(54) Title: A METHOD FOR DETECTING ANTIPOLYMER ANTIBODIES AND A DIAGNOSTIC TEST KIT FOR USE IN AIDING THE DIAGNOSIS OF SILICONE RELATED DISEASES (SRD)

(57) Abstract:
The present invention provides for a test kit and method of detecting antipolymer antibodies, and a test kit and method for detecting silicone related disease, fibromyalgia, and chronic fatigue syndrome. The methods of the present invention involve a) providing a sample to be tested for an antipolymer antibody and d) combining a polymer selected from the group consisting of polyacrylamide (particularly partially polymerized polyacrylamide), silicone, and collagen, with said sample for a time sufficient for an antipolymer antibody to react with said polymer, to form a complex. An indicator reagent is added to the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample.
(54) Title: A METHOD FOR DETECTING ANTIPOLYMER ANTIBODIES AND A DIAGNOSTIC TEST KIT FOR USE IN AIDING THE DIAGNOSIS OF SILICONE RELATED DISEASES (SRD)

(57) Abstract

The present invention provides for a test kit and method of detecting antipolymer antibodies, and a test kit and method for detecting silicone related disease, fibromyalgia, and chronic fatigue syndrome. The methods of the present invention involve a) providing a sample to be tested for an antipolymer antibody and d) combining a polymer selected from the group consisting of polyacrylamide (particularly partially polymerized polyacrylamide), silicone, and collagen, with said sample for a time sufficient for an antipolymer antibody to react with said polymer, to form a complex. An indicator reagent is added to the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample.
A METHOD FOR DETECTING ANTIPOLYMER ANTIBODIES AND A DIAGNOSTIC TEST KIT FOR USE IN AIDING THE DIAGNOSIS OF SILICONE RELATED DISEASES (SRD)

Technical Field:

This invention relates to a method and a kit for detecting antipolymer antibodies, and more particularly, to a method for diagnosing silicone related disease (SRD), fibromyalgia, and chronic fatigue syndrome (CFS).

Description:

Various immunoassay techniques typically used in characterizing autoimmune responses, which are known to be extremely sensitive and specific, were used to identify antipolymer antibodies in over 50% of tested individuals diagnosed with silicone related disease and over 80% of tested individuals diagnosed with fibromyalgia and chronic fatigue syndrome. The detection of antipolymer antibodies provide the first definitive evidence that silicone breast implants are capable of producing an immunological response that is diagnostically testable, and the first evidence that an immunological response to fibromyalgia and chronic fatigue can be tested by an objective method.

Imunoassay techniques and methods generally known to those skilled in the art for detecting human antibodies are described in Antibodies: A Laboratory Manual by Ed Harlow and David Lane (1988) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York generally including homogenous and heterogeneous assay configurations. Currently, no known method exists for detecting antipolymer antigens, or serum antibodies immunologically produced in response to SRD, fibromyalgia, or CFS.
Silicone polymers have, until recently, been considered biologically and immunologically inert, and for this reason are included as exterior coatings on components of most medical devices that are surgically implanted into humans. Some examples of silicone containing devices include, hip replacements, catheters, mandibular prostheses, and breast implants. It has been estimated that more than 2 million women in the United States have been recipients of silicone implants for augmentation, mammoplasty and breast reconstruction following cancer surgery.

As devices such as silicone breast implants have become more widely used, an increased concern that silicone may be neither biologically nor immunologically inert has arisen. Silicones are entirely synthetic polymers containing a repeating Si-O backbone with organic groups attached directly to the silicon atom through a carbon bond. Silicone can be formed into fluids, gels, or solids based on the degree of linear, branched and cross link subunits. The degree of cross-linking dictates the consistency of the resulting silicone which can vary from a clear gel to a white opaque elastomer. The cross link polymers form a loose intertwining matrix which retains the remaining silicone fluid. The lack of chemical integrity of this complex is suspected to permit "gel bleed" of silicone fluid slowly out of the matrix. Impurities such as catalysts, short linear polymers, and small cyclics can remain depending on the stringency of the purification technique employed.

Approximately 10% of patients who receive medical devices containing silicone polymers experience complications including inflammation, severe muscle pain or overt rheumatic (autoimmune) disease. Recently, silicone
implants have been linked to multiple sclerosis like symptoms, particularly in patients whose implants have ruptured. A portion of the approximately 2 million women in the United States who have received silicone gel filled breast implants have complications such as infection, capsular contraction, leakage and rupture (Touchette 1992). Additionally, some breast implant recipients experience a syndrome characterized by symptoms which include fibromyalgia, sicca syndromes, lymphadenopathy, contracture, sclerodactyly, alopecia, edema, telangiectasias, changes in pigmentation, recurrent fever, skin rash, and chronic fatigue (Brozena, S. J., Fenske, N. A., Cruse, C. W., Espinoza, C. G., Vasey, F. B., Germain, B. F. and Espinoza, L. R. (1988). Human adjuvant disease following augmentation mammoplasty. Arch Dermatol 124: 1383-6.

Individuals surgically implanted with various devices containing silicone may also develop arthritic and
dermatologic conditions that present like autoimmune diseases, such as systemic sclerosis (scleroderma) or Sjögren's Syndrome (Brozena, et al., 1988 supra; Vassey, et al., 1991 supra; Spiera, et al., 1994 supra). Studies implicating silicone containing medical devices and autoimmune diseases, however, have been met with considerable skepticism (Gabriel, S. E., O'Fallon, W. M., Kurland, L. T., Beard, C. M., Woods, J. E. and Melton, L.J. (1994). Risk of connective-tissue diseases and other disorders after breast implantation [see comments]. New England Journal of Medicine 330: 1697-702).
Exposure to silicone breast implants can result in the manifestation of symptoms and complications that collectively are dissimilar from previously recognized or defined rheumatological diseases and therefore may be uniquely identifiable with the appropriate diagnostic tests. Nevertheless, the systemic nature and relatively non-specific symptoms of the disease, particularly undifferentiated rheumatic and SRD, often make the disease difficult to clinically diagnose and difficult to distinguish. An assay method which would enable the clinician to distinguish and discriminate between undifferentiated rheumatic diseases and SRD is highly desired, and does not now currently exist.

Surgical implants have benefits that extend from prolongation of life to cosmetic enhancement. Implants also have associated risks, and these known risks motivate some people to forego implants even though the benefit may outweigh the risk. Likewise, removal of existing implants may involve expense, pain, disfigurement, disability and death. A diagnostic test that would help implant candidate balance the benefit and the risk of her/his implant is badly needed, and does not currently exist.

