request, for example, because the client desires to

make changes to the latest version of the file. The client advises the server that the client

has Version A, and in response, the server returns the diff of A, at step 310. The server

may have been maintaining the diff of A from a previous client update step 260 in

Figure At step 320, the client applies the diff of A to its stored Version A to produce

the latest version of the file "Version 

[0035] Figure 4 shows a block diagram of an exemplary system that is helpful

in describing aspects of the present invention, and Figures 5 and 6 show a flow diagram

of an exemplary method of maintaining an updated file when two users are making

changes to the same base file. In this example, assume a server 400 maintains a base file

(Version and two clients 410, 420 (referred to herein as clients 1 and 2, respectively)

both desire to make changes to the same base file.



MSFT-2566/302757.1 PATENT

[0036] At step 500, both client 1 and client 2 request and receive the latest

version ("Version of the base file from the server 400 clients 1 and 2 download

O the base file). It is contemplated that clients 1 and 2 can make the changes to the base file
00 concurrently, or sequentially in time. However, only one client will be first in getlting its

changes to the original base file to the server. These changes are applied to the original

Sbase file. Thus, the first client who sends the difference to the server has that difference

accepted by the server. A subsequent client's difference based on the base file will be

rejected by the server. Therefore, the client that sends its changes to the original base file

later must first receive the updated base file, and then make changes to that updated base

file, as described below in more detail.

[0037] Assuming client 1 makes its changes first, the method proceeds similar

to steps 200 through 260 as set forth in Figure 2. That is, client 1 makes its changes to

Version A to create a Version at step 505. At step 510, client 1 saves a copy of the

original Version A and the new Version It is contemplated that a copy of Version A

can be stored at client 1 either before step 505 or after step 505. A diff (preferably, a

binary diff) is then produced at step 515 by comparing Versions A and A'.

[0038] At step 520, client 1 sends the diff to the server 400. When

synchronizing changes back to the server, the client verifies that the server supports the

diff mechanism and then uploads the "diff', along with the version information

specifying the version of the original file. The server 400, after checking to be sure that

its latest version of the base file has not changed from the Version A that the client used

in making the modification, applies the client 1-provided diff of Version A to generate a

new, latest version of the file, Version B, at step 525.

[0039] The server stores the new Version B as well as the client 1-provided diff,

at step 530. The new Version B is considered to be the latest update of the base file, and

the diff is retained for use by other clients client 2) who may be making changes to

the original Version A.

[0040] Similar to steps 270 and 280, although not shown in Figure 5, the server

400 advises client 1 of the new version identifier "Version Client 1 then

discards the diff that it had determined as well as its stored Version A, and the client



MSFT-2566/302757.1 PATENT

O marks its Version A' with the new version identifier. Thus, the client renames Version

A' as Version B.

O [0041] Meanwhile, at step 535, client 2 modifies the original base file Version
00 A it has received to create a new version, Version At step 540, client 2 saves a copy

of the original Version A and the new Version It is contemplated that a copy of

SVersion A can be stored at client 2 either before step 540 or after step 540. A diff is then

00t- produced at step 545 by comparing Versions A and A".00

[0042] At step 550, client 2 sends its diff of Version A to the server 400. The
,server 400 checks to see whether the base file that it is storing has changed from the base

file that client 2 has used as the basis for client 2's modifications.

[0043] If the server state of the base file has been cached in the local store

associated with the requesting client, a comparison takes place between the file in the

local store with. the state of the corresponding file on the server. This comparison is

conducted in order to determine whether the copy of the file stored in the local store is

the most recent version or whether a more recent version exists at the server. In other

words, the comparison addresses the possibility that another client has modified and

updated the requested file since the last time that the requesting client has obtained the

copy of the file. It should be noted that the comparison desirably includes the

transmission of an identifier representing the state of the file, without requiring

transmission of the entire file between client and server. In this manner, the comparison

reduces the network traffic that might otherwise be required and avoids transmitting the

same version of the file more than once.

