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(57) Abstract: A location and tracking system (1) comprises a site survey tool (2), a location engine (3), a self- calibration engine
(4), and a fingerprint database (5). The system (1) operates for a wireless network of access points in a building and it generates
from initialization data a model of the physical environment. The model may for example be in the form of data representing ge-
ometry of lines in plan and signal attenuation values for the lines. The system then uses this model to generate a fingerprint of pro-
jected signal strengths in the environment. The system may maintains a fingerprint for every environment model or there may be
only one model at any one time, or there may be a number. Where the latter, the system may assign a weighting to each model to
indicate its contidence value. Upon detection of a mobile node in the environment the system (l)estimates position of the node ac-
cording to the current fingerprint, and in real-time performs self-calibration of the environment model, in turn giving rise to fresh
updated fingerprints for future tracking. This continuous self-calibration ensures excellent tracking accuracy even with modifica-
tion of the environment, such as changing of an access point configuration, moving a partition wall, or movement of a metal filing
cabinet.
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“A Location and Tracking System”

INTRODUCTION

Field of the Invention

The invention relates to location and tracking systems such as those within a building. An
example is a system for navigation in large office buildings, for tracking location of security

personnel in an airport.

In a typical location and tracking system the position of a mobile node is inferred from location-
specific physical parameters of the wireless communication channel which exists between fixed
nodes and the mobile node such as RSS (Radio Signal Strength), TDOA (Time Difference of
Arrival), impulse response characteristics, angle of arrival, and multi-path propagation

characteristics.

However, the wireless channel parameters in a multi-path environment (such as indoor
environment) are subject to the electromagnetic properties of the environment such as signal
transition and reflection losses, signal phase shift, and signal depolarisation when interacting

with the environment.

The invention is directed towards providing a location and tracking system with improved ability
to track locations of mobile nodes. Another objective is to avoid need for considerable additional

equipment in the environment.

SUMMARY OF THE INVENTION

According to the invention, there is provided a location and tracking system comprising wireless
base stations, an input interface, and a processor, wherein the processor is adapted to
(a) receive physical environment inputs and provide an initial physical environment
model;
(b) generate an initial channel parameters fingerprint for the environment according to the

initial environment model;
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(c) monitor channel parameters of a mobile node in the environment and use said
parameters and the fingerprint to locate the mobile node;
(d) modify the environment model according to said node locating step (c);
(e) update the fingerprint according to the modification of the environment model in step
(d); and

() repeat steps (c) to () in subsequent iterations.

In another aspect, the invention provides a location and tracking method performed by a location
and tracking system linked with wireless base stations, and having an input interface, and a
processor, wherein the method comprises the steps of:
(a) receiving physical environment inputs and providing an initial physical environment
model;
(b) generating an initial channel parameters fingerprint for the environment according to
the initial environment model;
(¢) monitoring channel parameters of a mobile node in the environment and using said
parameters and the fingerprint to locate the mobile node;
(d) modifying the environment model according to said node locating step (c);
(e) updating the fingerprint according to the modification of the environment model in
step (d); and

(f) repeating steps (c) to (e) in subsequent iterations.

The initial environmental model may be generated in step (a) by the system in response to the
inputs or it may be received as a pre-generated file. The invention achieves by virtue of steps (b)
to (5) self-calibration for location of mobile nodes in the environment. Any change made to the
environment, such as modification of a base station, erection of a partition wall, or even
movement of a piece of furniture will be automatically taken into account for further location of

mobile nodes.

In one embodiment, the location engine is adapted to execute a filtering algorithm to estimate

location in step (c).

In one embodiment, the processor is adapted to determine in step (c) possible mobile node
trajectories, and to use said trajectories for environment model modification in step (d) and

subsequent fingerprint updating in step (e).
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In one embodiment, the processor is adapted to dynamically maintain a multi-hypothesis
decision tree in step (c) in which it iteratively evolves branches representing the most likely

mobile node trajectories.

In another embodiment, the processor is adapted to use mobile node speed estimation for steps
(c) and (d).

In one embodiment, the processor is adapted to modify wall segment parameters of the

environment model in step (d).

In one embodiment, in step (a) the inputs include:
layout of main obstacles including building floor plans and wall layout;
layout of base stations; and

starting position of a mobile node.

In a further embodiment, parameters of environment obstacles are initially set to a common

default value.

In one embodiment, for the step (a) the processor is adapted to divide the obstacles into smaller
segments and to optimise parameters of the smaller segments to more precisely represent each

segment’s mean local influence on signal attenuation.

In one embodiment, the processor is adapted to apply parameters to the segments so that they
characterise the obstacles they are part of and also the influence of smaller obstacles including

furniture in proximity to large obstacles.

In one embodiment, for step (c) the processor is adapted to use an empirical signal propagation

model with a linear optimisation method for prediction of received signal strength.

In one embodiment, the processor is adapted to perform, for steps (c) and (d), simulation of an

m™ mobile node motion along a 4™ trajectory and creation of a corresponding fitness function.
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In one embodiment, the fitness function describes how similar the channel parameters estimated
along the 4™ trajectory by the prediction model, which uses current obstacles parameters, is to

gathered channel parameters by a mobile node along its truth trajectory.

In one embodiment, the fitness function takes the form of a set of linear equations for an

optimisation method.

In one embodiment, the processor is adapted to execute a particle filter algorithm to locate a
mobile node in step (c), in which particles are mapped to the physical environment as

represented by the physical environment model.

In one embodiment, the processor is adapted to generate visual displays of the physical
environment in which particles distribution is illustrated for user visualisation of likelihoods of

locations of the mobile node.

In one embodiment, the processor is adapted to eliminate particles in successive iterations
according to constraints imposed by the physical environment model and a motion model, in

which remaining particles converge around the actual mobile node location.

In another embodiment, the processor is adapted to automatically recognise rooms in the
physical environment model and to maintain a count of particles in each room to provide a per-

room probability of presence of the mobile node.