The diagnosis of fibromyalgia and chronic fatigue syndrome are currently based on subjective clinical observations comparing the symptomology of a patient with the symptomology formulated by the American College of Rheumatology for fibromyalgia, and Centers for Disease Control and Prevention for Chronic Fatigue Syndrome. Currently no known objective laboratory test exist to identify fibromyalgia or chronic fatigue patients.

It is the principal object of the invention is to provide a reliable method for detecting antipolymer antibodies. It is also a principal object of the invention to provide a method for diagnosing silicone related disease, fibromyalgia, and chronic fatigue syndrome.
In one aspect, there is described a method to aid the diagnosis of fibromyalgia, comprising the steps of: a) providing a sample to be tested for an antipolymer antibody; b) combining a polymer antigen comprising polyacrylamide or partially polymerized acrylamide with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen, to form a complex; c) reacting an indicator reagent with the material resulting from step b) to indicate the presence or absence of antipolymer antibody in said sample; and d) identifying the presence or absence of reacted indicator reagent in the material resulting from step c); whereby the presence of reacted indicator reagent identifies fibromyalgia in an individual providing said sample.

In another aspect, there is described a method to aid the diagnosis of chronic fatigue syndrome (CFS) comprising the steps of: a) providing a sample to be tested for an antipolymer antibody; b) combining a polymer antigen comprising polyacrylamide or partially polymerized acrylamide with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen, to form a complex; c) reacting an indicator reagent with the material resulting from the step b), to indicate the presence or absence of antipolymer antibody in said sample; and d) identifying the presence or absence of reacted indicator reagent in the material resulting from step c); whereby the presence of reacted indicator reagent identifies CFS in an individual providing said sample.

In another aspect, there is described a diagnostic kit for use in aiding the diagnosis of fibromyalgia, comprising: an antigen comprising polyacrylamide or a partially polymerized acrylamide attached to a support
material; and an indicator reagent capable of indicating the presence or absence of antibodies bound to said antigen.

In another aspect, there is described a diagnostic kit for use in aiding the diagnosis of chronic fatigue syndrome (CFS), comprising: an antigen comprising polyacrylamide or a partially polymerized acrylamide attached to a support material; and an indicator reagent capable of indicating the presence or absence of antibodies bound to said antigen.

Another object of the invention is to provide an objective test for identifying silicone related disease, fibromyalgia, and chronic fatigue syndrome, through the detection of antipolymer antibodies in the test sera.

An exemplary embodiment of the invention achieves one or more of the above objects in a method for detecting antipolymer antibodies, by a) providing
sample to be tested for an antipolymer antibody and b) combining a polymer selected from the group consisting of polyacrylamide (particularly partially polymerized polyacrylamide), silicone, and collagen, with said sample for a time sufficient for an antipolymer antibody to react with said polymer, to form a complex. An indicator reagent is added to the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample.

In a preferred method, the step of binding said polymer to a solid phase is further included. In a preferred method, the solid phase is chosen from a group comprising nitrocellulose membranes, polyvinylidene difluoride (PVDF) and nylon.

In a preferred method, the indicator reagent is a binding member that is specific for a human antibody and conjugated to a detectable label and combined with said sample and polymer for a time under condition sufficient to form a label ternary complex on said solid support.

A preferred method, further including the step of detecting the presence or absence of labeled ternary complex as an indication of the presence or absence of said antipolymer antibody in said sample.

According to one aspect of the invention, the above objects are realized in a method diagnosing silicone related disease, comprising the steps of: a) providing a sample to be tested for an antipolymer antibody; and b) combining a polymer antigen selected from the group consisting of polyacrylamide, silicone and collagen, with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen to form a complex; c) reacting an indicator reagent with the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample. Identifying the presence or absence of a reacted indicator reagent in the material resulting from step c); whereby, the presence of reacted indicator reagent identifies silicone related disease in an individual providing said sample, with a clinical diagnoses of SRD.

According to one aspect of the invention, the above objects are realized in a method of diagnosing fibromyalsia, comprising the steps of: a) providing a sample to be tested for an antipolymer antibody; and b) combining a polymer antigen selected from the group consisting of polyacrylamide, silicone and collagen, with
said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen to form a complex; c) reacting an indicator reagent with the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample. Identifying the presence or absence of a reacted indicator reagent in the material resulting from step c), whereby, the presence of reacted indicator reagent identifies fibromyalgia in an individual providing said sample, with a clinic diagnoses of fibromyalgia.

According to one aspect of the invention, the above objects are realized in a method of diagnosing chronic fatigue syndrome, comprising the steps of: a) providing a sample to be tested for an antipolymer antibody; b) combining a polymer antigen selected from the group consisting of polyacrylamide, silicone and collagen, with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen to form a complex; and c) reacting an indicator reagent with the material resulting from step b) to indicate the presence or absence of an antipolymer antibody in said sample. Identifying the presence or absence of a reacted indicator reagent in the material resulting from step c); whereby, the presence of reacted reagent identifies chronic fatigue syndrome in an individual providing said sample, with a clinical diagnosis of chronic fatigue syndrome.

Other objects and advantages will become apparent from the following specification taken in connection with the accompanying Tables and Figure.

The object of the present invention can be achieved by a variety of binding assay configurations and formats which enable the detection or measurement of polymer antigen and/or antipolymer antibodies (APA). Detailed herein, are presently preferred embodiments of the invention, in which it should be understood that the present disclosure is to be considered as an exemplification of the principals of this invention and is not intended to limit the invention to the embodiment described.

A method of detecting antipolymer antibodies includes the steps of providing a test sample of body fluid and mixing a polymer selected from the group comprising polyacrylamide (particularly, partially polymerized polyacrylamide), silicone or collagen with the sample for a time sufficient to form an antipolymer
antibody and polymer complex, and combining an indicator reagent with the sample and polymer to detect the presence of antipolymer antibodies in said sample. The method can be used as a diagnostic tool in diagnosing patients with silicone related disease (SRD) fibromyalgia and chronic fatigue syndrome (CFS) of which no laboratory (objective) test currently exists to diagnose any of these three diseases.

