Title: MAGNESIUM ALLOYS FOR HYDROGEN STORAGE

Abstract: A method of producing a hydrogen storage material including the steps of: forming a magnesium - nickel melt having up to 50 wt% nickel; adding up to 2 wt% of a refining element to the melt under a non-oxidising atmosphere, the refining element having an atomic radius within the range of 1.1-6.5 times the atomic radius of magnesium, such as at least one element selected from the group consisting of Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb and Cs; and solidifying the melt to produce the hydrogen storage material.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Magnesium alloys for hydrogen storage

Field of the invention

This invention relates to hydrogen storage materials and particularly relates to a cast alloy which can be used as a hydrogen storage material.

Background of the invention

As the world’s population expands and economic activity increases, there are ever increasing signs that increasing atmospheric concentrations of carbon dioxide are warming the earth causing climate change. While the eventual depletion of the world’s oil and fossil fuel energy sources will inevitably require other economic energy sources to be found, the more noticeable signs of global warming have increased pressures for global energy systems to move away from carbon rich fuels whose combustion produces carbon monoxide and carbon dioxide gases.

Hydrogen energy is attracting a great deal of interest and is expected to eventually be a replacement for petroleum based fuels. However, there are still several technical issues and barriers that must be overcome before hydrogen can be adopted as a practical fuel, the main obstacle being the development of a viable hydrogen storage system. While hydrogen can be stored as a compressed gas or a liquid, the former occupies a large volume and the latter is energy intensive to produce, reducing any environmental benefits. In addition, both gaseous and liquid hydrogen are potentially dangerous should the pressure storage vessels be ruptured.

A safer, more compact method of hydrogen storage is to store it within solid materials. When infiltrated with hydrogen at relatively low pressures, metals and inter-metallic compounds can absorb large quantities of hydrogen in a safe, solid form. The stored hydrogen can be released when required by simply heating the alloy. Storage of hydrogen as a solid hydride can provide a greater weight percentage storage than compressed gas. However a desirable hydrogen storage material must have a high
storage capacity relative to the weight of the material, a suitable desorption temperature, good kinetics, good reversibility and be of a relatively low cost.

Pure magnesium has sufficient theoretical hydrogen carrying capacity at 7.6 wt %. However the resulting hydride is too stable and the temperature must be increased to 278°C for the hydrogen to be released. This desorption temperature makes such materials economically unattractive. A lower desorption temperature is desirable to not only reduce the amount of energy required to release the hydrogen but to enable the efficient utilisation of exhaust heat from vehicles to release the hydrogen. Compared to pure magnesium, the compound Mg₂Ni has a reduced hydrogen storage capacity of 3.6 wt % but, importantly, the temperature required for hydrogen release is decreased to less than that of pure magnesium. The mechanism of hydrogen storage is believed to involve the formation of (solid) hydride particles, i.e. MgH₂ and Mg₂NiH₄ in the microstructure.

Recently, thixotropic casting techniques followed by partial remelting and quenching have been used [Y.-J. Kim, T.-W. Hong: Materials Transactions 43 (2002) 1741-1747] to produce hypoeutectic Mg-Ni alloys consisting of magnesium rich dendrites surrounded by refined Mg-Mg₂Ni eutectic. These alloys absorb large amounts of hydrogen, similar to pure magnesium and display only a single hydrogen absorption plateau in the pressure-composition-temperature (PCT) curve, i.e. not separate plateaus for each phase. It is believed that the nickel and/or Mg₂Ni phase acts as a catalyst, improving the kinetics of hydrogen transfer into the magnesium rich solid phases via MgH₂ formation.

