(12) (19) (CA) **Demande-Application**

OPIC
OFFICE DE LA PROPRIÉTÉ
INTELLECTUELLE DU CANADA

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21) (A1) **2,237,138**

(22) 1998/07/09(43) 1999/01/10

- (72) ANAZAWA, Hideharu, JP
- (72) SHIMADA, Hiroko, JP
- (72) SUGIMOTO, Seiji, JP
- (72) SUDA, Tatsuo, JP
- (72) SHINKI, Toshimasa, JP
- (72) SARUTA, Takao, JP
- (72) ISHIMURA, Yuzuru, JP
- (72) HAYASHI, Matsuhiko, JP
- (72) WAKINO, Shu, JP
- (72) MONKAWA, Toshiaki, JP
- (72) YOSHIDA, Tadashi, JP
- (72) SUZUKI, Hiromichi, JP
- (71) KYOWA HAKKO KOGYO CO., LTD., JP
- (51) Int.Cl. 6 C12N 15/53, G01N 33/573, C07K 16/40, C12P 7/22, C12N 9/02
- (30) 1997/07/10 (185399/97) JP
- (30) 1997/11/25 (322651/97) JP
- (54) 25-HYDROXYVITAMINE D₃-1.ALPHA.-HYDROXYLASE ET ADN CODANT POUR L'HYDROXYLASE
- (54) **25-HYDROXYVITAMIN D₃-1.ALPHA.-HYDROXYLASE AND DNA ENCODING THE HYDROXYLASE**

(57) L'invention concerne un polypeptide ayant l'activité de la 25-hydroxyvitamine D₃-1.alpha.-hydroxylase, utile pour prévenir, diagnostiquer et traiter les maladies chez les adultes, comme l'ostéoporose provoquée par la diminution de la vitamine D₃ active, et pour catalyser la dernière étape de l'activation de la vitamine D₃; et le gène codant pour le polypeptide. L'invention fournit : un polypeptide ayant l'activité de la 25-hydroxyvitamine D₃-1.alpha.-hydroxylase, de l'ADN codant pour le polypeptide, un ADN recombiné préparé par insertion de l'ADN dans un vecteur, un transformant portant l'ADN recombiné, une méthode de préparation de la 25-hydroxyvitamine D₃-1.alpha.-hydroxylase au moyen du transformant, une méthode de préparation de la 1.alpha., 25-hydroxyvitamine D₃ consistant à utiliser le polypeptide ayant l'activité de la 25-hydroxyvitamine D₃-1.alpha.-hydroxylase et un anticorps reconnaissant le polypeptide.

(57) The present invention relates to a polypeptide having 25-hydroxyvitamin D₃-1.alpha.-hydroxylase activity, being useful for the prevention, diagnosis and therapeutic treatment of adult diseases such as osteoporosis induced by the decrease of active type vitamin D₃ and catalyzing the final stage of vitamin D₃ activation; and the gene encoding the polypeptide. In accordance with the present invention, the following can be provided; a polypeptide having 25-hydroxyvitamin D₃-1.alpha.-hydroxylase activity, DNA encoding the polypeptide, a recombinant DNA prepared by inserting the DNA in a vector, a transformant carrying the recombinant DNA, a method for preparing 25-hydroxyvitamin D₃-1.alpha.-hydroxylase by using the transformant, a method for preparing 1.alpha., 25-dihydroxyvitamin D₃ comprising using the polypeptide having 25-hydroxyvitamin D₃-1.alpha.hydroxylase activity, and an antibody recognizing the polypeptide.

ABSTRACT OF THE DISCLOSURE

The present invention relates to a polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity, being useful for the prevention, diagnosis and therapeutic treatment of adult diseases such as osteoporosis induced by the decrease of active type vitamin D_3 and catalyzing the final stage of vitamin D_3 activation; and the gene encoding the polypeptide.

5

10

15

In accordance with the present invention, the following can be provided; a polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, DNA encoding the polypeptide, a recombinant DNA prepared by inserting the DNA in a vector, a transformant carrying the recombinant DNA, a method for preparing 25-hydroxyvitamin D_3 -1 α -hydroxylase by using the transformant, a method for preparing 1 α , 25-dihydroxyvitamin D_3 -comprising using the polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, and an antibody recognizing the polypeptide.

25-HYDROXYVITAMIN D $_3$ -1 α -HYDROXYLASE AND DNA ENCODING THE HYDROXYLASE

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

The present invention relates to a polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity, DNA encoding the polypeptide, a recombinant DNA prepared by inserting the DNA in a vector, a transformant carrying the recombinant DNA, a method for preparing 25-hydroxyvitamin D_3 - 1α -hydroxylase by using the transformant, a method for preparing 1α , 25-dihydroxyvitamin D_3 by using the polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity and to an antibody recognizing the polypeptide.

15

20

25

30

35

10

2. Prior Art

Active type vitamin D_3 has been known as a hormone having various biological actions such as the action of controlling calcium metabolism, the induction of cellular differentiation, and immunomodulation.

It has been known that active type vitamin D_3 is generated from vitamin D_3 having no biological actions through the metabolism in biological organisms.

As one of the action mechanisms of active type vitamin $D_{3,}$ an action mechanism through cytoplasmic receptors have been known.

It has been known that active type vitamin D, is essentially 1α , 25-dihydroxyvitamin D, wherein the positions 1α and 25 have been hydroxylated. As to the metabolic pathway for the activation, it has been known that vitamin D, is firstly modified into 25-hydroxyvitamin D, by introducing a hydroxyl group into the position 25 and the position 1α of the resulting 25hydroxyvitamin D, is hydroxylated to form 1α, 25dihydroxyvitamin D, [All of vitamin D, edited by Etsuro Ogata, Tateo Suda, and Yosuke Ogura, Kodansha Scientific, Co. (1993)].

As 25-hydroxylase gene which functions to introduce a hydroxyl group into the position 25, a gene derived from rat liver has been cloned (Japanese Published Unexamined Patent Application No.2324893/1991). Furthermore, the gene of the hydroxylase of the position 24 of vitamin D₃ has been cloned [Japanese Published Unexamined Patent Application No.207196/1992].

As an enzyme to hydroxylate the position 1α of vitamin D₃, human CYP27 has been reported [Proc. Natl. Acad. Sci., USA, <u>91</u>, 10014 (1994)], but the activity of the enzyme to hydroxylate the position 1 α is a secondary activity, so the activity is very weak, which is not an essential activity. Additionally, the activity is not inducible.

It has been known that 25-hydroxyvitamin D_3 -1 α -hydroxylase activity is induced in the kidneys of rats and chickens fed with vitamin D_3 deficient diet [Gerontology, <u>42</u> (Supplement 1), 67-77 (1996)].

Up to now, no report has been presented yet in any of animal species, concerning the isolation of any enzyme polypeptide catalyzing the final stage of vitamin D_3 activation to hydroxylate the most significant position 1α , or the isolation of a gene encoding the polypeptide.

As a method for producing 1α , 25-dihydroxyvitamin D_3 , a method comprising the use of kidney homogenates or mitochondria fractions of animals such as chicken has been known [Nature, 230, 228 (1971); J. Biol. Chem., 247, 7528 (1972); Biochemistry, 25, 5512 (1986)], but the method requires a vast amount of animal kidney or liver and demands laborious works to prepare them, so the method is insufficient and is not practical. It has been found a microorganism having activity to directly induce hydroxyl groups into the positions 1α and 25 (Japanese Published Examined Patent Application No.64678/1992), but the activity is very weak and substrate specificity is low, so it is difficult to separate the product and byproducts.

35

10

15

20

25

30

SUMMARY OF THE INVENTION

An object of the present invention is to provide a polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity and a gene encoding the polypeptide. 25-hydroxyvitamin D_3 -1 α -hydroxylase catalyzes the final stage of vitamin D_3 activation, and is useful for prevention, diagnosis and therapeutic treatment of diseases such as osteoporosis induced by the decrease of active type vitamin D_3 .

The present invention relates to a polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity, DNA encoding the polypeptide, a recombinant DNA prepared by inserting the DNA in a vector, a transformant carrying the recombinant DNA, a method for producing 25-hydroxyvitamin D_3 - 1α -hydroxylase by using the transformant, a method for producing 1α , 25-dihydroxyvitamin D_3 by using the polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity and an antibody recognizing the polypeptide.

10

15

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

Fig.1 is an HPLC chart of the identified vitamin D₃ metabolites in cells to which pcMD3R or pcDNA3 is introduced, wherein "A" shows the results of the identification of vitamin D₃ metabolites in the cells to which pcMD3R is introduced; and "B" represents the results of vitamin D₃ metabolites in the cells to which pcDNA3 is introduced, wherein (1) represents 25-hydroxyvitamin D₃; (2) represents 24, 25-dihydroxyvitamin D₃; (3) represents 10-oxo-19-nor-25-hydroxyvitamin D₃ and (4) represents α, 25-dihydroxyvitamin D₃.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described in detail. As the polypeptide of the present invention, any polypeptide having 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase activity may be used, for example including a polypeptide having an amino acid sequence selected from amino acid sequences

represented by SEQ ID NOS.1 and 2, or having an amino acid sequence in which one or more amino acid residues are deleted, substituted or added in the amino acid sequence of a polypeptide, the amino acid sequence being selected from amino acid sequences represented by SEQ ID NOS.1 and 2, and having 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase activity.

The polypeptide having an amino acid sequence in which one or more amino acid residues are deleted, substituted or added in the amino acid sequence, the amino acid sequence being selected from amino acid sequences represented by SEQ ID NOS.1 and 2, and having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity may be prepared according to the method described in Nucleic Acids Research, 10, 6487 (1982); Proc. Natl. Acad. Sci., USA, 79, 6409 (1982); Proc. Natl. Acad. Sci., USA, 81, 5662 (1984); Science, 224, 1431 (1984); PCT WO85/00817 (1985); Nature, 316, 601 (1985); Gene, 34, 315 (1985); Nucleic Acids Research, 13, 4431 (1985); Current Protocols in Molecular Biology, Chapter 8. Mutagenesis of Cloned DNA, John Wiley & Sons, Inc. (1989); and the like.

DNA of the present invention includes DNA encoding the polypeptide of the present invention, for example, DNA encoding the polypeptide having an amino acid sequence selected from amino acid sequences represented by SEQ ID NOS.1 and 2, DNA encoding the polypeptide having an amino acid sequence in which one or more amino acid residues are deleted, substituted or added in the amino acid sequence selected from amino acid sequences represented by SEQ ID NOS.1 and 2, and having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, DNA comprising a nucleotide sequence selected from SEQ ID NOS.3 and 4, or DNA hybridizable with these DNAs under stringent conditions.

In the present application, "DNA hybridizable under stringent conditions" means DNA recovered by using the DNA encoding the polypeptide having 25-hydroxyvitamin D $_3$ -1 α -hydroxylase activity as a probe through colony hybridization, plaque hybridization or Southern blot hybridization or the like,

specific example of which includes DNA identified by hybridization in the presence of 0.7 to 1.0 M NaCl at 65 °C by using a filter on which a DNA prepared from colonies or plaques is immobilized and then rinsing the filter at a condition of 65 °C by using 0.1 to 2 x SSC solutions (the composition of 1 x SSC solution is as follows; 150 mM NaCl and 15 mM sodium citrate).

The hybridization can be carried out according to the method described in Molecular Cloning, A Laboratory Manual, 2-nd edition, Sambrook, Fritsch & Maniatis, eds., Cold Spring Harbor Laboratory Press (1989) (referred to as "Molecular Cloning, 2-nd edition" hereinafter), Current Protocols in Molecular Biology, Supplement 1 to 34, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995) or the like. Hybridizable DNA includes for example DNA having homology of 60 % or more, preferably 80 % or more, more preferably 95 % or more to the nucleotide sequence of the DNA encoding the polypeptide having an amino acid sequence selected from amino acid sequences represented by SEQ ID NOS.1 and 2.

10

15

20

30

35

The antibody of the present invention includes antibodies recognizing the polypeptide described above.

MODE FOR CARRYING OUT THE INVENTION

The present invention will now be described in detail below.

1) Preparation of cDNA library from mRNA derived from rat kidney

From tissues, for example kidney of a rat fed with vitamin D_3 deficient diet to induce 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, mRNA [sometimes referred to as poly(A) † RNA] is prepared.

Method for preparing such mRNA includes a method comprising preparing the whole RNA from the rat tissues and preparing then mRNA as poly(A)*RNA by using the oligo (dT) immobilized cellulose column method [Molecular Cloning, 2-nd edition]; a method comprising directly preparing mRNA from rat tissues by using kits such as Fast Track mRNA Isolation kit manufactured

by Invitrogen, Co, and Quick Prep mRNA Purification Kit, manufactured by Pharmacia, Co. and the like.

Method for preparing the whole RNA includes thiocyanate guanidine-trifluoroacetic acid cesium method [Methods in Enzymol., <u>154</u>, 3 (1987)], AGPC method [Experimental Medicine, 9, 1937 (1991)] and the like.

5

15

20

25

30

35

The whole RNA and mRNA may be prepared from rat tissues with no induction of 25-hydroxyvitamin D_3 -1 α -hydroxylase activity by similar method described above.

By using the mRNA prepared above, a cDNA library is prepared by a conventional method.

Method for preparing the cDNA library includes for example a method for preparing a cDNA library, comprising synthesizing cDNA from the mRNA derived from the kidney resected from a rat with 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase activity induced, by using ZAP-cDNA synthesis kit manufactured by Stratagene, Co., cDNA Synthesis System manufactured by GIBCO BRL, Co. and the like, ligating then an adapter with a digestible site with an appropriate restriction enzyme, digesting a cloning vector λ ZAP II with the restriction enzyme, and inserting the cDNA into the digested site of the cloning vector.

As the cloning vector to prepare the cDNA library, any cloning vector capable of autonomously replicating in Escherichia coli K12 may be used.

The cloning vector includes for example phage vector, plasmid vector and the like, preferably including λ ZAP II described above, in addition to pUC18, pBluescript (Stratagene, Co.) and the like.

As a host microorganism, any microorganism of species Escherichia coli may be used, preferably including Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000 and the like.

2) Selection of an amino acid sequence characteristic to vitamin D, hydroxylase

Screening a region with the amino acid sequence present in

common with both the hydroxylase of the position 25 of rat vitamin D_3 [Japanese Published Unexamined Patent Application No.232493/1991] and the hydroxylase of the position 24 thereof (Japanese Published Unexamined Patent Application No.207196/1992), the amino acid sequence present in the region is selected as the amino acid sequence characteristic to the hydroxylase of vitamin D_3 .

The region with the amino acid sequence includes for example adrenodoxin binding region (referred to as "Region A" hereinafter), heme binding region (referred to as "Region H" hereinafter) and the like.