Polyacrylamide gels are formed as a result of a free-radical based catalytic polymerization of acrylamide monomers to each other and to a crosslinker such as bisacrylamide forming a solid gel matrix. By varying the ratio of acrylamide to crosslinker the porosity or rigidity of the gel matrix can be influenced. Compounds that act as free-radical traps impede the polymerization procedure. Oxygen (O_2) present in the air is such a compound and will prevent complete polymerization. For this reason, acrylamide/crosslinker solutions are usually degassed prior to polymerization to maximize the production of the solid gel matrix. The addition of oxygen by aeration or by increasing the size of the gel/air interface can favor the production of quasi or "partially" polymerized subunits of acrylamide/cross-linker, referred to here as partially polymerized acrylamide (PPA). PPA is thought to be composed of a heterogeneous mixture of variously sized small linear and/or cyclic molecules that do not or can not covalently crosslink to the polymerized gel matrix.

PPA is optimally prepared by mixing 2.5ml of a 37.5:1 acrylamide/bis-acrylamide solution (Acryl:Bis) with 8.5ml sterile H_2O and 3.5ml of 1.5M Tris buffer (pH 8.0) and then polymerized by adding 0.1ml of an 0.01% ammonium persulfate solution and 0.020ml N,N,N',N'-Tetramethylethylenediamine (TEMED). Polymerization is allowed to occur for 10 minutes in a 60 ml beaker. PPA remains on top of the solid gel as a slightly viscous liquid of approximately 1 ml volume.

Although this recipe produced large quantities of immunologically reactive PPA, other cross-linker compounds with acrylamide can be used to manufacture PPA with varying degrees of immunoreactivity. These cross-linker compounds include but are not limited to diallyltartardiamide, methylene-bis-acrylamide, ethylene-bis-acrylamide, dodecamethylenebis (maleamic acid), and
diacryloylpiperazine. Alternatively, other compounds, such as linear siloxanes, cyclic siloxanes, macrocyclic silicone and collagen, can be used instead of PPA as the polymer antigen.

A representative procedure for detecting antipolymer antibodies is an antipolymer antibody (APA) line blot analysis which is preferred and described in more detail hereinbelow. Alternatively, antipolymer antibodies, and the method for diagnosing SRD, fibromyalgia and CFS can be detected by other binding assays which are generally categorized into two major classes, namely, homogenous and heterogenous assays.

Homogenous assay configurations do not require the separation of the test solution and the indicator reagent prior to the detection of the indicator reagent or binding complexes. This broad classification includes many formats such as agglutination and precipitation assays as well as others known to those skilled in the art for the detection of antibodies and antigens.

Methods of the present invention can also be carried out using a solid phase sandwich assay (a heterogenous assay) to detect the presence or amount of antipolymer antibodies in the test sample. A capture reagent typically involving a specific binding member such as polymer antigen, or individual subunits thereof, is affixed to the solid phase material. A test sample is incubated with the capture reagent for a period of time under conditions sufficient for the formation of specific complexes between antipolymer antibodies in the test sample and the polymer antigen. The solid phase material can then be washed with a buffer solution including any buffer conventionally known to remove unbound test sample. The resultant complexes are then incubated with an indicator reagent, such as a second label polymer antigen, for a period of time and under condition sufficient for the formation of a ternary complex. The unreacted indicator reagent is removed by again washing the solid phase with a buffer solution. The quantity of indicator reagent bound to the solid phase is then measured by a technique compatible with the label component of the indicator reagent. If quantitated, the amount of indicator reagent bound to the solid phase is proportional to the quantity of test sample antipolymer antibody bound to the solid phase. The reagents of the
method can be mixed simultaneously or added sequentially either singly or in combination.

In the present invention, the solid phase material can include any suitable chromatographic bibulous, porous or capillary material or other conventional solid material well known to those skilled in the art, used to immobilize specific binding members. Specifically, the solid phase material can include a fiberglass, cellulose or nylon pad for use in a flow through assay devices having one or more layers containing one or more of the assay reagents; a dipstick for a dip and read assay; a test strip for chromatographic (i.e., paper or glass fiber) or thin layer chromatographic (i.e., nitrocellulose) techniques in which one or all of the reagents are contained in separate zones of a single strip of solid phase material; or an absorbent material well known to those skilled in the art. These solid phase materials can also include, without limitation, polyacrylamide beads, polystyrene beads or tubes, magnetic beads, a microtitre plate or a glass or plastic test tube.

Natural, synthetic, or naturally occurring materials that are synthetically modified, can also be used as a solid phase material including polysaccharides, i.e., cellulose materials such as paper, and cellulose derivatives such as diazobenzyloxymethylcellulose, nitrocellulose, 2-aminophenylthioethylethylcellulose, and cellulose acetate; silica; silicon particles; inorganic materials such as deactivated alumina, or other inorganic finely divided material uniformly dispersed in a porous polymer matrix, with polymers such as vinyl chloride, vinyl chloride polymer with propylene, and vinyl chloride polymer with vinyl acetate; cloth, both naturally occurring (i.e., cotton) and synthetic (i.e. nylon); porous gels such as silica gel, agarose, dextran, and gelatin; polymeric films such as polyacrylates; protein binding membranes; and the like. The solid phase material should have reasonable strength or strength that can be provided by means of a support, and it should not interfere with the production of a detectable signal.

The capture reagent typically involves a specific binding member which has been bound to a solid phase material. The specific binding member can directly or indirectly bind the antibody, antigen or indicator reagent and which is bound or is capable of being bound to a solid phase or is capable of being precipitated such
that the capture binding member can be separated from the test sample and other assay reagents by any means. The capture reagent of the present invention, is not limited to a capture binding member which is bound to an insoluble solid phase material. In an agglutination assay, the capture binding member of the capture reagent can be bound to a soluble carrier such as bovine serum albumin.

The specific binding member is a member of a specific binding pair, i.e., two different molecules wherein one of the molecules through chemical or physical means specifically binds (as opposed to nonspecific binding) to the second molecule. In addition to antigen and antibody, specific binding pairs, in which either one may be immobilized and bind to the test sample, may include: biotin and avidin; carbohydrates and lectins; complementary nucleotide sequences; complementary peptide sequences; effector and receptor molecules; enzyme cofactors and enzymes; enzyme inhibitors and enzymes; a peptide sequence and an antibody specific for the sequence or the entire protein; polymeric acids and bases; dyes and protein binders; protein A and antibodies; protein G and antibodies; and the like.

Furthermore, specific binding pairs can include members that are analogs of the original specific binding member, for example an analyte-analog. An analyte is defined as either the polymer antigen or the antipolymer antibody. If the specific binding member is an immunoreactant, it can be an antibody, antigen, hapten, or complex thereof. Further, antibodies can be monoclonal or polyclonal, a recombinant protein or antibody, a mixture(s) or fragment(s) thereof, as well as a mixture of an antibody and other specific binding members. The details of the preparation of such antibodies and their suitability for use as specific binding members are well known to those skilled in the art.

An indicator reagent comprises a detectable label directly or indirectly attached to a specific binding member which is capable of directly or indirectly binding to the antibody or antigen to indicate the presence or absence or amount of antibody or antigen. A variety of different indicator reagents can be formed by varying either the label or the specific binding member. In general the indicator reagent is detected after it has formed a complex with either the antibody or
antigen or a complementary specific binding member, but the unbound indicator reagent can also be detected.

A label can refer to any substance which is attached to a specific binding member and which is capable of producing a signal that is detectable by visual or instrumental means. Various suitable labels for use in the present invention can include chromogens; catalysts; fluorescent compounds; chemiluminescent compounds; radioactive labels; direct visual labels including: colloidal metallic and nonmetallic particles, dye particles, enzymes or substrates, or organic polymer latex particles; liposomes or other vesicles containing signal producing substances (capable of reacting with another assay reagent, the antibody or antigen to produce a signal detectable by visual or instrumental means); and the like.

A method of the present invention can also be carried out using competitive assay formats. In a solid phase competitive assay, the capture reagent again typically involves a specific binding member which has been affixed to a solid phase material and which is contacted with both test sample and an indicator reagent. The indicator reagent, however, can be formed from an analyte or analyte-analog which has been conjugated with a label. A binding reaction occurs and results in the formation of complexes of (1) immobilized capture reagent/analyte complex and (2) immobilized capture reagent/indicator reagent complex. Alternatively, the immobilized specific binding member can be an analyte or analyte-analog with which the test sample analyte competes for binding to the indicator reagent. In the competitive assay, the amount of label on the solid phase is inversely related to the amount of analyte in the sample. Thus, a positive test sample will generally decrease in signal.

The preferred method for detecting the antipolymer antibody comprises an antipolymer antibody line blot analysis. The partially polymerized acrylamide antigen is applied to a nitrocellulose support and cut into strips. The strips are incubated for one hour with a test sample, and an indicator reagent is then added to the strips thereby enabling the antipolymer antibody to be visualized.

The (APA) line blot analysis detects antipolymer antibodies in test sera with increased specificity and sensitivity over any other immunoassay. Antipolymer
Antibodies are believed to specifically respond to the complex polymer PPA and can be identified over other nonspecific antisolicone antibodies utilizing the (APA) line blot analysis.

Additionally, the detection of Antipolymer Antibodies in test sera has been shown to correlate with SRD, fibromyalgia and CFS, three diseases that are believed to be associated in some way. This (APA) line blot analysis can be utilized to objectively detect an immunological response from SRD fibromyalgia, and CFS patients, identifying these patients from healthy blood donors and some other ill patients with well known autoimmune diseases.

In the present invention, the test sample can be obtained from any naturally occurring or artificially formed liquid test medium suspected of containing the antipolymer antibody, or polymer antigen. The test sample is generally a biological fluid or dilution thereof from which an antipolymer antibody or polymer antigen can be detected, including: serum; whole blood; plasma; body fluid; saliva; amniotic and cerebral spinal fluids; and the like.

In the present invention, the polymer antigen can be comprised of acrylamide, partially polymerized acrylamide, silicone, or collagen.

In addition to a nitrocellulose support, polyvinylidene difluoride (PVDF) and nylon can be alternative membrane sources. The (APA) line blot assay can also be adapted to a standard 96-well polystyrene enzyme linked immunosorbent assay (ELISA) format. Although the APA line blot was found to be the most preferred method, the APA line blot should be amenable to adaptation to other immunological assays including latex agglutination, antibody capture assays, radioimmunoprecipitation assays (RIPA), polystyrene bead based enzyme immunoassays (EIA), and particle concentration fluorescence immunoassays (PCFIA).

The antipolymer antibody line blot analysis typically involves the addition and incubation of several different reagents. A variety of different buffer and washing solutions can be used to stabilize the reagents and to remove excess reagents or test sample from the reaction. As is well known to those skilled in the
art, modifications can be made in the buffer and washing solutions, as well as in the reaction times.

The assay reagents can also be provided in kit. A test kit to detect antipolymer antibodies would typically contain a support material upon which polymer antigen is immobilized and optionally include an appropriate supply of a suitable indicator reagent, buffer solutions and a suitable indicator reagent would comprise a binding member that is specific for human antibody, conjugated to a detectable label, and may include a colorimetric or chemiluminescent signal in the presence of an enzyme label.

A test kit to detect polymer antigen would typically contain a solid phase material upon which antipolymer antibody is immobilized or upon which components of the test sample can be immobilized (i.e., direct immobilization of the antigen upon the solid phase), and optionally include appropriate amounts of a suitable indicator reagent, buffer and washing solutions. Other components such as stabilizers and preservative agents can also be present in the kit and/or in the reagents.

A diagnostic “Line-Blot” kit that utilizes PPA for detecting the presence of anti-polymer antibodies (APA) would desirably contain the following components:

1) Nitrocellulose membrane strip(s) impregnated with a dilution or dilution's of PPA.

2) Plastic or polystyrene disposable tray(s) suitable in size to accommodate the incubation of said PPA coated nitrocellulose strip(s).

3) The following or a combination of the following substrates and reagents for the suitable detection of human immunoglobulins in immunological based assays; biotinylated goat anti-human IgG, avidin-conjugated horseradish peroxidase (HRP), 30% hydrogen peroxide and 4-chloro-1-naphthol.

4) Positive APA control serum.

5) Weak/positive APA control serum.

6) Negative APA control serum.

7) 100 ml 20X wash buffer.
8) 25 ml 10X blotting buffer.
9) 30g blotting buffer powder.

Components that would influence the sensitivity and specificity of the assay kit that could alternatively be provided include direct linkage of HRP to the anti-human Ig, alkaline phosphatase as an alternative enzyme for conjugation, and other calorimetric substrates such as 3,3'-diaminobenzidine (DAB), 3-amino-9-ethylcarbazole (AEC), 5-bromo-4-chloro-3-indoyl phosphate/nitroblue tetrazolium (BCIP/NBT) and fast red RCor.

In addition to nitrocellulose, polyvinylidene difluoride (PVDF) and nylon could be used as alternative membrane sources in the APA line blot assay and/or the assay could be adapted to a standard 96-well polystyrene enzyme linked immunosorbent assay (ELISA) format. Although the APA line blot format is described in detail in this patent request and was found to be the most useful, PPA should be amendable to adaptation to other immunological assays including latex agglutination, antibody capture assays, radioimmunoprecipitation assays (RIPA), polystyrene bead based enzyme immunoassays (EIA), and particle concentration fluorescence immunoassays (PCFIA).

In a diagnostic laboratory, the ELISA may be the more desirable to run because it can more easily accommodate larger numbers of samples. Most diagnostic laboratories are already equipped with instruments for ELISA. In contrast, the line blot immunoassay generally would require special equipment (reaction trays, washers, etc.), particularly for handling large numbers of samples.

Methods generally known to those skilled in the immunological arts are described in Antibodies: A laboratory Manual by Ed Harlow and David Lane, (1988), Cold Spring Harbor Laboratory, chapters 12 and 14.

The following examples are given by way of representation and not limitation.
EXAMPLE 1: DETECTION OF ANTIPOLYMER ANTIBODY

Sample Collection

Serum from each subject or control were collected and stored at -20 C until shipment on ice by overnight carrier, and stored at -20 C or 4 C until time of testing.

Anti-Polymer Antibody Line Blot Analysis

Partially polymerized acrylamide was prepared by mixing 2.5ml Acryl:Bis (37.5:1), 8.5ml H2O and 3.5ml of 1.5M Tris. This 5% acrylamide solution was cross-linked with 100μl of 0.01% ammonium persulfate and 20μl TEMED and allowed to solidify for 15 minutes in a 60 ml beaker. The PPA remains on top as a slight viscous liquid.

Aliquots of Polymer (PPA) were sequentially diluted 5, 25, 125, 625, and 3,125 fold, applied to nitrocellulose membranes and allowed to air dry. The nitrocellulose membranes was then cut into strips and incubated for one hour with blinded test sera diluted 1:400 in Western blot blocking buffer. Bound IgG or IgM were visualized by a series of reactions using biotinylated goat anti-human IgG or anti-human IgM avidin-conjugated horseradish peroxidase, and the enzyme substrates peroxide and 4-chloro-1-naphthol.

Each APA strip lot (28 strips) were run with a negative, weak-positive, and strong-positive control. The weak positive control served to standardize the enzymatic developing portion of the assay. Strip lots were standardized based on reactivity of control sera which subsequently were used to assess the level of reactivity of test sera.

EXAMPLE 2: COMPARISON OF PROCEDURES AND RESULTS

Frequency of Antipolymer Antibody in Unblinded Samples From Recipients of Silicone Breast Implants Detected By (APA) LineImmune Blotting.

Exposure to silicone breast implants can result in the manifestation of symptoms and complications that collectively are dissimilar from previously recognized or defined rheumatological diseases and therefore will be uniquely
identifiable with the appropriate diagnostic tests. Using a combination of APA line blot techniques, it was determined that the approximately 50% (363/667) of persons reporting complications following silicone breast implantation produced APA serum antibodies. This was significantly greater than the 7% (7/100) observed in healthy blood donor sera (p < 0.0005) (Table 1). Sera from patients experiencing other autoimmune complications (SLE, RA, juvenile rheumatoid arthritis, or diffuse scleroderma) demonstrated APA antibodies in less than 10% of the cases (Table 1). Therefore, antipolymer antibodies do not seem to be a general marker for autoimmunity. However, patients with the CREST form of scleroderma demonstrated detectable APA in 50% (10/20) of the cases tested. This is of interest because scleroderma-like symptoms, including tightness of skin, contracture, sclerodactyly, alopecia, edema, telangiectasias, rash, and change in pigmentation, have frequently been associated with silicone breast implants (Brozena, S. J., Fenske, N. A., Cruse, C. W., Espinoza, C. G., Vasey, F. B., Germain, B. F. and Espinoza, L. R. (1988). Human adjuvant disease following augmentation mammoplasty. Arch Dermatol 124: 1383-6. Vasey, F. B., Espinoza, L. R., Martinez-Osuna, P., Seleznick, M. J., Brozena, S. J. and Penske, N. A. (1991). Silicone and rheumatic disease: replace implants or not? [letter; comment]. Arch Dermatol 127: 907. Spiera, R. F., Gibofsky, A. and Spiera, H. (1994). Silicone gel filled breast implants and connective tissue disease: an overview. [Review]. Journal of Rheumatology 21: 239-45).

Patients with complications associated with exposure to silicone from breast implants were 17 times more likely to produce detectable APA than healthy blood donors (95% confidence limit 7.55-46.69). This percentage is
highly relevant to complications from breast implants because not all silicone breast implant recipients who are currently seeking treatment actually are experiencing complications directly resulting from silicone exposure.

5 Frequency of Antipolymer Antibodies In Unblinded Samples of 69 Patients with SRD

To correlate the antipolymer antibody assay with the occurrence of specific clinical symptoms, sixty-nine patients with silicone disease as defined by joint aching about the MP's, PIP's, dysesthsias, paresthesias, multiple tender spots including the occiput, upper cervical, epicondylar, hips, knees and ankles, overwhelming fatigue, general malaise and widespread pain where studied. Of the 69 patients, 58 were felt to have silicone disease and 11 were felt to have no disease or localized myofascial discomfort.

Of the 69 patients, 5 patients had well-known rheumatic disease by American College of Rheumatology criteria, including 2 patients with primary
Sjögren's syndrome, 1 patient with CREST, 1 patient with seropositive rheumatoid arthritis and 1 patient who met ACR criteria for lupus. There was 1 patient with chronic persistent hepatitis. Four patients had positive rheumatoid factors and 7 patients had anti-thyroid antibodies.

Fifty-eight patients had SRD; 11 patients had no disease.

Twenty-two patients had Antipolymer antibodies and SRD, thirteen patients had probable Antipolymer antibodies and SRD, totaling 35 patients with SRD having the presence of Antipolymer antibodies.

Sixty percent of the patients with SRD had the antipolymer antibody.

There were 11 patients without any silicone disease, and only 4 patients showed the presence of an Antipolymer antibody. This antibody is a very good predictor of SRD since 60% of patients with SRD had the antibody.

Frequency of Antinuclear Antibodies (Known Autoantigens) in Unblinded Samples of Patients With And Without SRD.

The antinuclear antibody test is routinely performed by rheumatologists for detecting scleroderma. The antinuclear antibody was present at low titer in 20 F the 58 patients (34%) with SRD. The antinuclear antibody was present in 5 of the 11 patients (45%) without SRD, but myofacial pain. No correlation between the antinuclear antibody and SRD could be shown making the antinuclear antibody test not a good predictor of silicone disease.

Detection Of Antipolymer Antibody In An ELISA Format With A Sample Known To Be Positive For APA

The following tables (tables 2, 3 & 4) demonstrate the detection of the antipolymer antibodies in an ELISA format. A dilution ratio of partially polymerized polyacrylamide antigen was attached to each well of a polystyrene 96-well plate as shown in column 1 of each table. The serum dilution ration (1/50, 1/100, etc.) for the representative patient sample is shown in the first row at the top of each column. The serum was incubated in the wells containing the antigen, then reacted with a goat-anti-human alkaline phosphatase labelled secondary antibody.
The data was presented as an optical density from the signal production system from the reaction of this labelled secondary antibody with the substrate 5-bromo-4-chloro-3-indole phosphate (BCIP) phosphate. Wells containing neither PPA nor serum in the column marked blank are set to zero relative to the other wells. This test demonstrated the ability to test for antipolymer antibodies using the ELISA format.

TABLE 1 FREQUENCY OF ANTIPOLYMER ANTIBODIES IN UNBLINDED SAMPLES FROM RECIPIENTS OF SILICONE BREAST IMPLANTS, DETECTED BY (APA) LINE IMMUNOBLOTTING.

<table>
<thead>
<tr>
<th>Donor Groups/Diagnosis</th>
<th>#positive/#tested</th>
<th>Percent Positive</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>healthy blood donors</td>
<td>9/100</td>
<td>9.0%</td>
<td></td>
</tr>
<tr>
<td>silicone implant recipients</td>
<td>363/667</td>
<td>50.7%p</td>
<td><0.005<sup>a</sup></td>
</tr>
<tr>
<td>Scleroderma (CREST)</td>
<td>10/20</td>
<td>50.0%p</td>
<td><0.005</td>
</tr>
<tr>
<td>Scleroderma (diffuse)</td>
<td>1/10</td>
<td>10.0%</td>
<td>NSS<sup>b</sup></td>
</tr>
<tr>
<td>systemic lupus erythematous</td>
<td>13/205</td>
<td>6.3%</td>
<td>NSS</td>
</tr>
<tr>
<td>adult rheumatoid arthritis</td>
<td>3/92</td>
<td>3.3%</td>
<td>NSS</td>
</tr>
<tr>
<td>juvenile rheumatoid arthritis</td>
<td>1/11</td>
<td>9%</td>
<td>NSS</td>
</tr>
</tbody>
</table>

^a student t test

^bNSS = not statistically significant
TABLE 2. Strong Positive Detection of APA

<table>
<thead>
<tr>
<th>PPA dilution</th>
<th>1/50</th>
<th>1/100</th>
<th>1/200</th>
<th>1/400</th>
<th>serum dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (No PPA)</td>
<td>0.392</td>
<td>0.068</td>
<td>-0.042</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>1/15625</td>
<td>0.73</td>
<td>0.583</td>
<td>0.378</td>
<td>0.364</td>
<td></td>
</tr>
<tr>
<td>1/3125</td>
<td>2.013</td>
<td>2.5</td>
<td>2.038</td>
<td>1.587</td>
<td></td>
</tr>
<tr>
<td>1/625</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>1/125</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.047</td>
<td></td>
</tr>
<tr>
<td>1/25</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.373</td>
<td></td>
</tr>
<tr>
<td>1/(undiluted)</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

[0.392 is a background figure and clearly the antipolymer antibody was detected at all serum dilutions indicated by the number readings above the background reading.]

TABLE 3. Weak Positive Detection of APA

<table>
<thead>
<tr>
<th>PPA dilution</th>
<th>1/50</th>
<th>1/100</th>
<th>1/200</th>
<th>1/400</th>
<th>serum dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (No PPA)</td>
<td>0.155</td>
<td>0.075</td>
<td>-0.038</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>1/15625</td>
<td>0.435</td>
<td>0.18</td>
<td>0.105</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>1/3125</td>
<td>1.404</td>
<td>0.91</td>
<td>0.428</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>1/625</td>
<td>2.062</td>
<td>1.536</td>
<td>0.735</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>1/125</td>
<td>2.5</td>
<td>2.5</td>
<td>1.254</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>1/25</td>
<td>2.5</td>
<td>1.896</td>
<td>1.061</td>
<td>0.495</td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.45</td>
<td>0.668</td>
<td></td>
</tr>
<tr>
<td>1/(undiluted)</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.379</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4. Negative Detection of APA

<table>
<thead>
<tr>
<th>PPA dilution</th>
<th>1/50</th>
<th>1/200</th>
<th>1/400</th>
<th>blank</th>
<th>serum dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (No PPA)</td>
<td>0.117</td>
<td>-0.062</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/15625</td>
<td>0.366</td>
<td>-0.1</td>
<td>0.02</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1/3125</td>
<td>0.006</td>
<td>-0.012</td>
<td>0.006</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1/625</td>
<td>0.106</td>
<td>-0.045</td>
<td>0.055</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>1/125</td>
<td>0.1</td>
<td>-0.098</td>
<td>0.008</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>1/25</td>
<td>0.047</td>
<td>-0.097</td>
<td>-0.1</td>
<td>0.224</td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td>-0.004</td>
<td>-0.087</td>
<td>0.072</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>1/(undiluted)</td>
<td>-0.039</td>
<td>-0.1</td>
<td>0.1</td>
<td>-0.1</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 3: DIAGNOSIS OF SILICONE RELATED DISEASE FROM THE DETECTION OF ANTIPOLYMER ANTIBODIES.

The detection of APAs in this study may represent immunologic cross-reactivity directed against silicone or other components found in breast implants. Alternatively, silicone may function as an adjuvant and/or physically interact with cellular components present in the surrounding connective tissue, such as collagen. This may result in the structural alteration of the silicone or the cellular component so as to antigenically resemble partially polymerized acrylamide (PPA). Silicone, collagen, and PPA are all cross-linked polymers. It is possible that any antigenic relationship among these substances results from the type and degree of cross-linking, and not from chemical composition of the polymer.

The observation that exposure to silicone implants does not appear to be necessary for the development of APAs, is consistent with this latter hypothesis. About 7% of the
healthy population appear to produce antibody that cross-react with PPA. This must be qualified because silicone containing devices are widely used in medicine, commerce, and industry, and it is possible that our normal blood donors may have been unknowingly exposed to silicone. Alternatively, individuals with preexisting APAs may be predisposed to complications following silicone implantation, although this has yet to be established.
Based on the observations with PPA and PPB (partially polymerized bisacrylamide - used to demonstrate that an antibody is indeed present) it is suspected that APAs react with a heterogeneous polymeric structure (possibly in a circular conformation) composed of acrylamide/bisacrylamide that may antigenically resemble a silicone implant polymer component. Although conjecture, a circular structure may provide the level of complexity necessary to convey antigenicity to a relatively simple polymer structure. Additionally, circular polymer complexes would be resistant to further polymerization and therefore, be more likely present as a partially polymerized component of an acrylamide gel.

To further demonstrate the ability of the APA test to identify patients with SRD, a blinded study was designed:

Sera samples from individuals were obtained from a rheumatologist. Sample classifications were coded, and we were blinded to sample classification. Samples were then analyzed using the APA antibody test (line blot format) and results scored as to the presence or absence of antipolymer antibodies. Samples from the following groups were included (See Table 5 and Figure 1):

1) Gender and age matched healthy individuals; non-silicone implanted (23 samples)
2) Classic rheumatic disease; non-silicone implanted (19 samples)
3) Asymptomatic individuals; silicone implants (15 samples)
4) Atypical connective tissue disorders/nonspecific autoimmune complications (ACTD/NSAIC) mild and moderate/sever; silicone implanted (18 mild and 18 moderate/severe samples)
5) Atypical rheumatic syndrome (ARS);silicone implanted (43 samples)
6) Classical rheumatic disease; silicone implanted (18 samples)

Criteria for classification of sera samples:

3) Mixed connective tissue disease/overlap syndrome- A diagnosis of mixed connective tissue disease required the presence of an RNP with negative SM and was based on the clinical description of this disease. Overlap syndrome required clinical symptoms with characteristics of two or more rheumatic diseases, specifically progressive systemic sclerosis, systemic lupus, myositis and rheumatoid arthritis.

6) Atypical connective tissue disease/Non-specific autoimmune condition- Patients with ACTD/NSAIC had a positive auto-antibody test and the presence of at least four of the following (a diagnosis of ACTD required a positive ANA result):

 a. Raynaud's phenomenon: patient gives a history of at least two color changes, visual evidence of vasospasm or digital ulcerations.

 b. Polyarthritis: defined as synovial swelling and tenderness in at least 3 or more joints, lasting greater than six weeks and observed by a physician.

 c. Arthralgia, in at least 3 or more joints.

 d. The subjective perception of xerophthalmia, and xerostomia.

 e. Myalgias; determined by objective tenderness upon physical examination.
f. Rashes, including petechia, telangiectases, livedo reticularis, or erythematous vascular blotching.
g. Pleuritis or pericarditis.
h. Memory loss or difficulty concentrating with neuropsychological testing.
i. Peripheral neuropathy.
j. Fatigue lasting at least six months.
k. Lymphadenopathy.
l. Photosensitivity: defined as the development of a rash on exposure to the sun.
m. Dysphagia.
n. Alopecia.
o. Ataxia.
p. Sleep disturbance.
q. Easy bruising ability or bleeding disorder.
r. Chronic cystitis or bladder irritability.
s. Irritable bowel syndrome or colitis.
t. Fevers or night sweats.
u. Mucosal ulcerations.
v. Breast pain or symptoms of encapsulation.

7) Autoantibodies:

A. Positive ANA and RF (by nephelometry with 40 IU cutoff).
B. Other autoantibodies such as Anti-DNA, SSA, SSB, RNP, SM, scl-70, centromere, Jo-1, PM-Scl, or dsDNA.
C. Thyroid antibodies, anti-microsomal, or anti-cardiolipin.
D. Other Serological Abnormalities:
 1. Elevation of immunoglobulin (IgG, IgA, IgM): or
 2. Serologic evidence of inflammation such as elevated ESR, CRP.
8) Atypical Rheumatic syndrome—A diagnosis of Atypical Rheumatic syndrome would be made when 5 of the above symptoms and/or findings were not accompanied by a positive autoantibody result.

9) Severity—severe ACTD/ARS or NSAIC requires at least breast pain with hardening of the breasts or encapsulation, or silicone granuloma on pathologic examination and rashes (i.e.: telangiectases, petechia). There is a decreased functional capacity consistent with the ability to perform only a few tasks of vocation, avocation and self-care.

10) Moderate—moderate ACTD/ARS requires that the patient have moderate pain or a functional capacity which allows the patient to perform some of the tasks of daily living.

11) Mild—mild ACTD/ARS patients are able to perform a majority of tasks required for daily living.

Results:

As presented in Table 5 and Figure 1 (Figure 1 is a bar graph representation of the Blinded Pilot Study tabulated in Table 5), the APA test was able to uniquely identify patient sera from the ACTD/NSAIC category (SRD). The depicted baseline at about 8% is the average APA seroreactivity in healthy blood donors observed in unblinded studies. The vertical axis is demarked as percent APA seroreactive. The p-value is determined by unpaired student t-test analysis using gender matched controls as the standard.
TABLE 5 Results from blinded study

<table>
<thead>
<tr>
<th>Subject Categories</th>
<th>Number of samples</th>
<th>APA Reactivity(%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Silicone Implanted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gender and age matched healthy individuals</td>
<td>23</td>
<td>4(17%)</td>
<td>——</td>
</tr>
<tr>
<td>• Classical rheumatic disease</td>
<td>19</td>
<td>2(10%)</td>
<td>NSS</td>
</tr>
<tr>
<td>Systemic Sclerosis/Scleroderma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic Lupus Erythematosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atypical Neurological Disease Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Connective Tissue Disease/Overlap Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyositis/Dermatomyositis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Sjögren’s syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone implanted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Asymptomatic individuals</td>
<td>15</td>
<td>2(13%)</td>
<td>NSS</td>
</tr>
<tr>
<td>• Atypical connective tissue disorders/Nonspecific autoimmune complications (ACTD/NSAIC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mild)</td>
<td>18</td>
<td>5(28%)</td>
<td>NSS</td>
</tr>
<tr>
<td>(Moderate/Severe)</td>
<td>18</td>
<td>8(44%)</td>
<td>.025 < p < .05</td>
</tr>
<tr>
<td>• Atypical rheumatic syndrome (ARS)</td>
<td>43</td>
<td>7(16%)</td>
<td>NSS</td>
</tr>
<tr>
<td>• Classical rheumatic disease</td>
<td>18</td>
<td>5(28%)</td>
<td>NSS</td>
</tr>
<tr>
<td>Systemic Sclerosis/Scleroderma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic Lupus Erythematosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atypical Neurological Disease Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Connective Tissue Disease/Overlap Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyositis/Dermatomyositis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Sjögren’s syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 4: DIAGNOSIS OF FIBROMYALGIA FROM THE DETECTION OF ANTIPOLYMER ANTIBODIES.

Diagnosis of fibromyalgia is currently based upon clinical observations as formulated by the American College of Rheumatology. As classified by the American College of Rheumatology in 1990, fibromyalgia is a syndrome characterized by chronic widespread pain in the absence of inflammation or muscle/skeletal abnormalities and pain in 11 of 18 tender points upon palpitation. Pain is often accompanied by the following symptoms: chronic fatigue; sleep

Except for pain upon digital palpitation of tender points, physical findings are frequently absent, and there is no known laboratory (objective) test that is diagnostic for fibromyalgia. It has been suggested that CFS and fibromyalgia may be identical conditions or at least have significant overlap, leading to misdiagnosis of one syndrome for the other. (REF: Buchwald, D., and Garrity, D. 1994. Comparison of patients with chronic fatigue syndrome, fibromyalgia, and multiple chemical sensitivities. Arch. Intern. Med. 154:2049-2053).

To demonstrate the ability to identify patients with fibromyalgia, the following blinded study was conducted.

Samples from patients and healthy individuals were assigned a unique number and submitted for analysis. Samples were analyzed for the presence of antipolymer antibodies using the APA line blot, without prior knowledge of the sample category. After analysis and tabulation of the data, the code correlating sample category with sample number was obtained and used to correlate results with sample category. Results indicating that the APA test is diagnostic for fibromyalgia is presented in Table 6.

TABLE 6: APA Results of CFS and Fibromyalgia

<table>
<thead>
<tr>
<th></th>
<th>Sera Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:100</td>
</tr>
<tr>
<td>Healthy Controls</td>
<td>4/11 (36%)</td>
</tr>
<tr>
<td>Chronic Fatigue</td>
<td>9/11 (82%)</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>14/17 (82%)</td>
</tr>
</tbody>
</table>

As seen in the Sera Dilution of 1:400, when the healthy controls are reduced to below a 10% positive readings (95% confidence), antipolymer antibodies still appeared in 71% of patients with fibromyalgia.
EXAMPLE 5: DIAGNOSIS OF CHRONIC FATIGUE SYNDROME FROM THE DETECTION OF ANTIPOLYMER ANTIBODIES.

Diagnosis of CFS is currently based on clinical observations of a minimum number of signs and symptoms as formulated by the Centers for Disease Control and Prevention. Chronic Fatigue Syndrome (CFS) is characterized by debilitating fatigue (50% reduction in average daily activity) for a duration of six months or greater. It is typically accompanied by the following: mild fever; sore throat, unexplained muscle weakness; lymph node pain; myalgia; headaches; neurophysiological symptoms including excessive irritability; confusion; forgetfulness; and depression; sleep disturbances; and an acute or subacute onset of these symptoms. (ref: Calabrese, L. Danao, T. Camara, E. Wilke, W. 1992 Chronic Fatigue Syndrome. Amer.Fam.Phys. 45:1205-1213). Upon examination, Physical findings are frequently absent, and there is no known laboratory (objective) that is diagnostic for CFS (ref: Buchwald, D., and Garrity, D. 1994. Comparison of patients with chronic fatigue syndrome, fibromyalgia, and multiple chemical sensitivities. Arch.Intern.Med. 154:2049-2053).

To demonstrate the ability to identify patients with Chronic Fatigue Syndrome, the following blinded study was conducted.

Samples from patients and healthy individuals were assigned a unique number and submitted for analysis. Samples were analyzed for the presence of antipolymer antibodies using the APA line blot, without prior knowledge of the sample category. After analysis and tabulation of the data, the code correlating sample category with sample number was obtained and used to correlate results with sample category. Results indicating that the APA test is diagnostic for CFS is presented in Table 6 above.

As seen in Sera Dilution 1:400, when healthy controls are reduced to below 10% positive readings (95% confidence) antipolymer antibodies still appeared in over (55%) 1/2 the patients with CFS. At double the sera concentration, but with a slight decrease in accuracy, 82% of the patients with CFS tested positive for antipolymer antibodies.
CLAIMS:

1. A method to aid the diagnosis of fibromyalgia, comprising the steps of:
 a) providing a sample to be tested for an antipolymer antibody;
 b) combining a polymer antigen comprising polyacrylamide or partially polymerized acrylamide with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen, to form a complex;
 c) reacting an indicator reagent with the material resulting from step b) to indicate the presence or absence of antipolymer antibody in said sample; and
 d) identifying the presence or absence of reacted indicator reagent in the material resulting from step c);
 whereby the presence of reacted indicator reagent identifies fibromyalgia in an individual providing said sample.

2. A method to aid the diagnosis of chronic fatigue syndrome (CFS) comprising the steps of:
 a) providing a sample to be tested for an antipolymer antibody;
 b) combining a polymer antigen comprising polyacrylamide or partially polymerized acrylamide with said sample for a time sufficient for an antipolymer antibody to react with said polymer antigen, to form a complex;
 c) reacting an indicator reagent with the material resulting from the step b), to indicate the presence or absence of antipolymer antibody in said sample; and
 d) identifying the presence or absence of reacted indicator reagent in the material resulting from step c);
 whereby the presence of reacted indicator reagent identifies CFS in an individual providing said sample.

3. A diagnostic kit for use in aiding the diagnosis of fibromyalgia, comprising:
an antigen comprising polyacrylamide or a partially polymerized acrylamide attached to a support material; and
an indicator reagent capable of indicating the presence or absence of antibodies bound to said antigen.

4. A diagnostic kit for use in aiding the diagnosis of chronic fatigue syndrome (CFS), comprising:
an antigen comprising polyacrylamide or a partially polymerized acrylamide attached to a support material; and
an indicator reagent capable of indicating the presence or absence of antibodies bound to said antigen.

5. The diagnostic kit of claim 3 or 4 further comprising a wash composition for separating uncomplexed materials from an antipolymer antibody and polymer antigen complex.

6. The diagnostic kit of claim 5 wherein the indicator reagent is a colorimetric or chemiluminescent signal in the presence of an enzyme label.
FIGURE 1

Blinded Pilot Study

- NO IMPLANT
- IMPLANTS

<table>
<thead>
<tr>
<th>Condition</th>
<th>NO IMPLANT</th>
<th>IMPLANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender matched controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic rheum. disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic rheum. disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTD/NSAIC (mild)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTD/NSAIC (moderate/severe)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

.025 < p < .05