This realisation has encouraged research [See review by S. Orimo and H. Fuji, Applied Physics A 72 (2001) 167-188] using nano technology and powder metallurgy techniques to produce materials with large internal interfacial areas. These techniques are attractive because they result in large interface areas and they introduce crystallographic defects such as dislocations and twins, which could distribute potential catalysts throughout the microstructure, enabling them to have a widespread influence on the kinetics of the reaction. Unfortunately nano-scale powder metallurgy techniques offer limited control over the crystallographic structure of the phases (i.e. interfaces,
twins etc), the powder would be highly explosive and would be prohibitively expensive for large-scale mass production of commercial hydrogen storage components. None of the research reported to date considers methods by which higher performance hydrogen storage components can be produced using lower cost processes more applicable to mass production.

It is an object of the present invention to provide a castable MgNi alloy with improved hydrogen storage capabilities.

Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in Australia or any other jurisdiction.

Summary of the invention

According to one aspect, the invention may provide a method of producing a hydrogen storage material including the steps of forming a magnesium-nickel melt having additions of at least one refining element, the refining element being able to promote a refined eutectic structure with increased twinning in the magnesium-nickel intermetallic phase and solidifying the magnesium-nickel melt to a hydrogen storage material with said refined eutectic structure.

In one preferred embodiment, the magnesium-nickel melt is formed by the steps of adding nickel to the magnesium melt to produce a hypoeutectic magnesium-nickel alloy within the range of greater than zero and up to 50 wt % Ni homogenising the magnesium-nickel melt, and adding the refining element or elements to the melt under a protective atmosphere at addition rates of greater than zero and up to 2 wt% and preferably greater than zero and less than 500 ppm.

The refining element preferably has an atomic radius within the range of about 1-1.65 times that of magnesium. It is understood that refining elements with atomic radii within this range will provide the refined eutectic structure discussed above. The preferred refining elements are selected from the group comprising Zr, Na, K, Ba, Ca, Sr, La, Y,
Yb, Rb, Cs and rare earth elements such as Eu. Zirconium is added to grain refine the magnesium crystals and when used requires at least one more of the elements from the list.

In another aspect, the invention may provide a method of producing a hydrogen storage material comprising the steps of forming a magnesium nickel melt having additions of at least one refining element having an atomic radius within the range of 1-1.65 times that of magnesium, the refining element being provided in the melt at addition rates greater than zero and up to 2 wt% and preferably less than 500 ppm, and solidifying the magnesium nickel melt.

The solidifying step in both aspects is preferably a casting step where the metal is cast by a suitable procedure such as pouring into preheated metallic moulds coding the casting. The solidifying step may be other controlled solidifying processes. However, once the alloy has been cast it is then subject to activation and use as a hydrogen storage material. The alloy is preferably used in the cast condition.

In another embodiment of the invention, there is provided a hydrogen storage alloy comprising or consisting essentially of greater than zero and up to 50 wt % Ni; greater than zero and up to 2 wt % of a refining element, the refining element having an atomic radius of about 1-1.65 times that of magnesium; and the balance magnesium and incidental impurities.

The preferred refining additions are selected from the group of Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb, Cs and rare earth elements with addition rates greater than zero and up to 2 wt% and preferably greater than zero and less than 500 ppm. The more preferred addition elements are sodium and zirconium.

The applicants have found that by the addition of trace elements having atomic radii of about that of magnesium up to 1.65 times the atomic radius of magnesium to hypoeutectic and hypereutectic MgNi systems, twin crystal defects are encouraged in the Mg$_2$Ni intermetallic phase. It is thought that increasing the refinement and crystal defects in the Mg$_2$Ni phase catalyses the hydriding reaction in the magnesium rich solid
phases of the alloy, thus increasing the capacity of the alloy for hydrogen uptake and the kinetics of the hydrogen absorption.

Furthermore as the material is produced by a casting solidification process, it is a more commercially viable process for large scale mass production of hydrogen storage components.