[0044] Thus, at step 555, the server checks to be sure that its latest version of

the base file has not changed from the Version A that client 2 used in making the

modification. If the base file had not changed, then at step 590, the server 400 applies the

client 2-provided diff to the server-stored base file to generate a new, latest version of the

file, which the server stores along with the client 2-provided diff at step 595. The server

400 would advise client 2 of the new version identifier, and client 2 would then discard

the diff that it had determined as well as its stored Version A, and mark its modified

Version A" with the new version identifier.



M SFT-2566/302 757. 1 PATENT

[00451 However, in this example, client 1 has already provided changes to the

server 400, so the base file stored at the server has changed to Version B. Client 2 does

O not have a copy of Version B, and made its modifications to Version A of the file.
00

Therefore, because the base file has changed, the server 400 rejects the client 2-provided

diff, at step 560, and sends client 2 the client 1-provided diff to Version A that the server

O 400 had earlier received and stored (at step 530).

-[0046] At step 565, client 2 applies the client 1-provided diff of Version A to its00

stored Version A to get the latest server-stored version of the file (here, Version B).

Client 2 then determines the diff between the latest version and its modified Version A",

and sends the diff to the server 400, at steps 570 and 575, respectively. The server 400

applies the new diff to its stored latest version (Version at step 580, to generate the

new, latest version (here, Version At step 585, the server 400 stores the new, latest

version as well as the newly received diff. Similar to steps 270 and 280, although not

shown in Figure 5, the server 400 advises client 2 of the new version identifier 

"Version Client 2 then discards the diff that it had determined as well as its stored

version, and the client marks its Version A" with the new version identifier. Thus, the

client renames Version A" as Version C.

[0047] Rather than automatically saving a modified version at a server, it is

contemplated that a user, such as an administrator, could determine how changes should

be integrated. This may avoid content conflicts with a previous user's changes.

[0048] It is noted that the diff can be determined either before or after the server

has indicated approval to accept the diff. Thus, for increased efficiency, the client may

wait until the server has indicated that the client has made changes to the same version of

the base file that the server is currently maintaining as the latest version. Only then

would the client determine the diffand provide it to the server. Desirably, the server does

not calculate the difference, and instead only applies the difference.

[0049] A situation is contemplated in which one client makes multiple uploads,

before another client connects with the server to provide its changes. For example,

assume the original base file is version A. Client 1 then makes changes and these

changes are accepted as version B. If client 1 makes further changes and provides them

to the server, this new, latest version will be saved as Version C. Desirably, the server



MSFT-2566/302757.1 PATENT

O saves the difference between Versions A and B, and the difference between Versions B

and C. Thus, when another client makes its changes, the server will send the difference

0 between Versions A and B, and the difference between Versions B and C to that client,
000preferably in the same message. The client then recreates Version B, then Version C, and

determines the difference between Version C and its changes, and provides this

difference to the server.

00 [0050] If an out of date client connects to the server to get the latest version, it00

Stells the server which version it has, and if the stored diffs date back to that version, the(N
appropriate diff or diffs are returned along with the current version ID. Preferably, the

N 10 server maintains all the diffs between the various versions that it receives during

processing, in order to accommodate those clients who may be still making changes to

old versions to be "backward compatible" to old versions of the base file).

However, at some point, the server can delete or otherwise remove previously stored diffs

that it has been maintaining. Such action may be prompted, for example, by date or

storage capacity.

10051] Desirably, HyperText Transport Protocol (HTTP) is used to transmit the

diffs. In particular, protocol extensions may be used to alert the server that a diff is being

transmitted or otherwise implemented or incorporated within the message.

[0052] HTTP has emerged as the standard mechanism by which information is

transported over TCP/IP (Transmission Control Protocol/Internet Protocol) compatible

networks, such as the Internet, intranets, and extranets. HTTP is more specifically an

application-level protocol for distributed, collaborative, hypermedia information systems.