10

15

20

25

30

35

3) Amplification of a partial fragment of DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase

Based on the amino acid sequence of the region selected in 2) above and with reference to the codons of rat, a sense primer and an antisense primer are designed and prepared, which are appropriate for the amplification of the DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase by polymerase chain reaction (referred to as "PCR" hereinafter).

Such primers include DNA comprising a nucleotide sequence selected from nucleotide sequences represented by SEQ ID NOS.7, 8 and 9.

Using the mRNA recovered in 1), first strand DNA is synthesized by reverse transcriptase reaction. DNA synthesis may be carried out using a cDNA synthetic kit manufactured by Stratagene, Co.

Using the first strand DNA as a template and utilizing the sense primers and antisense primers as prepared above, RT (reverse transcription)-PCR is carried out to amplify a DNA region containing a part of DNA encoding 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase.

Using the RT-PCR amplified fragments and 3' RACE system kit manufactured by BRL, Co., PCR amplification is carried out between the RT-PCR amplified fragment and the 3-terminal poly(A) structure to recover a longer PCR amplified fragment

additionally containing the noncoding region on 3' side.

More specifically, a PCR amplified fragment containing the 3' noncoding region can be recovered by synthesizing cDNA using the mRNA recovered in 1) and the oligo dT/AUAP primer in the 3' RACE system kit manufactured by BRL, CO. and conducting PCR amplification using the DNA as a template and using the AUAP primer in the 3' RACE system kit manufactured by BRL and the RT-PCR amplified fragment.

5

10

15

20

25

30

Using 5' RACE method in the same manner, a PCR amplified fragment containing the 5' region can be recovered.

It can be confirmed that the amplified DNA fragment is a partial fragment of the DNA encoding 25-hydroxyvitamin D_3 - 1α -hydroxylase by the following method.

Poly(A) RNAs derived from a rat induced with 25-hydroxyvitamin D_3 -1 α -hydroxylase activity and a non-induced rat are individually subject to agarose electrophoresis, and the poly(A) RNAs electrophoresed are then individually transferred onto each membrane filter in a conventional manner.

Using these membrane filters, Northern hybridization is carried out using the amplified DNA fragment as a probe.

By confirming that the amplified DNA fragment is hybridizable only when using the membrane filter prepared from the poly(A) † RNA derived from the rat induced with the activity, it is revealed that the DNA fragment is a partial fragment of the DNA encoding 25-hydroxyvitamin D₃-1 α -hydroxylase.

The amplified DNA fragment is then inserted into a plasmid, and the resulting plasmid can be used for nucleotide sequencing and the assay of expression specificity.

The method for inserting the fragment into a plasmid includes a method for inserting the fragment into a plasmid, comprising extracting the amplified DNA fragment from the agarose using a DNA purification kit (manufactured by Bio Rad Co.) and ligating the fragment with a vector pCRII (manufactured by Invitrogen, Co.).

35 4) Selection of a clone carrying DNA encoding 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase

A cDNA library is screened by labeling the amplified DNA fragment and subjecting the resulting fragment to colony- or plaque hybridization in a conventional manner.

The labeling of the amplified DNA fragment can be carried out using for example DIG labeling kit (#1 175 033, manufactured by Boehringer Mannheim, Co.). More specifically, a DIG-labeled amplified DNA fragment can be recovered by PCR using the amplified DNA fragment as a template and utilizing the kit.

5

10

15

20

25

30

35

The plaque hybridization method includes for example the following method.

The cDNA library (phage) prepared in 1) above is spread on an agar culture medium and cultivated to a final concentration of 10,000 to 20,000 plaques per one petri dish.

Hybond N⁺ membrane (manufactured by Amersham, Co.) is placed on the petri dish with plaques formed thereon to transfer the plaque DNA onto the membrane.

The transfer membrane is subject to alkali treatment (comprising for example immersing the membrane in $1.5\,\mathrm{M}$ NaCl, $0.5\mathrm{M}$ NaOH solution) and SDS treatment (comprising for example immersing in $2\,\mathrm{x}$ SSC, $0.1\,\mathrm{\%}$ SDS solution), rinsing and drying, and the resulting membrane is used for hybridization as a blotted membrane with the plaque DNA immobilized thereon.

The blotted membrane is immersed in a hybridization solution $[5 \times SSC, 0.1 \% Sarkosyl, 0.02 \% SDS, 1 \% blocking reagent for hybridization (manufactured by Boehringer Mannheim, Co.)] for 5 hours, and the labeled amplified DNA fragment which has been subjected to thermal treatment is added thereto for hybridization.$

After hybridization, the membrane is subject to rinsing [for example, rinsing twice in 2 x SSC and 0.1 % SDS at room temperature for 5 minutes, and rinsing twice in 0.1 x SSC and 0.1 % SDS at 60 °C for 15 minutes] and blocking [for example, blocking in 1 x blocking solution (manufactured Boehringer Mannheim Co.), 0.1 M maleic acid, 0.15 M NaCl, pH 7.5], and thereafter, the labeled amplified DNA is detected by a variable method, depending on the labeling mode of the labeled amplified

DNA fragment, whereby an objective clone can be selected.

When a DNA fragment labeled with DIG is used, for example, reaction with anti-DIG antibody labeled with AP and subsequent alkali treatment [for example, immersing in 0.1 M Tris-HCl (pH 9.5), 0.1 M NaCl and 50 mM MgCl₂ solution] are carried out, and a plaque hybridized with the probe is screened on an X-ray film using a DIG luminescence detection kit (#1 363 514, manufactured by Boehringer Mannheim, Co.) to select a clone containing DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase.

10

15

20

25

30

35

5) Recovery of DNA encoding 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase

From the clone recovered by the screening procedure described above in 4), DNA is isolated in a conventional manner to recover DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase.

DNA nucleotide sequencing can be done by common nucleotide sequencing methods, for example, the dideoxy method by Sanger et. al. [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] or by sequencing by using a nucleotide sequencer such as 373A·DNA sequencer [manufactured by Perkin Elmer, Co.].

As the gene sequence of 25-hydroxyvitamin D_3 -1 α -hydroxylase thus determined includes DNA comprising the sequence represented by SEQ ID NO.3 or 5.

Based on the DNA sequence thus determined by the method, an objective DNA may be prepared by chemical synthesis with a DNA sequencer. Such DNA sequencer includes a DNA sequencer based on the thiophosphite method, manufactured by Shimadzu, and a DNA sequencer Model 1392 based on the phosphoramidits method, manufactured by Perkin Elmer, Co.

The rat-derived 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase gene as recovered above can be used to recover 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase gene derived from other animals, for example, humans, by the following method.

The DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase as recovered above is labeled with α - ^{32}P -dCTP by using for example

Megaprime DNA labeling kit (manufactured by Amersham Co.). In the same manner as for the method described above in 1), a cDNA library is prepared from objective animal tissues, for example human kidney.

5 The cDNA library is screened by colony- or plaque hybridization using the labeled DNA fragment described in 4) above as a probe.

From the clone recovered through the screening, the objective DNA is isolated by the method as described in 5) above, and the nucleotide sequence is determined.

10

25

30

35

The nucleotide sequence having high homology to the nucleotide sequence of the gene of rat 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase is defined as DNA encoding 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase derived from the objective animal.

The gene includes for example human kidney-derived DNA comprising the sequence represented by SEQ ID NO. 4 or 6.

6) Production of 25-hydroxyvitamin D_3 -1 α -hydroxylase polypeptide

To express the DNA encoding 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase as recovered in 5) above in a host cell, the methods described in Molecular Cloning, 2-nd edition and Current Protocols in Molecular Biology, Supplement 1 to 34 and the like may be used.

More specifically, DNA recovered in 5) is modified into DNA fragments with appropriate lengths so that the DNA encoding 25-hydroxyvitamin D_3 - 1α -hydroxylase might be contained therein, by using restriction enzymes or DNases, which are then inserted into the downstream of a promoter in an expression vector, and then, the expression vector with the DNA inserted therein is introduced into a host cell appropriate for the expression vector.

Any host cell capable of expressing the objective gene may be used, including for example bacteria, yeast, animal cells and insect cells. As the expression vector, a vector, which is autonomously replicable in the host cell or possibly inserted into the chromosome and contains a promoter at the site on which the gene of 25-hydroxyvitamin D_3 -1 α -hydroxylase can be transcribed, may be used.

5

10

15

20

25

30

35

When procaryotic cells such as bacteria are used as such host cells, it is preferable that an expression vector of 25-hydroxyvitamin D_3 -1 α -hydroxylase gene is autonomously replicable in the procaryotic cells and the vector is composed of a promoter, a ribosome binding sequence, DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase and a transcription termination sequence. A gene regulating the promoter may be contained in the vector.

Such expression vector includes for example pBTrp2, pBTacl, pBTac2 (all commercially available from Boehringer Mannheim, pKK2-2 (manufactured by Pharmacia, Co.) (manufactured by Invitrogen, Co.), pGEMEX-1 (manufactured by Promega, Co.), pQE-8 (manufactured by QIAGEN, Co.), pKYP10 Published Unexamined Patent Application (Japanese No.110600/1983), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSA1 [Agric, Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci., USA, 82, 4306 (1985)], pBluescript (STRATAGENE, Co.), pTrs30 (FERM BP-5407), pTrs32 (FERM BP-5408), pGHA2 (FERM BP-400), pGKA2 (FERM BP-6798), pTerm2 (Japanese Published Unexamined Patent Application No.22979/1991, US4686191, US4939094, US5160735), pKK233-2 (manufactured by Pharmacia, Co.), pGEX (manufactured by Pharmacia, Co.), pET system (manufactured by Novagen, Co.) pSupex, pUB110, pTP5, and pC194 and the like.

Any promoter which can be expressed in host cells such as $Escherichia\ coli$ may be used, including for example promoters derived from $Escherichia\ coli$ and phages, for example trp promoter (Ptrp), lac promoter (Plac), P promoter, P promoter, and P promoter; SPO1 promoter, SPO2 promoter, penP promoter and the like. Additionally, artificially designed and modified promoters, such as a promoter of two

Ptrp's in series (Ptrp x 2) and tac promoter may be used.

Any ribosome binding sequence may be used, as long as the sequence may be expressed in host cells such as *Escherichia coli*. Preferably, a plasmid wherein the distance between the Shine-Dalgarno sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides) may be used.

To express 25-hydroxyvitamin D_3 - 1α -hydroxylase gene of the present invention, a transcription termination sequence is not necessarily required, but preferably, a transcription termination sequence is arranged immediately below the structural gene.

10

15

20

25

30

35

Examples of the host cell include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corvnebacterium, Microbacterium, Pseudomonas, and the like. include Escherichia coli Specific examples Eschericbia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No.49, Escherichia coli W3110, Escherichia coli NY49, Seratia ficaria, Seratia fonticola, Seratia liquefaciens, subtilis. Bacillus marcescens, Seratia Brevibacterium ammoniagenes, amyloliquefaciens, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 14067, Corynebacterium glutamicum ATCC 13869, Corynebacterium acetoacidophilum ATCC 13870, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas sp. D-0110 and the like.

As the method for introducing the recombinant vectors, any method for introducing DNA into the host cells may be used, including for example a method comprising the use of calcium ion [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], protoplast method (Japanese Published Unexamined Patent Application No.2483942/1988), and methods described in Gene, 17, 107 (1982) and Molecular & General Genetics, 168, 111 (1979).

In case of using yeast bacterial strains as host cells, expression vectors for example YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, and pHS15 may be used.

As the promoter, any promoter which can be expressed in yeast bacterial strains may be used. For example, promoters such as PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock protein promoter, MF α 1 promoter, CUP 1 promoter and the like may be listed.

5

10

15

20

25

30

35

Host cells used include for example Saccharomyces cerevisae, Shizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, and Schwanniomyces alluvius.

As the method for introducing the recombinant vectors, any method for introducing DNA into yeast cells may be used, for example, electroporation method [Methods. Enzymol., 194, 182 (1990)], spheroplast method [Proc. Natl. Acad. Sci. USA, 84, 1929 (1978)], lithium acetate method [Journal of Bacteriology, 153, 163 (1983)], a method described in Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) and the like.

In case of using animal cells as a host, the expression vector includes for example pcDNAI, pcDM8 (commercially available from Funakoshi, Co.), pAGE107 (Japanese Published Unexamined Patent Application No.22979/1991; Cytotechnology, 3, 133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No.227075/1990), pCDM8 [Nature, 329, 840 (1987)], pcDNAI/Amp (manufactured by Invitrogen, Co.), pREP4 (manufactured by Invitrogen, Co.), pAGE103 [J. Biochem., 101, 1307 (1987)], and pAGE210.

As a promoter, any promoter which can be expressed in animal cells may be used, including for example a promoter of IE (immediate early) gene of cytomegalovirus (human CMV), an early promoter of SV40 or a promoter of metallothionein, a promoter retrovirus, a heat shock promoter and an SR α promoter. Additionally, the enhancer of the IE gene of human CMV may be used in combination with such promoter.

Examples of the host cell include Namalwa cell, monkey cos cell, Chinese hamster CHO cell, HST5637 (Japanese Published

Unexamined Patent Application No.299/1988) and the like.

5

10

15

20

25

30

35

As the method for introducing recombinant vector into animal cells, any method for introducing DNA into animal cells may be used, e.g., electroporation method [Cytotechnology, 3, 133 (1990)], calcium phosphate method [Japanese Published Unexamined Patent Application No.227075/1990], lipofection method [Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)] and the method described in Virology, 52, 456 (1973)]. The preparation of a transformant and cultivation of the transformant may be carried out according to the method described in Japanese Published Unexamined Patent Application No.227075/1990 or Unexamined Patent Application Published Japanese No.257891/1990.

In case of using insect cells as a host, the protein may be expressed according to the methods described in Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York, 1992; Current Protocols in Molecular Biology, Supplement 1-38(1987-1997); Bio/Technology, 6, 47 (1988) and the like.

More specifically, the protein can be expressed by cointroduction of the transfer vector containing interest gene and helper DNA fragment of baculovirus into an insect cell to recover a recombinant virus in the supernatant of the culture of the insect cell and infecting an insect cell with the recombinant virus.

The transfer vector for gene introduction to be used in the method includes for example pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen, Co.) and the like.

As the helper DNA fragment of baculovirus, for example, Autographa californica nuclear polyhedrosis virus, which is a virus infecting insects of the family Barathra, may be used.

As such insect cell, Spodoptera frugiperda oocytes Sf9 and Sf21 [Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York, 1992], Trichoplusia ni oocytes High 5 (manufactured by Invitrogen Co.) and the like, may be used.

The method for co-introducing the the above-described transfer vector containing interest gene and the helper DNA fragment of baculovirus into insect cells to prepare the recombinant virus includes for example calcium phosphate method (Japanese Published Unexamined Patent Application No.227075/1990), lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)], and the like.

As the expression method of the gene, secretory production and expression of fused protein may be carried out according to the method described in Molecular Cloning, 2-nd edition and the like, in addition to direct expression.

10

15

20

25

30

35

When the gene is expressed in yeast, animal cells or insect cells, a glycosylated protein can be obtained.

The transformant thus obtained is cultivated in a culture medium to form polypeptide of the present invention in the culture, and the formed polypeptide is recovered from the culture, whereby the polypeptide of the present invention can be produced. The transformant of the present invention is cultivated in a culture medium according to a conventional method for use in cultivating hosts.

As the culture medium to cultivate a transformant recovered by using procaryotic organisms such as *Escherichia coli* or eucaryotic organisms such as yeast, any natural culture medium or any synthetic culture medium may be used, so long as it contains carbon sources, nitrogen sources, inorganic salts and the like which can be assimilated by the organisms.

Any carbon source which can be assimilated by the organisms may be used, including carbohydrates such as glucose, fructose, sucrose, molasses containing them, starch and starch hydrolysates; organic acids such as acetic acid and propionic acid; alcohols such as ethanol and propanol.

As such nitrogen sources, ammonia; ammonium salts of inorganic acids or organic salts, such as ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate; other nitrogen containing compounds; peptone; meat extract; yeast extract; corn steep liquor; casein hydrolysates; soy bean

meal; soy bean meal hydrolysates; various fermentation products, and digested products thereof, may be used.

As the inorganic substances, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like, may be used.

5

10

15

20

25

30

35

Cultivation is generally carried out under aerobic conditions, for example, by shaking culture or spinner culture under aeration. The cultivation is carried out at 15 to 40 °C for 16 hours to seven days at pH 3.0 to 9.0. The pH is adjusted with an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia and the like.

During cultivation, antibiotics such as ampicillin and tetracycline may be added to the culture medium, if necessary.

For cultivating microorganisms transformed with an expression vector prepared using an inducible promoter, an inducer may be added to the culture medium, if necessary. For cultivating microorganisms transformed with an expression vector prepared using <u>lac</u> promoter, for example, isopropyl- β -D-thiogalactopyranoside may be added to the medium; for cultivating microorganisms transformed with an expression vector prepared using <u>trp</u> promoter, for example, indole acrylic acid may be added to the medium.

As the culture medium for cultivating a transformant recovered by using animal cells as the hosts, RPMI 1640 culture medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM culture medium [Science, 122, 501 (1952)], Dulbecco's modified MEM culture medium [Virology, 8, 396 (1959)], DMEM culture medium (manufactured by GIBCO BRL, Co.), 199 culture medium [Proceedings of the Society for the Biological Medicine, 73, 1 (1950)] for conventional use or culture media prepared by adding fetal calf serum and the like to these culture media, may be used.

Generally, cultivation is carried out in the presence of 5% CO, at pH 6 to 8 at 30 to 40 °C for 1 to 7 days.

During cultivation, if necessary, antibiotics such as kanamycin and penicillin may be added to the culture medium.

As the culture medium to cultivate transformants recovered using insect cells as the hosts, culture medium for general use, such as TNM-FH culture medium [manufactured by Pharmingen, Co.], Sf-900 II SFM culture medium [manufactured by Life Technologies, Co.], ExCell 400, ExCell 405 [both manufactured by JRH Biosciences, Co.], Grace's Insect Medium [Grace, T.C.C., Nature, 195, 788 (1962)] and the like, may be used.

5

10

15

20

25

30

35

Cultivation is carried out at pH 6 to 7 at 25 to 30 °C for 1 to 5 days.

During cultivation, if necessary, antibiotics such as gentamycin may be added to the culture medium.

To isolate and purify the polypeptide expressed by the method described above from the culture of the transformant, conventional isolation and purification methods of enzymes may be used.

When the polypeptide of the present invention is expressed in cells at its dissolved state, a purified sample of the polypeptide is obtained as follows. The cells are recovered through centrifugation after the cultivation, suspended in an aqueous buffer, and disrupted by means of ultrasonic oscillator, French Press, Manton Gaulin homogenizer, Dynomill and the like, to recover a cell-free extract. From the supernatant recovered by the centrifugation of the cell-free extract, a purified sample can be recovered by conventional isolation and purification methods of enzymes, singly or in combination, such as solvent extraction method, salting out methods with ammonium sulfate, etc., desalting method, precipitation methods with organic solvents, anion exchange chromatography by means of resins such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical Corporation); cation exchange chromatography by means of resins such as S-Sepharose FF (manufactured by Pharmacia, Co.); hydrophobic chromatography using resins such as butyl Sepharose and phenyl Sepharose; gel filtration methods using molecular sieves;

affinity chromatography method; chromato-focusing method; electrophoresis methods such as isoelectric focusing; and the like.

When the polypeptide is expressed in cells in the form of an inclusion body, a purified sample of the polypeptide is obtained as follows. The cells are similarly recovered, disrupted, and centrifuged to recover a precipitation fraction, from which the polypeptide is recovered according to a conventional method, and the inclusion body of the polypeptide is solubilized with a polypeptide denaturant. The solubilized solution is diluted or dialyzed in a dilute solution at such an extent that the resulting solution does not contain any polypeptide denaturant or the polypeptide is not any more denatured at the concentration of the polypeptide denaturant, to renature the polypeptide into a normal steric configuration, from which a purified sample can be recovered according to the same isolation and purification method as described above.

In case that the polypeptide of the present invention or derivatives thereof such as a sugar modified product thereof are secreted extracellularly, the polypeptide or the derivatives thereof can be recovered from the culture supernatant. More specifically, the culture is treated by the method as described above, such as centrifugation, to recover a soluble fraction, and from the fraction, a purified sample is recovered using the isolation and purification method as described above.

Additionally, the polypeptide expressed by the above method may be prepared by chemical synthetic methods such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method) and the like. Alternatively, the polypeptide can be prepared by utilizing peptide synthesizers commercially available from Sowa Trade (manufactured by Advanced chemTech, Co., USA), Perkin-Elmer Japan (manufactured by Perkin-Elmer, Co., USA), Pharmacia Biotech (manufactured by Pharmacia Biotech, Co., Sweden), Aroka (manufactured by Protein Technology Instrument, Co., USA), KURABO (manufactured by

Synthecell-Vega, Co., USA), Japan PerSeptive Limited (manufactured by PerSeptive, Co., USA), Shimadzu, Co. and the like.

7) Production of 1α , 25-dihydroxyvitamin D,

5

10

15

20

25

30

The polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase and 25-hydroxyvitamin D_3 are put in an aqueous medium to form 1α , 25-dihydroxyvitamin D_3 in the aqueous medium, and the formed 1α , 25-dihydroxyvitamin D_3 is recovered from the aqueous medium. Thus, 1α , 25-dihydroxyvitamin D_3 can be produced.

As a polypeptide having 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase activity, the polypeptide purified by the method described above in 6) and the microbial culture obtained by the method described above in 6) or a treated product of the culture obtained by treating the culture in various ways and the like, may be used.

Examples of the treated product of the culture broth include a concentrated product of the culture, a dried product of the culture, a culture supernatant obtained by centrifuging the culture, a concentrated product of the culture supernatant, an enzyme preparation obtained from the culture supernatant, cells (including microbial cells) obtained by centrifuging the culture, a dried product of the cells, a freeze-dried product of the cells, a surfactant- treated product of the cells, an ultrasonic-treated product of the cells, a mechanically disrupted product of the cells, a solvent-treated product of the cells, an enzyme-treated product of the cells, a protein fraction of the cells (fractions having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity), an immobilized product of the cells and an enzyme preparation obtained by extraction from the cells.

The concentration of the polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity is 0.01 to 50 g/l, preferably 0.05 to 10 g/l, as wet cells.

The aqueous medium includes water, buffers such as phosphate salts, carbonate salts, acetate salts, borate salts, citrate salts, and Tris; and aqueous solutions containing organic solvents such as alcohols such as methanol and ethanol; esters such as ethyl acetate; ketones such as acetone; amides such as acetoamide. If necessary, surfactants such as Triton X-100 (manufactured by Nakarai Tesque, Co.) and Nonion HS204 (manufactured by Nippon Oils and Fats Co.), or organic solvents such as toluene and xylene may be added at about 0.1 to 20 g/l.

The concentration of 25-hydroxyvitamin D_3 is 0.01 to 50 g/l, preferably 0.01 to 10 g/l.

10

15

30

- 1α , 25-dihydroxyvitamin D_3 can be produced by adding polypeptide having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity and 25-hydroxyvitamin D_3 . The reaction is carried out at 15 to 80 °C, preferably 20 to 40 °C, at pH 3 to 11, preferably pH 4 to 9, for 5 minutes to 96 hours.
- 8) Preparation of an antibody recognizing 25-hydroxyvitamin $D_s-1\alpha$ -hydroxylase

A purified product of the whole length or a partial fragment of the protein obtained by the method described in the above in 6) or a peptide having a partial amino acid sequence of the protein of the present invention is used as the antigen. The antigen is administered to animal by subcutaneous, intravenous or intraperitoneal injection together with an appropriate adjuvant (for example, complete Freund's adjuvant, aluminum hydroxide gel, pertussis vaccine, or the like).

Examples of the animals used include rabbits, goats, 3- to 20-weak-old rats, mice, hamsters and the like.

Preferable dosage of antigen is 50 to 100 μ g per animal. When a peptide is used as the antigen, it is preferred to use the peptide as the antigen after binding it covalently to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin or the like. The peptide used as the antigen can be synthesized using a peptide synthesizer.

35 Administration of the antigen is carried out 3 to 10 times

at one- to two-week intervals after the first administration. A blood sample is recovered from the fundus of the eye 3 to 7 days after each administration, and the serum is tested, for example, by enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), published by Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) as to whether it is reactive with the antigen used for immunization. A non-human mammal whose serums shows a sufficient antibody titer against the antigen used for immunization is submitted for use as the supply source of serum or antibody producing cells.

A polyclonal antibody can be prepared by isolating and purifying it from the serum.

A monoclonal antibody can be prepared by preparing a hybridoma through fusion of the antibody producing cells with myeloma cells of a non-human mammal and culturing the hybridoma, or administering the hybridoma to an animal to induce ascites tumor in the animal, and then isolating and purifying it from the culture medium or ascitic fluid.

15

20

25

30

35

Examples of the antibody producing cells include spleen cells, lymph nodes and antibody producing cells in peripheral blood. Particularly, spleen cells are preferred.

Examples of the myeloma cells include cell lines derived from mouse, such as P3-X63Ag8-U1 (P3-U1) cell line [Current Topics in Microbiology and Immunology, 18, 1-7 (1978)], P3-NS1/1-Ag41 (NS-1) cell line [European J. Immunology, 6, 511-519 (1976)], SP2/O-Ag14 (SP-2) cell line [Nature, 276, 269-270 (1978)], P3-X63-Ag8653 (653) cell line [J. Immunology, 123, 1548-1550 (1979)], P3-X63-Ag8 (X63) cell line [Nature, 256, 495-497 (1975)] and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines.

Hybridoma cells can be prepared in the following manner.

Antibody producing cells and myeloma cells are fused,
suspended in HAT medium (normal medium supplemented with
hypoxanthine, thymidine and aminopterin) and then cultured for
7 to 14 days. After the culturing, a portion of the culture

supernatant is sampled and tested, for example, by enzyme immunoassay to select those which can react with the antigen but not with protein which does not contain the antigen. Thereafter, cloning is carried out by limiting dilution analysis, and a hybridoma which shows stable and high antibody titer by enzyme immunoassay is selected as monoclonal antibody producing hybridoma cells.

With regard to the method for the isolation and purification of the polyclonal antibody or monoclonal antibody, centrifugation, ammonium sulfate precipitation, caprylic acid precipitation, or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A or G column, a gel filtration column and the like may be employed alone or as a combination thereof.

10

20

- 15 9) Utilization of the polypeptide and the DNA encoding the polypeptide of the present invention and the antibody recognizing the polypeptide of the present invention
 - (1) The polypeptide of the present invention can be utilized for producing 1α , 25-dihydroxyvitamin D_3 as active type vitamin D_3 .
 - (2) The whole length or partial fragments of the polypeptide of the present invention can be utilized as an antigen against the antibody recognizing 25-hydroxyvitamin D_3 -1 α -hydroxylase.
- (3) By administering the whole length of the 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase or partial fragments thereof having the activity into biological organisms, diseases due to the decrease of the enzyme protein, such as osteoporosis, can be treated therapeutically.
 - (4) By using the DNA of the present invention, the mRNA of 25-hydroxyvitamin D_3 -1 α -hydroxylase gene can be detected by Northern hybridization method (Molecular Cloning, 2-nd edition), PCR method [PCR Protocols, Academic Press (1990)], and RT-PCR method and the like.

The diagnostic method for assaying the expression level of the mRNA of the gene of 25-hydroxyvitamin D_3 -1 α -hydroxylase by

utilizing the detection method, is useful for suppressing the onset of adult diseases such as osteoporosis induced by the decrease of active type vitamin D_3 and is also effective for early diagnosis of genetic diseases due to congenital deficiency of the 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase gene.

5

10

15

20

25

30

35

According to Northern hybridization method, the expression level of mRNA is assayed on the basis of the label of a probe hybridized, for example, on the basis of the radioactivity in case of labeling with for example ³²P or the fluorescence in case of fluorescent labeling. The expression level of mRNA is assayed, on the basis of the fluorescence of a DNA specific fluorescent dye, for example ethidium bromide and Cyber Green 1 which is used for staining amplified fragments.

- (5) The DNA of the present invention is inserted into virus vectors such as retrovirus and adenovirus and other vectors, and the resulting DNA can be used for therapeutic treatment according to gene therapy.
- (6) By using the anti-25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase antibody of the present invention, 25-hydroxyvitamin $D_3-1\alpha$ hydroxylase can be detected and assayed in samples of blood, some organs, cells and the like. Specifically preferable methods therefor include ELISA method by using microtiter plates, fluorescent antibody methods, Western blot method and the like; additionally, immuno-histological staining by using pathological sections may also be utilized. Thus, the antibody of the present invention is useful for the diagnosis of diseases such as osteoporosis, due to the decrease of the expression of vitamin $D_1-1\alpha$ -hydroxylase, the diagnosis of the onset thereof and early prediction of the possibility of the onset thereof Similarly, the antibody is also useful as a and the like. laboratory reagent for research works for the protein.
- (7) By using the antibody of the present invention, polypeptides having 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase activity are immuno-histologically stained, and thus, an immuno-histological staining agent containing the antibody can

be provided.

(8) By using the DNA of the present invention and through the hybridization thereof with the genome DNA, the DNA in the promoter region of the gene can be cloned. By using DNA fragments in the promoter region, molecules involved in the regulation of the expression of the gene can be screened and analyzed.

The present invention will now be described in detail in the following examples. When kits were used in individual procedures, experiments were progressed according to the protocols attached to the kits, unless otherwise stated specifically. Fundamental genetic manipulation techniques were according to Molecular Cloning, 2-nd edition.