Description of the drawings and preferred embodiment

Further features objects and advantages of the present invention will become apparent from the following description of the preferred embodiment and accompanying drawings in which

Fig 1 is a pressure composition temperature graph of an unmodified magnesium alloy with 14% Ni,

Fig 2 is a graph summarising activation time at 350°C and 2 MPa for Examples 1-6,

Fig 3 is a graph of PCT absorption data at 350°C and 2 MPa for Examples 1-6,

Fig 4 is a graph of PCT absorption data at 300°C and 2 MPa for Examples 1-6,

Fig 5 is a graph of PCT absorption data at 250°C and 2 MPa for Examples 1-6,

Fig 6 is a graph summarising PCT absorption capacity at 350°C and 2 MPa,

Fig 7 is a graph illustrating the relationship between absorption and desorption for unmodified Mg 14 Ni alloy,

Fig 8 is a graph of the desorption data at 0.2 MPa for Examples 1-6, and

Fig 9(a)-9(h) are SEM micrographs of the as cast alloys of Examples 1-6.
The hydrogen storage material is produced according to the invention by forming a magnesium-nickel by adding nickel to molten magnesium. The nickel addition may be up to 50 wt % nickel but the preferred addition rate provides an alloy melt of 10-20 wt % nickel. The melt is then mixed to provide a homogenised mix.

To this magnesium-nickel alloy, trace elements of crystallography modifying material are added. The elements added are those that refine the magnesium phase and promote a refined eutectic structure with increased twinning in the magnesium-nickel intermetallic phase.

The range of elements satisfying the above two criteria have atomic radii around that of magnesium and up to 1.65 times that of magnesium and include Zr, K, Na, Ba, Ca, Sr, La, Y, Yb, Rb, Cs and rare earth metal elements. The preferred elements used are sodium and/or zirconium.

The melt is again stirred to homogenise the mix and held under a protective atmosphere during the homogenising step. The protective atmosphere is any atmosphere which prevents the magnesium from combusting. Typical atmospheres include SF₆ and HFC-134a.

The metal is then cast by a suitable casting procedure such as by pouring into preheated metallic moulds.

While not wishing to be restricted to a particular theory of operation, it is considered that the increase crystal defects, interfacial areas and density of dislocations catalyses the hydriding reaction in the magnesium rich solid phases of the alloy, thus increasing the capacity and kinetics of the alloy for hydrogen uptake.

Examples

The hydrogen absorption of metal hydride alloys is characterised using equilibrium pressure composition temperature (PCT) data. This data is obtained by keeping an alloy sample at constant temperature while precisely measuring the quantity of hydrogen
sorbed and the pressure at which sorption occurs. The quantity of hydrogen sorbed is expressed in terms of alloy composition, either as an atomic ratio of hydrogen atoms to the number of atoms in the base metal alloy or as the capacity of hydrogen in the material on a weight percent basis.

5 PCT stands for “pressure-composition-isotherm” and shows the maximum hydrogen absorption capacity possible at a fixed temperature. The pressure at absorption is higher than that at desorption and the region of the “plateau” indicates the range suitable for practical storage/release applications.

Most of the hydrogen is absorbed in a range where there is little pressure change. This region of near constant pressure is known as the plateau pressure. Metal hydride formation is also accompanied by hysteresis, which appears as the difference between the upper absorption curve and the lower desorption curve.

Example 1

An unmodified magnesium alloy containing 14 wt% Ni was subjected to a 2 MPa hydrogen atmosphere at 350°C for a period of 20 hours. The pressure composition temperature data was recorded and shown in Figure 1.

From Figure 1, the activation time (At) of the alloy can be determined. The “Activation time” indicates how quickly an alloy becomes “ready” for use as a hydrogen absorption alloy. Shorter activation times save energy and are indicative of fundamental material differences in the kinetic performance of the alloys. Note that activation is generally required only once in the life-cycle of a hydrogen storage alloy. Once the alloy has been activated, the hydrogen absorption time is significantly reduced as evidenced by the last cycles of the run.

Examples 2-6

25 The magnesium nickel alloy of Example 1 was modified by the addition of a refining element.
Table 1 shows the refining element and the addition rate of that element.