It is a generic, stateless, protocol that can be used for many tasks beyond its use for

hypertext, such as name servers and distributed object management systems, through

extension of its request methods, error codes and headers. It is referred to as a transport

protocol, because information is transported according to its specifications, and is also

referred to as a request-response protocol, since information is exchanged by a client

making a request of a server, which generates a response thereto. HTTP as referred to

herein refers generally to any standard of HTTP, and available on the website

http://www.w3.org.



MSFT-2566/302757.1 PATENT

[00531 A common use of HTTP is the transport of information formatted

according to a markup language. For example, a popular application of the Internet is the

O browsing of world-wide-web pages thereof. In such instances, typically the information
000 retrieved is in HyperText Markup Language (HTML) format, as transported according to

HTTP. However, other standard markup languages are emerging. One such markup

O language is eXtensible Markup Language (XML). XML describes a class of data objects

that are referred to as XML documents, and partially describes the behavior of computer00
programs that process them. A primary difference between HTML and XML is that

within the former, information content is intertwined with the layout of the content,

making their separation difficult, for example. Conversely, within XML a description of

the storage layout and logical structure of content is maintained separate from the content

itself. However, both XML and HTML are derivatives of a markup language known as

Standard Generalized Markup Language (SGML). XML as referred to herein refers

generally to any standard of XML, as described on the website http://www.w3.org.

[0054] To maintain backward compatibility and interoperability, for example,

an extended HTTP header in an OPTIONS response may be used to allow the client to

discover that the server supports binary diffs. An extended header in GET requests

notifies the server that the client accepts diffs.

[0055] Either the client or the server can choose not to use the binary diff. In

some cases, it may be possible that the message sending the diff the HTTP binary

diff header) will be larger than the file itself. In such a case, it may be more desirable to

send the document instead of the diff between the server and the clients. The client may

determine that the diff size is bigger than the new file. This can happen, for example, if

the new file has 0 bytes. The server can decide to discard the diffs to save storage space.

If a diff is not used, the whole file is sent. To signal when a diff is sent, the client may

send the extended header(s) with its PUT request to indicate the presence of a binary diff

in the body and the version number of the base file the diff is generated from. The server

sends the extended header(s) with its GET response to indicate the presence of a binary

diff chain, the version number of the base file, and the number of diffs in the chain.



MSFT-2566/302757.1 PATENT

O [0056] When multiple diffs are needed to bring the client file up to date, the

server can choose either to chain the diff together in a single reply or if the sum of the

O diff is bigger than the new version, send back the new version itself.
00 [0057] An engine for calculating and applying the diffs is preferably provided

within the clients and/or server(s). Protocol for discovery and diff/version management

Sis also preferably implemented. Extended HTTP headers allow the client and server to

express their capability with respect to differencing. For example, the client sends the00
Sextended header(s) with its PUT request to indicate the presence of a binary diff in the

body and the version number of the base file the diff is generated from. The server sends

the extended header(s) with its GET response to indicate the presence of a binary diff

chain, the version number of the base file, and the number of diffs in the chain

[0058] The server code desirably is capable of managing diffs to apply (using

the engine), store, and return diffs, and each client preferably has the ability to maintain

server state, generate diffs, transmit diffs to server, and apply returned diffs.

[0059] Replication is broadly used by a wide variety of applications, but the

cost and performance of these systems is a constant challenge. The present invention

leverages the nature of replication (known client/server state) to make a major leap in

efficiency of the system. The present invention can be applied to systems replicating

large files that are routinely updated, such as products that allow server-based documents

or files to be accessed offline.

[0060] As mentioned above, while exemplary embodiments of the present

invention have been described in connection with various computing devices, the

underlying concepts may be applied to any computing device or system.

[0061] The various techniques described herein may be implemented in

connection with hardware or software or, where appropriate, with a combination of both.

