

(19) DANMARK

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **A 47 C 3/026 (2006.01)** **A 47 C 7/14 (2006.01)** **A 47 C 1/027 (2006.01)** **F 16 C 11/06 (2006.01)** **A 47 C 3/30 (2006.01)** **F 16 M 11/14 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2017-07-31**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2017-05-03**

(86) Europæisk ansøgning nr.: **11843000.8**

(86) Europæisk indleveringsdag: **2011-11-24**

(87) Den europæiske ansøgnings publiceringsdag: **2013-10-02**

(86) International ansøgning nr.: **CA2011050733**

(87) Internationalt publikationsnr.: **WO2012068688**

(30) Prioritet: **2010-11-25 US 417258 P** **2011-04-13 US 201161475010 P**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Corechair Incorporated, Suite 248 , 14845-6 Yonge Street, Aurora, Ontario L4G 6H8, Canada**

(72) Opfinder: **HARRISON, Patrick N., 80 Carisbrooke Circle, Aurora, Ontario L4G 0K4, Canada**
EDWARDS, James R., 30 McGee Crescent, Aurora, Ontario L4G 6L8, Canada
VANDERVELDEN, Ken W., 3 Goodfellow Crescent, Bolton, Ontario L7E 5Z4, Canada
BANKS, Thomas N., 39 Donaldson Road, Holland Landing, Ontario L9N 1J1, Canada
GATER, David R., 9 Earls Court, Holland Landing, Ontario L9N 1E5, Canada

(74) Fuldmægtig i Danmark: **Chas. Hude A/S, H.C. Andersens Boulevard 33, 1780 København V, Danmark**

(54) Benævnelse: **RESISTIV UNDERSTØTNINGSMEKANISME**

(56) Fremdragne publikationer:

DE-A1- 4 400 395

DE-A1-102006 021 439

US-B1- 6 174 548

US-B1- 6 209 958

US-B1- 7 100 983

DK/EP 2642900 T3

DESCRIPTION

[0001] This application claims priority from United States Provisional Application No. 61/417,258, filed on November 25, 2010 and from United States Provisional Application No. 61/475,010 filed on April 13, 2011.

Field of the Invention

[0002] The present invention relates generally to the field of control and support mechanisms, and more particularly to a resistive support mechanism, preferably for use in a chair.

Background of the Invention

[0003] Various motion control and support devices are known in art to control and support tilt and/or rotational motion. Common prior art examples are found in chairs, such as office chairs that offer a variety of options for adjusting the tilt on a chair or restricting the degree to which a user of the chair is able to adjust and/or control the motion of the chair. A common example are office chairs that have various degrees of freedom and ranges of motion aimed at providing mobility, flexibility and optimal ergonomic positioning with minimal dynamic action. On problem associated with such prior art ergonomic designs is that they allow for an individual fit, but rarely are they readjusted as often as they should, so a user ends up sitting in a fixed position for prolonged periods of time when seated at an office desk. For example, these chairs are able to swivel, flexibly tilt in limited fore and aft planes and be raised and lowered as required by a user. Various mechanisms have been proposed or otherwise known in the art to provide some of the above-mentioned features. There are conventional adjustable chairs where adjustment is possible by way of several, independent adjusting means, to adjust, for example, chair height, angle, etc. In addition, active adjustment chairs provide for multi-directional adjustment based on the seating position of a user. Some problems associated with prior art systems include the complexity of the mechanisms involved, difficulty in operation, lack of fluid control over the motion of the tilt and/or rotation of the chair.

[0004] Furthermore, other resistive support devices have been used where control and dampening of the motion available is more important, or where temporary motion may be desirable. These include, for example, construction worker supports, mining support devices, and exercise equipment. In the exercise equipment example, prior art support devices aim to provide a resistance against movement of a user, while the user is either trying to maintain a constant position or is otherwise partaking in an exercise activity. Resistive support devices in this example are generally targeted at improving the core strength of a user.

[0005] The various prior art devices are generally restricted in the range of motion they

support, and in the resistive forces that are applied. That is, resistive support is provided for only a small range of motion. Furthermore, prior art devices and mechanisms for providing such resistive support are generally not readily adaptable to different applications, and do not provide variable resistance throughout the range of motion. Furthermore, in the case of resistive support devices provided on chairs, such resistive support devices have heretofore been inadequate in providing core support and strengthening to a user on the chair, and have not provided a full range of resistive support throughout a full range of tilt and rotational motions. Some shortcomings of these prior art designs include a requirement that a pivot point for motion be at a distance significantly below the user's centre of mass, thereby requiring the user to lean their body more than to mobilize their pelvic and lower back skeletal structure minimizing their significant to the action of an active sitting surface. Some examples of such prior art devices include those shown in United States Patent No. 7,547,067 to Keilhauer and United States Patent No. 6,997,511 to Marchand.

[0006] One such example of a prior art chair having a resistive support mechanism is shown in United States Patent No. 6,209,958 issued April 3, 2001 to Thole et al. Thole discloses one way of implementing a tilt control mechanism on a seating assembly. However, the Thole mechanism, while providing for universal tilt, does not allow for a full range of positions in which the chair can be locked, or for full flexibility in the degree of resistance. Thole discloses a tilt control mechanism for a chair, where the tilt control mechanism defines a pivot connection between a seat assembly and a base, whereby the seat assembly effectively pivots about a pivot point in any direction extending radially from the pivot point. The tilt control mechanism includes an annular elastomeric ring which resists multi-directional tilting by mimicking a spring effect in the resistance, and further biases the seat assembly to a neutral position. The elastomeric ring has a contact area on which the tilting moment of the seat assembly acts which contact area can be selectively varied to adjust tilting resistance. Accordingly, the Thole mechanism tends to be large and bulky where a wide range of resistances is required. Furthermore, there is no discussion in Thole or features provided that result in proper support for the core muscles in a user's body. There is therefore a need in the art for a tilt mechanism for a chair, or other support surface, that addresses at least one of the deficiencies of Thole.

[0007] It is therefore an object of the invention to provide a novel resistive support mechanism for use with surfaces designed to support a user, such as chairs.

Summary of the Invention

[0008] According to one embodiment of the invention, there is provided a resistive motion support mechanism as defined in claim 1, for example for a chair, joined to a mounting surface and to a base for providing resistive support to the mounting surface as the mounting surface undergoes one or both of rotational and tilt movement relative to the base. The motion support mechanism includes a support bearing connected to the mounting surface and to the base which permits one or both of tilting and rotational motion of the mounting surface relative to the base, a pivot ball fixedly attached to a portion of the base, and, a resistance cartridge fixedly

connected to the mounting surface such that the resistance cartridge undergoes movement relative to the base and applies a resistive force on the base as the mounting surface undergoes one or both of rotational and tilt movement. The resistance cartridge preferably includes cartridge housing and a resilient member in contact relation with the pivot ball and with a wall of the housing such that the resilient member is compressed by the relative movement between the resistance cartridge and the pivot ball to thereby provide the resistive support to the mounting surface.

[0009] According to one aspect of the invention, the resilient member is preferably selected from the group comprising an elastomeric ring, a silicone member, a dampening gel, a viscoelastomer, a bonded dampening material and a combination of same

[0010] According to another aspect of the invention, the pivot ball includes an integral, rigid extension element and the resilient member is in contact relation with the rigid extension element and with said wall of said housing.

[0011] According to another aspect of the invention, the resilient member includes one or more gels in contact relation with each other.

[0012] According to another aspect of the invention, the one or more gels is preferably a first gel in contact with the first resilient member, and a second gel in contact with the first gel and with the wall of the housing; wherein the second gel has a higher density than the first gel.

[0013] According to another aspect of the invention, the resilient member is adapted to bias the mounting surface to a home position.

[0014] According to another aspect of the invention, wherein the housing of the resistance cartridge includes a bearing surface for receiving at least a portion of the support bearing.

[0015] According to another aspect of the invention, there is further provided a means for locking the resistance cartridge at a position in which the mounting surface has undergone the movement relative to the base

[0016] According to another aspect of the invention, there is further provided a rigid plate connected to an underside of the resilient member, wherein the rigid plate has a surface having a plurality of locking elements on a surface distal to the resilient member, and wherein the means for locking comprises a locking pad having a surface of complimentary locking elements adapted to be brought into contact with the plurality of locking elements on the rigid plate.

[0017] According to another aspect of the invention, there is further provided a brake lever for moving the locking pad into and out of contact with the rigid plate.

[0018] According to another aspect of the invention, there is further provided a protruding

element extending from the support bearing, and the resistance cartridge further comprising a locking surface for receiving the protruding element; wherein the locking surface provides a region of contact with the protruding element that is adapted to be brought into friction fit contact relationship with the protruding element upon activation of the means for locking.

[0019] According to another aspect of the invention, the means for locking comprises an adjustment lever adapted to bring the locking surface into the friction fit contact with the protruding element.

[0020] According to another aspect of the invention, the locking surface is provided on a portion of the housing of the resistance cartridge, and the adjustment lever comprises a height adjustment lever adapted to raise or lower the portion of the housing into and out of the friction fit contact relationship.

[0021] According to another aspect of the invention, the locking surface further restricts movement of the protruding element such that a maximum range of tilt around the support bearing is approximately fourteen degrees.

[0022] According to another aspect of the invention, there is further provided a means for varying the resistive force.

[0023] According to another aspect of the invention, the means for varying said resistive force comprises a means for varying the distance between said support bearing and said pivot ball such that said pivot ball is functionally attached at a variable position on said base.

[0024] According to another aspect of the invention, the means for varying the distance comprises a spring within the housing and adapted to apply a force onto the resistance cartridge.

[0025] According to another aspect of the invention, the housing includes two or more stepped notches offset vertically from each other and the resistance lever is moveable between each of the two or more stepped notches to vary the effective length of the spring.

[0026] According to another aspect of the invention, the stepped notches are further offset horizontally from each other to facilitate moving the resistance lever between each of the notches.

[0027] According to another aspect of the invention, the means for varying the resistive force includes a means for varying a contact area on the base on which the resistance cartridge applies the resistive force to thereby vary the resistive force.

[0028] According to another aspect of the invention, the means for varying a contact area includes a vertical position adjustment mechanism effective to increase or decrease the distance between the support bearing and the pivot ball to thereby vary a distance between a

point of contact of the resistive force and a point about which the tilt motion occurs resulting in a varying of the resistive force applied onto the base.

[0029] According to another aspect of the invention, the mounting surface is adapted to mount the base of a seat thereon, and the base comprises the base of a chair.

[0030] According to another embodiment of the invention, there is provided a chair having a chair base, a seat and a motion support mechanism as defined in claim 1, wherein the seat is mounted onto the mounting surface and the chair base is integral with the base of the motion support mechanism.

[0031] According to another embodiment of the invention, there is provided a chair having a seat, a base, and a motion support mechanism as defined in claim 1, joined to the base and the seat. The motion support mechanism providing resistive support to the seat as the seat undergoes one or both of rotational- and tilt movement relative to the base. The motion support mechanism includes a support bearing connected to the seat and to the base which permits one or both of tilting and rotational- motion of the seat relative to the base, a pivot ball sized fixedly attached to a portion of the base, and a resistance cartridge fixedly connected to the seat such that the resistance cartridge undergoes movement relative to the base and applies a resistive force on the base as the seat undergoes the one or both of rotational- and tilt movement. The resistance cartridge preferably includes a housing and a resilient member in contact relation with the pivot ball and with a wall of the housing such that the resilient member is compressed by the relative movement between the resistance cartridge and the pivot ball to thereby provide the resistive support to the seat.

Brief Description of the Drawings

[0032] Embodiments will now be described, by way of example only, with reference to the attached Figures, wherein:

Figure 1 shows a user sitting on a chair incorporating the resistive motion support mechanism according to the invention.

Figures 2A and 2B are top and sectional views, respectively of the resistive motion support mechanism according to an embodiment of the invention.

Figures 3A and 3B are sectional and side views, respectively illustrating a resistance varying means according to one aspect of the invention.

Figures 4A and 4B are sectional and side views, respectively illustrating a resistance varying means according to another aspect of the invention.

Figures 5A and 5B are top and sectional views, respectively illustrating a locking means according to an embodiment of the invention.

Figures **6A** and **6B** are detail views showing a portion of Figure **5B** when the locking means is in the locked and unlocked position, respectively.

Figures **7A** and **7B** are sectional views of an alternative locking means in the unlocked and locked position, respectively.

Figure **8** is a perspective view of the resistive support mechanism according to another embodiment of the invention.

Figures **9A** and **9B** are top and sectional views according to another embodiment of the invention.

Figures **10A**, **10B**, and **10C** are top, sectional and exploded views, respectively according to another embodiment of the invention that includes a height adjustment means

Figures **11** and **12** are detail views of elements of the locking means of Figure **5**.

Figure **13A** and **13B** illustrate a chair having undergone tilt motion according to the invention.

Detailed Description of the Embodiments

[0033] The preferred embodiments of the invention as described hereinbelow teach a motion support mechanism capable of providing resistive support, and referred to interchangeably as a motion support mechanism and a resistive motion support mechanism. In the preferred embodiment, the invention is applied for use with a chair, such as an office chair. The resistive support mechanisms described herein, help in providing the additional benefit of improving core strength in a user on the seat and mobilize the joints of the pelvis and vertebrae, thereby for example preventing contractures and atrophy of the supportive soft tissue and in fact enhancing the endurance of the relevant supportive musculature around these joints to counter the potential of back pain and injury as a result of chronic static sitting by allowing the user to be constantly counteracting the rotational motion of the ball. This ability to affect continuous movement and/or dynamic movement further aids in improving blood circulation, as well as the redistribution of sitting pressures to reduce pressure points which directly correlates to the sitting comfort of the user.

[0034] Some embodiments of the invention also allow the user to restrict this movement either by increasing/decreasing the resistance and or locking the system in a desired position. For example, one such desirable position would be such that the user is allowed to sit with their knees lower than their hips promoting a more upright pelvis and natural extension and balance of the spine. The invention also permits accommodation of mild to moderate orthopedic abnormalities allowing for an individual's hip, for example, to sit lower on one side versus the other and by doing so allow the spine to be erect whereas on a level fixed surface, the spine would be challenged to be upright further complicating spine balance and alignment, pain and

injury. These features may also be advantageously used to accommodate other factors that affect proper pelvic positioning such as a wallet that might tend to cause a similar uneven positioning of the pelvis.

[0035] Furthermore, the motion support mechanism as herein described may be applied to other seating devices, such as dentists' chairs, lab stools, car seats, gaming chairs, leisure chairs such as bar stools, amusement park rides, children's school stools and similar devices where it would be beneficial to provide resistive support to a user. Other applications include devices meant to support a user in a standing position, such as construction support surfaces or pedestals. In the case of a dental hygienist using a hygienist's chair, for example, while the user reaches to perform their tasks, the free movement of the seat by way of the motion support mechanism prevents an acceleration of forces through the lower lumbar region of the user thereby reducing the potential of strains associated with this movement, which contributes to user pain and injury that may be experienced while sitting on a fixed level seating surface.

[0036] Referring now to Figure 1, there is shown a user **10** seated on a chair **15**. Chair **15** may include a seat portion **20**, a backrest **25**, a base **30**, and a resistive support mechanism **40** (not shown in Figure 1), within housing **60** according to the invention. An interface **45** is provided on the housing **60** and between the seat portion **20** for attaching the seat thereto. Figure 2A shows a top view of the housing **60** and interface **45**. Interface **45** is adapted to mount the seat of the chair thereon, and is alternatively referred to herein as a mounting surface. Chair **15** may further include various other elements known in the art, including but not limited to height adjustment mechanisms, arm rests, and various other adjustment devices that are otherwise unrelated to the resistive support mechanism as herein described. For clarity, in the description that follows, reference to a vertical axis refers to an axis coincidental with the cylindrical axis of the base **30**. Reference to a horizontal axis refers to an axis perpendicular to the vertical axis. Furthermore, references to tilt and/or rotational motion have their ordinary meaning, wherein tilt motion refers to rotation about the horizontal axis and rotational motion refers to rotation about the vertical axis. The description further describes elements of the invention required to put the invention into practice and further sets forth a preferred embodiment as contemplated by the invention. However, various hardware and ordinary mechanical elements that would be used to assemble a mechanism or chair according to the invention may not be described and are considered within the abilities of a person skilled in the art. Figures 13A and 13B illustrate the chair **15** exhibiting two degrees of freedom in its motion, as the resistive support mechanism **40** of the present invention provides.

[0037] Referring to Figure 2B, there is shown one embodiment of the resistive support mechanism according to the invention, including a support bearing **50** connected to the mounting surface **45** and to the base **30**. Support bearing **50** permits one or both of tilting and rotational motion of the mounting surface **45** relative to the base **30**. Base **30** includes a shoulder portion **32** that is friction fit into the support bearing **50**, such that base **30** does not move relative to the support bearing **50**. Mounting surface **45** is free to tilt or - rotate with respect to the support bearing **50** such that support bearing **50** permits one or more of rotational or tilt movement of the mounting surface **45** relative to the base **30**. A housing **60** is

the main body of support for the mounting surface **45**, which preferably includes stand-offs to fasten a seating surface to the mechanism is preferably provided to contain within it all or most of the elements of the resistive support mechanism. Preferably, the housing **60** also includes a bearing surface **75** for receiving at least a portion of the support bearing **50**. The surfaces of support bearing **50** and bearing surface **75** will be provided such that minimal frictional forces are present between these surfaces so that movement on the support bearing **50** is relatively uninhibited. Housing **60** preferably extends directly from mounting surface **45** and is formed unitarily therewith. The functioning of bearings and bearing surfaces is generally known in the art and not further described herein. The invention also contemplates the use of functional alternatives to bearings and bearing surfaces that provide for the full two-degrees of freedom of movement made possible by support bearing **50** and bearing surface **75**.

[0038] A pivot ball **55** is positioned on a portion of the base **30**. As will be described below, pivot ball **55** has a resistive force providing means acting on it to provide the resistive support to the mechanism. Various ways of implementing the resistive force providing means are contemplated. The resistive force providing means is preferably implemented by way of a resistance cartridge **40** that acts on the pivot ball **55**. In this manner, the resistive and/or dampening forces are exerted perpendicular to the vertical plane of the mounting surface **45** resulting in a more stable and controlled ride compared to prior art devices. For example, the aforementioned Thole patent allows the resilient material as therein arranged to undergo various compression and torque forces resulting in various compression and torque forces being applied to the resilient material.

[0039] In the embodiment of Figure **2B**, a resistance cartridge **40** is fixedly connected to the mounting surface **45** in a manner that allows the resistance cartridge **40** to undergo tilt and/or rotational- movement relative to the base **30** and to apply a resistive force on the base **30** as the resistance cartridge **40** and therefore the mounting surface **45** undergoes relative movement with respect to the base **30**. The resistance cartridge **40**, provides the core functionality of the resistive support mechanism of the invention. In this embodiment, the resistance cartridge **40** includes therein resilient member **65b**, pivot ball **55**, and cartridge housing **70**. The resilient member **65b** is arranged in contact relation with the pivot ball **55**, via extension member **65a**, and with a wall **70** of the cartridge housing of the resistive cartridge **40** such that, in operation, the resilient member **65** is compressed by the relative movement between the resistance cartridge **40** and the pivot ball **55**. Preferably, pivot ball **55** has a snug but sliding interface with extension member **65a**. When the mounting surface **45** is tilted, the resilient material **65b** is compressed between the wall **70** and the extension member **65a**. Preferably, extension member **65a** is formed from a rigid material that forms a ring around the pivot ball **55** and extends radially outward therefrom towards the wall **70**. The sliding interface between the extension member **65a** and the pivot ball **55** allows the entire mounting surface **45** to tilt while the resilient member **65b** provides a dampening feature that prevents the mounting surface **45** from unrestrained movement, and permits smooth movement over the maximum range of motion to thereby provide the resistive support to the mounting surface **45**, and any object attached thereto, such as seat **20** (of Figure **1**).

[0040] The resilient member **65b** is preferably selected from the group consisting of an elastomeric ring, silicone, a gel, a series of rubber elements, and any similar materials known to have damping characteristics or otherwise able to resist relative movement when compressed or otherwise subjected to a force. It is also contemplated that a combination of resilient members may be employed to vary the resistance being applied across the range of motion available. For example, the resilient member **65b** may include a first resilient member in contact relation with the extension element **65a** and a second resilient member in contact relation with the wall **70**. In a preferred embodiment of the invention, the resilient member **65b** is a viscoelastomeric material bonded to the wall **70** and to the extension element **65a**. The use of a viscoelastomeric material provides a damping effect where the material deforms, absorbs and distributes more of the load as it is compressed and slowly recovers when the load is removed. The result is that when the resistive support mechanism **40** is returning to a home position, the movement back to the home position is damped and controlled based on the material properties. The use of a viscoelastomeric material allows the rate of resistance to be accentuated such that the flow properties of the resilient member are more prominent, thus providing for increased dampening. That is, viscoelastomeric materials have a response that exhibits both viscous and elastic properties when a load is applied and therefore hysteresis is observed.

[0041] Wall **70** of the resistance cartridge **40** includes an outer surface that is capable of sliding vertically within the housing **60** to thereby permit the resistance cartridge **40** to have its vertical position adjusted within the housing **60**, as will be described in further detail below. In a preferred embodiment, the resilient member **65b** is a viscoelastomeric ring, and the extension element **65a** is a rigid material in a ring shape articulating with the pivot ball **55** and radiating outward to compresses the resilient member **65b** having damping properties. It is also contemplated that the second resilient member may be provided that includes a plurality of gels in contact with each other and/or the leading edge of the extension member **65a**. Where a plurality of gels are included, it is preferably that the gels further away from the pivot ball **55** will have a higher density than those gels closer to the pivot ball **55**, although variations of this are considered within the scope of the invention. This permits the resistance to tilting to be greater as the degree of tilt increases.

[0042] Furthermore, the provision of the resilient members **65** as herein described allows the mounting surface **45**, and the seat **20** mounted thereon, to be biased towards a home position, having no tilt or rotational due to pre-compression of the resilient members **65**. Thus, if a user seated in the chair leans in one direction and is supported there by the resistive support mechanism as described, but subsequently stands up, the seat will return to an unbiased home position.

[0043] According to an aspect of the invention, a means for varying the resistive force acting on the pivot ball **55** is provided. This allows the resistance applied by the resistive cartridge to be increased or decreased depending on, for example, the intended use of the resistive support mechanism or the user. In the case of a chair, a larger user may require a higher resistive force than a small sized user. In addition, regardless of size, the user may wish to

have more or less resistance, which will allow them the possibility of more recruitment of core musculature to affect an exercise phenomena, and opportunity to mobilize the joints of their pelvis and vertebral regions and or a reduction of forces experienced on the sitting support soft tissue and joints in question when the user may otherwise be required to make repetitive movements as may be best illustrated by the work of a dental hygienist as an example. In the illustrated embodiment of Figure 2B, the means for varying the resistive force includes a spring 80 compressed between a bottom surface 85 of the housing 60 and an underside 95 of the resistance cartridge 40. In order to vary the force applied to thereby vary the resistive force in the resistance cartridge, a resistance lever 90, functionally attached to an interface plate 95 is preferably provided. The resistance lever 90 is adapted to be moveable to vary the position of the interface plate 95 under urging of the spring 80, and thereby to vary the position of the resistive cartridge 40 with respect to the base 30. As will be appreciated by a person skilled in the art, the position of the resistance cartridge 40 with respect to the base 30, that is, how far up the base 30 the resistance cartridge 40 acts, is determinative of the effective resistive force applied by the resistance cartridge 40, since the point of tilt/rotational is fixed. That is, the effective distance between the pivot ball 55 and the support bearing 50 is determinative of the resistive force applied by the resistance cartridge 40. Referring to Figures 3A and 3B, spring 80 (not shown for ease of illustration) is used to bias the underside 95 of the resistance cartridge 40 and all parts internal thereto, within housing 60, to an uppermost vertical position, as would be dictated by the position of the lock pin 100, within helix 102. In this embodiment, the position of pin 100, along the steps of helix 102, may be set by adjusting saddle 108 by moving resistance lever 90 within the steps of the helix 102. It should be noted that helix 102 is provided on both sides of the resistance cartridge 40, with one side including steps within which to move the lever 90 and the other side include corresponding steps within which pin 100 is provided to fix the other side within a corresponding step. It will be appreciated by a person skilled in the art that there is greater resistance in the system when the pin 100 is at a lower step within the helix 102, since the resistance cartridge 40 is further away from the point of rotation/tilt.

[0044] Various other implementations and embodiments of the invention are described below, however, the principle of operation in that there is a support bearing and a pivot ball provided as described above. Furthermore, there is preferably provided a means for varying the resistive force by varying the distance between the pivot ball on which the resilient material acts, and the support bearing. Referring now to Figures 4A and 4B, there is shown a variation of the means for varying the resistive force in which a spring 400 acts on an underside 405 of the cartridge housing 410 to bias the cartridge housing 410 to an uppermost position in a similar manner as described with respect to Figure 3. In this embodiment, however, the height of the cartridge housing is limited by the position of lever stops 415 within the series of steps 420. Lever 425 is moveable such that lever stops 415 may be brought to rest on a desired step 420. Accordingly, spring 400 exerts an upwards force on the resistance cartridge 440 such that resistance cartridge 440 is positioned at a location limited by the particular step in the series of steps 420 in which the lever stops 415 are positioned.

[0045] According to another aspect of the invention, a means for locking the resistance

cartridge 40 at any position in which the mounting surface 45 has undergone movement relative to the base is also provided. Such a locking means provides the benefit of allowing the seat, or other apparatus mounted on the mounting surface 45 to be locked in position, and to therefore prevent the mechanism from returning to its home position. The different embodiments of the means for locking herein described permit locking in either predetermined incremental positions, or at a free floating position. The inclusion of a means for locking may be of particular benefit where the resistive support mechanism is deployed in environments where it may not always be beneficial for the resistive functionality to be active, or in the alternative, to provide additional functionality whereby the mechanism may be locked at any position of tilt or rotation- during use.

[0046] Referring to Figures 5A, 5B and 6A, 6B, there is shown an embodiment of the locking means according to the invention. The resistive support mechanism of this embodiment includes, within the resistive cartridge, a rigid plate 500 positioned at underside of the extension member 565. The rigid plate 500 has a surface having a plurality of locking elements 505 on a surface distal to the contact surface with the extension member 565. In order to lock the resistive support mechanism in position, a locking pad 510 having a surface of complimentary locking elements 535 (shown in Figure 12) is provided and adapted to be brought into contact with the plurality of locking elements 505 of the rigid plate 500. When the locking elements 505 are engaged with the complimentary locking elements 535, further tilt and/or rotational motion is prevented. An exemplary embodiment of the rigid plate 500 having the plurality of locking elements 505 is shown in Figure 11. In the illustrated embodiment, the plurality of locking elements 505 is provided by a knurled surface 530 on an underside of the rigid plate, as illustrated. A corresponding locking pad 510 is shown in Figure 12, having a ridged knurled portion 535 that may be brought into and out of contact with the knurled surface 530 of the rigid plate 500. These surfaces described as the locking elements may also incorporate various alternative shapes and materials and combinations that provide a similar locking feature. One example, of an alternative locking pad and locking elements that may be used in an analogous manner as that described above are those referred to as reclosable fasteners such as that sold under the trade name Dual Lock™ by 3M™.

[0047] Other locking means contemplated include systems similar to bicycle disk brakes, multi layer compression plates and rotors and pads, all of which may be applied to the invention in a manner analogous to the Preferably, the locking means of the invention is capable of being activated in either predetermined increments or at random engagement points as will be possible in the various embodiments described herein.

[0048] Referring back to Figure 5B, a brake lever 525 is provided that is adapted to raise and lower the locking pad 510, for example, by way of a twist motion that activates a cam mechanism to thereby bring the complementary locking elements 535 of the locking pad 510 into and out of contact with the knurled surface 530 of the rigid plate 500. Referring to the detail of Figure 12, one embodiment of a means for adapting the brake lever 525 to be raised and lowered in this manner is the provision of an angled slot 540 that is sized and otherwise dimensioned to be friction fit with the brake lever 525. Sliding the brake lever 525 on an

upwards incline will bring the locking pad **510** into contact with the knurled surface **530**, while sliding the brake lever **525** on a downwards incline will disengage the locking pad **510** from the knurled surface **530**. The angle of the slot and dimensions of the slot and the brake lever **525** will be determined in such a manner that the brake lever requires a minimum force to activate that is greater than the forces applied during operation to prevent accidental movement of the brake lever **525**.

[0049] Having thus described a presently preferred embodiment of the invention, including the resistance cartridge, and optional means for varying the resistance and for locking the motion support mechanism in a particular position, various alternatives will now be described. Specifically, the alternatives relate to alternate means for varying the resistance and/or for locking the motion support mechanism. It will be understood by those skilled in the art that the invention is not limited to particular combinations of the embodiments of the resistance cartridge, means for varying the resistance and means for locking in the combinations as described. Combinations of the resistance cartridge, means for varying the resistance, and means for locking that are herein described are contemplated by the invention, which is only limited by the claims at the end of the specification. In the description that follows, elements common to the description above are not described in further detail, and their operation will be apparent to a person skilled in the art, having regard thereto.

[0050] Referring now to Figures **7A** and **7B**, there is shown an embodiment of the invention in which a support bearing **750** includes one, and preferably two bearing protrusions **705**. The resistance cartridge preferably includes corresponding locking surfaces **710** that provide a region of contact with the bearing protrusions **705** that is adapted to be brought into a friction fit contact relationship with the protrusions **705** when a means for locking is activated. In order to activate the lock, an adjustment lever **715** is provided to displace the resistance cartridge to a position in which its motion is locked. The adjustment lever **715** is adapted to apply a rotational motion by rotating the bearing protrusions **705** into contact relationship with the locking surfaces **710**. Figure **8** shows a resistance cartridge according to this embodiment. Lever **715** may be rotated about a generally horizontal axis to permit the lever **715** to move, and then may be rotated about a generally horizontal axis to engage the locking features as described above. In this manner, the locking mechanism, that is the lever **715**, may be activated and deactivated as required by a user by rotation about the horizontal axis, and may be used to effect locking by rotation about the vertical axis. Also shown in Figure **8**, is a force adjustment lever **720** for raising or lowering the resistance cartridge to alter the portion of the base **725** on which the resistance cartridge acts to vary the resistive forces in the motion support mechanism, as has been described above. In practice, a locking means as described and illustrated with respect to Figures **7** and **8** may have a maximum range of tilt around the support bearing of approximately +/- fourteen degrees.

[0051] It has been discovered that adapting the resistive support mechanism according to the invention to have a range of tilt of approximately fourteen degrees allows for the effective mobilization of the joints involved to optimize the range of motion and to ensure a reasonable limit for safety considerations.

[0052] Referring now to Figures 9A and 9B, there is shown another embodiment of a locking means according to the invention. The locking means of Figures 9A and 9B includes a lock rotational ball 905 positioned above the resistance cartridge 910. The lock rotational ball 905 is generally provided as herein described as a rotational ball about which the motion support mechanism of the invention is able to tilt and/or rotate. A lower lock surface disc 915 is provided in such a manner so as to be brought into frictional contact with the lock rotational ball 905. This is generally accomplished by raising or lowering the lock body 920 into and out of contact with the housing body 925 to provide an offsetting distance between the lock body 920 and the housing body 925. This movement also transfers the load onto lock surfaces 930 on an underside of the lock body 935 on a topside 940 of the rotational disk 915. The surfaces 930 and 940 have concentric ridges to provide for additional locking force. These surfaces may include a rubber gripping layer that is deformed when the surfaces are brought into contact to provide for the additional locking. A lock lever 950 is provided to engage and disengage the lock. This can be accomplished, for example, by allowing the lock lever 950 to be rotated about the vertical axis such that such rotation causes the lock body 920 to be displaced vertically to engage or disengage the lock.

[0053] Referring to Figures 10A, 10B and 10C, there is shown another embodiment of the invention including a support bearing 1050 connected to the mounting surface 1045 and to the base 1030. Support bearing 1050 permits one or both of tilting and rotational motion of the mounting surface 1045 relative to the base 1030. Base 1030 does not move relative to the support bearing 1050. Mounting surface 1045 is accordingly free to tilt or rotate with respect to the support bearing 1050 such that support bearing 1050 permits one or more of rotational and tilt movement of the mounting surface 1045 relative to the base 1030. A housing 1060 having mounting surface 1045, which may include stand offs 1046 to fasten a seating surface to the mechanism, extending therefrom is preferably provided to contain within it all or most of the elements of the resistive support mechanism within the resistance cartridge 1040. Preferably, the housing 1060 also includes a bearing surface 1075 for receiving at least a portion of the support bearing 1050.

[0054] A pivot ball 1055, within resistance cartridge 1040, is positioned on a portion of the base 1030. As described with respect to previous embodiments of the invention, the resistance applied is varied by permitting the distance between the pivot ball 1055 and the support bearing 1050 to be varied, by adjusting the position on the base 1030 on which the pivot ball 1055 acts. Extension element 1063 is a rigid element extending from the pivot ball 1055 on which resilient member 1065 acts. As illustrated, resilient member 1065 is compressed between the extension element 1063 and a wall of the resistance cartridge 1040 to provide the resistance to tilt and/or rotation.

[0055] In this embodiment, there is provided a cable 1005 adapted to raise or lower the position of seat, or other surface atop the mounting surface that is being subject to resistive motion of the resistance cartridge 1010 with respect to the base 1015. The cable 1005 may be drawn by activation of the lever 1020 by rotation about the vertical axis. The cable 1005 may

be provided within a cable tube, as illustrated, to prevent damage to the cable. According to the invention, rotation of the lever **1020** about the vertical axis releases and dispenses a length of the cable **1005** to activate an air cylinder atop the base **1015**, which results in the cylinder being moved up or down. Various other hardware elements are illustrated, but not described as these are provided for facilitating installation or have been described with respect to previous embodiments of the invention.

[0056] The above-described embodiments are intended to be examples of the present invention and alterations and modifications may be effected thereto, by those of skill in the art, without departing from the scope of the invention that is defined solely by the claims appended hereto. For example, various materials may be used in providing the elastomeric ring or gels in the resistance cartridge described above. Furthermore, other means of providing the damping and/or resistive properties other than by way of such materials are also contemplated, for example, springs. Furthermore, other means for varying the resistance applied are also contemplated. The presently preferred embodiments as herein described are to be considered illustrative of applicant's invention. Similarly, other means for locking the support mechanism of the invention are also contemplated.

[0057] It has also been discovered that the positioning of the support bearing of the invention being immediately beneath and close to the user's centre of mass provides the unexpected benefit of more acutely affecting the mobilization of the user's joints compared to prior art mechanisms. Prior art active sitting solutions have pivot points further from the user, resulting more in a lean of the entire body of the user rather than a mobilization of critical joints.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US61417258B [0001]
- US61475010B [0001]
- US7547067B [0005]
- US6997511B [0005]
- US6209958B [0006]

Patentkrav

1. Resistiv bevægelsesunderstøtningsmekanisme, der er forbundet med en monteringsflade (45) og en basis (30), til at tilvejebringe en resistiv understøtning til monteringsoverfladen (45), når monteringsoverfladen (45) undergår en eller begge rotations- og vippebevægelser i forhold til basen (30), hvilken bevægelsesunderstøtningsmekanisme omfatter:
 - 5 et understøtningsleje (50), der er forbundet med monteringsoverfladen (45) og til basen (30), og som tillader en eller begge vippe- og rotationsbevægelser af monteringsoverfladen (45) i forhold til basen (30), hvilken basis (30) indbefatter en skulderdel (32), som er friktionstilpasset ind i understøtningslejet (50), således at basen (30) ikke bevæger sig i forhold til understøtningslejet (50);
 - 10 en svingkugle (55), som er funktionelt fastgjort til en del af basen (30); og en modstandskassette (40), der er fast forbundet med monteringsoverfladen (45), således at den nævnte modstandskassette (40) undergår en relativ bevægelse i forhold til basen (30) og anvender en modstandskraft på basen (30), når monteringsoverfladen (45) undergår den nævnte ene eller begge rotations- og vippebevægelser;
 - 15 hvor den nævnte modstandskassette (40) indbefatter:
 - 20 et kassettehus (60); og et fjedrende element (65b), der er i en kontaktmæssig relation med den nævnte svingkugle (55) og med en væg (70) af det nævnte hus (60), således at det nævnte fjedrende element (65b) komprimeres ved den relative bevægelse mellem den nævnte modstandskassette (40) og den nævnte svingkugle (55) for derved at tilvejebringe den resistive understøtning til monteringsoverfladen (45).

2. Mekanisme ifølge krav 1, hvor det nævnte fjedrende element (65b) er indrettet til at forspænde den nævnte monteringsoverflade (45) til en hjemmeposition og er valgt fra gruppen, der omfatter en elastomer ring, et silikoneelement, en dæmpningsgel, en viskoelastomer, et bundet dæmpningsmateriale og en kombination deraf.

5

3. Mekanisme ifølge krav 1, hvor det nævnte fjedrende element (65b) omfatter en eller flere geler, der er i kontaktmæssig relation med hinanden.

10 4. Mekanisme ifølge krav 3, hvor den nævnte ene eller de nævnte flere geler omfatter en første gel, som er i kontakt med et stift forlængelseselement (65a) af den nævnte svingkugle (55), og en anden gel, der er i kontakt med den nævnte første gel og med den nævnte væg (70) af det nævnte hus (60); hvor den nævnte anden gel har en højere densitet end den nævnte første gel.

15

5. Mekanisme ifølge et hvilket som helst af kravene 1 til 4, hvor det nævnte hus (60) af den nævnte modstandskassette (40) indbefatter en lejeoverflade (75) til at modtage mindst en del af det nævnte understøtningsleje (50).

20 6. Mekanisme ifølge et hvilket som helst af kravene 1 til 5, der yderligere omfatter et middel til at låse den nævnte modstandskassetten (40) i en position, hvori den nævnte monteringsflade (45) har undergået den nævnte bevægelse i forhold til den nævnte basis (30), og en stiv plade (500), der er forbundet med en underside af det nævnte elastiske element (565), hvor den nævnte stive plade (500) har en overflade, der har et antal låseelementer (505) på en overflade, der er distal til det nævnte elastiske element (565), og hvor det nævnte låsemiddel omfatter en låsepude (510), der har en overflade af komplementære låseelementer (535), der er indrettet til at blive bragt i kontakt med det nævnte antal låseelementer (505) på den nævnte stive plade (500).

25

30 7. Mekanisme ifølge krav 6, hvilken mekanisme yderligere omfatter en bremsestang (525) til at bevæge den nævnte låsepuden (510) ind i og ude af kontakt med den nævnte stive plade (500).

8. Mekanisme ifølge krav 6, hvilken mekanisme yderligere omfatter et fremspringende element (705), der strækker sig fra det nævnte understøtningsleje (750), og den nævnte modstandskassette (40), der yderligere omfatter en låseoverflade (710) til optagelse af det nævnte fremspringende element (705); hvor den nævnte låseoverflade (710) tilvejebringer et område af kontakt med det nævnte fremspringende element (705), der er indrettet til at blive bragt i friktionstilpasset relation med det nævnte fremspringende element (705) ved aktivering af det nævnte låsemiddel.

10

9. Mekanisme ifølge krav 8, hvor det nævnte låsemiddel omfatter en justeringshåndtag (715), der er indrettet til at bringe den nævnte låseoverflade (710) ind i den nævnte friktionstilpassede kontakt med det nævnte fremspringende element (705), og hvor den nævnte låseoverflade (710) er tilvejebragt på en del af det nævnte hus (60) af den nævnte modstandskassette (40), og hvilket nævnte justeringshåndtag (715) omfatter en håndtag, der er indrettet til at dreje den nævnte del af huset (60) ind i og ud af den nævnte friktionstilpassede kontaktrelation.

20 10. Mekanisme ifølge et hvilket som helst af kravene 1 til 9, hvilken mekanisme yderligere omfatter et middel til at variere den nævnte modstandskraft.

11. Mekanisme ifølge krav 10, hvor det nævnte middel til at variere den nævnte modstandskraft omfatter et middel til at variere afstanden mellem det nævnte understøtningsleje (50) og den nævnte svingkugle (55), således at den nævnte svingkugle (55) er funktionelt fastgjort ved en variabel position på den nævnte basis (30), hvor det nævnte middel til at variere afstanden eventuelt omfatter en fjeder (80) inde i det nævnte hus (60) og er indrettet til at påføre en kraft på den nævnte modstandskassette (40).

30

12. Mekanisme ifølge krav 11, hvilken mekanisme yderligere omfatter en modstandsstang (90), der er i en funktionel relation til den nævnte fjeder (80); hvilken nævnte modstandsstang (90) er bevægelig for at variere den effektive

længde af den nævnte fjeder (80) og derved variere den kraft, der påføres af den nævnte fjeder (80) på det nævnte fjedrende element (65b).

13. Mekanisme ifølge krav 10, hvor de nævnte midler til at variere den nævnte

5 modstandskraft omfatter et middel til at variere positionen af et kontaktområde på den nævnte basis (30), på hvilken den nævnte modstandskassetten (40) anvender den nævnte modstandskraft for derved at variere den nævnte modstandskraft; hvor det nævnte middel til at variere et kontaktområde eventuelt omfatter en vertikal positionsjusteringsmekanisme, som er effektiv til at forøge

10 eller formindske afstanden mellem det nævnte understøtningsleje (50) og den nævnte svingkugle (55) for derved at variere en afstand mellem et kontaktpunkt for den nævnte modstandskraft og et punkt, om hvilket den nævnte vippebevægelse forekommer, hvilket resulterer i en variation af den nævnte modstandskraft, der påføres på den nævnte basis (30).

15

14. Mekanisme ifølge et hvilket som helst af kravene 1 til 13, hvor den nævnte monteringsoverflade (45) er indrettet til at montere basen (30) af et sæde (20) derpå, og hvilken nævnte basis (30) omfatter basen (30) af en stol (15).

20 **15.** Stol, der har et sæde (20), en basis (30) og en bevægelsesunderstøtningsmekanisme, der er forbundet med basen (30) og sædet (20); hvilken nævnte bevægelsesunderstøtningsmekanisme tilvejebringer resistiv støtte til sædet (20), når sædet (20) undergår en eller begge rotations- og vippebevægelser i forhold til basen (30), hvilken bevægelsesunderstøtningsmekanisme er den resistive bevægelsesunderstøtningsmekanisme ifølge krav 1.

25

DRAWINGS

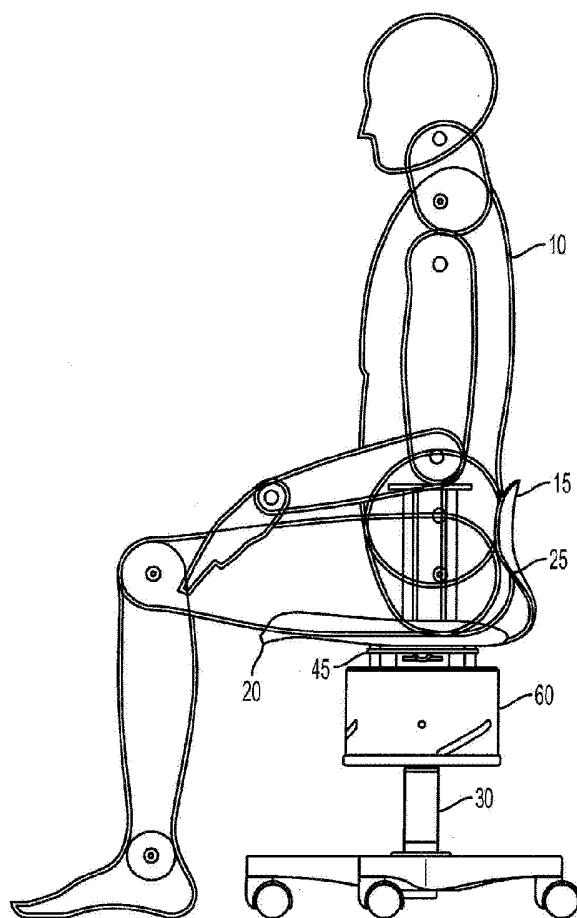


FIG. 1

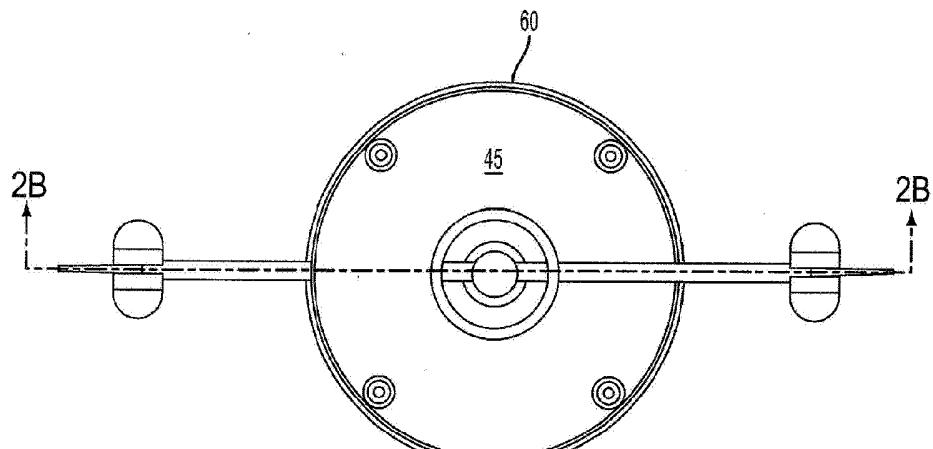


FIG. 2A

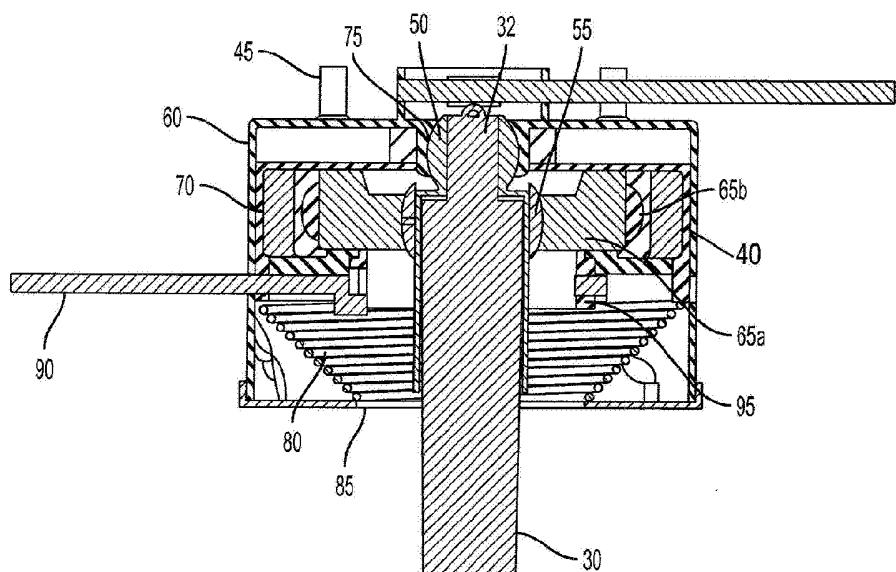


FIG. 2B

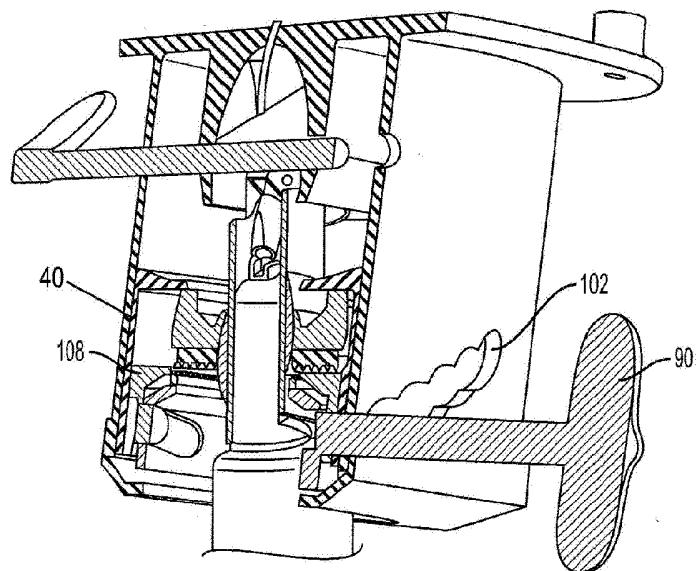


FIG. 3A

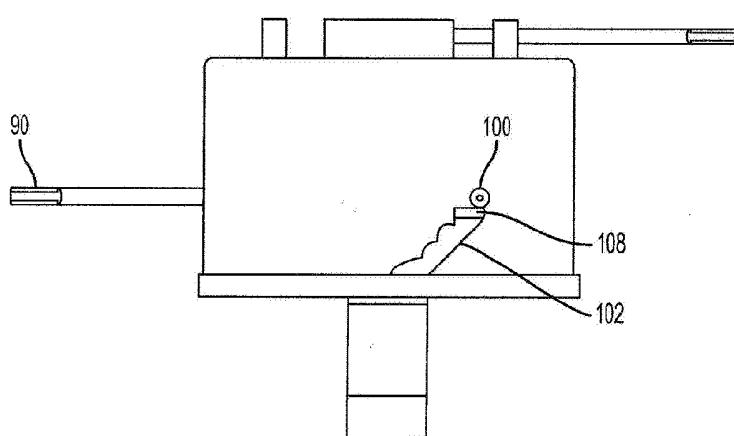


FIG. 3B

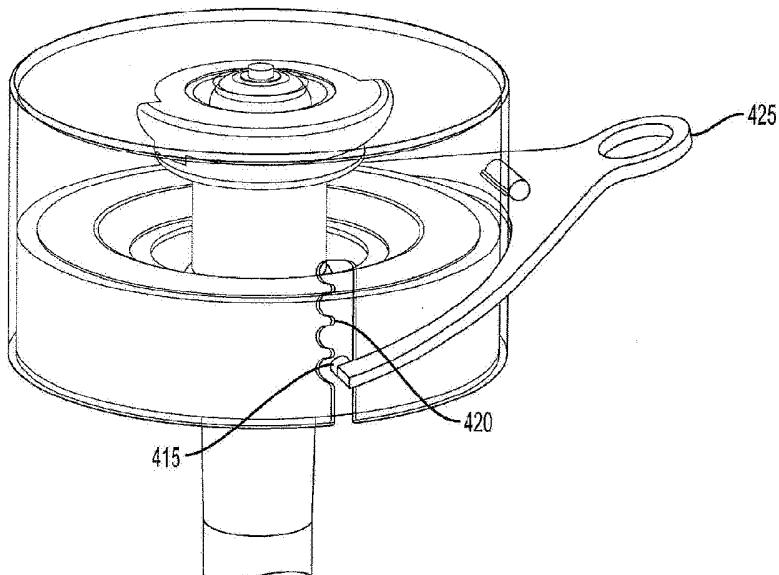


FIG. 4A

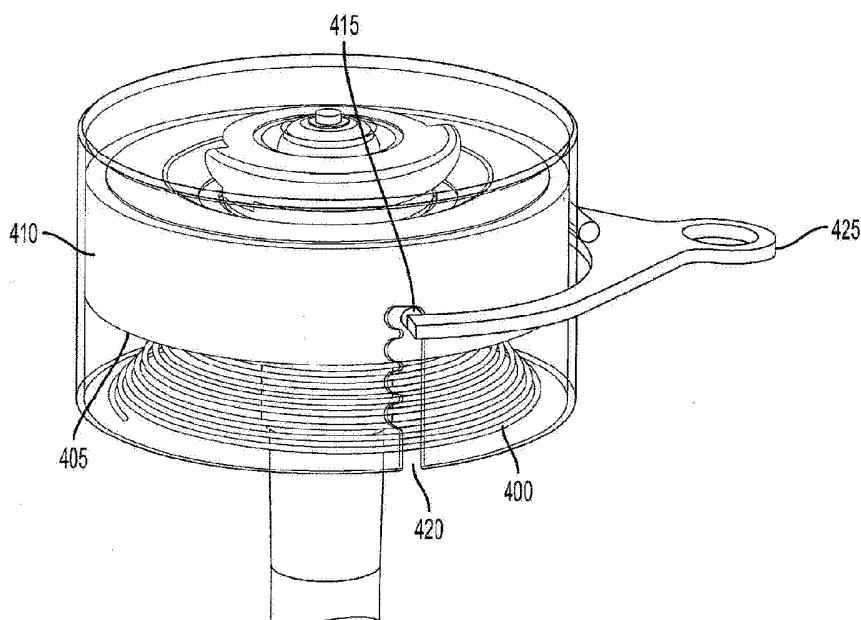


FIG. 4B

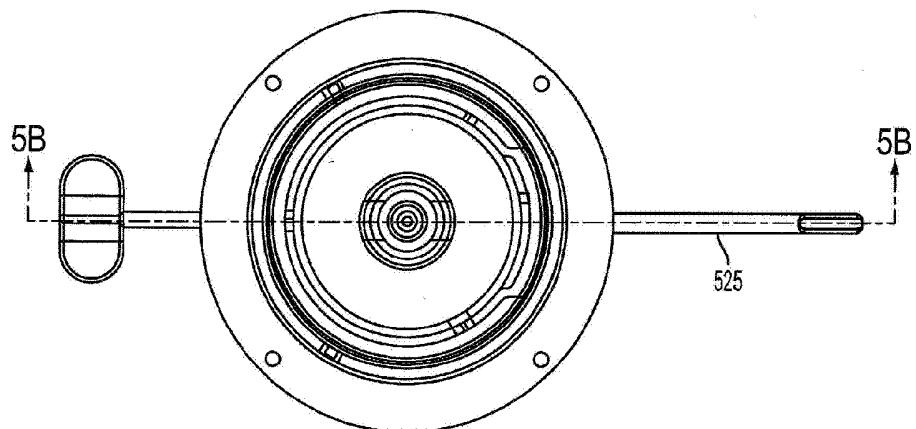


FIG. 5A

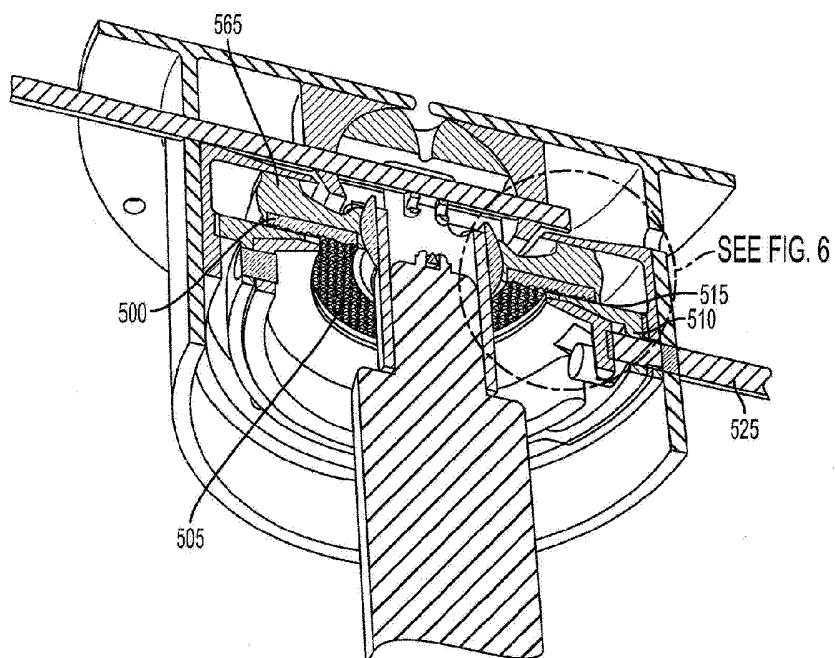


FIG. 5B

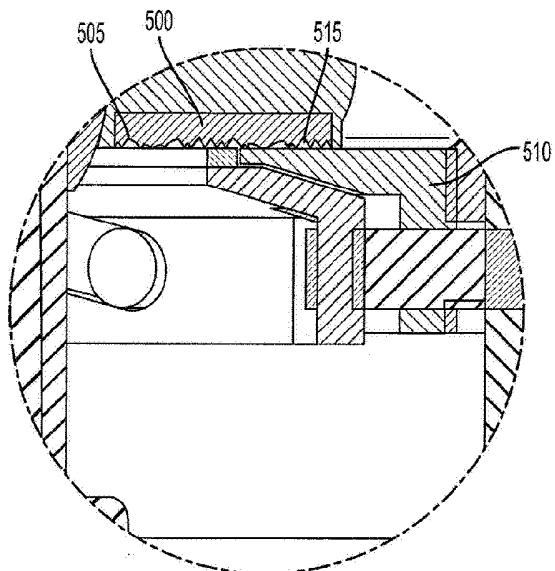


FIG. 6A

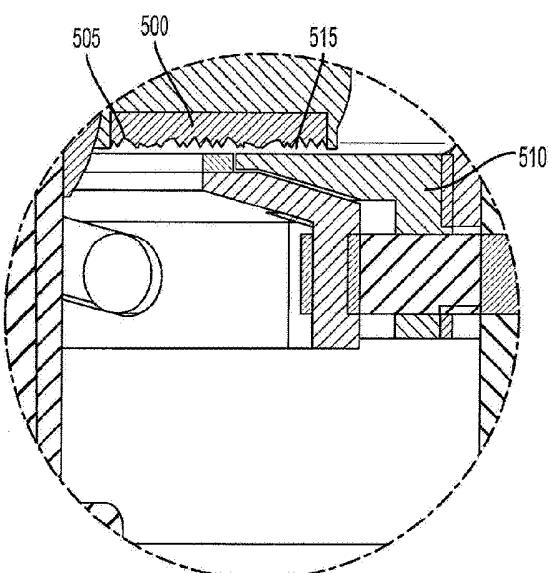


FIG. 6B

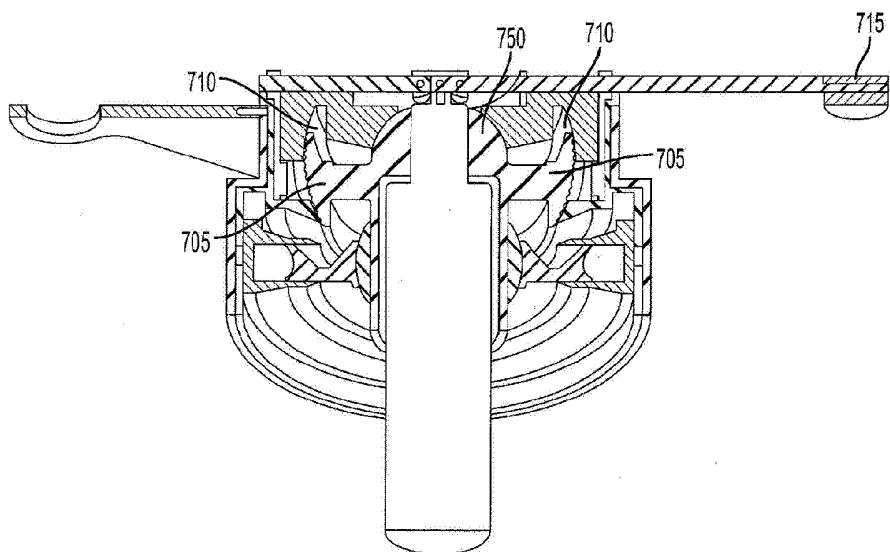


FIG. 7A

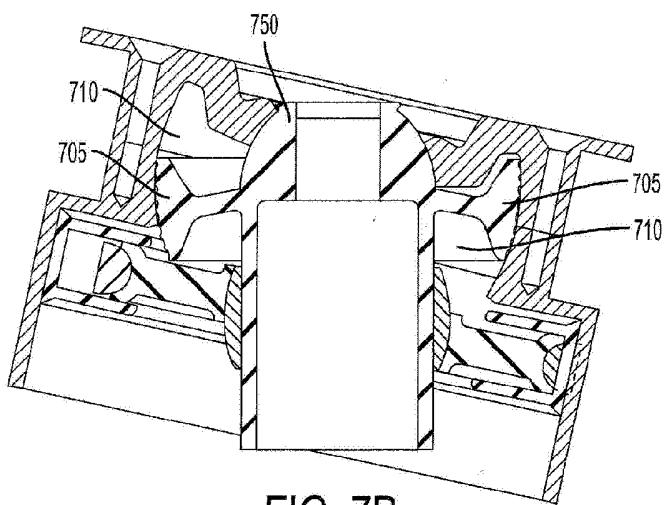


FIG. 7B

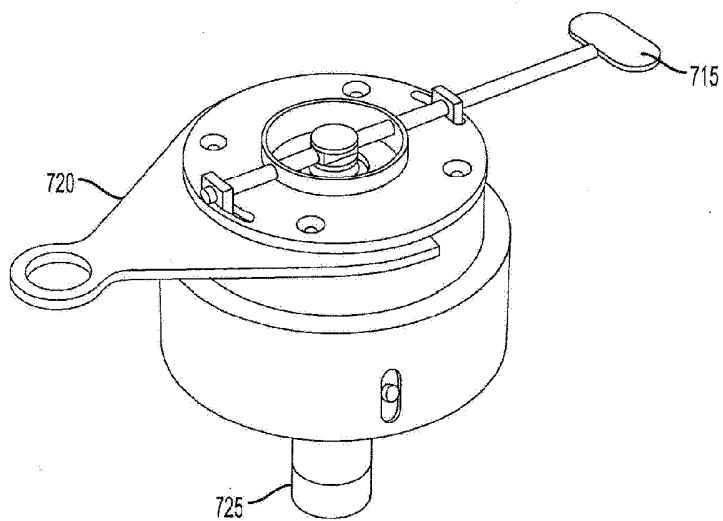


FIG. 8

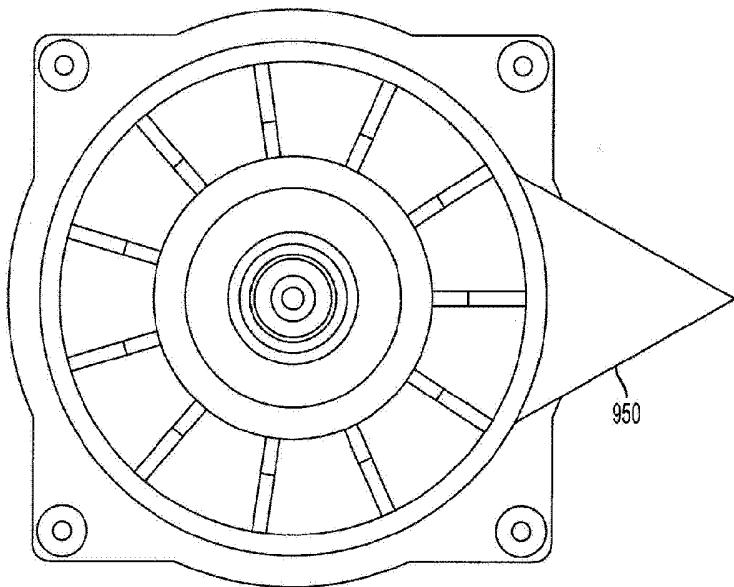