<table>
<thead>
<tr>
<th>Example</th>
<th>Refining element</th>
<th>Addition rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Na</td>
<td>2400 ppm</td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>600 ppm</td>
</tr>
<tr>
<td>4</td>
<td>Ca</td>
<td>800 ppm</td>
</tr>
<tr>
<td>5</td>
<td>Eu</td>
<td>600 ppm</td>
</tr>
<tr>
<td>6</td>
<td>Zr</td>
<td>2 wt%</td>
</tr>
</tbody>
</table>

The activation time from these examples is summarised in Figure 2. From these results, it can be seen that activation time can be reduced to about 40% of that of the unmodified alloy (from 8 hours to 3.8 hours). This is of practical significance but more importantly it is indicative of the superior kinetic performance of the modified alloy.

When the data collected in the above examples was analysed by reference to the absorption curve only, the graph shown in Figure 3 was produced.

PCT curves (absorption only) at 350°C show all six samples can absorb around 7 wt% hydrogen. There is little difference between the samples. 100% pure Mg absorbs 7.6 wt% of hydrogen and 7 wt% of hydrogen absorption is close to the theoretical limits for a Mg-14 wt% Ni sample. The Mg primary phases are regarded as the hydrogen absorbing phases and eutectic regions are considered to have a catalytic function improving hydrogen kinetics.

The alloys of Examples 1-6, were then characterised at 300°C and 250°C with the absorption results shown in Figures 4 and 5 respectively.

At lower temperatures, there is a decreased capacity for absorption but a large difference in performance between alloys. The PCT curve (absorption only) at 300°C
clearly shows the improvement of hydrogen absorption from 5.7 wt% (unmodified) to 6.6 wt% (Na high, Ca and Zr addition) or 6.8 wt% (Na low).

Figure 6 is a summary of the maximum hydrogen absorption capacity taken from the results shown in Figure 5. It can be seen that at 350°C the maximum hydrogen storage capacity is similar (around 7 wt%) for all samples cast.

At 250°C the modified alloys are superior and the maximum hydrogen capacity can be increased more than 1 wt% relative to the unmodified alloy (from 5.3 wt% to 6.5 wt%).

Even at 200°C (up to 2MPa condition), the samples are shown to absorb approximately 5.5 wt% of hydrogen.

In regard to the desorption temperature, usually, at a fixed pressure, absorption temperature is lower than desorption temperature. The exact temperatures will vary depending on the pressure. Figure 7 shows the relationship between adsorption and desorption for the unmodified Mg 14Ni alloy at 0.2 MPa. The adsorption start temperature 1 is usually higher than the adsorption end temperature 2. When the alloy then goes through the desorption of cycle, the desorption start temperature 3 can be seen to be higher than the desorption end temperature 4.

In the representation of the modified alloys of Examples 2-6 relative to the unmodified alloys, it can be seen that the desorption end temperature (plateau region of Figure 8) at 0.2 MPa decreases approximately 20°C with modification. In fact, the desorption temperature for the Mg Ni alloy can be reduced by trace element additions.

The addition of the modifying elements increases the amount of internal interfacial areas within the material, the amount of stacking faults and the density of dislocations/twins in the solidified magnesium-nickel alloy. It is believed that the refining element should have an atomic radii in the range mentioned above in order to achieve the metallurgical effects in the as cast metal.
The increase in dislocations caused by the additions is illustrated in the SEM micrographs Figures 9(a)-9(h). Figure 9(a) is the SEM for Mg 14 Ni unmodified; Fig 9(b) is the SEM for the same alloy with Zr addition; Figure 9(c) is the SEM for low sodium addition; Fig 9(d) is the SEM for high sodium addition; Figure 9(e) is the SEM for calcium addition; and Fig 9(f) is the SEM for Eu addition. Fig 9(g) is the Mg 14 Ni unmodified alloy of higher magnification; Fig 9(h) is the low sodium addition at the higher magnification of Fig 9(g).