Thus, the methods and apparatus of the present invention, or certain aspects or portions

thereof, may take the form of program code instructions) embodied in tangible

media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable

storage medium, wherein, when the program code is loaded into and executed by a

machine, such as a computer, the machine becomes an apparatus for practicing the

invention. In the case of program code execution on programmable computers, the



MSFT-2566/302757.1 PATENT

computing device will generally include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least

O one input device, and at least one output device. The program(s) can be implemented in
00

assembly or machine language, if desired. In any case, the language may be a compiled

or interpreted language, and combined with hardware implementations.

[0062] The methods and apparatus of the present invention may also be

00 practiced via communications embodied in the form of program code that is transmitted

over some transmission medium, such as over electrical wiring or cabling, through fiber

optics, or via any other form of transmission, wherein, when the program code is received

10 and loaded into and executed by a machine, such as an EPROM, a gate array, a

programmable logic device (PLD), a client computer, or the like, the machine becomes

an apparatus for practicing the invention. When implemented on a general-purpose

processor, the program code combines with the processor to provide a unique apparatus

that operates to invoke the functionality of the present invention. Additionally, any

storage techniques used in connection with the present invention may invariably be a

combination of hardware and software.

[0063] While the present invention has been described in connection with the

preferred embodiments of the various figures, it is to be understood that other similar

embodiments may be used or modifications and additions may be made to the described

embodiments for performing the same function of the present invention without deviating

therefrom. Therefore, the present invention should not be limited to any single

embodiment, but rather should be construed in breadth and scope in accordance with the

appended claims.

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or

"comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or group of

integers or steps.



MSFT-2566/302757.1 17 PATENT

SThe reference to any prior art in this specification is not, and should not be taken

as, an acknowledgment or any form of suggestion that that prior art forms part of the

0 common general knowledge in Australia
00

00
0q



MSFT-2566/302757.1 PATENT

O THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

O 1. A method of maintaining an updated file, comprising:
00

storing a first copy and a second copy of a base file at a first device;

receiving changes to the first copy at the first device;

Sdetermining a first difference between the changed first copy and the second

00 copy;

Stransmitting the first difference to a server; and

accepting the first difference at the server if the base file at the server is the same

10 as the base file that was stored at the first device, otherwise rejecting the first difference

at the server.

2. The method of claim 1, further comprising receiving the first copy of the file at the

first device from the server, and making a second copy of the file at the first device, prior

to storing the first copy and the second copy of the file at the first device.

3. The method of claim 1, wherein determining the first difference comprises using

binary comparisons between the changed first copy and the second copy.

4. The method of claim 1, wherein the first difference is a binary diff.

The method of claim 1, wherein if the difference is rejected at the server, then

transmitting a second difference from the server to the first device, and applying the

second difference to the second copy of the base file stored at the first device.

6. The method of claim 1, further comprising determining if the base file at the server is

the same as the base file that was stored on the first device.

7. The method of claim 1, wherein transmitting the first difference comprises utilizing

extensions to the HTTP protocol.



MSFT-2566/302757.1 PATENT

O 8. The method of claim 1, further comprising:

storing a first copy and a second copy of the base file at a second device;

O receiving changes to the first copy at the second device;
00

determining a second difference between the changed first copy and the second

copy;

O transmitting the second difference to the server; and

00t- accepting the second difference at the server if the base file at the server is the

same as the base file that was stored at the second device, otherwise rejecting the second

difference at the server.

cN]ION 

9. The method of claim 8, further comprising, if rejecting the second difference at the

server, then transmitting a third difference to the second client, and applying the third

difference to the second copy of the base file stored at the second device.

10. The method of claim 8, further comprising receiving the first copy of the file at the

second device from the server, and making a second copy of the file at the second device,

prior to storing the first copy and the second copy of the file at the second device.

11. The method of claim 8, wherein determining the second difference comprises using

binary comparisons between the changed first copy and the second copy at the second

device.

12. The method of claim 8, wherein the second difference is a binary diff.

13. The method of claim 8, further comprising determining if the base file at the server is

the same as the base file that was stored on the second device.

14. The method of claim 8, wherein transmitting the second difference comprises

utilizing extensions to the HTTP protocol.



MSFT-2566/302757.1 PATENT

A computer-readable medium having stored thereon computer-executable

instructions for performing a method of maintaining an updated file, comprising:

O storing a first copy and a second copy of a base file at a first device;
00

receiving changes to the first copy at the first device;

determining a first difference between the changed first copy and the second

copy;

00t- transmitting the first difference to a server; and00

accepting the first difference at the server if the base file at the server is the same

as the base file that was stored at the first device, otherwise rejecting the first difference

N 10 at the server.

16. The computer-readable medium of claim 15, further comprising computer-executable

instructions for receiving the first copy of the file at the first device from the server, and

making a second copy of the file at the first device, prior to storing the first copy and the

second copy of the file at the first device.

17. The computer-readable medium of claim 15, wherein determining the first difference

comprises using binary comparisons between the changed first copy and the second copy.

18. The computer-readable medium of claim 15, wherein the first difference is a binary

diff.

19. The computer-readable medium of claim 15, further comprising computer-executable

instructions for, if the difference is rejected at the server, transmitting a second difference

from the server to the first device, and applying the second difference to the second copy

of the base file stored at the first device.

The computer-readable medium of claim 15, further comprising computer-executable

instructions for determining if the base file at the server is the same as the base file that

was stored on the first device.



MSFT-2566/302757.1 PATENT

S 21. The computer-readable medium of claim 15, wherein transmitting the first difference

comprises utilizing extensions to the HTTP protocol.
O
00

22. The computer-readable medium of claim 15, further comprising computer-executable

instructions for:

Sstoring a first copy and a second copy of the base file at a second device;

receiving changes to the first copy at the second device;

Sdetermining a second difference between the changed first copy and the second

copy;

N 10 transmitting the second difference to the server; and

accepting the second difference at the server if the base file at the server is the

same as the base file that was stored at the second device, otherwise rejecting the second

difference at the server.

23. The computer-readable medium of claim 22, further comprising computer-executable

instructions for, if the second difference is rejected at the server, transmitting a third

difference to the second client, and applying the third difference to the second copy of the

base file stored at the second device.

24. The computer-readable medium of claim 22, further comprising computer-executable

instructions for receiving the first copy of the file at the second device from the server,

and making a second copy of the file at the second device, prior to storing the first copy

and the second copy of the file at the second device.

25. The computer-readable medium of claim 22, wherein determining the second

difference comprises using binary comparisons between the changed first copy and the

second copy at the second device.

26. The computer-readable medium of claim 22, wherein the second difference is a

binary diff.



MSFT-2566/302757.1 22 PATENT

O 27. The computer-readable medium of claim 22, further comprising computer-executable

instructions for determining if the base file at the server is the same as the base file that

O was stored on the second device.
000

28. The computer-readable medium of claim 22, wherein transmitting the second

O difference comprises utilizing extensions to the HTTP protocol.

00

29. A system for use in a file synchronization system, comprising:

a storage device for storing a first copy and a second copy of a base file;

N 10 an input device for receiving changes to the first copy of the base file; and

a processor for changing the first copy based on the received changes, and

determining a difference between the changed first copy and the second copy.

The system of claim 29, wherein the difference is a binary difference.

31. The system of claim 29, wherein the base file resides on a server, and further

comprising an output device for transmitting the difference to the server.

32. The system of claim 29, wherein the difference is transmitted to the server using

extensions to the HTTP protocol.

33. The system of claim 29, further comprising a device for receiving a second

difference, wherein the processor applies the second difference to the second copy of the

base file to generate a modified second copy, applies the received changes to the

modified second copy to generate a third copy, and determines a third difference between

the third copy and the modified second copy.

34. The system of claim 33, further comprising an output device for transmitting the

third difference to a server.

A system for use in a file synchronization system, comprising:



MSFT-2566/302757.1 23 PATENT

Sa storage device for storing a base file;

an input device for receiving a difference from a client device; and

O a processor for determining if the difference is applicable to the stored base file,
00

and if so, applying the difference to the base file, otherwise indicating to the client device

that the difference is rejected.

00 36. The system of claim 35, wherein the difference is a binary difference.

37. The system of claim 35, wherein the difference is received in the form of extensions

C 10 to the HTTP protocol.

38. The system of claim 35, wherein if the difference is rejected by the processor, a

second difference is retrieved from the storage device and transmitted to the client device

via an output device.

39. The system of claim 38, wherein the second difference is received from a second

client device.

The system of claim 35, wherein the difference is applicable to the stored base file if

the base file is the same as a client base file that the client device used to generate to

the difference.

41. A method substantially as hereinbefore described with reference to the drawings.

42. A system substantially as hereinbefore described with reference to the drawings.

43. A computer-readable medium substantially as hereinbefore described with reference

to the drawings.



MSFT-2566/302757.1 PATENT

44. The steps, features, compositions and compounds disclosed herein or referred

to or indicated in the specification and/or claims of this application,

individually or collectively, and any and all combinations of any two or more

of said steps or features.

DATED this EIGHTH day of OCTOBER 2004

Microsoft Corporation

by DAVIES COLLISON CAVE

Patent Attorneys for the applicant(s)



2004218700 08 Oct 2004

Computing Environment
100

I
System Memory 130 
(ROM) 131 7 

BIOS 1331 1 0 Monitor 191

(RAM) 132 Processing 
Operating Unit Video Output

Interface Peripheral Printer196
System 134 120 190 Interface 195

Application System Bus 121 T Speakers 19 7
Programs 135

Other Program Non-Removable Removable
Modules 136 Non-Volatile Non-Volatile User Input Network Local Area

Memory Memory Interface Interface Network
Interface 140 Interface 15d 160 170

Program 
Data 137 171

141

-15 



200
200 Client receives Version A

210
210 Client modifies Version A

to create Version A'

Server applies Diff of A
original Version A to
generate Version B

Server stores Version
and Diff of A

220

230 

240

Client preserves Version
A and Version A'

to /250

S260

270Client compares Versions
A and A' to produce

Diff of A

Server advises client c
new version ID

Client sends Diff of A to
server

Client discards Diff of A /280

and Version A and marks
Version A' as Version B

r

Fig. 2



300
Client with Version A
requests an updatev[

Server returns Diff of A
310

Client applies Diff of A to
its Version A to produce

Version B

S320

Fig. 3



2004218700 08 Oct 2004

0

0

CD

-El, w00 0

CD C

00000013l000 J

0 C

CD D

cnI



500
Client 1 and 2 each
receive Version A

505
Client 1 modifies Version

A to create Version A'

535
Client 2 modifies Version
A to create Version A"

510
Client 1 preserves

Version A and Version A'

T

Client 2 preserves
Version A and Version A"

540

I
JI

515 1 Client 1 compares
Versions A and A' to

produce Diff of A

520 Client 1 sends Diff of A to
server

Client 2 compares 545
Versions A and A" to

produce Diff of A

525

530

Server applies Diff of A to
original Version A to
generate Version B

Server stores Version B
and Diff of A

Fig. 



6/6

A

555

No
Server applies Diff of A to 590

original Version A to
generate Version B

Yes

560\1 Server rejects the client 2
Diff to A, and sends the

client 1 Diff of A to client 2

565 Client 2 applies the client
1 Diff of A to its stored

Version A to get the latest

595
Server stores Version B

and Diff of A

570 Client 2 determines the
Diff between the latest
and client 2 Version A"

575
Client 2 sends new Diff to

server

580 Server applies new Diff to
Version B to generate

Version C

585
Server stores Version C

and new Diff

Fig. 6


	Abstract
	Description
	Claims
	Drawings