FIG. 9A

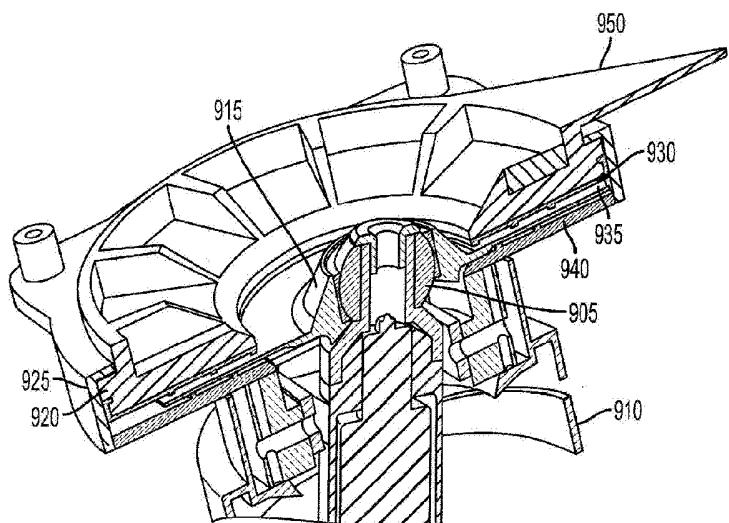


FIG. 9B

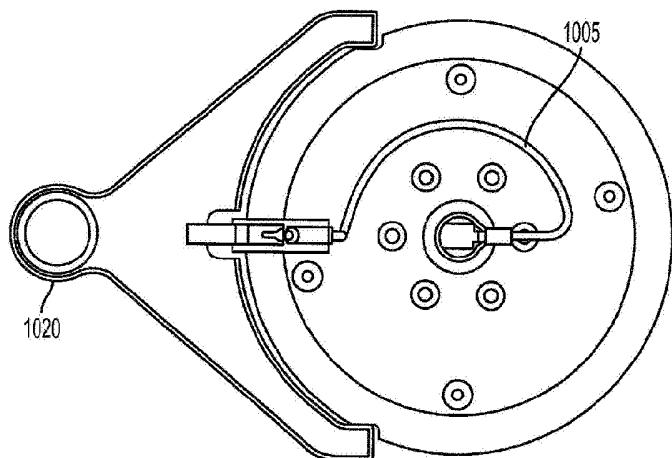


FIG. 10A

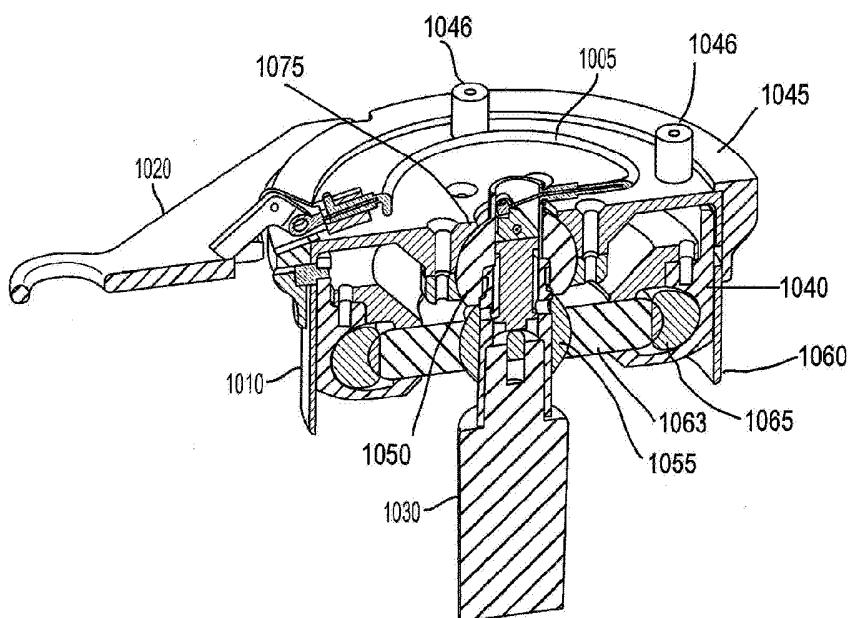


FIG. 10B

FIG. 10C

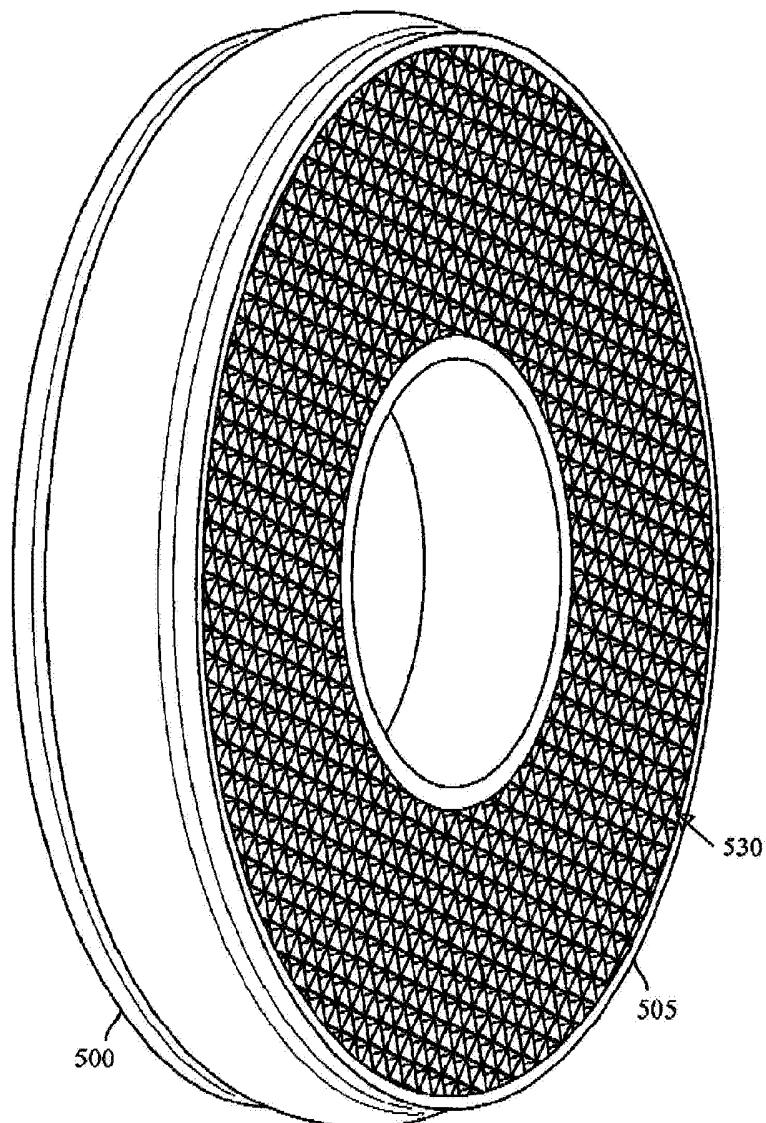


FIGURE 11

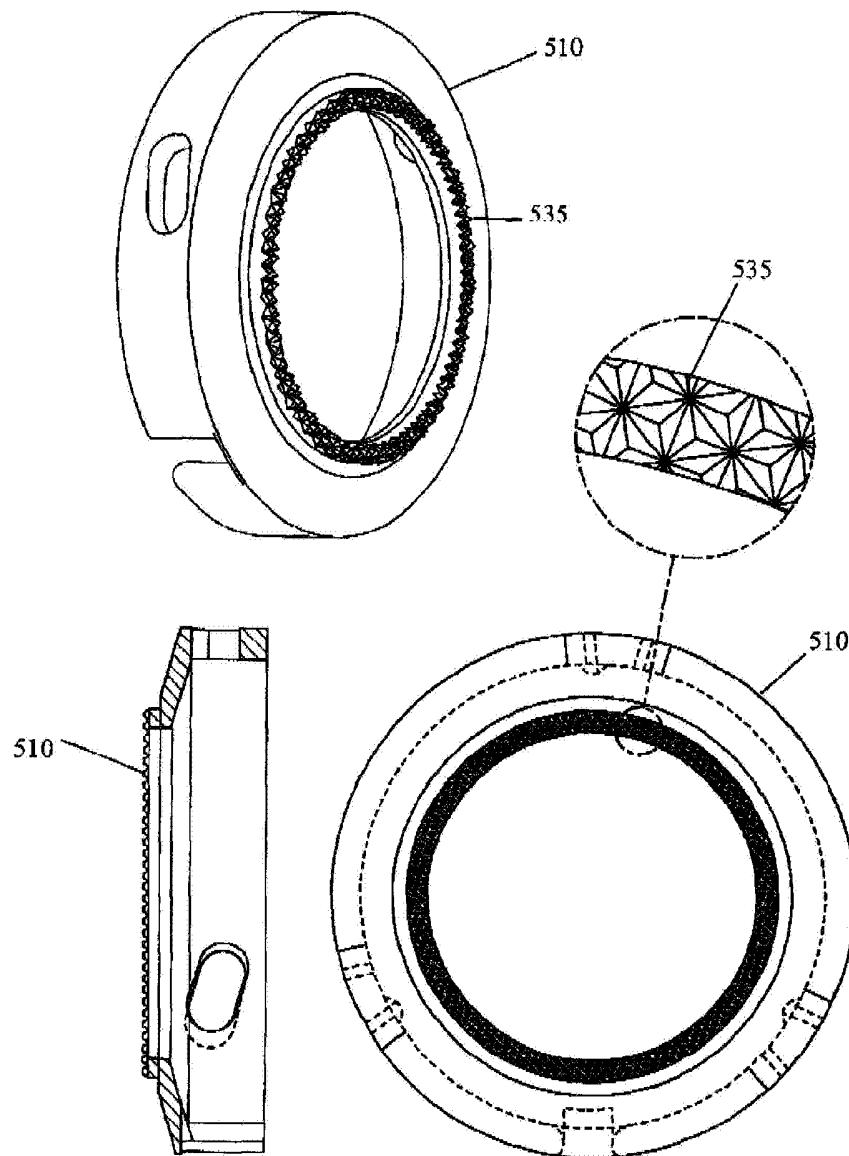


FIGURE 12

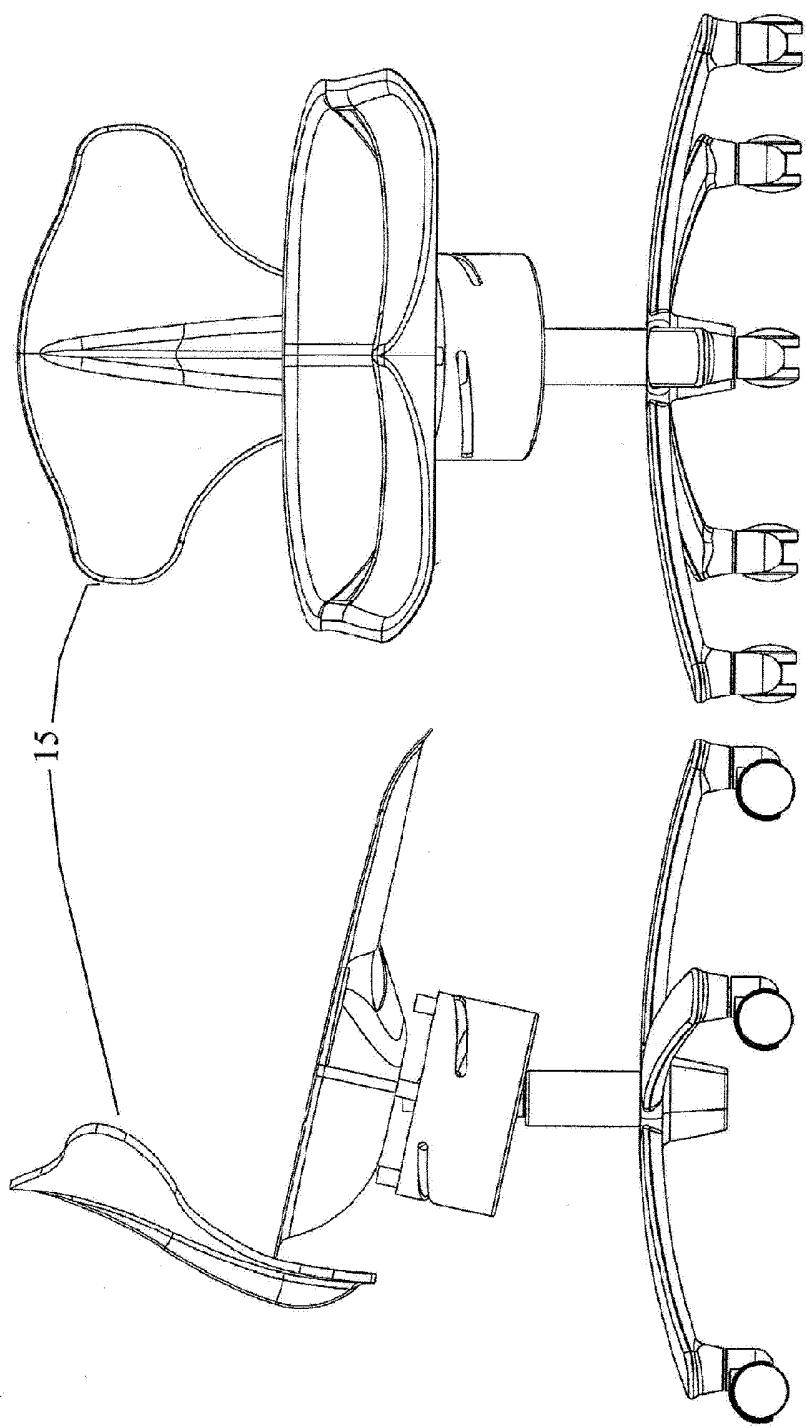


FIG. 13A

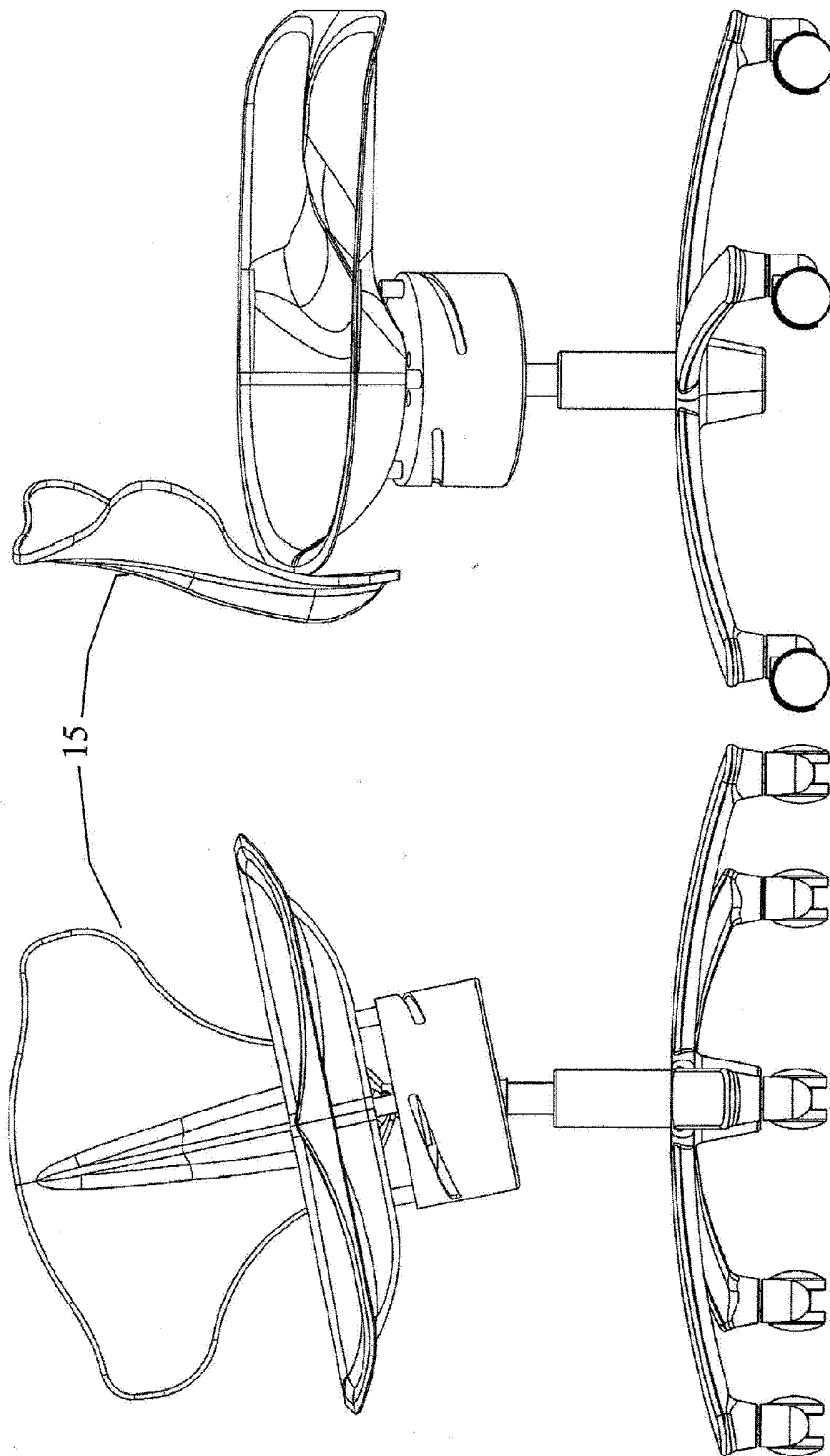


FIG. 13B