Figure 9 shows SEM secondary electron images of hypo-eutectic Mg-14wt%Ni alloys of (a) and (g) unmodified, (b) 2wt%Zr addition, (c) and (h) 600ppm Na addition, (d) 2400ppm Na addition, (e) 800ppm Ca addition and (f) 600ppm Eu addition alloys. The black in the figures are primary Mg dendrites and small black and white contrast is the Mg-Mg2Ni eutectic structure. The images clearly demonstrate a very refined fibrous eutectic microstructure in all modified samples compared with a coarse eutectic microstructure in the unmodified sample.

15 All modified samples show a relative improvement of approximately 1 wt% for the maximum hydrogen absorption capacity. The refinement of the structure, even at trace levels of addition is considered quite remarkable yielding eutectic spacings below 1μm and often below 500 nm. Thus, a nano-scale material is obtained through the combination
CLAIMS

1. A method of producing a hydrogen storage material including the steps of:

 forming a magnesium-nickel melt having up to 50 wt % nickel;

 adding up to 2 wt % of a refining element to the melt under a non-oxidising
 atmosphere, the refining element having an atomic radius within the range of 1-1.65
 times the atomic radius of magnesium; and

 solidifying the melt to produce the hydrogen storage material.

2. The method of producing a hydrogen storage material of claim 1 wherein the
 refining element is at least one element selected from the group consisting of Zr, Na, K,
 Ba, Ca, Sr, La, Y, Yb, Rb and Cs.

3. The method of claim 1 or 2 wherein the magnesium-nickel melt contains nickel
 within the range of 10-20 wt %.

4. The method of claim 1 or 2 wherein the refining element is added at an addition
 rate of up to 500 ppm.

5. The method of claim 1 wherein the melt is solidified by casting.

6. A magnesium nickel alloy consisting essentially of:

 greater than zero and up to 50 wt % Ni;

 greater than zero and up to 2 wt % of a refining element, the refining element
 having an atomic radius in the range of 1 to 1.65 times the atomic radius of magnesium;

 and

 the balance magnesium and incidental impurities.
7. The magnesium nickel alloy of claim 6 wherein the refining element is at least one element selected from the group of Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb and Cs.

8. The magnesium nickel alloy of claim 7 wherein the refining element is present at addition rates greater than zero and up to 500 ppm.

9. The magnesium nickel alloy of claim 6 wherein the alloy as cast has a refined eutectic structure with twinning in the magnesium-nickel intermetallic phase.

10. A hydrogen storage material formed from a magnesium-nickel alloy, the alloy including:

 greater than zero and up to 50 wt % Ni;

 greater than zero and up to 2 wt % of a refining element, the refining element having an atomic radius in the range of 1 to 1.65 times the atomic radius of magnesium; and

 the balance magnesium and incidental impurities.

11. The hydrogen storage material of claim 10 wherein the material is formed from the as cast alloy.

12. A method of modifying the hydrogen adsorption and/or desorption characteristics of a magnesium nickel alloy including the steps of

 adding to a magnesium-nickel melt including greater than zero and up to 50 wt% nickel, up to 2 wt% of a refining element under a non-oxidising atmosphere, the refining element having an atomic radius within the range of 1-1.65 times the atomic radius of magnesium; and

 solidifying the melt to produce the modified magnesium-nickel alloy.
13. The method of modifying the hydrogen adsorption and/or desorption characteristics of a magnesium nickel alloy of claim 12 wherein the refining element is at least one element selected from the group consisting of Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb and Cs.

14. The method of modifying the hydrogen adsorption and/or desorption characteristics of a magnesium nickel alloy of claims 12 or 13 wherein the magnesium-nickel melt contains nickel within the range of 10-20 wt %.

15. The method of modifying the hydrogen adsorption and/or desorption characteristics of a magnesium nickel alloy of claims 12 or 13 wherein the refining element is added at an addition rate of greater than zero and up to 500 ppm.