In one embodiment, the processor is adapted to provide a random or uniform initial particle
distribution mapped into the physical environment model, to filter the initial particle distribution
with a likelihood observation function to generate a second particle distribution and to use said

distribution for a next filtering iteration.

In one embodiment, the likelihood observation function is given by combining densities to

obtain a likelihood observation function of measurement p(ztjxt), and is given by:

1 L ! k
Xe) = | II phét{f'f;” 13{#) . Hpmiﬁg‘zﬁg ‘xf} ]:[ DeatralZy {st a3

hell kel kel (3 27)
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where:
Kooooooroeererernn, is the set of measurement in (z; N z*;),
] A is the set of measurement in (z'; — z,),
.Y S is the set of measurement in (z;—z";),

............... and the expressions of |K], |L|, |M] denotes the number of elements in K, L, M
respectively,
....................... S represents the weighting factor and

....................... k denotes AP identification.

In one embodiment, the processor is adapted to perform step (d) by adjusting the current
parameters of obstacles towards the optimised parameters of obstacles which influence the

channel parameters along the A" trajectory, in which the adjustment is given by:

Ladt = Luf_, + ALw}

where
IW oo, represents i wall segment loss at time (index of iteration) 7,
IW g e represents i" wall segment loss at iteration # —1, and
ALW oo, denotes the delta of a wall segment loss at time t.

In another aspect, the invention provides a computer readable medium comprising software code
adapted to perform operations of a location and tracking system as defined above in any

embodiment when executing on a digital processor.

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of the Drawings
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The invention will be more clearly understood from the following description of some
embodiments thereof, given by way of example only with reference to the accompanying

drawings in which:-

10

15

20

25

30

Fig. 1 is a block diagram illustrating the main components of a location and tracking
system of the invention, and Fig. 2 is a perspective view of a typical indoor environment

in which the system operates;

Fig. 3 is a flow diagram illustrating operation of the system to perform mobile node

tracking and self-calibration;

Fig. 4 is an example of a floor plan with a particular wall layout and access points, within

which the location of a mobile node is tracked;

Fig. 5 is a screen shot for initializing the system with environment parameters;

Fig. 6 is another example floor plan, with segmented walls;

Fig. 7 shows possible trajectories in this environment, represented as a Voronoi diagram

in the floor-plan;

Figs. 8 is display of fingerprints showing predicted channel parameters in an
environment, in which the scale represents level of predicted channel parameter such as
signal strength in a regular grid, and Fig. 9 shows another predicted fingerprint generated

from a site-specific prediction model;

Fig. 10 shows a sample output screen for operation of a site survey module of the system,

the screen showing signal strength as measured by a mobile node in the environment;

Fig. 11 is a set of diagrams illustrating proposed trajectories for a mobile node at a

starting point A;

Fig. 12 is a diagram illustrating fitness function creation with a multi-wall model
(MWM);
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Fig. 13 is a plan view, showing a location error of the position estimated by a particle

filter;

Fig. 14 is a diagram illustrating how the system dynamically maintains options and

probabilities on possible trajectories;

Fig. 15 is a sample calibrated fingerprint generated by the system after several iterations
of self-calibration, in which the fingerprint differs from the fingerprint shown in Fig 8 in
the optimised parameters of the environment model (such as. wall parameters), which
were used in the fingerprint predication mode; and

Figs. 16 to 23 are diagrams illustrating implementation of a particle filter algorithm.

Description of the Embodiments

Referring to Fig. 1 a location and tracking system 1 comprises a site survey tool 2, a location
engine 3, a self-calibration engine 4, and a fingerprint database 5. The system operates for a
wireless network of access points such as shown in Fig. 2. In hardware terms it comprises a
conventional PC computer and mobile WiFi enabled handheld devices such as smart phones

linked to wireless access points of a conventional WiFi network

The system 1 generates from initialization data a model of the physical environment. The model
may for example be in the form of data representing geometry of lines in plan and signal

attenuation values for the lines.

The system then uses this model to generate a fingerprint of projected signal strengths in the
environment. The term “fingerprint” means a map of channel parameters (such as signal strength
and Time of Arrival, TOA) at all of a set of points in the environment. These points may be in a
regular grid pattern, with position of some points being offset to avoid being coincident with an

obstruction such as a wall.

The system maintains a fingerprint for every environment model. There may be only one model

at any one time, or there may be a number. Where the latter, the system may assign a weighting
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to each model to indicate its confidence value. For example if models are being maintained for a
person moving through a building, the system may maintain a set of possible trajectories for the
person. There might be a model for each trajectory, but a confidence weighting assigned
according to the degree of confidence in the associated trajectory. In another example, the
system is configured to maintain only one model at any time. This may correspond to only the
trajectory for a single mobile node, and with the highest confidence value. The choice of number
of models to maintain is dependent on the processing resources in the system and the extent of

complexity of the environment, and the frequency with which it is changed.

The hardware of the system is an existing wireless communication network, and so no additional
hardware is required where there is a wireless communication network such as a WiFi network

in place.

Upon detection of a mobile node in the environment the system estimates position of the node
according to the current fingerprint, and in real-time performs self-calibration of the environment
model, in turn giving rise to fresh updated fingerprints for future tracking. This continuous self-
calibration ensures excellent tracking accuracy even with modification of the environment, such
as changing of an access point configuration, moving a partition wall, or movement of a metal

filing cabinet.

The major steps, 101 — 122, implemented by the systems are shown in Fig. 3. The following

describes these steps in detail.

Step 101
Input to the system 1 is:

- layout of main obstacles such as building floor plans or wall layout,
- layout of location and tracking system fixed nodes,

- initial (starting) position of mobile nodes (at the entrance to the building, for example).

Fig. 4 shows the example of a floor-plan with access points (“APs”) and wall layout used as an

input to the self-calibration system 1.
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Step 102

Corresponding parameters of all environment obstacles and therefore all segments are initially
set to the same default value. Default values are any reasonable mean values of obstacle
parameters as characterised by the channel parameters prediction model used in the next point.
The absolute values are not as important as their uniformity throughout the environment in the

initial stage. A sample screen for inputting these parameters is shown in Fig. 5.

Step 103

The walls and main obstacles are then divided by the processor into smaller segments. The
parameters of smaller segments can be better optimised to more precisely represent the
segment’s mean local influence on the signal attenuation than long walls. The segment’s
parameters therefore characterise not only the parameters of walls or main obstacles they are part
of, but reflect also the influence of smaller surrounding obstacles such as furniture in the
proximity of wall and variation of the longitudinal wall characteristic caused by pipes and
ducting within the wall etc., which can have significant influence on the signal attenuation. The
size of the segments depends on the type of environment and varies between 2 to 10 meters. We
found that the segment size between 2 and 4 meters is suitable for indoor and between 5 and 10

meters for outdoor.

Algorithm 1 shows the algorithm for segmenting walls. The input of the algorithm is segment

size (1), and output of the algorithm is a set consisting of segmented wall

Algorithm 1: SegmentWall (I, W)

: for each wall in the floor plan
: d = length of wall

: walls = div (d, /)

: if walls quotient > 1

: w = segment the wall
W=W+w

: else

: w = the wall
W=W+w

10: end if

11: end for

O &0 3 O W BN =
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10: return W

Fig. 6 shows example of an environment with segmented walls.

Step 104

The possible trajectories of mobile nodes in the described environment are pre-processed to
accelerate the creation of a subset of possible trajectories in step 110. The trajectories are built as
a Voronoi diagram of the floor-plan, the graph edge representing all the most likely routes for
mobile node movement. The density of the Voronoi diagram varies depending on the predefined

requirements on the location accuracy.

Algorithm 2 below shows the steps for creation of possible trajectories. The input of the
algorithm is a vertex v in the Voronoi graph G and the distance travelled d by a mobile device.
The output of the algorithm is a set of vertices V, which is basically a set of way-points inside

the trajectory

Algorithm 2: Traverse(v, V, d)
:V=V+ {v}
: D = total length of edges in V
:if D <d then

: for each vertex w adjacent to v do

: Traverse( w, V, d)

: end for

s else

: save V {V is a candidate of trajectory}
:end if

W 0 N O b kW

Fig. 7 shows a screenshot of the possible subset of motion traj ectories in a floor-plan.

Step 105

Estimation of the expected channel parameters fingerprint in the area of interest taking into
account the default parameters of obstacles by appropriate empirical or physical channel

parameters prediction models.
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In this implementation a simple empirical signal propagation model, called Multi-Wall-Model
(MWM), is used for prediction of received signal strength (RSS) fingerprint. MWM is chosen
because of its simplicity and efficient computation, but also for its suitability to the linear
optimisation method used in this implementation. Both of these factors contribute to improving

the speed of the overall self-calibration.

In the MWM, the path loss is given by the following equation:

I
L=L,+20log(d)+>.Lw' + L, (1)
i=1
Where:
Lo denotes the predicted signal loss,
Ly cevveennennannne is the free space loss at a distance of 1 meter from the transmitter,
17 ASEUUUOON is the distance from the transmitter to the receiver, .
o, is the number of walls intersecting with the signal direct propagation path
between the transmitter and receiver (access point and mobile node),
LW e denotes the contribution of i wall segment to the total signal loss,
Lf oo is the contribution of floors to the total signal loss.

In this example, self-calibration is used for localisation on a single floor, therefore signal-loss of

floors Lyis not considered.

Algorithm 3 below shows the algorithm for signal level prediction with the multi-wall model.
The input of the algorithm is position of an access point p. The output is predicted signal level in

the environment S.

Algorithm 3: Prediction (p)
1: P=-10dB
2:S=0

3: for each grid g in the environment

4: d = distance from g to access point p
5: L = calculate with equation (1)
6:s=P—L
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7.8S=S+s
8: end for
9: return S

Step 106
Start of the main loop of an iterative fingerprint self-calibration algorithm by the engine 4.

Step 107

Mobile nodes, subject to their pinpointing by the location engine 3, gather the observed channel
parameters along their motion trajectory, and send them to the survey tool 3. This interval of
gathering of parameters can vary from a few seconds to many minutes based on contextual or
other information. A sample screen is shown in Fig. 10. The plots at the bottom of this screen are

signal strength from different transceivers as seen by the mobile node.

Step 108

The gathered channel parameters could be optionally used by the location engine 3 to estimate

motion behaviour of the mobile nodes such as speed and direction.

The motion behaviour estimation can be further improved by additional sensors, especially
inertial sensors such as accelerometers, gyroscopes and magnetometers built-in the mobile node.
The suitable methods used for estimating the mobile node speed and directions based on

measurement of the inertial sensors are called “Dead Reckoning” methods.

Step 109
This is the start of a loop through all participating mobile nodes, M, by the engine 4.

Step 110

Based on the length of the time interval of gathering of channel parameters (also an option on
estimated mobile node motion behaviour) and the layout of obstacles in the environment,

possible H,, motion trajectories (hypothesis) of the m"™ mobile node are proposed.

Fig. 11 shows an example of proposed trajectories when a mobile node is at the Starting point A
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Step 111

This is start of an inner loop for evaluating the likelihood (ranking) of all proposed trajectories
(hypothesis), H.

Step 112

This includes simulation of the 7™ mobile node motion along the W™ trajectory and creation of
the corresponding fitness function. The fitness function describes how similar the channel
parameters estimated along the K" trajectory by the prediction model, which uses current
obstacle parameters, is to the gathered channel parameters by a mobile node along its truth
trajectory. The fitness function can take the form of a set of linear equations suited to the

optimisation method used in the following step.

In this implementation the localisation is performed on a single floor. Therefore the fitness

function for the optimisation of a wall segment parameter considering MWM (1) is written as

follows:

L = Ly+20log(d)+ Lw

Pr -k = Ly 4+ 2010g(d) + Lw,y + ALw,
ALw, = P¥— % Ly —20log(d) — Lwe
: 2)
Where:
H H
Lw=3"Lv', Alw=3 ALu'
ozl S |

ALW e denotes the difference of wall segment loss,

P denotes the power transmitted from access point £, (it is known or can be
estimated as additional unknown similarly to by the described optimisation
method as if it was an additional wall around the transmitter)

2 e, represents the RSS measurement gathered by the mobile device from
access point £,

Foeerreeneseenenaens denotes time or index of process iteration

IW oo, represents an " wall segment loss and

ALW .oorerrnnres denotes the difference of an i wall segment loss.
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Linear equations (2) are then created for every measurement point along the simulated W
trajectory. A created set of the linear equations represents all wall segments which have
influence on the signal strength along the trajectory. Since the number of measurements is
usually greater than the number of wall segments, the resulting set of linear equations form an
5 over-determined system. This means that the number of equations is greater than the unknowns
(i.e: ALw). A fast and robust algorithm to solve an over-determined linear system is the least-

squares method.

Considering this over determined system where m represents the number of linear equations and
10  »n is the number of unknown coefficients with m > n. Recalling the fitness function in equation

(2), B is the ALw, and y; represents the right hand side of the equation.

The linear system is written:

1

E Xg“ggj = g'};{?: == 3,5‘2‘ s ‘,‘???,}

j=1

and the final fitness function in the matrix form suitable for example to the least-squares method:

Ri=y
15 3)
Where:
$13 Fye v g &L‘w;}
Loy Xwy e T , ALy
X = ) e , and
| Fml Fwm2 0t T _‘ Al ]
Pl 2t — Ly — 20 log{d") — La}
a__ .0 { g .
¢ = P?— 22— Ly — 20 logld?) — Ly 4
P 2 Ly 20 Jog(d™) — Luwil
20 Step 113

This step involves application of a formal optimisation method (such as the least square, agent-

based, or stochastic search methods) to find optimal parameters of obstacles which maximise the
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similarity of the predicted channel parameters and gathered channel parameters along the W'

trajectory.

In this implementation the least-squares method is used to solve the matrix (3), where the

solution is given by:

= (X"X)"X"y
4)

Step 114

This is adjustment of the current parameters of obstacles towards the optimised parameters of

obstacles which influence the channel parameters along the W™ trajectory.

The adjustment is given by:

Lav! = Lal + AL

where:
LW represents i wall segment loss at time (index of iteration) ¢,
LW g e represents i wall segment loss at iteration £ —1,
ALW feoeeveereran. denotes the delta of a wall segment loss at time t.

Step 115

This step involves prediction (re-calculation) of the channel parameters fingerprint in the area of

interest with a prediction model having adjusted parameters of obstacles.

Step 116

This step involves location error estimation, which takes into account the re-calculated

fingerprint and gathered channel parameters and the K™ trajectory as a ground truth.
Fig. 13 shows an illustration of the localization error.

In this implementation the Particle Filter algorithm (Algorithm 4) is used to estimate the location

error, as follows.

Algorithm 4: Particle Filter (1)
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X, =X, =0
9: fori=1to N do
3. sample X ~ plx]xd_¢)
1 assign particle weight w! = p(z|x})
5 end for
6 caleulate total weight b= 37 | w!
i caleulate total weight b= ) ., uy
7. fori=1to N deo
§:  normalise wi = k™ 'u!
0: Xy =X + {xtwi}
i end for
11: X, = Resample (X,)
1% return X,
where:
AT AT is the set of particles,
N oo is the number of particles,
X] cveeieerenennaes is a particle state including particle location,
W, eervrereraeneens is a particle weight,
P(X] X)) v is transition distribution and
p(z] %)) v is measurement distribution.

Implementation of step 116 is described in more detail in a separate section below.

Step 117
The actual ranking (the likelihood estimation) of the W™ trajectory is calculated taking primarily
into account the localisation error and also other contextual information such as the motion

behaviour pattern of the mobile nodes in the area of interest.

In the presented implementation the W™ trajectory likelihood is calculated as a probability govern
by Gaussian distribution with the mean localisation error of 0 meters and standard deviation of

3m by the following expression:
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o = 1 exp g )
o2 207
where:

O revererrennns denotes trajectory likelihood,
fo PP represents the standard deviation of the Gaussian distribution.
£ reveerererereinrenns represents the localisation error and

Localisation error in (5) is calculated as the mean Euclidian distance between the mobile node
locations estimated by a formal localisation algorithm such as the particle filter and the ground

truth positions along the " trajectory

1 n
&=—2 &= xarl ©)
N

where:

N is the number of the measurement along the 4" trajectory,

XGp eeverenrersrenes are the ground truth positions and

X cveereeverneerenens are the positions estimated by a formal localisation algorithm.
Step 118

The end of the trajectories (hypothesis) likelihood evaluation loop.

Step 119
Selection of a limited number of the most likely trajectories (hypothesis) for the 4™ mobile node.

The other trajectories are terminated.

Fig. 14 shows an example of the evolution of the self-calibration process as a hypothesis tree for
a mobile node where individual branches represent its possible trajectories, which are maintained
or terminated depending on their estimated likelihood. The most likely trajectory is the trunk of
the tree.

The system configuration in this implementation sets the threshold for the trajectories
termination to 0.05. The threshold value impacts the number of maintained hypotheses,

therefore, the computational requirements of the self-calibration system.
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Step 120
This is the end of the mobile node multi-hypothesis trajectory evaluation. At the end of this loop

every participating mobile node has an associated set of most likely hypotheses of trajectories.

Step 121
The process of ranking combined hypothesis follows the same steps as the ranking of the
individual node trajectories from points 9 to 16, however, the optimisation of parameters of

obstacles can be simplified by averaging, for example.

Step 122
This is selection of a limited number of the most likely combined-trajectories, H.. The other

trajectories (hypotheses) are discontinued.

Fig. 15 shows a final predicted fingerprint based on the calibrated wall segment parameters. The

scale represents level of predicted channel parameter such as signal strength in regular grid

Particle Filter Algorithm: Step 116

The particle filter is a non-parametric implementation of the Bayes’ filter. It approximates the
posterior probability by a finite number of discrete samples with associated weights, called
particles. The approximation of the posterior density is non-parametric. Therefore, it can
represent a wider distribution than the parametric one, such as Gaussian. The particles are
mapped to the physical environment model, and so the processor can generate visualisation user

displays of the environment with the particle distribution illustrated.

The particle filter directly estimates the posterior probability of the state expressed in the

following equation:

By
Z Lf’gél‘w
= (M
where
T is the i sampling point or particle of the posterior probability with 1 <i <N,
VTR SO is the weight of the particle and

N represents the number of particles in the particle set, denoted by Xi.
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Each particle is a concrete instantiation of the state at time ¢, or put differently, each particle is a

hypothesis of what the true state x, might be, with a probability given by its weight.

The property of equation (eqn. 7) holds for N T . In the case of finite N, the particles are
sampled from a slightly different distribution. However, the difference is negligible as long as

the number of particles is not too small.

Alvorithm 3.2 Particle Filter {0 1. %)
=T =0
fori=1to N do

sample xF ~ plxed )
assign particle weight uf = plz|x})
end tor
caleulate total weight k= S0, af
s fordi=1 1w N do
normalise uf =k ud
T = To 4 bk, )
endd for
« X = Resaple { fﬁ}
3 ovetwrn X

RN S

[y
[~ < <
T ne £

ok ek
[

The algorithm 3.2 above describes a generic particle filter algorithm. The input of the algorithm
is the previous set of the particle X, and the current measurement z, whereas the output is the
recent particle set X;. The algorithm will process every particle x',_1 from the input particle X,-; as

follows.

Line 3 shows the prediction stage of the filter. The particle x'; is sampled from the transition
distribution p(x; | x~1). The set of particles resulting from this step has a distribution according to
(denoted by ~) the prior probability p(x; | z~1). Line 4 describes incorporation of the
measurement z; into the particle. It calculates for each particle x'; the importance factor or weight
w'. The weight is the probability of particle x', received measurement z; or p(z| x;). Lines 7 to 10
are steps required to normalise the weight of the particles. The result is the set of particles X,
which is an approximation of posterior distribution p(x; | z;). Line 11 describes the step which is

known as re-sampling or importance re-sampling. After the re-sampling step, the particle set,
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which was previously distributed in a manner equivalent to prior distribution p(x; | z,-1) will now

be changed to particle set X, which is distributed in proportion to p(x; | zy).

Re-sampling

The early implementation of particle filter is called sequential important sampling (SIS).
Implementation of SIS is similar to algorithm 3.2 above, but without the resample step
(algorithm 3.2 line 11). The SIS approach suffers an effect which is called the degeneracy
problem. This occurs when, after some sequence time ?, all but one particle has nearly zero
weight. The problem happen since generally impossible to sample directly from posterior
distribution, particles are sampled from related distribution, termed importance sampling. The
choice of importance sampling made the degeneracy problem is unavoidable. The degeneracy

problem will increase the weight variance over time and has a harmful effect on accuracy.

Re-sampling is an important step to overcome the degeneracy problem. It will force the particle

to distribute according to the posterior density p(x; | zy).

Algorithim 3.3 Resample ()
1 =4

2 for =1t N do

3.y = random number uniformly distributed on [0,1]
4 s=00

51 fori=1lto N do

i &=5- wi

T it s > r then

9 wil = 1/N

1; X = X5+ {7 i)
11 end if

120 end for
13: end for
14: replacement JX; = X

18: return Xy

Algorithm 3.3 above describes a re-sampling step of particles. The modification lies in the
iteration to draw newly sampled particles. The input of the algorithm is a set of particles and the

output is the new resampled particles.
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Line 3 shows the generation of random number r. Lines 5 to 8 show the re-sampling steps. Line
8 shows when a particle is re-sampled only if its weight contribution causes the summation in
line 6 to exceed or equal to the random sample 7. The probability of drawing a particle is in
proportion to its importance factor. Particles with lower weight will have a lower chance and
some will not be resampled. Since the re-sampling process is performed every time step, the new

particles do not need to know the old weight and their weight will be set equally, as shown in

line 9. Line 14 shows when members of particle set X is replaced by new resampled particles.

The particle filter, which is a non-parametric implementation of Bayes’ filter, is well suited for
state estimation in opportunistic system for a number of reasons. It is suitable for state estimation
for a system that has large process noise in state dynamics, and it provides a good processor

performance.

To implement a particle filter for opportunistic indoor localisation, motion and measurement

probabilistic models have been devised, s described below..

Motion Model

This implements a particle filter for and opportunistic system. It is a representation of the target’s
kinematics behaviour. It is used to construct the transition probability p(x; | x~1) which has an
important role for the prediction step in the particle filter. The first-order of person kinematics is
less conservative than Brownian movement, in a way that the motion is not totally random as in
Brownian movement. Therefore it is often more accurate. It assumes that the target direction is
the same as the last observing movement. However, this assumption does not hold when people
turn direction in a corner, enter a room, or avoid obstacles. This kind of action therefore is
difficult to represent. Our approach for the motion model in indoor localisation is taken from
both Brownian movement and a first-order motion model. The motion model assumes that the
kinematics of a target has random values in it. However, this randomness is constrained by the
previous state. This approach accurately reflects the target’s kinematics behaviour (i.e.: a person)
in opportunistic system. Especially, in a system that only uses RSS measurement, without

additional motion sensor.
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Velocity

To accommodate simple human locomotion patterns (such as remaining stationary, walking and
running) and its limitations, the target velocity is constrained to take place only between limited
ranges of speed. The succeeding velocity also takes into account the preceding one, since it is
assumed that people tend not to change their kinematics abruptly in a normal condition. Based
on observation of peoples’ movement in the standard environment, the target velocity is given by

the following rule:

s 0= < Man,
vy =M{wy_), o) and v, = v = |wl, m o<
& Max,, —uv, Muox,, < o 9)
with
o, = min{Maza,, Al (10)
where:
N oo represents a Gaussian random number generator,
Maxys ooeveneenen. represents the maximum speed.
117111 JOUOII is a function which returns the smallest component,
Af vorveveeinennnns represents elapsed time,
MaXat.eerrererenes represents the maximum threshold of the Az.

The value of Max,, is set to the fastest recorded human speed (= 10 m/s) and Max,, = 3s. Fig. 16
shows an example of the velocity probability distribution function (PDF) when v, =0 m/s with

various At.

Direction

The succeeding direction also considers that preceding it. A velocity parameter is also included
in the direction calculation. The motivation is to limit heading variation based on preceding
speed, since people tend to slow down when they want to change their direction of movement.

The target direction is given by the following rule:

Ckty —T K T
o = Nloy_q o) and o = ¢ op 4+ 27, o < —7
' ry — ?ff, yy = T

(11)

with
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op, = .47 — retan{~ —)
2 (12)

where o, represents direction at time f, oy, represents the direction standard deviation.

Fig. 17 shows the oy, for different velocities. Figure 18 presents PDF of the direction based on

different velocities with a1 = 0. It can be seen that the heading variation is narrower when the

velocity is increased.

Particle Motion Model
Each particle, which is a hypothesis of the target state in the real world, will have a kinematic
characteristic according to the motion model during the prediction stage. The particle state can

be modelled with:

it 1

i [ Xy ] _ { w3y + vicos{on )it + i\

vl w4 visin{al )AL 4 (13)
where :
Viorrereeeeeesrnnnnnes denotes velocity,
Olf vovreerereneennans describes particle direction at the time ¢,
T ooeeeeeeeeeeenens is a noise with Gaussian distribution.

The particles® velocity is governed by equation (9), whereas particles’ direction is given by
equation (11). The noise #; is added to achieve a better distribution by preventing particles from

collapsing into a single point. A »; value of 0.5m is used for this work.

Fig. 19 illustrates the evolution of particle distribution determined only by the motion model.
The particle distribution is started from a known state in 2D space. The initial velocity vo = 3 m/s
and number of particles are 2000. Since there is no RSS measurement update performed, the

distribution spreads wider over time.

The aforementioned particle distribution, which was constructed with the motion model, is a
representation of transition probability. This density needs to be updated with the measurement

probability p(z: | x;) to obtain the posterior distribution. The construction of measurement
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probability with the measurement model in an opportunistic system is explained in the next
section.
Measurement Model

The measurement model describes a construction process by which the sensor measurement is
generated. This model is utilised to obtain the measurement probability of p(z: | x;), often referred
to as the likelihood observation function. In the particle filter, this function is used to incorporate

a measurement update into the particle weight wh

There is a2 measurement model which considers the physical characteristics of signal propagation

in indoor environments based on the fingerprinting method.

A fingerprint is a database of stored RSS measurements throughout the coverage area of all
discrete possible states. These discrete states are often referred to as a grid. The fingerprint acts
as the “true” RSS values obtained by the sensor, denoted by z'; , at the state x,. Theoretically,
smaller grid size gives better localisation accuracy since the measurement model will be more
distinct between grids. However, it is technology dependent. Based on the observations, WLAN

RSS values are discernible when they are measured in a grid > 1m, for example.

To obtain the likelihood observation function, statistical inference is performed between a true

value stored in the fingerprint and recent RSS measurement (termed as signature).

The mobile device is able to simultaneously retrieve RSS measurements from different APs,

therefore z, is a set of measurements which is described as:

Fy = {,Jﬁl, 3?1 “.’,?» PP IQ{} (14)
where:
zkt ................... denotes RSS value z, at time ¢ from AP with identification k (MAC address
is used for WLAN AP)

The probability p(z, | x¢) is obtained as the product of the individual likelihood observation
function.

kem (15)
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Algorithm for the Measurement Model

The measurement model comprises three types of probability densities, each of which

corresponds to a type of dissimilarity:

1.

Measurement with noise. Assuming that the sensor can capture the true RSS
measurement, the returned value is still subject to error caused by shadowing (or slow
fading) and multipath fading. This fading, which appears as a time-varying process,

makes the RSS value fluctuate even when it is measured at the same position.

Since the sensor (i.e. WLAN interface) has an internal mechanism to suppress multipath
fading, the received error is largely caused by shadowing which has a Gaussian
distribution. Therefore, the noisy measurement may be modelled with a Gaussian
distribution with mean value of z+kt and standard deviation of o. The Gaussian is

denoted by py; as described in Figure 20.

The value of z™*, is given by the RSS measurement stored in the corresponding grid of the

fingerprint. The measurement probability is governed by

& ; e A I
pralzilxe) = N{z' 4™, a4)
L P,
R E o

(16), (17)

where z+k, is the RSS value stored in the fingerprint and zkt is the recent signature such
that {k € z, N z'; } or, to put it differently, the RSS value from an AP which appears in
both signature and fingerprint. Notation o+ is the intrinsic noise parameter for the

measurement model.

Missing RSS. Considering that it may be the case that not all of the RSS values that
appear in the fingerprint grid and signature coming from the same APs, a question arises
as to how to account for such data. This condition can happen when the signature is taken
at a different location or there is an extra/missing AP. In the case of no extra/missing AP,
a different set of RSS values in the fingerprint grid and signature means that they are
taken at different locations. Incorporating this information into the measurement model

will eventually lead to better localisation accuracy.
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In the case of RSS measurements from an AP which is missing in the signature but which
is present in the fingerprint, the measurement probability is modelled by a Gaussian
denoted by p,niss. The measurement probability is governed by:

é"’mw(vi{‘{%j = N(p0,04)

- e (- L)
oy v2m 0% (18), (19)
5
where 77 is the penalty parameter given for the missing RSS. The density puss is
calculated for missing 2, such that {k € z*,—z, }.
3. Extra RSS. In the case where there is an extra RSS value of an AP which exists in the
10 signature but which is absent in the fingerprint, the measurement probability is also
modelled by a Gaussian denoted by peyy, and governed by:
Pestral 27Jx) = N 0,04
= —— EX] (u i 2,)
oy I\ 203, (20), 21)
where 7 is the penalty parameter given for the extra RSS. The density pey, is calculated
15 for extra zf; such that {k e z,—z*, }.
These three densities are combined to obtain the likelihood observation function of RSS
measurement p(zt{xt). The likelihood observation function is given by:
plagx) = [H pra(f thI‘?! T poisa (G peed. [ powtealit ). 8
heild kel kel (22)
20
with
g = K]
‘ | K|+ [L] + | 3]
where:
25 Koooorreieeiincinn, is the set of measurement in (z; N z ),
T is the set of measurement in (z+, -z,

1Y is the set of measurement in (z; —z", ).
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The expressions of |K], ||, |M] denotes the number of elements in K, L, M respectively.
) JUR represents the weighting factor and

Fovrnneeeireninnnns denotes AP identification.

Algorithm 3.4 describes the steps necessary to obtain the likelihood observation function. The
input of the algorithm is the measurement z, and the state x, The output is the likelihood

observation function of p(z; | x;).

Algorithm 3.4 Measuremont Model (z:, x;}

1:p=1
2 g=1
Byg=1
4: S=10

P

. get 7 from the fingerprink
v b e K odo

=

p=ppral(af )

» eud for

. p = plIKl

10 for ke L do

1 §= . Praiss {zﬁ"{xﬂ
12 end for

13: for k& M do

M g = GPeseral 2%,
15: end for

16 S = |K| <+ (|K|+|L] + M
17y = pag.&

o |

18: veturn ¥y

The intrinsic noise parameter for the measurement model o+ is set to 4dBm which was observed

as a appropriate value for common indoor environments.

The value of the penalty 7 in equation (19) of piuss and (21) of Pewr, is governed by the following

expression
| (5/30)(% + 100, R
n=1q (15/25)(z+70) +8, —70 < % < —45
20, 2 > —45

(23)
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The aforementioned equation is formulated to mimic the tail part of a Gaussian distribution. The
RSS range is taken from maximum and minimum RSS values measurable from a WLAN
interface (-100dBm and -45dBm). Maximum penalty is given by the maximum signal loss

caused by people shadowing (20dBm). Linear interpolation is used to obtained penalty 7 values.

The result is that the value of 7 is in proportion to the RSS value missing in the fingerprint z*, or

extra in z. Greater missing / extra RSS values will have a proportionately higher penalty 77 (Fig.
21).

The value of intrinsic parameters of standard deviation o and penalty 7 can be applied to
environment similar with office setting (characterised by many walls, corridors and rooms), such

as hospital, campus or apartment.

Examples
Fig. 22 is used to illustrate how to obtain the likelihood observation function of a particle p(z; |

x'}). It shows a fingerprint from 3 APs, a target and a particle.

Supposing that the target measured RSS value z; = {AP1 = -70dBm, AP2 = -70dBm, AP3 = -
75dBm}. The corresponding fingerprint grid where the particle x is located, has value of z*, =
{AP3 = -65dBmy}. If the value of both o and 7 are set to 4 dBm, the p(z | x'; ) can be calculated
as follows:

Calculating pp; from AP3 with equation (19):

¢ -k e
1 L 1 , LA “:j .3?
Pral %) = e o M- a—
Ty & LT )
1 ( (=75 efmx)
J R o S o B = D*E}D,_‘l‘l
W { 242

Calculating pexsq from AP1 and AP2 with equation (21):

}}mﬂaiﬁg 3{} V-Pexton (;55 [3"&;)

Il
i
2
N
< |-
5l
v
f‘"‘{““x
S
SRS
N
S

Calculating p(z: | x'; ) with equation (22):
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plagheg) = 0.0044 . 0.0037 . S 00000054

)

Measurement Model & Particles Distribution

The likelihood observation function update to the particle distribution is illustrated in Fig. 23.
Fig. 23(a) shows three access points and its RSS measurement throughout the coverage area
which is used as the fingerprint. In the initial time, the particles will be uniformly distributed as
shown in Fig. 23(b). Once measurement z; is obtained, the likelihood observation function or
measurement probability is calculated based on equation (22). The result is illustrated in Fig.
23(c). Higher likelihoods are shown with bigger blue circles. Furthermore, the particles’ weight
is updated with the likelihood observation function and subsequently is resampled. The new

particle distribution and estimated target location are shown in Fig. 23(d).

Estimation of Target State

Once the posterior probability is obtained, the state is estimated using a particle set X, which is

distributed in prbportion to p(x;|z) (X; is a return value of algorithm 3.2 of particle filter).
Algorithm 3.5 below describes steps to estimate this state.

Algorithm 3.5 State_Estimation]X,)
1Ry =1

1

2: for ¢ =1 to |4y do
3 ﬁg = ﬁt -} K;;H‘i

4

+ el for

vefurn X

e

It will be appreciated that the invention enables an automatic generation and update of the
channel parameters fingerprint, merely initially requiring knowledge of layout of dominant
obstacles and system infrastructure in the environment (the floor plan and system fixed node
positions, for example). This is not onerous. It will also be appreciated that the invention avoids
need for dedicated hardware, as it can use the hardware of an existing wireless network such as a

WiFi network.,

The invention is not limited to the embodiments described but may be varied in construction and

detail. For example, it may be applied to outdoor location and tracking systems in particular
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areas. Also, the initial physical environmental model may be received in the initial inputs rather

then being generated by the system.
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A location and tracking system comprising wireless base stations, an input interface, and
a processor, wherein the processor is adapted to

(a) receive physical environment inputs and provide an initial physical environment
model;

(b) generate an initial channel parameters fingerprint for the environment according to the
initial environment model;

(¢) monitor channel parameters of a mobile node in the environment and use said
parameters and the fingerprint to locate the mobile node;

(d) modify the environment model according to said node locating step (c);

(e) update the fingerprint according to the modification of the environment model in step
(d); and

(f) repeat steps (c) to (e) in subsequent iterations.

A location and tracking system as claimed in any preceding claim, wherein the location

engine is adapted to execute a filtering algorithm to estimate location in step (c).

A location and tracking system as claimed in claims 1 or 2, wherein the processor is
adapted to determine in step (c) possible mobile node trajectories, and to use said
trajectories for environment model modification in step (d) and subsequent fingerprint

updating in step (e).

A location and tracking system as claimed in claim 3, wherein the processor is adapted to
dynamically maintain a multi-hypothesis decision tree in step (c) in which it iteratively

evolves branches representing the most likely mobile node trajectories.

A location and tracking system as claimed in claims 3 or 4, wherein the processor is

adapted to use mobile node speed estimation for steps (c) and (d).

A location and tracking system as claimed in any preceding claim, wherein the processor

is adapted to modify wall segment parameters of the environment model in step (d).
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A location and tracking system as claimed in any preceding claim, wherein in step (a) the
inputs include:

layout of main obstacles including building floor plans and wall layout;

layout of base stations; and

starting position of a mobile node.

A location and tracking system as claimed in any preceding claim, wherein parameters of

environment obstacles are initially set to a common default value.

A location and tracking system as claimed in claims 7 or 8, wherein for the step (a) the
processor is adapted to divide the obstacles into smaller segments and to optimise
parameters of the smaller segments to more precisely represent each segment’s mean

local influence on signal attenuation.

A location and tracking system as claimed in claim 9, wherein the processor is adapted to
apply parameters to the segments so that they characterise the obstacles they are part of
and also the influence of smaller obstacles including furniture in proximity to large

obstacles.

A location and tracking system as claimed in any preceding claim, wherein for step (c)
the processor is adapted to use an empirical signal propagation model with a linear

optimisation method for prediction of received signal strength.

A location and tracking system as claimed in any of claims 3 to 11, wherein the processor
is adapted to perform, for steps (c) and (d), simulation of an m” mobile node motion

along a 4™ trajectory and creation of a corresponding fitness function.

A location and tracking system as claimed in claim 12, wherein the fitness function
describes how similar the channel parameters estimated along the A" trajectory by the
prediction model, which uses current obstacles parameters, is to gathered channel

parameters by a mobile node along its truth trajectory.

A location and tracking system as claimed in claim 13, wherein the fitness function takes

the form of a set of linear equations for an optimisation method.
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A location and tracking system as claimed in any preceding claim, wherein the processor
is adapted to execute a particle filter algorithm to locate a mobile node in step (c), in
which particles are mapped to the physical environment as represented by the physical

environment model.

A location and tracking system as claimed in claim 15, wherein the processor is adapted
to generate visual displays of the physical environment in which particles distribution is

illustrated for user visualisation of likelihoods of locations of the mobile node.

A location and tracking system as claimed in claims 15 or 16, wherein the processor is
adapted to eliminate particles in successive iterations according to constraints imposed by
the physical environment model and a motion model, in which remaining particles

converge around the actual mobile node location.

A location and tracking system as claimed in any of claims 15 to 17, wherein the
processor is adapted to automatically recognise rooms in the physical environment model
and to maintain a count of particles in each room to provide a per-room probability of

presence of the mobile node.

A location and tracking system as claimed in any of claims 15 to 18, wherein the
processor is adapted to provide a random or uniform initial particle distribution mapped
into the physical environment model, to filter the initial particle distribution with a
likelihood observation function to generate a second particle distribution -and to use said

distribution for a next filtering iteration.

A location and tracking system as claimed in claim 19, wherein the likelihood
observation function is given by combining densities to obtain a likelihood observation

function of measurement p(zt|xt), and is given by:
1

1®T
Xt)] « Hg?mi% (»»;w ixz‘} ]___[ Pf%m‘fm‘(gf !}Cg}, £
, kel Leld (3 . 27)

Lhel

plaafxe) = [H Prilzf
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O R+ M)
Koo, is the set of measurement in (z; N zt ),
Lo, is the set of measurement in (z*, — z)),
.Y is the set of measurement in (z;,—z",),
............... and the expressions of |K], |L|, |M] denotes the number of elements in K, L, M
respectively,
....................... B represents the weighting factor and
....................... k denotes AP identification.
A location and tracking system as claimed in any preceding claim, wherein the processor

is adapted to perform step (d) by adjusting the current parameters of obstacles towards
the optimised parameters of obstacles which influence the channel parameters along the

K™ trajectory, in which the adjustment is given by:

Lad = Lt + ALw!
¢ £ 3

LW oo represents i wall segment loss at time (index of iteration) f,

LW, represents i" wall segment loss at iteration # —1, and

ALW oo denotes the delta of a wall segment loss at time t.

A location and tracking method performed by a location and tracking system linked with

wireless base stations, and having an input interface, and a processor, wherein the method
comprises the steps of:
(a) receiving physical environment inputs and providing an initial physical
environment model;
(b) generating an initial channel parameters fingerprint for the environment

according to the initia] environment model;
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(c) monitoring channel parameters of a mobile node in the environment and using
said parameters and the fingerprint to locate the mobile node;

(d) modifying the environment model according to said node locating step (c);

(¢) updating the fingerprint according to the modification of the environment
model in step (d); and

(f) repeating steps (c) to (e) in subsequent iterations.

23. A computer readable medium comprising software code adapted to perform operations of

a location and tracking method of claim 22 when executing on a digital processor.
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