15 EXAMPLES

Example 1

10

20

25

30

35

Preparation of kidney from rats fed with vitamin D₃ deficient diet

Immediately after weaning, four male SD rats were given vitamin D, deficient diet for 3 weeks (age 6 weeks).

DIET 11 [Suda, et. al., J. Nutrition, $\underline{100}$, 1049 (1970); commercially available as Purified diet for Rat from Teklad Co, Madison, WI, USA] was used as the vitamin D_3 deficient diet. The diet was vitamin D deficient and low calcium diet at a calcium content of 0.03 % and a phosphate content of 0.6 %.

Deionized water was used for supplementing the rats with water.

48 hours prior to sacrifice, 1α , 25-dihydroxyvitamin D_3 (manufactured by Calviochem, Co., CA, USA) was intravenously injected at 1 μ g/rat into the rats.

After the designed dieting term was terminated, the rats were anesthetized with ether. From the abdominal aortas of the rats, blood was drawn out, and then, the rats were sacrificed to death by phlebotomy and immediately thereafter, the rats were autopsied to resect the kidneys.

The kidneys were rinsed in PBS [containing NaCl (8 g), KCl

(0.2 g), NaH₂PO₄ · 12H₂O (2.9 g) and KH₂PO₄ (0.2 g) per one liter), and the resulting kidneys were frozen in liquid nitrogen.

As a control group, rats were given normal diet (Rat diet containing calcium $(0.5~\rm g)$, phosphate $(0.6~\rm g)$ and vitamin D₃ $(200~\rm IU)$ per $100~\rm g)$ in a similar fashion, and then, the kidneys were prepared by the same method as described above. The resulting kidneys were used as kidneys from rats with no activity induction.

10 Example 2

15

20

25

30

35

Preparation of mRNA from rat kidneys

The kidneys prepared from the rats fed with the vitamin D_3 deficient diet and the kidneys derived from the rats fed with normal diet, weighed 0.78 g and 0.94 g, respectively, were rinsed in PBS and were then frozen in liquid nitrogen. The frozen kidneys can be stored at -80 °C.

The frozen kidneys were cut into pieces in liquid nitrogen with a wearing blender, until the tissues were hashed into sand size form. Then, the liquid nitrogen was evaporated.

The sand-like tissues were homogenized in ice cooling with a homogenizer (Digital Homogenizer; manufactured by Inouchi, Co.), while adding thereto 35 ml of 5.5 M GTC solution (containing 324.5 g of guanidine isothiocyanate, 3.7 g of sodium citrate, and 3.3 g of Sarkosyl in 500 ml) and 492 μl of 2-mercaptoethanol, and the homogenate in suspension was passed four times through an injection needle of gauge 18 arranged on a 50-ml injection cylinder.

The suspension was then transferred into a 15-ml centrifuge tube, for centrifugation at 6,000 rpm at 20 $^{\circ}\text{C}$ for 10 minutes, to recover the supernatant.

The supernatant was then overlaid in 16-ml portions on a CsTFA preparative solution [a mixture solution of CsTFA solution (100 ml) manufactured by Pharmacia, Co., 82.06 ml of 0.25 M EDTA solution (pH 7.0), and 23.09 ml of H₂O] in a 40-ml polyallomer tube for ultracentrifugation, and the tube was then

ultra-centrifuged under conditions of 25,000 rpm and 18 °C for 25 hours.

After discarding the supernatant, the tube was cut at the position of about 1.5 cm from the bottom of the tube, and the resulting precipitate was dissolved in 0.6 ml of 4M GTC solution [a mixture solution of 5.5M GTC solution (4 ml), 1.5 ml of $\rm H_2O$, and 56 μl of 2-mercaptoethanol].

The dissolved solution was centrifuged at 14,000 rpm for 15 seconds, to recover the supernatant.

After adding 15 μ l of 1M sodium acetate and 0.45 ml of ethanol to the supernatant and thereby suspending the precipitate, the resulting suspension was centrifuged to recover the precipitate.

10

15

20

25

30

The precipitate was rinsed in 70 % ethanol, suspended in 1 ml of TE buffer [10 mM Tris-HCl (pH 8.0), 1 mM EDTA-NaOH (pH 8.0)], and centrifuged at 14,000 rpm for 15 seconds, to recover the supernatant.

Adding a 2.5-fold volume of 70 % ethanol to the supernatant, followed by centrifugation, the resulting precipitate was recovered.

The precipitate was rinsed in 70 % ethanol and was then dissolved in 500 μl of TE buffer.

Through the procedure, the whole RNA was recovered from the kidneys from the rats with activity induction and the rats with no activity induction, which was calculated as 639 μ g and 918 μ g, respectively, on the basis of the absorbance at 260 nm.

The whole RNA solution (150 μ l) derived from the rats with activity induction was effected with thermal treatment at 65 °C for 5 minutes, which was immediately cooled in ice.

To the solution were added 0.5 ml of 5M NaCl and 0.15 g oligo dT cellulose (manufactured by Collaborative Research, Co., Type 3) equilibrated with TE/NaCl [10 mM Tris-HCl (pH 7.5), 500 mM NaCl], to adsorb the whole RNA onto the cellulose.

The cellulose was packed in a column, through which the 35 TE/NaCl solution was passed for washing the column, followed

by elution of mRNA with TE solution of 0.5 ml, to fractionate and collect the eluate in 200 $\mu l\mbox{-fractions}.$

From the individual fractionated solutions, $2\mu l$ portions were sampled, followed by addition of $1 \, \mu g/m l$ ethidium bromide (20 $\, \mu l$), to detect luminescent sampled solutions under ultraviolet irradiation.

Ethanol was added to the fractionated solutions corresponding to the luminescent sampled solutions, to recover precipitates.

The precipitates were rinsed in 80 % ethanol and suspended in TE buffer.

Through the procedures, mRNA of 14.3 μg was recovered from the kidneys of the rats with activity induction.

15 Example 3

5

10

30

35

Preparation of cDNA library

By using ZAP-cDNA synthesis kit (#200400) manufactured by Stratagene Co., a cDNA library was constructed according to the instruction manual attached to the kit.

By using 4 μ g of mRNA derived from the rats with activity induction as prepared in Example 2, fist strand DNA was synthesized through reverse-transcriptase reaction, and after RNase reaction, second strand DNA was synthesized with DNA polymerase I.

25 Under high temperature conditions, PfuDNA polymerase reaction was effected to make the termini of the cDNA to blunt end.

By ligating an *Eco*RI adapter fragment to the cDNA for phosphorylation and digesting the resulting cDNA with *Xho*I, a cDNA fragment with *Eco*RI-XhoI cleavage sites on both the termini was prepared.

The cDNA fragment was inserted into the EcoRI-XhoI site of λ ZAP II, and by subsequent packaging with Giga pack Gold Packaging Kit (manufactured by Stratagene, Co.) and infection by using $Escherichia\ coli\ host\ XL1-Blue,\ MRF'\ strain\ and\ helper$

phage VCS257, a cDNA library was constructed.

Example 4

5

10

15

20

25

30

35

Selection of a clone harbouring mRNA molecule specifically expressed in the kidneys of the rats with induced activity

The amino acid sequences of the rat-derived hydroxylase of the position 25 of vitamin D₃ and the hydroxylase of the position 24 thereof were previously reported, and among the regions well preserved in these vitamin D₃ hydroxylases of the family P450, the partial amino acid sequences of the adrenodoxin binding region (region A) essential for the enzyme activity and of the hem binding region (region H) were selected, and on the basis of the DNA sequences were designed a sense primer and an antisense primer for PCR amplification of the gene in the regions.

More specifically, DNA comprising the nucleotide sequence represented by SEQ ID No.7 corresponding to the region A was used as the sense primer; and DNA comprising the nucleotide sequence represented by SEQ ID NO.8 corresponding to the region H was used as the antisense primer.

By using the ZAP-cDNA synthesis kit (#200400) manufactured by Stratagene Co. and 4 μg of the mRNA derived from the rats having activity induction, first strand DNA was synthesized with a primer random hexamer.

By using the first strand DNA as the template, the DNA comprising the nucleotide sequence represented by SEQ ID NO.7 as the sense primer and the DNA comprising the nucleotide sequence represented by SEQ ID NO.8 as the antisense primer and by utilizing RT-PCR kit manufactured by Stratagene, Co., PCR was effected.

By using DNA Thermal Cycler 480 manufactured by Perkin Elmer, Co., PCR was effected at 35 cycles, each cycle composed of 94 °C for 30 seconds, 42 °C for one minute and 72 °C for one minute.

The reaction product was analyzed by agarose gel electrophoresis, and a 255-bp amplification fragment (AH fragment) was observed. By using a DNA purification kit

(manufactured by Bio Rad, Co.), the fragment was extracted from agarose, which was then inserted into pCRII vector (manufactured by Invitrogen, Co.).

From the whole RNAs derived from the rats induced with 25-hydroxyvitamin D_3 -1 α -hydroxylase activity and the non-induced rats were prepared poly (A) † RNAs, which were then subject individually to agarose electrophoresis, to transfer the electrophoresed mRNAs onto membrane filters in a conventional manner.

By using these membrane filters, Northern hybridization was effected by using the amplified AH fragment as the probe.

The amplified AH fragment was hybridized only when the membrane filter prepared from the mRNA derived from the rats with activity induction was used.

The AH fragment had nucleotide sequences corresponding to the regions A and H.

By using the AH fragment and 3' RACE system kit manufactured by BRL, Co., a PCR amplified fragment containing the 3' noncoding region of the DNA encoding the 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase was recovered by the following method.

By using the Oligo dT/AUAP primer attached to the 3' RACE system kit manufactured by BRL, Co. and 4 μg of the mRNA from the rats with activity induction as recovered in Example 2, cDNA was synthesized.

The cDNA was used as a template.

5

10

20

25

30

Based on the sequence of the AH fragment amplified above, DNA comprising the nucleotide sequence represented by SEQ ID NO.9 was synthesized and used as a sense primer.

The AUAP primer attached to the 3' RACE system kit manufactured by BRL, Co. was used as an antisense primer.

By using the template, the sense primer and the antisense primer, PCR was effected at 35 cycles, each cycle composed of 94 °C for one minute, 55 °C for one minute and 72 °C for 2 minutes.

The reaction product was analyzed by agarose gel 35 electrophoresis, and an amplified fragment of 1.3 kb (A3

fragment) was observed. By using a DNA purification kit (manufactured by Bio Rad, Co.), the fragment was extracted from agarose, which was then inserted into pCRII vector.

In the same manner as for the AH fragment, the A3 fragment was specifically hybridized with the mRNA from the rats with activity induction.

The A3 fragment contained almost whole length of the AH fragment.

10 Example 5

5

15

20

25

30

Recovery of DNA encoding 25-hydroxyvitamin D_3 -1 α -hydroxylase

The cDNA phage library prepared in Example 3 was spread on an agar medium and cultivated to a final concentration of 10,000 to 20,000 plaques per one petri dish.

HybondN membrane (manufactured by Amersham, Co.) was placed on each of the petri dishes with the plaques formed thereon, to transfer the plaque DNA onto the membrane. Two transcription membranes were prepared per one petri dish.

The transcription membranes were subject to alkali treatment (immersion in 1.5 M NaCl and 0.5 M NaOH) and SDS treatment (immersion in 2 x SSC and 0.1 % SDS solution), rinsed and dried, and then, the resulting membranes with plaque DNA immobilized thereon were used as blotting membranes for the following hybridization.

By using DIG labeling kit (#1 175 033; manufactured by Boehringer Mannheim, Co.) and 2 ng each of the AH fragment and A3 fragment as templates, PCR was effected, to recover DIG labeled AH fragment or A3 fragment.

PCR was effected under conditions of 30 cycles, each cycle of a process of 94 °C for one minute, 50 °C for one minute and 72 °C for one minute.

The resulting DIG labeled AH fragment and DIG labeled A3 fragment were used as the following probes.

35 The blotting membranes prepared above were immersed in a hybridization solution [5 x SSC, 0.1 % Sarkosyl, 0.02 % SDS,

1% hybridization blocking solution (manufactured by Boehringer Mannheim, Co.)] at 60 °C for 5 hours, followed by addition of thermally treated DIG labeled probe (10 μ l/10 ml-hybridization solution), for overnight hybridization at 65 °C.

5

10

15

20

25

30

After hybridization, the membranes were subject to rinsing (rinsing twice in 2 x SSC and 0.1 % SDS at room temperature for 5 minutes, rinsing twice in 0.1 x SSC and 0.1 % SDS at 60 °C for 15 minutes), blocking [effected by using 1 x blocking solution (manufactured by Boehringer Mannheim, Co.), 0.1M maleic acid, 0.15M NaCl, pH 7.5], reaction with AP labeled anti-DIG antibody (effected according to the protocol by Boehringer Mannheim, Co.), and alkali treatment [0.1M Tris-HCl (pH 9.5), 0.1M NaCl and 50 mM MgCl₂], and by using thereafter DIG luminescence detection kit (#1 363 514; manufactured by Boehringer Mannheim, Co.), plaques hybridizable with the probes were screened on an X-ray film.

By using firstly the DIG labeled AH fragment as the DIG labeled probe to select plaques hybridizable with the fragment and by subsequently using the DIG labeled A3 fragment, plaques hybridizable with the fragment were selected from the plaques described above.

The plaques selected at each stage were again inoculated on petri dishes, and then, it was confirmed that these were hybridizable. By PCR using both the primers of the region A and AUAP, additionally, it was confirmed that the plaques had the nucleotide sequence of the A3 fragment.

After screening of 35 petri dishes in total, finally, four plaques (Nos.221, 522, 411, 111) were selected.

From individual plaque clones was extracted DNA, which was then ligated to pBluescript vector by using rapid excision kit (#211204; manufactured by Stratagene, Co.), and subsequently, the nucleotide sequence of DNA inserted into the clone was analyzed by using M13 primer.

By the analysis with the clone No.221, DNA comprising a nucleotide sequence of 2469 bp was observed, as represented by

SEQ ID No.5.

An open reading frame (referred to as ORF hereinafter) encoding 501 amino acids was observed in the DNA, in which amino acid sequences believed as the hem binding region and adrenodoxin binding region in common with the P450 family protein were present.

Example 6

10

15

20

25

30

Expression of isolated 25-hydroxyvitamin D_3 -1 α -hydroxylase gene in animal cells

From the clone No.221 described in Example 5 was prepared a plasmid, which was subsequently digested with *Hind*III and *XbaI*. Expression vector pcDNA3 (manufactured by Invitrogen, Co.) for animal cells was similarly digested with *Hind*III and *XbaI*.

The cleavage fragments recovered above were individually subject to agarose electrophoresis, which were thereby separated and extracted.

The resulting DNA fragments from the vector and the inserted gene fragment were ligated together, by using a DNA ligation kit(manufactured by TaKaRa Brewery), to recover a ligated plasmid.

By using the plasmid, Escherichia coli strain DH5 α was transformed, and thereafter, an ampicillin resistant strain was selected, from which the plasmid was extracted according to a known method.

Based on the analysis of the plasmid by restriction cleavage, it was confirmed that the plasmid inserted the objective gene. The plasmid was named pCMD3R.

By electroporation [Potter et. al., Proc. Natl. Acad. Sci. USA, 81, 716 (1984)], pCMD3R was introduced into an animal cell, to be expressed therein as follows. COS7 cell was cultivated in a DMEM culture medium (manufactured by GIBCO BRL, Co.) supplemented with 10 % FCS (fetal calf serum) in a petri dish for 2 days.

35 After cultivation, the cells were peeled off from the petri dish by trypsin treatment, and the cells were rinsed in PBS and

then suspended in 0.5 ml of KPBS (137 mM KCl, 2.7 mM NaCl, 8.1 mM Na_2HPO_4 , 1.5 mM NaH_2PO_4 , 4 mM $MgCl_2$), to a final concentration of 2 to 6.0 x $10^6/ml$.

The suspension and 15 μg of pCMD3R plasmid were mixed together in a pulser cuvette (manufactured by BIO-RAD, Co.) with a groove width of 0.4 cm, and the resulting mixture was then applied to an electroporation system Gene pulser (manufactured by BIO-RAD, Co.) for pulse loading under conditions of 960 μF and 0.22 kV, to introduce the DNA into the cell.

The DNA introduced cell was suspended in 10 ml of DMEM culture medium containing 10 % FCS, for cultivation in a 5 % CO, incubator at 37 °C for 48 to 72 hours.

By discarding the culture in the petri dish and rinsing the cell twice in PBS, the cell was scraped off with a scraper, followed by centrifugation to collect the cell.

Example 7

10

15

30

Recovery of human-derived 25-hydroxyvitamin D_3 -1 α -hydroxylase gene

From 1.2 g of tissue resected from human kidney cancer, the whole RNA (750 μg) was recovered according to the method described in Example 2, and 9.5 μg of mRNA was recovered from the whole RNA.

By using 5 μ g of the mRNA, a human cDNA library was constructed by the method described in Example 3.

According to the method described in Example 5, DNA encoding the human derived 25-hydroxyvitamin D_3 -1 α -hydroxylase was recovered.

The whole length of the rat vitamin D₃ hydroxylase gene of 2469 bp as isolated in Example 5 was DIG labeled according to the method described in Example 5, which was then used as a probe.

Hybridization was effected overnight in a hybridization solution containing formamide at 40 % under a condition of 42 °C.

Through the hybridization, four clones were selected.

According to the method described in Example 5, DNA was extracted from these clones, to analyze the nucleotide sequence of the DNA inserted into the clones.

The DNA had the nucleotide sequence represented by SEQ ID NO.6. In the DNA fragment was observed ORF encoding a peptide of 508 amino acids.

The peptide had an amino acid sequence in common with the rat-derived 25-hydroxyvitamin D_3 -1 α -hydroxylase in terms of 413 amino acid residues, and contained amino acid sequences possibly corresponding to the hem binding region and adrenodoxin binding region, commonly observed in the P450 family protein.

Additionally, the DNA sequence included a sequence of 1724 residues, which is the same as the sequence derived from rats, and therefore, it was indicated that the DNA had high homology.

Example 8

5

10

15

20

35

Expression of rat-derived vitamin D_3 -1 α -hydroxylase gene and assay of the activity

According to the method of Example 6, gene expression plasmid carrying the rat-derived vitamin $D_3-1\alpha$ -hydroxylase gene, namely pCMD3R, was introduced into COS-7 cell by electroporation.

The gene-introduced cells of 5 x 10⁵ in number were cultivated in 10 ml of a DMEM culture medium containing 10 % FCS for 24 hours, and then, the culture medium was exchanged to a DMEM culture medium (8 ml) containing 1 % FCS, followed by addition of [26, 27-3H]-25-hydroxyvitamin D₃ (manufactured by Amersham, Co.) at 2000 Bq/3 µl-methanol solution, and then, the resulting mixture was cultivated for 24 hours.

After cultivation, vitamin D₃ metabolites were extracted from the culture supernatant and the cells by the Bligh & Dyer's method [Can. J. Biochem., <u>37</u>, 911 (1959)]. More specifically, the culture was transferred into a 50-ml centrifuge tube

equipped with a screw cap, while 10 ml methanol was added into the petri dish, to scrape the cells with a scraper, and the cells were then transferred into the centrifuge tube. Methanol (10 ml) was again added into the petri dish, to suspend the cells remaining in the petri dish, and the resulting suspension was thoroughly transferred into the centrifuge tube.

Chloroform (10 ml) was added into the centrifuge tube for thorough mixing, followed by further addition of 10 ml of chloroform and subsequent complete re-mixing, and the resulting tube was left to stand to separate a chloroform layer from an aqueous layer.

10

15

20

25

30

35

The chloroform extract solution in the separated chloroform layer was placed in another centrifuge tube, followed by further addition of 10 ml of chloroform to the remaining aqueous layer, for mixing and extraction in the same manner, and the resulting chloroform extract solution was combined together with the previously recovered chloroform extract solution.

Distilled water was added into the chloroform extract solution to a final total volume of 60 ml, followed by addition of two drops of saturated sodium chloride solution and subsequent sufficient mixing.

The mixture solution was centrifuged, to separate the chloroform layer from the aqueous layer.

The resulting chloroform layer fraction was concentrated in nitrogen gas stream to recover the residue.

The residue was dissolved in 400 μl of a mixture solution iso-propanol/methanol/n-hexane = 6 : 6 : 88.

With HPLC system 880 PU manufactured by JASCO, Co. with TSK silica gel 150 column ($4.6 \times 250 \text{ mm}$; manufactured by Toso, Co.) arranged thereon, the resulting solution was subject to analysis under conditions such that the mixture solution iso-propanol/methanol/n-hexane = 6:6:88 was used as the mobile phase at a flow rate of 1 ml/minute. On comparison with the elution time of a standard substance, vitamin D_3 metabolites were identified.

Similarly, vitamin D, metabolites were identified by using

a vector pcDNA3 which does not carry the gene of the present invention.

The results are shown in Fig.1.

10

15

20

25

"A" represents the analytical results of metabolites in the cells introduced with pcMD3R; and "B" represents the analytical results of metabolites in the cells introduced with pcDNA3. Because 1α , 25-hydroxyvitamin D_3 was detected only in the cells introduced with pcMD3R carrying the gene of the present invention, it was indicated that only the cells had 25-hydroxyvitamin D_3 - 1α -hydroxylase activity, which further indicates that the gene of the present invention encodes 25-hydroxyvitamin D_3 - 1α -hydroxylase.

INDUSTRIAL APPLICABILITY

In accordance with the present invention, the following can be provided; a polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, being useful for the prevention, diagnosis and therapeutic treatment of adult diseases such as osteoporosis induced by the decrease of active type vitamin D_3 , DNA encoding the polypeptide, a recombinant DNA prepared by inserting the DNA in a vector, a transformant carrying the recombinant DNA, a method for preparing 25-hydroxyvitamin D_3 -1 α -hydroxylase by using the transformant, a method for preparing 1 α , 25-dihydroxyvitamin D_3 by using the polypeptide having 25-hydroxyvitamin D_3 -1 α -hydroxylase activity, and an antibody recognizing the polypeptide.

SEQUENCE LISTING

GENERAL INFORMATION APPLICANT: KYOWA HAKKO KOGYO CO., LTD. TITLE OF INVENTION: 25-HYDROXYVITAMIN D3-la-HYDROXYLASE AND DNA ENCODING THE NUMBER OF SEQUENCES: 9 CORRESPONDENCE ADDRESS: 6-1, Ohtemachi 1-chome, Chiyoda-ku, Tokyo 100-8185 Ja pan COMPUTER READABLE FORM COMPUTER: IBM PC compatible OPERATING SYSTEM: WINDOWS 95 SOFTWARE: PatentIn Ver. 2.0 CURRENT APPPLICATION DATA APPLICATION NUMBER: 2,237,138 FILING DATE: July 9, 1998 CLASSIFICATION: PATENT AGENT INFORMATION NAME: GOUDREAU GAGE DUBUC & MARTINEAU WALKER REFERENCE NUMBER: 10847-195 INFORMATION FOR SEQ ID NO.: 1 SEQUENCE CHARACTERISTICS LENGTH: 501 amino acids TYPE: amino acid TOPOLOGY: linear MOLECULE TYPE: protein ORIGINAL SORCE: Rat SEQUENCE DESCRIPTION: SEQ ID NO: 1 Met Thr Gln Ala Val Lys Leu Ala Ser Arg Val Phe His Arg Val Gln Leu Pro Ser Gln Leu Gly Ser Asp Ser Val Leu Arg Ser Leu Ser Asp 25 Ile Pro Gly Pro Ser Thr Pro Ser Phe Leu Ala Glu Leu Phe Cys Lys Gly Gly Leu Ser Arg Leu His Glu Leu Gln Val His Gly Ala Ala Arg Tyr Gly Pro Ile Trp Ser Gly Ser Phe Gly Thr Leu Arg Thr Val Tyr Val Ala Asp Pro Ala Leu Val Glu Gln Leu Leu Arg Gln Glu Ser His Cys Pro Glu Arg Cys Ser Phe Ser Ser Trp Ser Glu His Arg Arg Arg His Gln Arg Ala Cys Gly Leu Leu Thr Ala Asp Gly Glu Glu Trp Gln 120 Arg Leu Arg Ser Leu Leu Ala Pro Leu Leu Leu Arg Pro Gln Ala Ala 130 135

Ala Gly Tyr Ala Gly Thr Leu Asp Ser Val Val Ser Asp Leu Val Arg

										, , , ,		1	r		160
145					150					155			_		160
	Leu			165					170					110	
Leu	Asp	Val	Ala 180	Gly	Glu	Phe	Tyr	Lys 185	Phe	Gly	Leu	Glu	Gly 190	Ile	Gly
Ala	Val	Leu 195	Leu	Gly	Ser	Arg	Leu 200	Gly	Cys	Leu	Glu	Ala 205	Glu	Val	Pro
Pro	Asp 210	Thr	Glu	Thr	Phe	Ile 215	Glu	Ala	Val	Gly	Ser 220	Val	Phe	Val	Ser
Thr 225	Leu	Leu	Thr	Met	Ala 230	Met	Pro	Ser	Trp	Leu 235	His	Arg	Leu	Ile	Pro 240
Gly	Pro	Trp	Ala	Arg 245	Leu	Cys	Arg	Asp	Trp 250	Asp	Gln	Met	Phe	Ala 255	Phe
Ala	Gln	Lys	His 260	Val	Glu	Gln	Arg	Glu 265	Gly	Glu	Ala	Ala	Val 270	Arg	Asn
Glr	ı Gly	Lys 275		Glu	Glu	Asp	Leu 280	Pro	Thr	Gly	His	His 285	Leu	Thr	His
Phe	e Leu 290		Arg	g Glu	l Lys	Val 295	Ser	Val	Gln	Ser	Ile 300	Val	Gly	Asn	Val
Th 30	r Glu 5	l Leu	ı Lei	ı Lev	Ala 310	Gly	Val	Asp	Thr	Val 315	Ser	Asn	Thr	Leu	Ser 320
	p Ala			325	Ō				330	ľ				550	
	s Sei		340	0				345	1				330	•	
	n Ala	35	5				360	l				303			
G l	u Va 37		u Ar	g Le	u Ty:	7 Pro 375	Val	Val	Pro	Gly	y Asr 380	ser)	Arg	g Val	Pro
As	p Ar	g As	p Il	е Су	s Va 39	l Gly	Asn	тул	· Val	1 Ile 39	e Pro	Glr.	a Asp	Thr	Leu 400
Va	ıl Se	r Le	u Cy	s Hi 40	s Ty 5	r Ala	a Thi	r Sei	r Arg 410	g Asi	p Pro	o Ala	a Gli	n Phe 415	Arg
G l	u Pr	o As	n Se 42	r Ph	e As	n Pro	Ala	429	g Tri	p Le	u Gl	y Glu	43)	y Pro	Ala
Pı	ro Hi	s Pr 43		ie Al	a Se	r Le	u Pro 440	o Pho	e Gl	y Ph	e Gl	y Ly: 44!	s Ar	g Sei	r Cys
т.	ام ۱۵	17 A r	·a Ar	a Le	. 11 A I	a Gli	u Lei	ui G1	u Le	u Gl	n Me	t Al	a Le	u Ala	a Gln

Ile Leu Thr His Phe Glu Val Leu Pro Glu Pro Gly Ala Leu Pro Val 475 470

Lys Pro Met Thr Arg Thr Val Leu Val Pro Glu Arg Ser Ile His Leu 490 485

Gln Phe Val Asp Arg 500

INFORMATION FOR SEQ ID NO.: 2 SEQUENCE CHARACTERISTICS

LENGTH: 508 amino acids

TYPE: amino acid TOPOLOGY: linear MOLECULE TYPE: protein

ORIGINAL SORCE: Homo sapiens

SEQUENCE DESCRIPTION: SEQ ID NO: 2

Met Thr Gln Thr Leu Lys Tyr Ala Ser Arg Val Phe His Arg Val Arg 10

Trp Ala Pro Glu Leu Gly Ala Ser Leu Gly Tyr Arg Glu Tyr His Ser 25

Ala Arg Arg Ser Leu Ala Asp Ile Pro Gly Pro Ser Thr Pro Ser Phe 40

Leu Ala Glu Leu Phe Cys Lys Gly Gly Leu Ser Arg Leu His Glu Leu 50

Gln Val Gln Gly Ala Ala His Phe Gly Pro Val Trp Leu Ala Ser Phe

Gly Thr Val Arg Thr Val Tyr Val Ala Ala Pro Ala Leu Val Glu Glu 85

Leu Leu Arg Gln Glu Gly Pro Arg Pro Glu Arg Cys Ser Phe Ser Pro 105 100

Trp Thr Glu His Arg Arg Cys Arg Gln Arg Ala Cys Gly Leu Leu Thr 120

Ala Glu Gly Glu Glu Trp Gln Arg Leu Arg Ser Leu Leu Ala Pro Leu 130

Leu Leu Arg Pro Gln Ala Ala Ala Arg Tyr Ala Gly Thr Leu Asn Asn 145

Val Val Cys Asp Leu Val Arg Arg Leu Arg Arg Gln Arg Gly Arg Gly 175

Thr Gly Pro Pro Ala Leu Val Arg Asp Val Ala Gly Glu Phe Tyr Lys 185 180

Phe Gly Leu Glu Gly Ile Ala Ala Val Leu Leu Gly Ser Arg Leu Gly

		195					200					205			
Cys	Leu 210	Glu	Ala	Gln	Val	Pro 215	Pro	Asp	Thr	Glu	Thr 220	Phe	Ile	Arg	Ala
Val 225	Gly	Ser	Val	Phe	Val 230	Ser	Thr	Leu	Leu	Thr 235	Met	Ala	Met	Pro	His 240
Trp	Leu	Arg	His	Leu 245	Val	Pro	Gly	Pro	Trp 250	Gly	Arg	Leu	Cys	Arg 255	Asp
Trp	Asp	Gln	Met 260	Phe	Ala	Phe	Ala	Gln 265	Arg	His	Val	Glu	Arg 270	Arg	Glu
Ala	Glu	Ala 275	Ala	Met	Arg	Asn	Gly 280	Gly	Gln	Pro	Glu	Lys 285	Asp	Leu	Glu
Ser	Gly 290	Ala	His	Leu	Thr	His 295	Phe	Leu	Phe	Arg	Glu 300	Glu	Leu	Pro	Ala
Gln 305	Ser	Ile	Leu	Gly	Asn 310	Val	Thr	Glu	Leu	Leu 315	Leu	Ala	Gly	Val	Asp 320
Thr	Val	Ser	Asn	Thr 325	Leu	Ser	Trp	Ala	Leu 330	Tyr	Glu	Leu	Ser	Arg 335	His
Pro	Glu	Val	Gln 340		Ala	Leu	His	Ser 345	Glu	Ile	Thr	Ala	Ala 350	Leu	Ser
Pro	Gly	Ser 355	Ser	Ala	Tyr	Pro	Ser 360	Ala	Thr	Val	Leu	Ser 365	Gln	Leu	Pro
Leu	Leu 370		Ala	Val	Val	Lys 375	Glu	Val	Leu	Arg	Leu 380	Tyr	Pro	Val	Val
Pro 385	Gly	Asn	Ser	Arg	Val 390	Pro	Asp	Lys	Asp	Ile 395	His	Val	Gly	Asp	Tyr 400
Ile	Ile	Pro	Lys	Asn 405		Leu	Val	Thr	Leu 410	Cys	His	Tyr	Ala	Thr 415	Ser
Arg	Asp	Pro	Ala 420		Phe	Pro	Glu	Pro 425	Asn	Ser	Phe	Arg	Pro 430	Ala	Arg
Trp	Leu	Gly 435		ı Gly	Pro	Thr	Pro 440	His	Pro	Phe	Ala	Ser 445	Leu	Pro	Phe
Gly	Phe 450		Lys	. Arg	Ser	Cys 455		Gly	Arg	Arg	Leu 460	Ala	Glu	Leu	Glu
Leu 465		Met	Ala	ı Leu	Ala 470		Ile	Leu	Thr	His 475	Phe	Glu	Val	Gln	Pro 480
G l u	Pro	Gly	Ala	A Ala 485		Val	Arg	Pro	Lys 490	Thr	Arg	Thr	Val	Leu 495	Val
Pro	Glu	ı Arg	g Sei	r Ile	Asr	Leu	Gln	Phe	Leu	Asp	Arg	5			

TY	ENCE NGTH PE: 1	CHA : 15 nucl	RACT 03 b eic		TICS pair		3									
MOLE HYPO ORIG FEAT	THET INAL URE	TYP ICAL SOR	E: c : ye CE:	DNA s Rat												
L0	CATI	ON:	11													
SEQU atg	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	3 tcc	aga	øtc	ttc	cat	cga	gtc	caa	48
Met 1	Thr	Gln	Ala	Val 5	Lys	Leu	Ala	Ser	Arg 10	Val	Phe	His	Arg	Val 15	Gln	
ctg Leu	cct Pro	tct Ser	cag Gln 20	ctg Leu	ggc Gly	agt Ser	gac Asp	tcg Ser 25	gtt Val	ctc Leu	cgg Arg	agt Ser	tta Leu 30	tct Ser	gat Asp	96
atc Ile	cct Pro	ggg Gly 35	ccc Pro	tct Ser	aca Thr	cct Pro	agc Ser 40	ttc Phe	ctg Leu	gct Ala	gaa Glu	ctc Leu 45	ttc Phe	tgc Cys	aaa Lys	144
ggg Gly	ggg Gly 50	ctg Leu	tcc Ser	agg Arg	cta Leu	cat His 55	gaa Glu	ctg Leu	cag Gln	gtg Val	cat His 60	ggc Gly	gct Ala	gcg Ala	cgg Arg	192
tac Tyr 65	ggg Gly	cca Pro	ata Ile	tgg Trp	tcc Ser 70	ggc Gly	agc Ser	ttc Phe	ggg Gly	aca Thr 75	ctt Leu	cgc Arg	aca Thr	gtt Val	tat Tyr 80	240
gtg Val	gcc Ala	gac Asp	cct Pro	gca Ala 85	ctt Leu	gta Val	gag Glu	cag Gln	ctc Leu 90	ctg Leu	cga Arg	caa Gln	gaa Glu	agt Ser 95	cat His	288
tgt Cys	cca Pro	gag Glu	cgc Arg 100	Cys	agt Ser	ttc Phe	tca Ser	tct Ser 105	tgg Trp	tca Ser	gag Glu	cac His	cgt Arg 110	cgc Arg	cgc Arg	336
cac His	cag Gln	cgg Arg 115	gct Ala	tgc Cys	ggg Gly	ttg Leu	cta Leu 120	Thr	gcg Ala	gat Asp	ggt Gly	gaa Glu 125	gaa Glu	tgg Trp	cag Gln	384
agg Arg	ctc Leu 130	cga Arg	agt Ser	ctc Leu	ctg Leu	gcc Ala 135	ccg Pro	cta Leu	ctc Leu	ctc Leu	cga Arg 140	cct Pro	caa Gln	gca Ala	gcc Ala	432
gcc Ala 145	ggc Gly	tat Tyr	gct Ala	gga Gly	act Thr 150	ctg Leu	gac Asp	agc Ser	gtg Val	gtc Val 155	agt Ser	gac Asp	ctc Leu	gtg Val	cga Arg 160	480
cga	cta	agg	cgc	cag	cgg	gga	cgt	ggc	tct	ggg	cta	ccg	gac	cta	gtt	528

CA 02237138 1998-10-09

Arg	Leu	Arg	Arg	Gln 165	Arg	Gly	Arg	Gly	Ser 170	Gly	Leu	Pro	Asp	Leu 175	Val	
ctg Leu	gac Asp	gtg Val	gcg Ala 180	gga Gly	gag Glu	ttt Phe	tac Tyr	aaa Lys 185	ttt Phe	ggc Gly	cta Leu	gaa Glu	ggc Gly 190	ata Ile	ggc Gly	576
gcg Ala	gtg Val	ctg Leu 195	ctg Leu	gga Gly	tcg Ser	cgc Arg	ctg Leu 200	ggc Gly	tgc Cys	ctg Leu	gag Glu	gct Ala 205	gaa Glu	gtt Val	cct Pro	624
ccc Pro	gac Asp 210	aca Thr	gaa Glu	acc Thr	ttc Phe	att Ile 215	gag Glu	gcc Ala	gtg Val	ggc Gly	tcg Ser 220	gtg Val	ttt Phe	gtg Val	tct Ser	672
aca Thr 225	ctc Leu	ttg Leu	acc Thr	atg Met	gca Ala 230	atg Met	ccc Pro	agt Ser	tgg Trp	ctg Leu 235	cac His	cgc Arg	ctt Leu	ata Ile	ccc Pro 240	720
gga Gly	ccc Pro	tgg Trp	gcc Ala	cgc Arg 245	ctc Leu	tgc Cys	aga Arg	gac Asp	t gg Trp 250	gat Asp	cag Gln	atg Met	ttt Phe	gcc Ala 255	ttt Phe	768
gcc Ala	cag Gln	aag Lys	cac His 260	gtg Val	gag Glu	cag Gln	cgc Arg	gaa Glu 265	ggc Gly	gaa Glu	gct Ala	gcc Ala	gtg Val 270	agg Arg	aac Asn	816
cag Gln	gga Gly	aag Lys 275	cct Pro	gag Glu	gag Glu	gat Asp	ttg Leu 280	cca Pro	acg Thr	ggg Gly	cat His	cac His 285	tta Leu	acc Thr	cac His	864
ttc Phe	ctt Leu 290	Phe	cgg Arg	gaa Glu	aag Lys	gtg Val 295	tct Ser	gtc Val	cag Gln	tcc Ser	ata Ile 300	gtg Val	gga Gly	aat A sn	gtg Val	912
aca Thr 305	Glu	cta Leu	cta Leu	ctg Leu	gct Ala 310	gga Gly	gtg Val	gac Asp	acg Thr	gta Val 315	Ser	aat Asn	acg Thr	ctc Leu	tcc Ser 320	960
tgg Trp	gca Ala	ctc Leu	tat Tyr	gag Glu 325	Leu	tcc Ser	cgg Arg	cac His	ccg Pro 330	Glu	gtc Val	cag Gln	tct Ser	gca Ala 335	ctc Leu	1008
cac His	tct Ser	gag Glu	atc Ile 340	Thr	ggc Gly	gct Ala	gtg Val	aac Asn 345	Pro	ggc Gly	tcc Ser	tat Tyr	gcc Ala 350	cac His	ctc Leu	1056
caa Gln	gcc Ala	act Thr 355	Ala	ctg Leu	tcc Ser	cag Gln	cta Leu 360	Pro	ctg Leu	cta Leu	aag Lys	gct Ala 365	Val	atc Ile	aaa Lys	1104
gaa Glu	gtg Val	Leu	aga Arg	ttg Leu	tac Tyr	cct Pro 375	Val	gta Val	cct Pro	ggg Gly	aac Asn 380	Ser	cgt Arg	gtc Val	cca Pro	1152
gac Asp	aga Arg	gac g Asp	ato Ile	tgt Cys	gta Val	gga Gly	aac Asn	tat Tyr	gtt Val	att	ccc Pro	caa Gln	gat Asp	aca Thr	ctg Leu	1200

385	390	395	400
gtt tcc ctc tgt cac Val Ser Leu Cys His 405	tat gcc act tcc Tyr Ala Thr Se	a agg gac ccc gcc c Arg Asp Pro Ala C 410	ag ttt cgg 1248 In Phe Arg 415
gaa ccc aac tct ttt Glu Pro Asn Ser Phe 420	aat cca gct cg Asn Pro Ala Ar 42	g Trp Leu Gly Glu (gt cca gcc 1296 ly Pro Ala 30
ccc cac cca ttt gca Pro His Pro Phe Ala 435	tct ctt cct tt Ser Leu Pro Ph 440	t ggc ttt ggc aaa c e Gly Phe Gly Lys <i>F</i> 445	ga agt tgc 1344 rg Ser Cys
ata ggg aga cgc ttg Ile Gly Arg Arg Leu 450	gca gag ctc ga Ala Glu Leu Gl 455	g cta caa atg gcg t u Leu Gln Met Ala I 460	tg gcc cag 1392 eu Ala Gln
atc ttg acc cat ttt Ile Leu Thr His Phe 465	gag gtg ctg cc Glu Val Leu Pr 470	t gag cca ggt gct o o Glu Pro Gly Ala I 475	ett cca gtc 1440 Leu Pro Val 480
aaa ccc atg acc cgg Lys Pro Met Thr Arg 485	Thr Val Leu Va	a cct gag agg agc a l Pro Glu Arg Ser 1 490	itc cat ctc 1488 He His Leu 495
cag ttt gta gac aga Gln Phe Val Asp Arg 500			1503
INFORMATION FOR SEC SEQUENCE CHARACTERI LENGTH: 1524 base TYPE: nucleic aci STRANDEDNESS: dou TOPOLOGY: linear MOLECULE TYPE: cDNA HYPOTHETICAL: yes ORIGINAL SORCE: Hom FEATURE NAME/KEY: mature LOCATION: 11524 SEQUENCE DESCRIPTION	STICS e pairs d uble A to mRNA no sapiens peptide A ON: SEQ ID NO: 4		ogo ata aga 18
atg acc cag acc cto Met Thr Gln Thr Let 1	c aag tac gcc to 1 Lys Tyr Ala Se 5	c aga gtg ttc cat r Arg Val Phe His 10	ege gte ege 48 Arg Val Arg 15
tgg gcg ccc gag ttg Trp Ala Pro Glu Leo 20	ı Gly Ala Ser Le	a ggc tac cga gag u Gly Tyr Arg Glu 5	tac cac tca 96 Tyr His Ser 30
gca cgc cgg agc ttg Ala Arg Arg Ser Let 35	g gca gac atc co u Ala Asp Ile Pi	a ggc ccc tct acg o Gly Pro Ser Thr	ccc agc ttt 144 Pro Ser Phe
	40	45	

CA 02237138 1998-10-09

															,		
,	Leu	Ala 50	Glu	Leu	Phe	Cys	Lys 55	Gly	Gly	Leu	Ser	Arg 60	Leu	His	Glu	Leu	
	cag Gln 65	gtg Val	cag Gln	ggc Gly	gcc Ala	gcg Ala 70	cac His	ttc Phe	ggg Gly	ccg Pro	gtg Val 75	tgg Trp	cta Leu	gcc Ala	agc Ser	ttt Phe 80	240
	ggg Gly	aca Thr	gtg Val	cgc Arg	acc Thr 85	gtg Val	tac Tyr	gtg Val	gct Ala	gcc Ala 90	cct Pro	gca Ala	ctc Leu	gtc Val	gag Glu 95	gag Glu	288
	ctg Leu	ctg Leu	cga Arg	cag Gln 100	gag Glu	gga Gly	ccc Pro	cgg Arg	ccc Pro 105	gag Glu	cgc Arg	tgc Cys	agc Ser	ttc Phe 110	tcg Ser	ccc Pro	336
	tgg Trp	acg Thr	gag Glu 115	cac His	cgc Arg	cgc Arg	tgc Cys	cgc Arg 120	cag Gln	cgg Arg	gct Ala	tgc Cys	gga Gly 125	ctg Leu	ctc Leu	act Thr	384
	gcg Ala	gaa Glu 130	ggc Gly	gaa Glu	gaa Glu	tgg Trp	caa Gln 135	agg Arg	ctc Leu	cgc Arg	agt Ser	ctc Leu 140	ctg Leu	gcc Ala	ccg Pro	ctc Leu	432
	ctc Leu 145	ctc Leu	cgg Arg	cct Pro	caa Gln	gcg Ala 150	gcc Ala	gcc Ala	cgc Arg	tac Tyr	gcc Ala 155	gga Gly	acc Thr	ctg Leu	aac Asn	aac Asn 160	480
	gta Val	gtc Val	tgc Cys	gac Asp	ctt Leu 165	gtg Val	cgg Arg	cgt Arg	ctg Leu	agg Arg 170	cgc Arg	cag Gln	cgg Arg	gga Gly	cgt Arg 175	ggc Gly	528
	acg Thr	ggg Gly	ccg Pro	ccc Pro 180	gcc Ala	ctg Leu	gtt Val	cgg Arg	gac Asp 185	gtg Val	gcg Ala	ggg Gly	gaa Glu	ttt Phe 190	tac Tyr	aag Lys	576
	ttc Phe	gga Gly	ctg Leu 195	gaa Glu	ggc Gly	atc Ile	gcc Ala	gcg Ala 200	gtt Val	ctg Leu	ctc Leu	ggc Gly	tcg Ser 205	cgc Arg	ttg Leu	ggc Gly	624
	tgc Cys	ctg Leu 210	Glu	gct Ala	caa Gln	gtg Val	cca Pro 215	Pro	gac Asp	acg Thr	gag Glu	acc Thr 220	ttc Phe	atc Ile	cgc Arg	gct Ala	672
	gtg Val 225	Gly	tcg Ser	gtg Val	ttt Phe	gtg Val 230	tcc Ser	acg Thr	ctg Leu	ttg Leu	acc Thr 235	Met	gcg Ala	atg Met	ccc Pro	cac His 240	720
	tgg Trp	ctg Leu	cgc Arg	cac His	ctt Leu 245	Val	cct Pro	ggg Gly	ccc Pro	tgg Trp 250	Gly	cgc Arg	ctc Leu	tgc Cys	cga Arg 255	gac Asp	768
	tgg Trp	gac Asp	cag Gln	atg Met 260	Phe	gca Ala	ttt Phe	gct Ala	cag Gln 265	Arg	cac His	gtg Val	gag Glu	cgg Arg 270	Arg	gag Glu	816
	gca Ala	gag Glu	gca Ala	gcc	atg Met	agg Arg	aac Asn	gga Gly	gga Gly	cag Gln	ccc	gag Glu	aag Lys	gac Asp	ctg Leu	gag Glu	864

,		275					280					285				
tct Ser	ggg Gly 290	gcg Ala	cac His	ctg Leu	acc Thr	cac His 295	ttc Phe	ctg Leu	ttc Phe	cgg Arg	gaa Glu 300	gag Glu	t t g Leu	cct Pro	gcc Ala	912
cag Gln 305	tcc Ser	atc Ile	ctg Leu	gga Gly	aat Asn 310	gtg Val	aca Thr	gag Glu	ttg Leu	cta Leu 315	ttg Leu	gcg Ala	gga Gly	gtg Val	gac Asp 320	960
acg Thr	gtg Val	tcc Ser	aac Asn	acg Thr 325	ctc Leu	tct Ser	tgg Trp	gct Ala	ctg Leu 330	tat Tyr	gag Glu	ctc Leu	tcc Ser	cgg Arg 335	cac His	1008
ccc Pro	gaa Glu	gtc Val	cag Gln 340	aca Thr	gca Ala	ctc Leu	cac His	tca Ser 345	gag Glu	atc Ile	aca Thr	gct Ala	gcc Ala 350	ctg Leu	agc Ser	1056
cct Pro	ggc Gly	tcc Ser 355	agt Ser	gcc Ala	tac Tyr	ccc Pro	tca Ser 360	gcc Ala	act Thr	gtt Val	ctg Leu	tcc Ser 365	cag Gln	ctg Leu	ccc Pro	1104
ctg Leu	ctg Leu 370	aag Lys	gcg Ala	gtg Val	gtc Val	aag Lys 375	gaa Glu	gtg Val	cta Leu	aga Arg	ctg Leu 380	tac Tyr	cct Pro	gtg Val	gta Val	1152
cct Pro 385	gga Gly	aat Asn	tct Ser	cgt Arg	gtc Val 390	cca Pro	gac Asp	aaa Lys	gac Asp	att Ile 395	cat His	gtg Val	ggt Gly	gac Asp	tat Tyr 400	1200
att Ile	atc Ile	ccc Pro	aaa Lys	aat Asn 405	acg Thr	ctg Leu	gtc Val	act Thr	ctg Leu 410	tgt Cys	cac His	tat Tyr	gcc Ala	act Thr 415	tca Ser	1248
agg Arg	gac Asp	cct Pro	gcc Ala 420	cag Gln	ttc Phe	cca Pro	Glu	Pro	aat Asn	Ser	Phe	cgt Arg	Pro	Ala	cgc Arg	1296
tgg Trp	ctg Leu	ggg Gly 435	gag Glu	ggt Gly	ccc Pro	acc Thr	ccc Pro 440	cac His	cca Pro	ttt Phe	gca Ala	tct Ser 445	ctt Leu	ccc Pro	ttt Phe	1344
ggc Gly	ttt Phe 450	ggc Gly	aag Lys	cgc Arg	agc Ser	tgt Cys 455	atg Met	ggg Gly	aga Arg	cgc Arg	ctg Leu 460	gca Ala	gag Glu	ctt Leu	gaa Glu	1392
ttg Leu 465	caa Gln	atg Met	gct Ala	ttg Leu	gcc Ala 470	cag Gln	atc Ile	cta Leu	aca Thr	cat His 475	ttt Phe	gag Glu	gtg Val	cag Gln	cct Pro 480	1440
gag Glu	cca Pro	ggt Gly	gcg Ala	gcc Ala 485	cca Pro	gtt Val	aga Arg	ccc Pro	aag Lys 490	acc Thr	cgg Arg	act Thr	gtc Val	ctg Leu 495	gta Val	1488
cct Pro	gaa Glu	agg Arg	agc Ser 500	Ile	aac Asn	cta Leu	cag Gln	ttt Phe 505	ttg Leu	gac Asp	aga Arg					1524

SEQU LE TY ST TO MOLE HYPO ORIO FEAT NA LO SEQU	ENCE NGTH PE: TRAND POLC CULE THET TURE ME/K DCATI JENCE agac	CION C CHA I: 24 nucl DEDNE DGY: C TYP CICAL C SOR CON: C DES	RACT 69 b eic SS: line E: c CE: matu 5CRIF	ERIS ase acid doub ar DNA es Rat 1526 PTION	TICS pair le to m epti	rs aRNA de CQ ID	NO:	c ca	ag go In Al	a gt a Va	c aa	ig ct	cc go	cc to a Se	c aga er Arg	53
		·														
gtc Val	ttc Phe	cat His	cga Arg	gtc Val 15	caa Gln	ctg Leu	cct Pro	tct Ser	cag Gln 20	ctg Leu	ggc Gly	agt Ser	gac Asp	tcg Ser 25	gtt Val	101
ctc Leu	cgg Arg	agt Ser	tta Leu 30	tct Ser	gat Asp	atc Ile	cct Pro	ggg Gly 35	ccc Pro	tct Ser	aca Thr	cct Pro	agc Ser 40	ttc Phe	ctg Leu	149
gct Ala	gaa Glu	ctc Leu 45	ttc Phe	tgc Cys	aaa Lys	ggg Gly	ggg Gly 50	ctg Leu	tcc Ser	agg Arg	cta Leu	cat His 55	gaa Glu	ctg Leu	cag Gln	197
gtg Val	cat His 60	ggc Gly	gct Ala	gcg Ala	cgg Arg	tac Tyr 65	ggg Gly	cca Pro	ata Ile	tgg Trp	tcc Ser 70	ggc Gly	agc Ser	ttc Phe	ggg Gly	245
aca Thr 75	ctt Leu	cgc Arg	aca Thr	gtt Val	tat Tyr 80	gtg Val	gcc Ala	gac Asp	cct Pro	gca Ala 85	ctt Leu	gta Val	gag Glu	cag Gln	ctc Leu 90	293
ctg Leu	cga Arg	caa Gln	gaa Glu	agt Ser 95	cat His	tgt Cys	cca Pro	gag Glu	cgc Arg 100	tgt Cys	agt Ser	ttc Phe	tca Ser	tct Ser 105	tgg Trp	341
tca Ser	gag Glu	cac His	cgt Arg 110	cgc Arg	cgc Arg	cac His	cag Gln	cgg Arg 115	gct Ala	tgc Cys	ggg Gly	ttg Leu	cta Leu 120	acg Thr	gcg Ala	389
gat Asp	ggt Gly	gaa Glu 125	gaa Glu	tgg Trp	cag Gln	agg Arg	ctc Leu 130	cga Arg	agt Ser	ctc Leu	ctg Leu	gcc Ala 135	ccg Pro	cta Leu	ctc Leu	437
ctc Leu	cga Arg 140	cct Pro	caa Gln	gca Ala	gcc Ala	gcc Ala 145	ggc Gly	tat Tyr	gct Ala	gga Gly	act Thr 150	ctg Leu	gac Asp	agc Ser	gtg Val	485
gtc	agt	gac	ctc	gtg	cga	cga	cta	agg	cgc	cag	cgg	gga	cgt	ggc	tct	533

CA 02237138 1998-10-09

Val 155	Ser	Asp	Leu	Val	Arg 160	Arg	Leu	Arg	Arg	Gln 165	Arg	Gly	Arg	Gly	Ser 170	
ggg Gly	cta Leu	ccg Pro	gac Asp	cta Leu 175	gtt Val	ctg Leu	gac Asp	gtg Val	gcg Ala 180	gga Gly	gag Glu	ttt Phe	tac Tyr	aaa Lys 185	ttt Phe	581
ggc Gly	cta Leu	gaa Glu	ggc Gly 190	ata Ile	ggc Gly	gcg Ala	gtg Val	ctg Leu 195	ctg Leu	gga Gly	tcg Ser	cgc Arg	ctg Leu 200	ggc Gly	tgc Cys	629
ctg Leu	gag Glu	gct Ala 205	gaa Glu	gtt Val	cct Pro	ccc Pro	gac Asp 210	aca Thr	gaa Glu	acc Thr	ttc Phe	att Ile 215	gag Glu	gcc Ala	gtg Val	677
ggc Gly	tcg Ser 220	gtg Val	ttt Phe	gtg Val	tct Ser	aca Thr 225	ctc Leu	ttg Leu	acc Thr	atg Met	gca Ala 230	atg Met	ccc Pro	agt Ser	tgg Trp	725
ctg Leu 235	cac His	cgc Arg	ctt Leu	ata Ile	ccc Pro 240	gga Gly	ccc Pro	tgg Trp	gcc Ala	cgc Arg 245	ctc Leu	tgc Cys	aga Arg	gac Asp	tgg Trp 250	773
gat Asp	cag Gln	atg M et	ttt Phe	gcc Ala 255	ttt Phe	gcc Ala	cag Gln	aag Lys	cac His 260	gtg Val	gag Glu	cag Gln	cgc Arg	gaa Glu 265	ggc Gly	821
gaa Glu	gct Ala	gcc Ala	gtg Val 270	Arg	aac Asn	cag Gln	gga Gly	aag Lys 275	cct Pro	gag Glu	gag Glu	gat Asp	ttg Leu 280	cca Pro	acg Thr	869
ggg Gly	cat His	cac His 285	Leu	acc Thr	cac His	ttc Phe	ctt Leu 290	ttt Phe	cgg Arg	gaa Glu	aag Lys	gtg Val 295	Ser	gtc Val	cag Gln	917
tcc Ser	ata Ile 300	Val	gga Gly	aat Asn	gtg Val	aca Thr 305	Glu	cta Leu	cta Leu	ctg Leu	gct Ala 310	Gly	gtg Val	gac Asp	acg Thr	965
gta Val 315	Ser	aat Asn	acg Thr	ctc Leu	tcc Ser 320	Trp	gca Ala	ctc Leu	tat Tyr	gag Glu 325	Leu	tcc Ser	cgg Arg	cac His	ccg Pro 330	1013
gaa Glu	gto Val	cag Glr	tct Ser	gca Ala	Leu	cac His	tct Ser	gag Glu	ato Ile 340	Thr	ggc Gly	gct Ala	gtg Val	aac Asn 345	cct	1061
ggc Gly	tco Sei	tat Tyr	gco Ala	His	ctc Leu	caa Gln	gco Ala	act Thr 355	Ala	ctg Leu	g tco i Ser	cag Gln	cta Leu 360	Pro	ctg Leu	1109
cta Leu	ı aaş ı Lys	g gct s Ala 365	a Val	g ato I Ile	aaa Lys	gaa Glu	a gtg i Val 370	Let	g aga i Arg	attg g Lei	g tac ı Tyı	cct Pro	vai	g gta Val	cct Pro	1157
ggg Gly	g aad / Asi	t too	c cgi r Arg	t gto g Val	cca Pro	gad Asp	aga Arg	a gad g Asp	ato	c tgi	t gta s Val	a gga I Gly	a aac / Asr	tat Tyr	gtt Val	1205

380	385	390	
att ccc caa gat aca Ile Pro Gln Asp Thr 395	ctg gtt tcc ctc Leu Val Ser Leu 400	tgt cac tat gcc act Cys His Tyr Ala Thr 405	tca agg 1253 Ser Arg 410
gac ccc gcc cag ttt Asp Pro Ala Gln Phe 415	Arg Glu Pro Asn	tct ttt aat cca gct Ser Phe Asn Pro Ala 420	cga tgg 1301 Arg Trp 425
ctt gga gag ggt cca Leu Gly Glu Gly Pro 430	gcc ccc cac cca Ala Pro His Pro 435	ttt gca tct ctt cct Phe Ala Ser Leu Pro 440	Phe Gly
ttt ggc aaa cga agt Phe Gly Lys Arg Ser 445	tgc ata ggg aga Cys Ile Gly Arg 450	cgc ttg gca gag ctc Arg Leu Ala Glu Leu 455	gag cta 1397 Glu Leu
caa atg gcg ttg gcc Gln Met Ala Leu Ala 460	cag atc ttg acc Gln Ile Leu Thr 465	cat ttt gag gtg ctg His Phe Glu Val Leu 470	g cct gag 1445 i Pro Glu
cca ggt gct ctt cca Pro Gly Ala Leu Pro 475	gtc aaa ccc atg Val Lys Pro Met 480	acc cgg act gtc ctg Thr Arg Thr Val Let 485	g gta cct 1493 1 Val Pro 490
gag agg agc atc cat Glu Arg Ser Ile His 495	Leu Gln Phe Val		gaaggcagct 1546
gtcatcatct ctctccag	ac tggattttc tta	actatgca caagaggcac	actetecete 1606
gaggcctgtc tgtctgag	ca aacttcagga ago	caggcccg ggcctatctg	tgcttgacct 1666
gactcagcag gtaccaca	ga accaggatec tt	ctcctgc tcagtacctc	tcctgatcat 1726
tcctcaagat ccaaagcc	tt cagattttaa cad	catcetta aagggecaac	tcgggggtta 1786
actaacagcc ccaggcag	gcc tgggcaggga tco	ecceactg atcettecat	gcttacagtg 1846
ttcactgaca gctgtcta	ag catccattge ago	cacaaact aagtgactgt	gcacctggtc 1906
tgcacctggt ctgcacct	gg ttgcgtctct gc	ctgaccat gtgagctctt	tgagaagagt 1966
gatgactact gggctttt	ag ctcttttcct tt	ttgggaca cagtcttgct	attgtactcc 2026
atgctgtcct tgaaccca	aca ageceteace te	accttccc aagtgttggg	ttacggacat 2086
tagctatggc ttccagct	tt attagtcttt ct	atctcctg ccatggtcta	tccccggcta 2146
		accatgtg gtagaaggga	
		ttctctag gaaagtgaat	
		ctgctctt tagccactct	
cactctactt ctcaccac	ecc atctttctgc ac	cccagcct gtcttttat	atttaaaaaa 2386

aaaaa	aaaa	aa a	aaaa	aaaa	a aa	a										2469
TYP STI TOI MOLE HYPO' ORIG FEAT NAI LO SEQU	ENCE NGTH PE: RAND POLO CULE THET INAL URE ME/K CATI ENCE	CHA: 24 nucl EDNE GY: TYP ICAL SOR EY: ON: DES	RACT 69 b eic SS: line E: c : ye CE: matu 122. CRIP	ERIS ase acid doub ar DNA s Homo re p .164 TION	TICS pair le to m sap epti 5 : SE	s RNA iens de Q ID	NO:	6								
															taaat	
aggg	gttg	ag a	tatg	atgc	t ca	ggag	aagc	gct	ttct	ttc	gcga	gcac	cc t	gaac	cagac	120
Мe	g ac t Th l	c ca r Gl	g ac n Th	c ct r Le	c aa u Ly 5	g ta 's Ty	r Al	c to a Se	c ag er Ar	ga gt g Va 10	g tt il Ph	c ca ie Hi	t cg s Ar	gc gt rg Va	c cgc l Arg 15	169
tgg Trp	gcg Ala	ccc Pro	gag Glu 20	ttg Leu	ggc Gly	gcc Ala	tcc Ser	cta Leu 25	ggc Gly	tac Tyr	cga Arg	gag Glu	tac Tyr 30	cac His	tca Ser	217
gca Ala	cgc Arg	cgg Arg 35	agc Ser	ttg Leu	gca Ala	gac Asp	atc Ile 40	cca Pro	ggc Gly	ccc Pro	tct Ser	acg Thr 45	ccc Pro	agc Ser	ttt Phe	265
ctg Leu	gcc Ala 50	gaa Glu	ctt Leu	ttc Phe	tgc Cys	aag Lys 55	ggg Gly	ggg Gly	ctg Leu	tcg Ser	agg Arg 60	cta Leu	cac His	gag Glu	ctg Leu	313
cag Gln 65	gtg Val	cag Gln	ggc Gly	gcc Ala	gcg Ala 70	cac His	ttc Phe	ggg Gly	ccg Pro	gtg Val 75	tgg Trp	cta Leu	gcc Ala	agc Ser	ttt Phe 80	361
ggg Gly	aca Thr	gtg Val	cgc Arg	acc Thr 85	gtg Val	tac Tyr	gtg Val	gct Ala	gcc Ala 90	cct Pro	gca Ala	ctc Leu	gtc Val	gag Glu 95	gag Glu	409
ctg Leu	ctg Leu	cga Arg	cag Gln 100	gag Glu	gga Gly	ccc Pro	cgg Arg	ccc Pro 105	gag Glu	cgc Arg	tgc Cys	agc Ser	ttc Phe 110	tcg Ser	ccc Pro	457
tgg Trp	acg Thr	gag Glu 115	cac His	cgc Arg	cgc Arg	tgc Cys	cgc Arg 120	cag Gln	cgg Arg	gct Ala	tgc Cys	gga Gly 125	ctg Leu	ctc Leu	act Thr	505
gcg Ala	gaa Glu	ggc Gly	gaa Glu	gaa Glu	tgg Trp	caa Gln	agg Arg	ctc Leu	cgc Arg	agt Ser	ctc Leu	ctg Leu	gcc Ala	ccg Pro	ctc Leu	553

•	130					135					140					
ctc Leu 145	ctc Leu	cgg Arg	cct Pro	caa Gln	gcg Ala 150	gcc Ala	gcc Ala	cgc Arg	tac Tyr	gcc Ala 155	gga Gly	acc Thr	ctg Leu	aac Asn	aac Asn 160	601
gta Val	gtc Val	tgc Cys	gac Asp	ctt Leu 165	gtg Val	cgg Arg	cgt Arg	ctg Leu	agg Arg 170	cgc Arg	cag Gln	cgg Arg	gga Gly	cgt Arg 175	ggc Gly	649
	ggg Gly															697
ttc Phe	gga Gly	ctg Leu 195	gaa Glu	ggc Gly	atc Ile	gcc Ala	gcg Ala 200	gtt Val	ctg Leu	ctc Leu	ggc Gly	tcg Ser 205	cgc Arg	ttg Leu	ggc Gly	745
tgc Cys	ctg Leu 210	gag Glu	gct Ala	caa Gln	gtg Val	cca Pro 215	ccc Pro	gac Asp	acg Thr	gag Glu	acc Thr 220	ttc Phe	atc Ile	cgc Arg	gct Ala	793
gtg Val 225	ggc Gly	tcg Ser	gtg Val	ttt Phe	gtg Val 230	tcc Ser	acg Thr	ctg Leu	ttg Leu	acc Thr 235	atg Met	gcg Ala	atg Met	ccc Pro	cac His 240	841
tgg Trp	ctg Leu	cgc Arg	cac His	ctt Leu 245	gtg Val	cct Pro	ggg Gly	ccc Pro	t gg Trp 250	ggc Gly	cgc Arg	ctc Leu	tgc Cys	cga Arg 255	gac Asp	889
	gac Asp															937
gca Ala	gag Glu	gca Ala 275	Ala	Met	Arg	Asn	Gly	Gly	Gln	Pro	gag Glu	Lys	Asp	ctg Leu	gag Glu	985
tct Ser	ggg Gly 290	gcg Ala	cac His	ctg Leu	acc Thr	cac His 295	ttc Phe	ctg Leu	ttc Phe	cgg Arg	gaa Glu 300	gag Glu	ttg Leu	cct Pro	gcc Ala	1033
cag Gln 305	tcc Ser	atc Ile	ctg Leu	gga Gly	aat Asn 310	gtg Val	aca Thr	gag Glu	ttg Leu	cta Leu 315	ttg Leu	gcg Ala	gga Gly	gtg Val	gac Asp 320	1081
acg Thr	gtg Val	tcc Ser	aac Asn	acg Thr 325	ctc Leu	tct Ser	tgg Trp	gct Ala	ctg Leu 330	tat Tyr	gag Glu	ctc Leu	tcc Ser	cgg Arg 335	cac His	1129
	gaa Glu															1177
	ggc Gly															1225

.

ctg Leu	ctg Leu 370	aag Lys	gcg Ala	gtg Val	gtc Val	aag Lys 375	gaa Glu	gtg Val	cta Leu	aga Arg	ctg Leu 380	tac Tyr	cct Pro	gtg Val	8	1273
cct Pro 385	gga Gly	aat Asn	tct Ser	cgt Arg	gtc Val 390	cca Pro	gac Asp	aaa Lys	gac Asp	att Ile 395	cat His	gtg Val	ggt Gly	gac Asp		1321
att Ile	atc Ile	ccc Pro	aaa Lys	aat Asn 405	acg Thr	ctg Leu	gtc Val	act Thr	ctg Leu 410	tgt Cys	cac His	tat Tyr	gcc Ala	act Thr 415	tca Ser	1369
agg Arg	gac Asp	cct Pro	gcc Ala 420	cag Gln	ttc Phe	cca Pro	gag Glu	cca Pro 425	aat Asn	tct Ser	ttt Phe	cgt Arg	cca Pro 430	gct Ala	cgc Arg	1417
tgg Trp	ctg Leu	ggg Gly 435	gag Glu	ggt Gly	ccc Pro	acc Thr	ccc Pro 440	cac His	cca Pro	ttt Phe	gca Ala	tct Ser 445	ctt Leu	ccc Pro	ttt Phe	1465
ggc Gly	ttt Phe 450	ggc Gly	aag Lys	cgc Arg	agc Ser	tgt Cys 455	atg Met	ggg Gly	aga Arg	cgc Arg	ctg Leu 460	gca Ala	gag Glu	ctt Leu	gaa Glu	1513
ttg Leu 465	caa Gln	atg Met	gct Ala	ttg Leu	gcc Ala 470	cag Gln	atc Ile	cta Leu	aca Thr	cat His 475	ttt Phe	gag Glu	gtg Val	cag Gln	cct Pro 480	1561
gag Glu	cca Pro	ggt Gly	gcg Ala	gcc Ala 485	cca Pro	gtt Val	aga Arg	ccc Pro	aag Lys 490	acc Thr	cgg Arg	act Thr	gtc Val	ctg Leu 495	gta Val	1609
cct Pro	gaa Glu	agg Arg	agc Ser 500	atc Ile	aac Asn	cta Leu	cag Gln	ttt Phe 505	ttg Leu	gac Asp	aga Arg	tag	tccc	atg		1655
gaaa	agag	act	gtca	tcat	са с	cctt	tcat	t ca	tcat	aggg	ata	agat	ttt	ttgt	aggcac	1715
aaga	acca	agg	tata	catc	tt c	ccct	aatg	c ct	atct	gacc	aaa	ctgg	ata	gaac	caccat	1775
agt	gaag	tgt	gagg	cggc	cc t	gacc	aatg	t gt	gaag	tatg	cac	ttgg	cct	gact	caggaa	1835
gcca	aggt	gag	aaaa	ccat	gg t	ctct	ctgc	t tg	cttg	gccc	ttc	tgat	cat	gtat	gcatcc	1895
ccc	aagg	atg	aaat	caga	tt t	taac	taat	a at	gctg	gatg	gcc	tgag	gaa	agat	tcaact	1955
gcc	tctc	ttt	ttgg	gctt	tc a	tagt	gttc	a tt	gatg	ctgc	tgg	ctaa	gca	ttta	tcaaag	2015
cat	aagc	tca	gtaa	ctgt	gc a	tctg	gtct	g ta	cctg	gttg	gtc	cttc	gtc	tttg	catgta	2075
agc	tctt	tga	gagg	aagg	gt g	aagc	ctta	t tt	gttt	ttta	tgt	cccc	tgc	cagg	gcctgt	2135
ctc	t gac	tag	gtgt	cacc	at a	caca	ttct	t ag	attg	aatc	tga	acca	tgt	ggca	gaaggg	2195
ata	agca	gct	tact	tagt	ag g	ctct	gtct	а сс	ccct	tcct	tct	ttgt	ctt	gccc	ctagga	2255

aggtgaatct gccctagcct ggtttacggt ttcttataac tctcctttgc tctctggcca 2315 ctattaagtg ggtttgcccc atcacttagt tctcaggcag agacatcttt gggcctgtcc 2375 ctgcccaggc ctctggcttt ttatattgaa aatttttaaa tattcacaaa ttttagaata 2435 2469 aatcaaatat tccattaaaa aaaaaaaaaa aaaa

INFORMATION FOR SEQ ID NO.: 7

SEQUENCE CHARACTERISTICS

LENGTH: 23 bases TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid (synthetic DNA)

SEQUENCE DESCRIPTION: SEQ ID NO: 7

ctsctsaarg chgtsatyaa rga

INFORMATION FOR SEQ ID NO.: 8 SEQUENCE CHARACTERISTICS

LENGTH: 22 bases TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid (synthetic DNA)

SEQUENCE DESCRIPTION: SEQ ID NO: 8

22 ckcttbccra abccraargg va

INFORMATION FOR SEQ ID NO.: 9 SEQUENCE CHARACTERISTICS

LENGTH: 25 bases TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid (synthetic DNA)

SEQUENCE DESCRIPTION: SEQ ID NO: 9

25 aaggcagtga ttaaggaagt gttga

WHAT IS CLAIMED IS:

5

10

30

- 1. A polypeptide comprising an amino acid sequence selected from the amino acid sequences represented by SEQ ID NOS.1 and 2, or
- a polypeptide comprising an amino acid sequence in which amino acids residues are deleted, substituted or added in the amino acid sequence of said polypeptide, and having 25-hydroxyvitamin D_3 - 1α -hydroxylase activity.
- A DNA encoding a polypeptide according to claim 1 or a DNA which hybridizes with said DNA under stringent conditions.
 - 3. The DNA according to claim 2, wherein the DNA is DNA comprising a nucleotide sequence selected from nucleotide sequences represented by SEQ ID NOS.3 and 4.
- 4. A recombinant DNA prepared by inserting the DNA according to claim 2 or 3 into a vector.
 - 5. A transformant carrying a recombinant DNA according to claim 4.
- 6. A method for producing 25-hydroxyvitamin $D_3-1\alpha-20$ hydroxylase, comprising:

cultivating the transformant according to claim 5 in a medium to produce 25-hydroxyvitamin $D_3-1\alpha$ -hydroxylase in the culture; and

recovering said 25-hydroxyvitamin D_3 -1 α -hydroxylase 25 from the resulting culture.

7. A method for producing 1α , 25-dihydroxyvitamin D_3 , comprising:

putting the polypeptide according to claim 1 and 25-hydroxyvitamin D_3 in an aqueous medium to produce 1α , 25-dihydroxyvitamin D_3 in the aqueous medium; and

recovering said 1α , 25-dihydroxyvitamin $D_{_{\! 3}}$ from the aqueous medium.

- 8. An antibody recognizing the polypeptide according to claim 1.
- 9. A method for immunologically detecting a polypeptide

having 25-hydroxyvitamin D,-1 α -hydroxylase activity, using the antibody according to claim 8.

- 10. An immuno-histological staining method comprising using an antibody according to claim 8.
- 5 11. An immuno-histological staining agent containing an antibody according to claim 8.

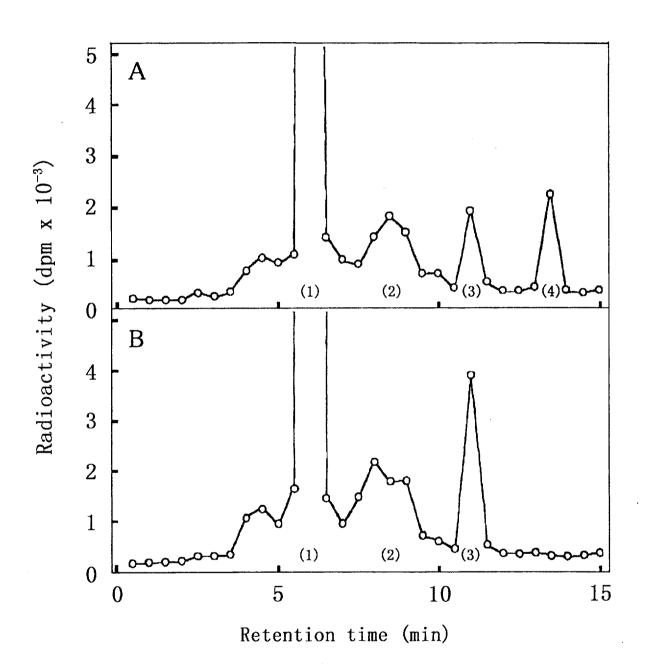


Fig. 1