16. The method of modifying the hydrogen adsorption and/or desorption characteristics of a magnesium nickel alloy of claim 12 wherein the melt is solidified by casting and cooling the casting.
Figure 2

Activation time (hours)

Samples

Unmodified
Na (high)
Na (low)
Ca
Eu
Zr

0 1 2 3 4 5 6 7 8 9 10
Figure 4

Pressure (MPa)

Hydrogen concentration (wt%)

- Mg4Al 300C absorb
- Zr 300C absorb
- Na low 300C absorb
+ Eu 300C absorb
+ Ca 300C absorb

PCT (300C)
Hydrogen absorption capacity (wt%)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2005/001825

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.
C22C 23/00 (2006.01) C22C 1/02 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Derwent - IPC: C22C 23/00, 1/02; & keywords: nickel, magnesium, 'grain refi'

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>WO 2005/100624 A (JOHNSON MATTHEY PUBLIC LIMITED COMPANY) 27 October 2005 Whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>P, X</td>
<td>EP 1511099 A (HERA, HYDROGEN STORAGE SYSTEMS, INC) 2 March 2005 Whole document</td>
<td>6-7, 10</td>
</tr>
<tr>
<td>X</td>
<td>US 6689193 B (HOSOE ET AL) 10 February 2004 Whole document</td>
<td>6-7, 10, 11</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C [X] See patent family annex

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
19 January 2006

Date of mailing of the international search report
7 FEB 2006

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODIN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au
Facsimile No. (02) 6283 3929

Authorized officer

Tharu Fernando
Telephone No: (02) 6283 2486

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No. 2003-918501/77, Class E36 J01 M26 JP 2003193166 A (TOYOTA JIDOSHA KK) 9 July 2003</td>
<td>1-16</td>
</tr>
<tr>
<td>X</td>
<td>WO 1995/034918 A (OVONIC BATTERY COMPANY, INC) 21 December 1995 Whole document</td>
<td>1-16</td>
</tr>
</tbody>
</table>
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005100624 NONE</td>
<td></td>
</tr>
<tr>
<td>EP 1511099 AU 2003202337 CA 2373553 CA 2479450</td>
<td></td>
</tr>
<tr>
<td>CN 1639367 CN 1644734 EP 1478787</td>
<td></td>
</tr>
<tr>
<td>US 2005112018 WO 03072838</td>
<td></td>
</tr>
<tr>
<td>US 6689193 CA 2377952 EP 1215294 WO 0100891</td>
<td></td>
</tr>
<tr>
<td>JP 2003193166 NONE</td>
<td></td>
</tr>
<tr>
<td>WO 9534918 AU 2466892 AU 2654295 AU 3039992</td>
<td></td>
</tr>
<tr>
<td>AU 5089793 AU 5385596 AU 5676196</td>
<td></td>
</tr>
<tr>
<td>AU 6039496 AU 7157391 BR 9007868</td>
<td></td>
</tr>
<tr>
<td>BR 9608176 BR 9608238 BR 9608438</td>
<td></td>
</tr>
<tr>
<td>CA 2068408 CA 1073046 CA 2191114</td>
<td></td>
</tr>
<tr>
<td>CA 2215666 CA 2219231 CA 2219522</td>
<td></td>
</tr>
<tr>
<td>CN 1053865 CN 1073046 EP 0502127</td>
<td></td>
</tr>
<tr>
<td>FI 922358 IL 96391 IL 102816</td>
<td></td>
</tr>
<tr>
<td>JP 2000144288 JP 2002088436 JP 2003217578</td>
<td></td>
</tr>
<tr>
<td>JP 2003247038 NO 922027 NO 975138</td>
<td></td>
</tr>
<tr>
<td>NO 975139 US 5096667 US 5104617</td>
<td></td>
</tr>
<tr>
<td>US 5238756 US 5277999 US 5407761</td>
<td></td>
</tr>
<tr>
<td>US 5506069 US 5536591 US 5554456</td>
<td></td>
</tr>
<tr>
<td>US 5616432 WO 9108167 WO 9304508</td>
<td></td>
</tr>
<tr>
<td>US 9405050 WO 9633518 WO 9636083</td>
<td></td>
</tr>
<tr>
<td>WO 9636084</td>
<td></td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX