Office de la Proprieté
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2755443 C 2013/08/06

(11)(21) 2 /55 443

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 2010/03/12

(87) Date publication PCT/PCT Publication Date: 2010/09/23

(45) Date de délivrance/lssue Date: 2013/08/06
(85) Entree phase nationale/National Entry: 2011/09/14

(86) N° demande PCT/PCT Application No.: US 2010/027118

(87) N° publication PCT/PCT Publication No.: 2010/10/669
(30) Priorités/Priorities: 2009/03/16 (US61/210,332);

2009/09/24 (US12/566,660)

SHAFFER, JOSHUA H., US

(73) Proprietaire/Owner:

APPLE INC., US

(51) Cl.Int./Int.Cl. GO6F 9/44 (2006.01)

(72) Inventeurs/Inventors:
MOORE, BRADFORD ALLEN, US;

(74) Agent. RICHES, MCKENZIE & HERBERT LLP

(54) Titre : RECONNAISSANCE D'EVENEMENT
(54) Title: EVENT RECOGNITION

Electronic Device
102

'I’IO-Aw

Memory 111-A \

\p CPU(s) Operating System —_118-A
icati —_120-A
115-A — Communications Module
ir —— EV“’—‘“ — 1 22'A
113-A . %
126 \ 130"A\ Event Delivery System | —_124-A
- a
\\User interface Sensor(s) S =
| Display . Application Software
(optional)

Input Device(s)

\

N
128-A

(57) Abréegée/Abstract:

A method executes software including a view hierarchy with a pluralty of views which displays one or more views of the view
hierarchy. The method executes software elements associated with a particular view, wherelin each particular view includes event
recognizers. Each event recognizer has an event definition based on sub-events, and an event handler that specifies an action for
a target, and Is configured to send the action to the target in response to an event recognition. The method detects a sequence of
sub-events, and identifies one of the views of the view hierarchy as a hit view that establishes which views In the hierarchy are
actively involved views. The method delivers a respective sub-event to event recognizers for each actively involved view, wherein
each event recognizer for actively involved views In the view hierarchy processes the respective sub-event prior to processing a

Communication | 112-A
interface(s)

next sub-event in the sequence of sub-events.

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C

OPIC - C]

PO 191

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

w0 2010/107669 A3 |{HI I RH 0 0RO YRR ORER AR

CA 02755443 2011-09-14

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intcltectual Property Organization /g | NN 1IN0 Y110 O 0 0O O
ernational Bureau NJT)

(43) International Publication Date

23 September 2010 (23.09.2010)

(10) International Publication Number

WO 2010/107669 A3

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 9/44 (2006.01) GO6F 3/048 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. o DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU. ID, IL, IN. IS, JP, KE, KG. KM, KN, KP,
pC1/US2010/027118 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12 March 2010 (12.03.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available). ARIPO (BW, GH,
61/210,332 16 March 2009 (16.03.2009) US UM, K5, 15, Mw, M&, N, 8L, BL, 84, 14, UG, 4,
12/566,660 24 September 2009 (24.09.2009) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, 1J,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant (for all designated States except US). APPLE ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014 MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
(US). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(72) Inventors; and ML, MR, NE, SN, TD, TG).
(75) Inventors/Applicants (for US only): MOORE, Brad- Published:
£ZB%7A:%§£)[%%§§%E;% [J)jgslllliel—y EE%SS/%DSIYV? 3;; (éi — with international search report (Art. 21(3))
tancia Drive, #418, San Jose, CA 95134 (US). — before the expiration of the time [imit for amending the
, , claims and to be republished in the event of receipt of
(74) Agent. WILLIAMS, Gary, S.; Morgan L(?Wls & BOCkl}J.S amendments (Rule 48.2(h))
LLP, 2 Palo Alto Square, 3000 El Camimo Real, Suite
700, Palo Alto, CA 94306 (US). (88) Date of publication of the international search report:
25 November 2010
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

(54) Title: EVENT RECOGNITION

Electronic Device

ﬁ 1A Y Memory 111-A ~._
S CPU(s) Operating System - 118-A
icati - 120-A
115-A - Communications Module
=t o 122-A
113-A i i
126 130"5‘\«1 'Event Delivery System | |-~ 124-A
User interface Sensor(s)
 Display . Application Software
(optional)
Input Device(s)

128-A

interface(s)

Figure 1A

Communication ~ 112-A

(57) Abstract: A method executes software including a view hierarchy with a plurality of views which displays one or more views
of the view hierarchy. The method executes software elements associated with a particular view, wherein each particular view in-
cludes event recognizers. Fach event recognizer has an event definition based on sub-events, and an event handler that specifies
an action for a target, and 1s configured to send the action to the target in response to an event recognition. The method detects a
sequence of sub-events, and i1dentifies one of the views of the view hierarchy as a hit view that establishes which views i the hier-
archy are actively mvolved views. The method delivers a respective sub-event to event recognizers for each actively mvolved

view, wheremn each event recognizer for actively mvolved views in the view hierarchy processes the respective sub-event prior to
processing a next sub-event in the sequence of sub-events.

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
EVENT RECOGNITION
TECHNICAL FIELD
[0001] The disclosed embodiments relate generally to user interface processing.

More particularly, the disclosed embodiments relate to apparatuses and methods for

recognizing user mterface events.
BACKGROUND

[0002] A computing device typically includes a user interface that may be used to
interact with the computing device. The user interface may include a display and/or input
devices such as a keyboard, mice, and touch-sensitive surfaces for interacting with various
aspects of the user interface. In some devices with a touch-sensitive surface as an iput
device, a first set of touch-based gestures (e.g., two or more of: tap, double tap, horizontal
swipe, vertical swipe, pinch, depinch, two finger swipe) are recognized as proper inputs in a
particular context (€.g., in a particular mode of a first application), and other, different sets of
touch-based gestures are recognized as proper inputs 1n other contexts (e.g., different
applications and/or different modes or contexts within the first application). As a result, the
software and logic required for recognizing and responding to touch-based gestures can
become complex, and can require revision cach time an application 1s updated or a new
application 18 added to the computing device. These and similar 1ssues may arise in user

interfaces that utilize input sources other than touch-based gestures.

[0003] Thus, 1t would be desirable to have a comprehensive framework or mechanism
for recognizing touch-based gestures and events, as well as gestures and events from other
input sources, that 1s easily adaptable to virtually all contexts or modes of all application
programs on a computing device, and that requires little or no revision when an application 18

updated or a new application 1s added to the computing device.
SUMMARY

[0004] To address the aforementioned drawbacks, some embodiments provide a
method, which, at an electronic device configured to execute software that includes a view

hierarchy with a plurality of views: displays one or more views of the view hierarchy;

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

executes one or more software clements, cach software element being associated with a
particular view, wherein each particular view includes one or more event recognizers. Each
event recognizer has an event definition based on one or more sub-events, and an event
handler, wherein the event handler specifies an action for a target, and 1s configured to send
the action to the target in response to the event recognizer detecting an event corresponding
to the event definition. The method also detects a sequence of one or more sub-¢vents, and
identifies one of the views of the view hierarchy as a hit view, wherem the hit view
establishes which views 1n the view hierarchy are actively mvolved views. The method also
delivers a respective sub-event to event recognizers for each actively involved view within
the view hierarchy, wherein each event recognizer for actively involved views 1n the view
hierarchy processes the respective sub-event prior to processing a next sub-event 1n the

sequence of sub-events.

[0005] Some embodiments provide a method, which, at an electronic device
configured to execute software that includes a view hierarchy with a plurality of views:
displays one or more views of the view hierarchy; executes one or more software elements,
cach software element being associated with a particular view, wherein each particular view
includes one or more event recognizers. Each event recognizer has an event definition based
on on¢ or more sub-¢vents, and an event handler, wherein the event handler specifies an
action for a target, and 1s configured to send the action to the target in response to the event
recognizer detecting an event corresponding to the event definition. The method also detects
a sequence of one or more sub-events, and 1dentifies one of the views of the view hierarchy
as a hit view, wherein the hit view establishes which views 1n the view hierarchy are actively
involved views. The method also delivers a respective sub-event to event recognizers for
cach actively involved view within the view hierarchy, and makes a sub-event recognition
decision while processing the respective sub-event at event recognizers for the actively

involved views 1n the view hierarchy.

[0006] Some embodiments provide a computer readable storage medium storing one
or more programs for execution by one or more processors of a computer system or device,
the one or more programs including one or more application programs for displaying one or
more views of a view hierarchy with a plurality of views. The one or more application
programs 1nclude one or more software elements, cach software element being associated
with a particular view, wherein each particular view includes one or more event recognizers.

Each event recognizer has an event definition based on one or more sub-events, and an event
2

CA 02755443 2013-05-09

handler, wherein the event handler: specities an action for a target, and is configured to
send the action to the target in response to the event recognizer detecting an event
corresponding to the event definition: event management instructions, which when
executed by the one or more processors of the computer system or device, cause the
computer system or device to: detect a sequence of one or more sub-events; identify
one of the views of the view hierarchy as a hit view, wherein the hit view establishes
which views in the view hierarchy are actively involved views: and deliver a respective
sub-event to event recognizers for each actively involved view within the view
hierarchy, wherein each event recognizer for actively involved views in the view
hierarchy processes the respective sub-event prior to processing a next sub-event in the

sequence of sub-events.

[0007] Some embodiments provide an apparatus comprising a display, one or more
processors, memory, and one or more programs stored in the memory, which are
configured to display one or more views of a view hierarchy with a plurality of views.
T'he one or more programs include one or more software elements. each software
clement being associated with a particular view, wherein each particular view includes
one or more event recognizers. The event recognizers have an event definition based
On one or more sub-events, and an event handler, wherein the event handler specifies an
action for a target, and is configured to send the action to the target in response to the
event recognizer detecting an event corresponding to the event definition. The
apparatus’s programs also include an event delivery program, which, when executed by
the one or more processors of the apparatus. cause the apparatus to detect a sequence of
one or more sub-events; identify one of the views of the view hierarchy as a hit view.
wherein the hit view establishes which views in the view hierarchy are actively
involved views; and make a sub-event recognition decision while event recognizers for

the actively involved views in the view hierarchy process the respective sub-event.

[0007A] Some embodiments provide a method. comprising: at an electronic
device configured to execute software that includes a view hierarchy with a plurality of

views: displaying one or more views of the view hierarchy; executing one or more

(sD

CA 02755443 2013-05-09

software elements, each software element being associated with a particular view that

includes one or more event recognizers, each event recognizer having: an event
definition based on one or more sub-events, and an event handler, wherein the event
handler: specifies an action for a target, and 1s configured to send the action to the
target 1n response to the event recognizer detecting an event corresponding to the event
definition; detecting a sequence of one or more sub-events; 1dentifving one of the views
of the view hierarchy as a hit view, wherein the hit view establishes which views 1n the
view hierarchy are actively involved views; delivering a respective sub-event to event
recognizers for multiple actively involved views within the view hierarchy; and at event
recognizers for the multipie actively involved views in the view hierarchy, processing

o

the respective sub-event prior to processing a next sub-event in the sequence of sub-

events.

[0007B] Some embodiments provide a computer readable storage medium
storing one or more programs for execution by one or more processors of a computer
system or device, the one or more programs including: one or more application
programs for displaying one or more views of a view hierarchy with a plurality of
views; the one or more application programs including one or more software elements.
each software element being associated with a particular view that includes one or more
event recognizers, each event recognizer having: an event definition based on one or
more sub-events, and an event handler, wherein the event handler: specifies an action
for a target, and 1s configured to send the action to the target in response to the event
recognizer detecting an event corresponding to the event definition; event management
instructions, which when executed by the one or more processors of the computer
system or device, cause the computer system or device to: detect a sequence of one or
more sub-events; 1dentify one of the views of the view hierarchy as a hit view, wherein
the hit view establishes which views in the view hierarchy are actively involved views;
deliver a respective sub-event to event recognizers for multiple actively involved views
within the view hierarchy; and at event recognizers for the multiple actively involved
views 1n the view hierarchy, process the respective sub-event prior to processing a next

sub-event 1n the sequence of sub-events.

3a

CA 02755443 2013-05-09

[0007C} Some embodiments provide an apparatus, comprising: a display; one or
more processors; and memory storing one or more programs configured to display one
or more views of a view hierarchy with a plurality of views, the one or more programs
including one or more software elements, each software element being associated with
a particular view that includes one or more event recognizers, each event recognizer
having: an event definition based on one or more sub-events, and an event handler,
wherein the event handler: specifies an action for a target. and is configured to send the
action to the target in response to the event recognizer detecting an event corresponding
to the event definition; the one or more programs including an event delivery program,
which, when executed by the one or more processors of the apparatus, cause the
apparatus to: detect a sequence of one or more sub-events; identify one of the views of
the view hierarchy as a hit view, wherein the hit view establishes which views 1n the
view hierarchy are actively involved views; deliver a respective sub-event to event
recognizers for multiple actively involved views within the view hierarchy; and at event
recognizers for the multiple actively involved views in the view hierarchy, process the

respective sub-event prior to processing a next sub-event in the sequence of sub-events.

[0008] In some embodiments, an apparatus 1s provided that comprises one or
more processors, memory, and one or more programs stored in the memory, which are
configured to manage execution of one or more programmatic layers of a programmatic
hierarchy with a plurality of programmatic layers. The one or more programs include
one or more software elements, each software element being associated with a
particular programmatic layer, wherein each particular programmatic layer includes one
or more event recognizers. The event recognizers have an event definition based on
one or more sub-events. and an event handler, wherein the event handler specifies an

action for a target and is configured to send

3b

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

the action to the target in response to the event recognizer detecting an event corresponding
to the event definition. The apparatus also includes an event delivery program, which, when
executed by the one or more processors of the apparatus, cause the apparatus to detect a
sequence of one or more sub-events; 1dentify one of the programmatic layers of the
programmatic hicrarchy as a hit layer, wherein the hit layer establishes which programmatic
layers 1n the programmatic hierarchy are actively involved programmatic layers; and deliver a
respective sub-event to event recognizers for each actively involved programmatic layer
within the programmatic hierarchy, wherein each event recognizer for actively involved
layers 1n the programmatic hierarchy processes the respective sub-event prior to processing a

next sub-event in the sequence of sub-events.
BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figures 1A and 1B are block diagrams illustrating electronic devices,

according to some embodiments.

[0010] Figure 2 1s a diagram of an imnput/output processing stack of an exemplary

clectronic device according to some embodiments.

[0011] Figure 3A 1illustrates an exemplary view hierarchy, according to some
embodiments.
[0012] Figures 3B and 3C are block diagrams 1llustrating exemplary event recognizer

methods and data structures, according to some embodiments.

[0013] Figures 4A and 4B are flow charts 1llustrating exemplary state machines,

according to some embodiments.

[0014] Figure 4C 1illustrates the exemplary state machines of Figures 4A and 4B to an

exemplary set of sub-events, according to some embodiments.

[0015] Figures SA-5C 1llustrate exemplary sub-cvent sequences with exemplary event

recognizer state machines, according to some embodiments.

[0016] Figures 6A and 6B are event recognition method flow diagrams, according to

some embodiments.

[0017] Like reference numerals refer to corresponding parts throughout the drawings.

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

DESCRIPTION OF EMBODIMENTS

[0018] Retference will now be made 1n detail to embodiments, examples of which are
illustrated in the accompanying drawings. In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough understanding of the present
invention. However, 1t will be apparent to one of ordinary skill in the art that the present
invention may be practiced without these specific details. In other instances, well-known
methods, procedures, components, circuits, and networks have not been described 1n detail so

as not to unnecessarily obscure aspects of the embodiments.

[0019] It will also be understood that, although the terms first, second, etc. may be
used herein to describe various elements, these elements should not be limited by these terms.
These terms are only used to distinguish one element from another. For example, a first
contact could be termed a second contact, and, similarly, a second contact could be termed a
first contact, without departing from the scope of the present invention. The first contact and

the second contact are both contacts, but they are not the same contact.

[0020] The terminology used in the description of the invention herein 1s for the
purpose of describing particular embodiments only and 1s not intended to be limiting of the
invention. As used in the description of the invention and the appended claims, the singular
forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context
clearly mdicates otherwise. It will also be understood that the term "and/or" as used herein
refers to and encompasses any and all possible combinations of one or more of the associated
listed 1tems. It will be further understood that the terms "comprises” and/or "comprising,”
when used 1n this specification, specify the presence of stated features, integers, steps,
opcerations, elements, and/or components, but do not preclude the presence or addition of one

or more other features, integers, steps, operations, elements, components, and/or groups

thereof.

[0021] As used herein, the term "if"' may be construed to mean "when" or "upon” or
"In response to determining” or " response to detecting,” depending on the context.
Stmilarly, the phrase "if 1t 1s determined” or "if [a stated condition or event] 1s detected” may
be construed to mean "upon determining” or "in response to determining” or "upon detecting
(the stated condition or event)"” or "in response to detecting (the stated condition or event),”

depending on the context.

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0022] As noted above, in some devices with a touch-sensitive surface as an input
device, a first set of touch-based gestures (¢.g., two or more of: tap, double tap, horizontal
swipe, vertical swipe) are recognized as proper inputs 1n a particular context (€.g., 1n a
particular mode of a first application), and other, different sets of touch-based gestures are
recognized as proper iputs in other contexts (e.g., different applications and/or different
modes or contexts within the first application). As a result, the software and logic required
for recognizing and responding to touch-based gestures can become complex, and can require
revision each time an application 1s updated or a new application 1s added to the computing

device.

[0023] In the embodiments described below, touch-based gestures are events. Upon
recognition of a predefined event, €.g., an event that corresponds to a proper input 1n the
current context of an application, information concerning the event 1s delivered to the
application. In the context of this document, all touch-based gestures correspond to events.
Furthermore, cach respective event 1s defined as a sequence of sub-events. In devices that
have a multi-touch display device (often herein called “screens’) or other multi-touch
sensitive surface, and that accept multi-touch-based gestures, the sub-events that define a
multi-touched based event may include multi-touch sub-events (requiring two or more fingers
to be simultancously 1n contact with the device’s touch-sensitive surface). For example, in a
device having a multi-touch sensitive display, a respective multi-touch sequence of sub-
cevents may begin when a user’s finger first touches the screen. Additional sub-events may
occur when one or more additional fingers subsequently or concurrently touch the screen, and
yet other sub-events may occur when all of the fingers touching the screen move across the

screen. The sequence ends when the last of the user’s fingers 1s lifted from the screen.

[0024] When using touch-based gestures to control an application running 1n a device
having a touch-sensitive surface, touches have both temporal and spatial aspects. The
temporal aspect, called a phase, indicates when a touch has just begun, whether 1t 18 moving
or stationary, and when 1t ends—that 1s, when the finger 1s lifted from the screen. A spatial
aspect of a touch 1s the set of views or user interface windows 1 which the touch occurs. The
views or windows 1n which a touch 1s detected may correspond to programmatic levels within
a programmatic or view hierarchy. For example, the lowest level view 1n which a touch 1s
detected may be called the hit view, and the set of events that are recognized as proper inputs
may be determined based, at least in part, on the hit view of the initial touch that begins a

touch-based gesture.

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0025] Figures 1A and 1B are block diagrams illustrating electronic devices 102 and
104, according to some embodiments. The electronic devices 102 and 104 may be any
clectronic device including, but not limited to, a desktop computer system, a laptop computer
system, mobile phone, a smart phone, a personal digital assistant, or a navigation system.
The electronic device may also be a portable electronic device with a touch screen display
(c.g., display 156, Figure 1B) configured to present a user interface, a computer with a touch
screen display configured to present a user interface, a computer with a touch sensitive
surface and a display configured to present a user interface, or any other form of computing
device, including without limitation, consumer electronic devices, mobile telephones, video
game systems, electronic music players, tablet PCs, electronic book reading systems, ¢-
books, PDASs, clectronic organizers, email devices, laptops or other computers, kiosk
computers, vending machines, smart appliances, etc. The electronic devices 102 and 104

may 1nclude user interfaces 113-A and 113-B, respectively.

[0026] In some embodiments, the electronic devices 102 and 104 include a touch
screen display. In these embodiments, the user interface 113 (1.e., 113-A or 113-B) may
include an on-screen keyboard (not depicted) that 1s used by a user to interact with the
clectronic devices 102 and 104. Alternatively, a keyboard may be separate and distinct from
the electronic devices 102 and 104. For example, a keyboard may be a wired or wireless

keyboard coupled to the electronic devices 102 or 104.

[0027] In some embodiments, the electronic device 102 includes a display 126 and
on¢ or more mput devices 128-A (e.g., keyboard, mouse, trackball, microphone, physical
button(s), touchpad, etc.) that are coupled to the electronic device 102. In these
embodiments, one or more of the mput devices 128-A may optionally be separate and distinct
from the electronic device 102. For example, the one or more input devices may include one
or more of: a keyboard, a mouse, a trackpad, a trackball, and an electronic pen, any of which
may optionally be separate from the electronic device. Optionally, the device 102 or 104
may 1nclude one or more sensors 130, such as one or more accelerometers, gyroscopes, GPS
systems, speakers, mfrared (IR) sensors, biometric sensors, cameras, ¢tc. It 1s noted that the
description above of various exemplary devices as input devices 128 or as sensors 130 1s of
no significance to the operation of the embodiments described herein, and that any input or
sensor device herein described as an mnput device may equally well be described as a sensor,
and vice versa. In some embodiments, signals produced by the one or more sensors 130 are

used as mput sources for detecting events.

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0028] In some embodiments, the electronic device 104 includes a touch-sensitive
display 156 (1.¢., a display having a touch-sensitive surface) and one or more input devices
128-B that are coupled to the electronic device 104. In some embodiments, the touch-
sensitive display 156 has the ability to detect two or more distinct, concurrent (or partially
concurrent) touches, and in these embodiments, the display 156 1s sometimes herein called a

multitouch display or multitouch-sensitive display.

[0029] In some embodiments of the electronic device 102 or 104 discussed herein, the
input devices 128 are disposed in the electronic device 102 or 104. In other embodiments,
on¢ or more of the mput devices 128 1s separate and distinct from the electronic device 102 or
104; for example, one or more of the mput devices 128 may be coupled to the electronic
device 102 or 104 by a cable (e.g., USB cable) or wireless connection (¢.g., Bluetooth

connection).

[0030] When using the input devices 128, or when performing a touch-based gesture
on the touch-sensitive display 156 of an electronic device 102 or 104, respectively, the user
generates a sequence of sub-events that are processed by one or more CPUs 110 of the
electronic device 102 or 104. In some embodiments, the one or more CPUs 110 of the

clectronic device 102 or 104 process the sequence of sub-events to recognize events.

[0031] The electronic device 102 or 104 typically includes one or more single- or
multi-core processing units (“CPU” or “CPUSs”) 110 as well as one or more network or other
communications interfaces 112, respectively. The electronic device 102 or 104 includes
memory 111 and one or more communication buses 113, respectively, for interconnecting
these components. The communication buses 115 may include circuitry (sometimes called a
chipset) that interconnects and controls communications between system components (not
depicted herein). As discussed briefly above, the electronic devices 102 and 104 optionally
include user interfaces 113 that include a display 126 and multitouch display 156,
respectively. Further, the electronic devices 102 and 104 typically include mput devices 128
(c.g., keyboard, mouse, touch screens, touch sensitive surfaces, multitouch screens, keypads,
ctc.). In some embodiments, the mnput devices include an on-screen input device (e.g., a
touch-sensitive surface of a display device). Memory 111 may include high-speed random
access memory, such as DRAM, SRAM, DDR RAM or other random access solid state
memory devices; and may include non-volatile memory, such as one or more magnetic disk

storage devices, optical disk storage devices, flash memory devices, or other non-volatile

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

solid state storage devices. Memory 111 may optionally include one or more storage devices
remotely located from the CPU(s) 110. Memory 111, or alternately the non-volatile memory
device(s) within memory 111, comprise a computer readable storage medium. In some
embodiments, memory 111 stores the following programs, modules and data structures, or a

subset thereof:

e an operating system 118 that includes procedures for handling various basic system

services and for performing hardware dependent tasks;

e acommunication module 120 (in electronic devices 102 and 104, respectively) that 1s
used for connecting the electronic device 102 or 104, respectively, to other devices
via their one or more respective communication interfaces 112 (wired or wireless) and
one or more communication networks, such as the Internet, other wide area networks,

local areca networks, metropolitan area networks, and so on;

e an cvent delivery system 122 (in electronic devices 102 and 104, respectively) that
may be implemented 1n various alternate embodiments within the operating system
118 or 1n application software 124; in some embodiments, however, some aspects of
event delivery system 122 may be implemented 1n the operating system 118 while

other aspects are implemented 1n application software 124; and

e onc or more applications in application software 124, respectively (e.g., an email

application, a web browser application, a text messaging application, etc.).

[0032] Each of the above 1dentified elements may be stored 1n one or more of the
previously mentioned memory devices, and corresponds to a set of instructions for
performing functions described herein. The set of instructions can be executed by one or
more processors (€.g., the one or more CPUs 110). The above identified modules or
programs (1.€., sets of istructions) need not be implemented as separate software programs,
procedures or modules, and thus various subsets of these modules may be combined or
otherwise rearranged 1n various embodiments. In some embodiments, memory 111 may store
a subset of the modules and data structures 1dentified above. Furthermore, memory 111 may

store additional modules and data structures not described above.

[0033] FIG. 2 1s a diagram of an mput/output processing stack 200 of an exemplary
clectronic device or apparatus (¢.g., device 102 or 104) according to some embodiments of

the invention. The hardware (¢.g., electronic circuitry) 212 of the device 1s at the base level

9

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

of the input/output processing stack 200. Hardware 212 can include various hardware
interface components, such as the components depicted in Figs. 1A and/or 1B. Hardware 212
can also include one or more of the above mentioned sensors 130. All the other elements
(202-210) of the mput/output processing stack 200 are software procedures, or portions of
software procedures, that process mputs recerved from the hardware 212 and generate various
outputs that are presented through a hardware user interface (€.g., one or more of a display,

speakers, device vibration actuator).

[0034] A driver or a set of drivers 210 communicates with the hardware 212. The
drivers 210 can receive and process input data recerved from the hardware 212. A core
Operating System (““OS”) 208 can communicate with the driver(s) 210. The core OS 208 can
process raw mput data recerved from the driver(s) 210. In some embodiments, the drivers 210

can be considered to be a part of the core OS 208.

[0035] A set of OS application programming interfaces (“OS APIs”) 206, are
software procedures that communicate with the core OS 208. In some embodiments, the
APIs 206 are included in the device’s operating system, but at a level above the core OS 208.
The APIs 206 are designed for use by applications running on the electronic devices or
apparatuses discussed herein. User interface (UI) APIs 204 can utilize the OS APIs 206.
Application software (“applications’) 202 running on the device can utilize the UI APIs 204
1n order to communicate with the user. The UI APIs 204 can, 1in turn, communicate with
lower level elements, ultimately communicating with various user iterface hardware, e.g.,

multitouch display 156.

[0036] While each layer input/output processing stack 200 can utilize the layer
underneath 1t, that 1s not always required. For example, in some embodiments, applications
202 can occasionally communicate with OS APIs 206. In general, layers at or above the OS
API layer 206 may not directly access the Core OS 208, driver(s) 210, or hardware 212, as
these layers are considered private. Applications 1n layer 202 and the UI API 204 usually
direct calls to the OS API 206, which 1n turn, accesses the layers Core OS 208, driver(s) 210,
and hardware 212.

[0037] Stated 1n another way, one or more hardware elements 212 of the electronic
device 102 or 104, and software running on the device, such as, for example, drivers 210
(depicted 1in Fig. 2), core OS (operating system) 208 (depicted in Fig. 2), operating system

API software 206 (depicted 1n Fig. 2), and Application and User Interface API software 204
10

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

(depicted 1n Fig. 2) detect input events (which may correspond to sub-events 1n a gesture) at
on¢ or more of the input device(s) 128 and/or a touch-sensitive display 156 and generate or
update various data structures (stored 1n memory of the device 102 or 104) used by a set of
currently active event recognizers to determine whether and when the input events
correspond to an event to be delivered to an application 202. Embodiments of event
recognition methodologies, apparatus and computer program products are described in more

detail below.

[0038] Fig 3A depicts an exemplary view hierarchy 300, which 1n this example 15 a
search program displayed in outermost view 302. Outermost view 302 generally
encompasses the entire user interface a user may directly interact with, and includes

subordinate views, e.g.,
e scarch results panel 304, which groups search results and can be scrolled vertically;
e scarch field 306, which accepts text inputs; and

e ahome row 310, which groups applications for quick access.

[0039] In this example, cach subordinate view includes lower-level subordinate
views. In other examples, the number of view levels 1n the hierarchy 300 may differ in
different branches of the hierarchy, with one or more subordinate views having lower-level
subordinate views, and one or more other subordinate views not have any such lower-level
subordinate views. Continuing with the example shown in Figure 3A, search results panel
304 contains separate subordinate views 305 (subordinate to the panel 304) for each search
result. Here, this example shows one search result 1in a subordinate view called the maps
view 305. Search ficld 306 includes a subordinate view herein called the clear contents 1con
view 307, which clears the contents of the search field when a user performs a particular
action (¢.g., a single touch or tap gesture) on the clear contents 1icon 1n the view 307. Home
row 310 includes subordinate views 310-1, 310-2, 310-3, and 310-4, which respectively
correspond to a contacts application, an email application, a web browser, and an 1Pod music

interface.

[0040] A touch sub-event 301-1 1s represented 1n outermost view 302. Given the
location of touch sub-event 301-1 over both the search results panel 304, and maps view 303,
the touch sub-event 1s also represented over those views as 301-2 and 301-3, respectively.

Actively mvolved views of the touch sub-event include the views search results panel 304,

11

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

maps view 305 and outermost view 302. Additional information regarding sub-cvent

delivery and actively involved views 1s provided below with reference to Figures 3B and 3C.

[0041] Views (and corresponding programmatic levels) can be nested. In other words,
a view can include other views. Consequently, the software element(s) (¢.g., event
recognizers) associated with a first view can include or be linked to one or more software
clements associated with views within the first view. While some views can be associated
with applications, others can be associated with high level OS elements, such as graphical

user terfaces, window managers, etc.

[0042] To simplify subsequent discussion, reference will generally be made only to
views and the view hierarchy, but it must be understood that in some embodiments, the
method may operate with a programmatic hierarchy with a plurality of programmatic layers,

and/or a view hierarchy.

[0043] Figs. 3B and 3C depict exemplary methods and structures related to event
recognizers. Fig. 3B depicts methods and data structures for event handling when event
handlers are associated with particular views within a hierarchy of views. Fig. 3C depicts
methods and data structures for event handling when event handlers are associated with
particular levels within a hierarchy of programmatic levels. Event recognizer global methods
312 and 350 include hit view and hit level determination modules 314 and 352, respectively,

active event recognizer determination modules 316 and 354, and sub-event delivery modules

318 and 356.

[0044] Hit view and hit level determination modules, 314 and 352, respectively,
provide software procedures for determining where a sub-event has taken place within one or
more views, e.g., the exemplary view hierarchy 300 depicted in Fig. 3A, which has three

main branches.

[0045] The hit view determination module 314 of Figure 3B, receives information
related to a sub-event, e.g., a user touch represented as 301-1 on the outermost view 302, on a
search result (map view 305) and the search results panel view 304. The hit view
determination module 314 1dentifies a hit-view as the lowest view 1n the hierarchy which
should handle the sub-event. In most circumstances, the hit view 1s the lowest level view 1n
which an iitiating sub-event (1.¢., the first sub-event 1n the sequence of sub-events that form
an event or potential event) occurs. Once the hit-view 1s 1dentified, 1t will recerve all sub-

events related to the same touch or input source for which the hit view was 1dentified.

12

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0046] In some embodiments, the hit level determination module 352 of Fig. 3C may

utilize an analogous process.

[0047] Active event recognizer determination modules 316 and 354 of event
recognizer global methods 312 and 350, respectively, determine which view or views within
a view hierarchy should receive a particular sequence of sub-cvents. Fig. 3A depicts an
exemplary set of active views, 302, 304 and 305, that receive the sub-event 301. In the
example of Fig. 3A, the active event recognizer determination module 304 would determine
that the top level view 302, search results panel 304 and maps view 3035 are actively involved
views because these views include the physical location of the touch represented by sub-
cvent 301. It 1s noted that even 1f touch sub-event 301 were entirely confined to the arca
associated with map view 303, search results panel 304 and top level view 302 would still
remain 1n the actively involved views since the search results panel 304 and the top level

view 302 are ancestors of map view 305.

[0048] In some embodiments, active event recognizer determination modules 316 and

354 utilize analogous processes.

[0049] Sub-event delivery module 318 delivers sub-events to event recognizers for
actively mmvolved views. Using the example of Fig. 3A, a user’s touch 1s represented 1n
different views of the hierarchy by touch marks 301-1, 301-2, and 301-3. In some
embodiments, sub-event data representing this user’s touch 1s delivered by the sub-event
delivery module 318 to event recognizers at the actively involved views, i.e., top level view
302, secarch results panel 304 and maps view 305. Further, the event recognizers of a view
can receive subsequent sub-events of an event that starts within the view (e.g., when an 1nitial
sub-event occurs within the view). Stated in another way, a view can receive sub-events
assoclated with user interactions beginning in the view, even if 1t continues outside of the

ViEw.

[0050] In some embodiments, sub-event delivery module 356 delivers sub-events to
event recognizers for actively involved programmatic levels 1n a process analogous to that

used by sub-event delivery module 318.

[0051] In some embodiments, a separate event recognizer structure 320 or 360 18
generated and stored in memory of the device for each actively involved event recognizer.
Event recognizer structures 320 and 360 typically include an event recognizer state 334, 374,

respectively (discussed 1n greater detail below when referring to Figs. 4A and 4B), and event

13

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

recognizer specific code 338, 378, respectively, having state machines 340, 380, respectively.
Event recognizer structure 320 also includes a view hierarchy reference 336, while event
recognizer structure 360 includes a programmatic hierarchy reference 376. Each instance of
a particular event recognizer references exactly one view or programmatic level. View
hicrarchy reference 336 or programmatic hierarchy reference 376 (for a particular event
recognizer) are used to establish which view or programmatic level 1s logically coupled to the

respective event recognizer.

[0052] View metadata 341 and level metadata 381 may include data regarding a view
or level, respectively. View or level metadata may include at least the following properties

that may influence sub-event delivery to event recognizers:

o A stop property 342, 382, which, when set for a view or programmatic level prevents
sub-event delivery to event recognizers associated with the view or programmatic

level as well as 1ts ancestors 1n the view or programmatic hierarchy.

e A skip property 343, 383, which, when set for a view or programmatic level prevents
sub-event delivery to event recognizers associated with that view or programmatic
level, but permits sub-event delivery to its ancestors 1n the view or programmatic

hierarchy.

e A NoHit skip property 344, 384, which, when set for a view, prevents delivery of sub-
events to event recognizers associated with the view unless the view 1s the hit view.
As discussed above, the hit view determination module 314 1dentifies a hit-view (or
hit-level in the case of hit-level determination module 352) as the lowest view 1n the

hierarchy which should handle the sub-event.

[0053] Event recognizer structures 320 and 360 may include metadata 322, 362,
respectively. In some embodiments, the metadata 322, 362 includes configurable properties,
flags, and lists that indicate how the event delivery system should perform sub-event delivery
to actively involved event recognizers. In some embodiments, metadata 322, 362 may
include configurable properties, flags, and lists that indicate how event recognizers may
interact with one another. In some embodiments, metadata 322, 362 may include
configurable properties, flags, and lists that indicate whether sub-events are delivered to
varying levels in the view or programmatic hierarchy. In some embodiments, the
combination of event recognizer metadata 322, 362 and view or level metadata (341, 381,

respectively) are both be used to configure the event delivery system to: a) perform sub-event
14

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118

delivery to actively mvolved event recognizers, b) indicate how event recognizers may

interact with one another, and ¢) mndicate whether and when sub-events are delivered to

various levels 1n the view or programmatic hierarchy.

10054]

It 1s noted that, in some embodiments, a respective event recognizer sends an

event recognition action 333, 373 to 1ts respective target 335, 375, as specified by fields of

the event recognizer’s structure 320, 360. Sending an action to a target 1s distinct from

sending (and deferred sending) sub-events to a respective hit view or level.

0055]

The metadata properties stored 1n a respective event recognizer structure 320,

360 of a corresponding event recognizer includes at least:

An exclusivity flag 324, 364, which, when set for an event recognizer, indicates that
upon recognition of an event by the event recognizer, the event delivery system
should stop delivering sub-events to any other event recognizers of the actively
involved views or programmatic levels (with the exception of any other event
recognizers listed 1n an exception list 326, 366). When receipt of a sub-event causes a
particular event recognizer to enter the exclusive state, as indicated by its
corresponding exclusivity flag 324 or 364, then subsequent sub-events are delivered
only to the event recognizer 1n the exclusive state (as well as any other event

recognizers listed 1n an exception list 326, 366).

Some event recognizer structures 320, 360, may include an exclusivity exception list
326, 366. When included 1n the event recognizer structure 320, 360 for a respective
event recognizer, this list 326, 366 indicates the set of event recognizers, 1f any, that
are to continue receiving sub-events even after the respective event recognizer has
entered the exclusive state. For example, 1f the event recognizer for a single tap event
enters the exclusive state, and the currently involved views include an event
recognizer for a double tap event, then the list 320, 360 would list the double tap
cvent recognizer so that a double tap event can be recognized even after a single tap
event has been detected. Accordingly, the exclusivity exception list 326, 366 permits
event recognizers to recognize different events that share common sequences of sub-
events, e.g., a single tap event recognition does not preclude subsequent recognition

of a double or triple tap event by other event recognizers.

Some event recognizer structures 320, 360, may include a wait-for list 327, 367.

When included 1n the event recognizer structure 320, 360 for a respective event
15

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

recognizer, this list 327, 367 indicates the set of event recognizers, 1f any, that must
enter the event impossible or event canceled state before the respective event
recognizer can recognize a respective event. In effect, the listed event recognizers

have higher priority for recognizing an event than the event recognizer with the wait-

for list 327, 367.

e A delay touch began flag 328, 368, which, when set for an event recognizer, causes
the event recognizer to delay sending sub-events (including a touch begin or finger
down sub-event, and subsequent events) to the event recognizer’s respective hit view
or level until after 1t has been determined that the sequence of sub-events does not
correspond to this event recognizer’s event type. This flag can be used to prevent the
hit view or level from ever seeing any of the sub-events 1n the case where the gesture
1s recognized. When the event recognizer fails to recognize an event, the touch began
sub-event (and sub-sequent touch end sub-event) can be delivered to the hit view or
level. In one example, delivering such sub-events to the hit view or level causes the
user interface to briefly highlight an object, without invoking the action associated

with that object.

e A delay touch end flag 330, 370, which, when set for an event recognizer, causes the
event recognizer to delay sending a sub-event (e.g., a touch end sub-event) to the
event recognizer’s respective hit view or level until it has been determined that the
sequence of sub-events does not correspond to this event recognizer’s event type.
This can be used to prevent the hit view or level from acting upon a touch end sub-
event, 1n case the gesture 1s late recognized. As long as the touch end sub-event 1s not
sent, a touch canceled can be sent to the hit view or level. If an event 18 recognized,
the corresponding action by an application 1s preformed, and the touch end sub-event

1s delivered to the hit view or level.

e A touch cancellation flag 332, 372, which, when set for an event recognizer, causes
the event recognizer to send touch or imnput cancellation to the event recognizer’s
respective hit view or hit level when 1t has been determined that the sequence of sub-
events does not correspond to this event recognizer’s event type. The touch or input
cancellation sent to the hit view or level indicates that a prior sub-event (e.g., a touch

began sub-event) has been cancelled. The touch or mnput cancellation may cause the

16

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

input source handler’s state (see Fig. 4B) to enter the input sequence cancelled state

460 (discussed below).

[0056] In some embodiments, the exception list 326, 366 can also be used by non-
exclusive event recognizers. In particular, when a non-exclusive event recognizer recognizes
an cvent, subsequent sub-events are not delivered to the exclusive event recognizers
associated with the currently active views, except for those exclusive event recognizers listed

in the exception list 326, 366 of the event recognizer that recognized the event.

[0057] In some embodiments, event recognizers may be configured to utilize the
touch cancellation flag 1n conjunction with the delay touch end flag to prevent unwanted sub-
events from being delivered to the hit view. For example, the definition of a single tap
gesture and the first half of a double tap gesture are 1dentical. Once a single tap event
recognizer successfully recognizes a single tap, an undesired action could take place. If the
delay touch end flag 1s set, the single tap event recognizer 1s prevented from sending sub-
cvents to the hit view until a single tap event 1s recognized. In addition, the wait-for list of
the single tap event recognizer may identify the double-tap event recognizer, thercby
preventing the single tap event recognizer from recognizing a single tap until the double-tap
event recognizer has entered the event impossible state. The use of the wait-for list avoids
the execution of actions associated with a single tap when a double tap gesture 1s performed.
Instead, only actions associated with a double tap will be executed, 1n response to recognition

of the double tap event.

[00S8] Turning 1n particular to forms of user touches on touch-sensitive surfaces, as
noted above, touches and user gestures may include an act that need not be instantancous,
e.g., a touch can include an act of moving or holding a finger against a display for a period of
time. A touch data structure, however, defines the state of a touch (or, more generally, the
state of any 1nput source) at a particular time. Therefore, the values stored 1n a touch data
structure may change over the course of a single touch, enabling the state of the single touch

at different points 1n time to be conveyed to an application.

[0059] Each touch data structure can comprise various fields. In some embodiments,
touch data structures may include data corresponding to at least the touch-specific fields 339

in F1g. 3B or mput source specific fields 379 in Fig. 3C.

17

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0060] For example, a “first touch for view” field 345 1n Fig. 3B (385 for “first touch
for level” 1n Fig. 3C) can indicate whether the touch data structure defines the first touch for
the particular view (since the software element implementing the view was instantiated). A

“time stamp” ficld 346, 386 can indicate the particular time to which the touch data structure

relates.

[0061] Optionally, an “info” field 347, 387 can be used to indicate 1f a touch 1s a
rudimentary gesture. For example, the “info” field 347, 387 can indicate whether the touch 1s
a swipe and, 1f so, 1n which direction the swipe 1s oriented. A swipe 1s a quick drag of one or
more fingers 1n a straight direction. API implementations (discussed below) can determine 1f
a touch 1s a swipe and pass that information to the application through the “info” field 347,
387, thus alleviating the application of some data processing that would have been necessary

if the touch were a swipe.

[0062] Optionally, a “tap count” field 348 in Fig. 3B (*‘event count” field 388 in Fig.
3C) can indicate how many taps have been sequentially performed at the position of the
initial touch. A tap can be defined as a quick pressing and lifting of a finger against a touch-
sensitive panel at a particular position. Multiple sequential taps can occur 1f the finger 1s
again pressed and released in quick succession at the same position of the panel. An event
delivery system 124 can count taps and relay this information to an application through the
“tap count” field 348. Multiple taps at the same location are sometimes considered to be a
uscful and easy to remember command for touch enabled interfaces. Thus, by counting taps,

the event delivery system 124 can again alleviate some data processing from the application.

[0063] A “phase” field 349, 389 can indicate a particular phase the touch-based
gesture 1S currently in. The phase field 349, 389 can have various values, such as “touch
phase began” which can indicate that the touch data structure defines a new touch that has not
been referenced by previous touch data structures. A “touch phase moved” value can indicate
that the touch being defined has moved from a prior position. A “touch phase stationary”
value can 1ndicate that the touch has stayed 1n the same position. A “touch phase ended”
value can indicate that the touch has ended (e.g., the user has lifted his/her finger from the
surface of a multi touch display). A “touch phase cancelled” value can indicate that the touch
has been cancelled by the device. A cancelled touch can be a touch that 1s not necessarily
ended by a user, but which the device has determined to 1gnore. For example, the device can

determine that the touch is being generated inadvertently (1.¢., as a result of placing a portable
18

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

multi touch enabled device 1n one’s pocket) and 1gnore the touch for that reason. Each value

of the “phase field” 349, 389 can be a integer number.

[0064] Thus, each touch data structure can define what 1s happening with a touch (or
other mput source) at a particular time (¢.g., whether the touch 1s stationary, being moved,
ctc.) as well as other information associated with the touch (such as position). Accordingly,
cach touch data structure can define the state of a particular touch at a particular moment 1n
time. One or more touch data structures referencing the same time can be added 1n a touch
event data structure that can define the states of all touches a particular view 1s recerving at a
moment 1n time (as noted above, some touch data structures may also reference touches that
have ended and are no longer being received). Multiple touch event data structures can be
sent to the software implementing a view as time passes, 1n order to provide the software with

continuous information describing the touches that are happening in the view.

[0065] The ability to handle complex touch-based gestures, optionally including
multi-touch gestures, can add complexity to the various software elements. In some cases,
such additional complexity can be necessary to implement advanced and desirable interface
features. For example, a game may require the ability to handle multiple simultancous
touches that occur 1n different views, as games often require the pressing of multiple buttons
at the same time, or combining accelerometer data with touches on a touch-sensitive surface.
However, some simpler applications and/or views (and their associated software elements)
need not require advanced interface features. For example, a simple soft button (i.¢., a button
that 1s displayed on a touch-sensitive display) may operate satisfactorily with single touches,
rather than multi-touch functionality. In these cases, the underlymmg OS may send
unnecessary or excessive touch data (e.g., multi-touch data) to a software element associated
with a view that 1s intended to be operable by single touches only (¢.g., a single touch or tap
on a soft button). Because the software element may need to process this data, it may need to
feature all the complexity of a software element that handles multiple touches, even though 1t
1s associated with a view for which only single touches are relevant. This can increase the
cost of development of software for the device, because software elements that have been
traditionally easy to program 1n a mouse interface environment (1.¢., various buttons, etc.)

may be much more complex 1n a multi-touch environment.

[0066] It shall be understood, however, that the foregoing discussion regarding the

complexity of evaluating and processing user touches on touch-sensitive surfaces also applies
19

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

to all forms of user inputs to operate clectronic devices 102 and 104 with input-devices, 128
and 158, respectively, not all of which are initiated on touch screens, e.g., coordinating mouse
movement and mouse button presses with or without single or multiple keyboard presses or
holds, user movements taps, drags, scrolls, etc., on touch-pads, pen stylus inputs, oral
instructions, detected eye movements, biometric inputs, detected physiological change in a
user, and/or any combination thereof, which may be utilized as iputs corresponding to sub-

events which define an event to be recognized.

[0067] Figures 4A depicts an event recognizer state machine 400 containing four
states. By managing state transitions 1n event recognizer state machine 400 based on
received sub-events, an event recognizer effectively expresses an event definition. For
example, a tap gesture may be effectively defined by a sequence of two, or optionally, three
sub-events. First, a touch should be detected, and this will be sub-event 1. For example, the
touch sub-event may be a user’s finger touching a touch-sensitive surface in a view that
includes the event recognizer having state machine 400. Second, an optional measured delay
where the touch does not substantially move in any given direction (€.g., any movement of
the touch position is less than a predefined threshold, which may be measured as a distance
(¢.g., 5 mm) or as a number of pixels (e.g., 5 pixels) on the display), and the delay 1s
sufficiently short, would serve as sub-event 2. Finally, termination of the touch (¢.g., liftoft
of the user’s finger from the touch-sensitive surface) will serve as sub-event 3. By coding the
event recognizer state machine 400 to transition between states based upon recerving these
sub-events, the event recognizer state machine 400 effectively expresses a tap gesture event

definition.

[0068] Regardless of event type, the event recognizer state machine 400 begins 1n an
event recognition begins state 405, and may progress to any of the remaining states
depending on what sub-event 1s received. To facilitate discussion of the event recognizer
state machine 400, the direct paths from the event recognition begins state 405 to the event
recognized state 4135, the event possible state 410, and event impossible state 420 will be

discussed, followed by a description of the paths leading from the event possible state 410.

[0069] Starting from event recognition begins state 405, 1f a sub-event 1s received
that, by 1tseltf comprises the event definition for an event, the event recognizer state machine

400 will transition to event recognized state 413.

20

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0070] Starting from state event recognition begins 4035, 1f a sub-event 1s received that
1S not the first sub-event 1n an event definition, the event recognizer state machine 400 will

transition to event impossible state 420.

[0071] Starting from event recognition begins state 4035, 1f a sub-event 18 received that
1s the first and not final sub-event 1in a given event definition, the event recognizer state
machine 400 will transition to event possible state 410. If the next sub-event received 1s a
second sub-event, but not the final sub-event 1n the given event definition, the event
recognizer state machine 400 will remain 1n state event possible 410. The event recognizer
state machine 400 can remain in state event possible 410 for as long as the sequence of
received sub-events continues to be part of the event definition. If, at any time the event
recognizer state machine 400 1s 1n event possible state 410, and the event recognizer state
machine 400 receives a sub-event that 1s not part of the event definition, 1t will transition to
state event impossible 420, thereby determining that the current event (if any) 1s not the type
of event that corresponds to this event recognizer (i.c., the event recognizer corresponding to
state 400). If, on the other hand, the event recognizer state machine 400 1s 1n the event
possible state 410, and the event recognizer state machine 400 receives the last sub-event 1n
an event definition, 1t will transition to the event recognized state 4135, thereby completing a

successful event recognition.

[0072] Fig. 4B depicts an embodiment of an mput source handling process 440,
having a finite state machine representing how views receive information about a respective
input. It 1s noted that when there are multiple touches on the touch-sensitive surface of a
device, each of the touches 1s a separate input source having its own finite state machine. In
this embodiment, input source handling process 440 includes four states: input sequence
begin 445, input sequence continues 450, input sequence ended 455, and mput sequence
cancelled 460. Input source handling process 440 may be used by a respective event
recognizer, for example, when 1nput 1s to be delivered to an application, but only after the
completion of an mput sequence 1s detected. Input source handling process 440 can be used
with an application that 1s incapable of canceling or undoing changes made 1n response to an

input sequence delivered to the application.

[0073] Starting from input sequence begin 445, 1f an mput 1s received that, by 1tself
completes an mput sequence, input source handling process 440 will transition to input

sequence ended 455.

21

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0074] Starting from mput sequence begin 4435, 1f an input 1s received that indicates
the mput sequence terminated, input source handling process 440 will transition to input

sequence cancelled 460.

[0075] Starting from input sequence begin 445, 1f an mput 1s received that 18 the first
and not final input 1n a mput sequence, mput source handling process 440 will transition to
state input sequence continues 450. If the next input recerved 1s the second mnput in an mnput
sequence, the mput handling process 440 will remain 1n state input sequence continues 450.
Input source handling process 440 can remain 1n state input sequence contiues 450 for as
long as the sequence of sub-¢vents being delivered continue to be part of a given mput
sequence. If, at any time mput source handling process 440 1s 1n state input sequence
continues 450, and input source handling process 440 receives an input that 1s not part of the
input sequence, 1t will transition to state input sequence cancelled 460. If, on the other hand,
input source handling process 440 1s in mnput sequence continues 450, and the mput handling
process 440 recerves the last input 1n a given input definition, 1t will transition to the mput

sequence ended 455, thereby successfully receiving a group of sub-events.

[0076] In some embodiments, input source handling process 440 may be

implemented for particular views or programmatic levels. In that case, certain sequences of

sub-events may result in transitioning to state iput cancelled 460.

[0077] As an example, consider Fig. 4C, which supposes an actively involved view,
represented only by actively involved view input source handler 480 (hereafter “view 4807).
View 480 includes a vertical swipe event recognizer, represented only by vertical swipe event
recognizer 468 (hereafter “recognizer 468”) as one of 1ts event recognizers. In this case, the
recognizer 468 may require as part of 1ts definition detecting: 1) a finger down 465-1; 2) an

optional short delay 465-2; 3), vertical swiping of at least N pixels 465-3; and 4) a finger
liftoft 465-4.

[0078] For this example, the recognizer 468 also has 1ts delay touch began flag 328
and touch cancellation flag 332 set. Now consider delivery of the following sequence of sub-

events to recognizer 468, as well as the view 480:

e sub-cvent sequence 465-1: detect finger down, which corresponds to recognizer 468°s

event definition

22

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

e sub-cvent sequence 465-2: measure delay, which corresponds to recognizer 468’s

event definition

e sub-cvent sequence 465-3: finger performs a vertical swiping movement compatible
with vertical scrolling, but 1s less than N pixels, and therefore does not correspond to

recognizer 468’°s event definition

e sub-cvent sequence 465-4: detect finger liftoff, which corresponds to recognizer 468’s

event definition

[0079] Here, recognizer 468 would successfully recognize sub-events 1 and 2 as part
of 1ts event definition, and accordingly, would be 1n state event possible 472 immediately
prior to the delivery of sub-event 3. Since recognizer 468 has 1ts delay touch began flag 328
set, the 1nitial touch sub-event 1s not sent to the hit view. Correspondingly, the view 480°s
input source handling process 440 would still be 1n state input sequence begin immediately

prior to the delivery of sub-event 3.

[0080] Once delivery of sub-event 3 to recognizer 468 1s complete, recognizer 468°s
state transitions to event impossible 476, and importantly, the recognizer 468 has now
determined that the sequence of sub-events does not correspond to 1ts specific vertical swipe
gesture event type (1.€., 1t has decided the event 1s not a vertical swipe. In other words,
recognition 474 as a vertical swipe does not occur 1n this example.). The mput source
handling system 440 for view input source handler 480 will also update 1ts state. In some
embodiments, the state of the view input source handler 480 would proceed from the input
sequence begins state 482 to the input sequence continues state 484 when the event
recognizer sends status information indicating that it has begun recognizing an event. The
view 1nput source handler 480 proceeds to the mnput sequence cancelled state 488 when the
touch or input ends without an event being recognized because the touch cancellation flag
322 of the event recognizer has been set. Alternately, 1f the touch cancellation flag 322 of the
event recognizer had not been set, the view mput source handler 480 proceeds to the mput

sequence ended state 486 when the touch of input ends.

[0081] Since event recognizer 468°s touch cancellation flag 332 1s set, when the event
recognizer 468 transitions to the event impossible state 476, the recognizer will send a touch

cancellation sub-event or message to the hit view corresponding to the event recognizer. As a

23

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

result, the view input source handler 480 will transition to the state input sequence cancelled

488.

[0082] In some embodiments, delivery of sub-event 465-4 1s not germane to any
event recognition decisions made by recognizer 468, though view input source handler 480°s

other event recognizers, 1f any, may continue to analyze the sequence of sub-events.

[0083] The following table presents in summarized tabular format the processing of
this exemplary sub-event sequence 465 as related to the state of event recognizer 468
described above, along with the state of view input source handler 480. In this example, the
state of the view mput source handler 480 proceeds from input sequence begin 445 to mput

sequence cancelled 488 because recognizer 468’s touch cancellation flag 332 was set:

before delivery Event Recognition

starts Begins 470

detect finger down Event Possible 472 Input Sequence
465-1 Begins 482

measure delay 465-2 Event Possible 472 Input Sequence
‘- Continues 484

detect finger vertical Event Impossible Input Sequence
© swipe 465-3 1476 | Continues 484
detect finger hiftoff Event Impossible Input Sequence
| 4654 1476 | Cancelled 488
[0084] Turning to Fig. 5A, attention 18 directed to an example of a sub-event

sequence 520, which 1s being received by a view that includes a plurality of event
recognizers. For this example, two event recognizers are depicted in Fig. SA, scrolling event

recognizer 380 and tap event recognizer 590. For purposes of 1illustration, the view search

24

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

results panel 304 1n Fig. 3A will be related to the reception of the sub-event sequence 520,
and the state transitions in scrolling event recognizer 580 and tap event recognizer 590. Note
that 1n this example, the sequence of sub-events 520 defines a tap finger gesture on a touch-
sensitive display or trackpad, but the same event recognition technique could be applied in
myriad contexts, e.g., detecting a mouse button press, and/or in embodiments utilizing

programmatic hierarchies of programmatic levels.

[0085] Before the first sub-event 1s delivered to view search results panel 304, event
recognizers 580 and 590 are 1n the event recognition begins states 582 and 592, respectively.
Following touch 301, which 1s delivered as sub-event detect finger down 521-1 to actively
involved event recognizers for view search results panel 304 as touch sub-event 301-2 (as
well as to actively involved event recognizers for map view 305 as touch sub-event 301-3),
scrolling event recognizer 580 transitions to state event possible 584, and similarly, tap event
recognizer 590 transitions to state event possible 594. This 1s because the event definition of
a tap and a scroll both begin with a touch such as detecting a finger down on a touch-sensitive

surface.

[0086] Some definitions of tap and scroll gestures may optionally include a delay
between an 1nitial touch and any next step in the event definition. In all examples discussed
here, the exemplar event definitions for both tap and scroll gestures recognize a delay sub-

cvent following the first touch sub-event (detect finger down).

[0087] Accordingly, as sub-event measure delay 521-2 1s delivered to event

recognizers 380 and 590, both remain 1n the event possible states 584 and 594, respectively.

[0088] Finally, sub-event detect finger liftoft 521-3 1s delivered to event recognizers
580 and 590. In this case, the state transitions for event recognizers 580 and 590 are
different, because the event definitions for tap and scroll are different. In the case of scrolling
event recognizer 580, the next sub-event to remain 1n state event possible would be to detect
movement. Since the sub-event delivered 1s detect finger liftoft 521-3, however, the scrolling
event recognizer 380 transitions to state event impossible 588. A tap event definition
concludes with a finger liftoff sub-event though. Accordingly, tap event recognizer 590
transitions to state event recognized 596 after sub-event detect finger liftoff 521-3 1s

delivered.

[0089] Note that in some embodiments, as discussed above with respect to Figures 4B

and 4C, the mput source handling process 440 discussed 1n Fig. 4B may be used for various

25

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

purposes at the view level. The following table presents in summarized tabular format the

delivery of sub-event sequence 520 as related to event recognizers 580, 590, and 1nput source

handling process 440:

before delivery starts Event Recognition Event Recognition

Begins 582 Begins 592

. Detect Finger Down | Event Possible 584 = Event Possible 594 | Input Sequence

5211 Begin 445
Measure Delay 521- Event Possible 584 Event Possible 594 Input Sequence
2 | Continues 450
Detect Finger Liftoft Event impossible Event Recognized Input Sequence
5213 | 588 596 | Ended 455
[0090] Turning to Fig. 5B, attention 1s directed to another example of a sub-event

sequence 530, which 1s bemng received by a view that includes a plurality of event
recognizers. For this example, two event recognizers are depicted in Fig. 5B, scrolling event
recognizer 580 and tap event recognizer 590. For purposes of 1llustration, the view search
results panel 304 1in Fig. 3A will be related to the reception of the sub-event sequence 530,
and the state transitions 1n scrolling event recognizer 580 and tap event recognizer 590. Note
that 1n this example, the sequence of sub-events 530 defines a scroll finger gesture on a
touch-sensitive display, but the same event recognition technique could be applied in myriad
contexts, e.g., detecting a mouse button press, mouse movement, and mouse button release,

and/or in embodiments utilizing programmatic hierarchies of programmatic levels.

[0091] Before the first sub-event 1s delivered to actively involved event recognizers
for view search results panel 304, event recognizers 580 and 590 are 1n the event recognition
begins states 582 and 592, respectively. Following delivery of sub-events corresponding to
touch 301 (as discussed above), scrolling event recognizer 580 transitions to state event

possible 584, and similarly, tap event recognizer 590 transitions to state event possible 594.

26

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[0092] As sub-event measure delay 531-2 1s delivered to event recognizers 580 and

590, both transition to the event possible states 584 and 594, respectively.

[0093] Next, sub-event detect finger movement 531-3 1s delivered to event
recognizers 580 and 590. In this case, the state transitions for event recognizers 580 and 590
are different because the event definitions for tap and scroll are different. In the case of
scrolling event recognizer 580, the next sub-event to remain 1n state event possible 1s to
detect movement, so the scrolling event recognizer 580 remains 1n the event possible state
584 when 1t receives sub-event detect finger movement 531-3. As discussed above, however,
the definition for a tap concludes with a finger liftoff sub-event, so tap event recognizer 590

transitions to the state event impossible 598.

[0094] Finally, sub-cvent detect finger liftoft 531-4 1s delivered to event recognizers
580 and 590. Tap event recognizer 1s already 1n the event impossible state 598, and no state
transition occurs. Scrolling event recognizer 580°s event definition concludes with detecting
a finger liftoff. Since the sub-event delivered 1s detect finger liftoft 531-4, the scrolling event
recognizer 580 transitions to state event recognized 586. It 1s noted that a finger movement
on a touch sensitive surface may generate multiple movement sub-events, and therefore a

scroll may be recognized before liftoff and continue until liftoft.

[0095] The following table presents in summarized tabular format the delivery of sub-
event sequence 530 as related to event recognizers 580, 590, and 1nput source handling

process 440:

before delivery starts Event Recognition Event Recognition

Begins 582 Begins 592

--

detect finger down Event Possible 584 Event Possible 594 Input Sequence
S31-1 Begins 445

--

measure delay 531-2 Event Possible 584 Event Possible 594 Input sequence

- continues 450

--

...

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
Tmovement531-3 7508 lcontinues450 |
detect finger liftoft Event Recognized Event Impossible Input sequence
531-4 5386 598 ended 455

[0096] Turning to Fig. 5C, attention 1s directed to another example of a sub-event

sequence 540, which 1s being received by a view that includes a plurality of event
recognizers. For this example, two event recognizers are depicted in Fig. SC, double tap
event recognizer 570 and tap event recognizer 590. For purposes of 1llustration, the map
view 305 1n Fig. 3A will be related to the reception of the sub-event sequence 540, and the
state transitions 1n double tap event recognizer 570 and tap event recognizer 590. Note that
in this example, the sequence of sub-events 540 defines a double tap gesture on a touch-
sensitive display, but the same event recognition technique could be applied 1n myriad
contexts, e.g., detecting a mouse double click, and/or in embodiments utilizing programmatic

hierarchies of programmatic levels.

[0097] Before the first sub-event 1s delivered to actively involved event recognizers
for map view 303, event recognizers 570 and 590 are 1n the event recognition begins states
572 and 592, respectively. Following delivery of sub-events related to touch sub-event 301
to map view 304 (as described above), double tap event recognizer 570 and tap event
recognizer 590 transition to states event possible 574 and 594, respectively. This 1s because
the event definition of a tap and a double tap both begin with a touch such as detecting a

finger down on a touch-sensitive surface.

[0098] As sub-event measure delay 541-2 1s delivered to event recognizers 570 and

590, both remain 1n states event possible 574 and 594, respectively.

[0099] Next, sub-event detect finger liftoff 541-3 1s delivered to event recognizers
570 and 590. In this case, the state transitions for event recognizers 580 and 590 are different
because the exemplar event definitions for tap and double tap are different. In the case of tap
event recognizer 590, the final sub-event 1n the event definition 1s to detect finger liftoft, so

the tap event recognizer 590 transitions to the event recognized state 596.

[00100] Double tap recognizer 570 remains 1n state event possible 574, however, since
a delay has begun, regardless of what the user may ultimately do. The complete event

recognition definition for a double tap requires another delay, followed by a complete tap

28

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

sub-event sequence though. This creates an ambiguous situation as between the tap event
recognizer 590, which 1s already in state event recognized 576, and the double tap recognizer

570, which 1s still 1in state event possible 574.

[00101] Accordingly, in some embodiments, event recognizers may implement
exclusivity flags and exclusivity exception lists as discussed above with respect to Figures 3B
and 3C. Here, the exclusivity flag 324 for tap event recognizer 590 would be set, and
additionally, exclusivity exception list 326 for tap event recognizer 590 would be configured
to continue permitting delivery of sub-events to some event recognizers (such as double tap

cvent recognizer 570) after tap event recognizer 590 enters the state event recognized 596.

[00102] While tap event recognizer 590 remains in state event recognized 596, sub-
event sequence 540 continues to be delivered to double tap event recognizer 570, where sub-
cevents measure delay 541-4, detect finger down 541-5, and measure delay 541-6, keep the
double tap event recognizer 570 1n the state event possible 574; delivery of the final sub-
event of sequence 540, detect finger liftoff 541-7 transitions double tap event recognizer 570

to state event recognized 576.

[00103] At this point, the map view 305 takes the event double tap as recognized by
event recognizer 570, rather than the single tap event recognized by tap event recognizer 590.
The decision to take the double tap event 1s made 1n light of the combination of the tap event
recognizer 590°s exclusivity flag 324 being set, the tap event recognizer 590°s exclusivity
exception list 326 including a double tap event, and the fact that both the tap event recognizer
590 and the double tap event recognizer 570 both successfully recognized their respective

cvent types.

[00104] The following table presents in summarized tabular format the delivery of sub-
event sequence 540 as related to event recognizers 570 and 590, and sub-event handling

process 440:

before delivery Event Recognition Event Recognition

starts Begins 572 Begins 592

0
II

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

detect finger down Event Possible 574 Event Possible 594 Input Sequence
| 541-1 | Begins 445

--

measure delay 541-2 Event Possible 574 Event Possible 594 Input sequence

- continues 450

...

detect finger liftoft Event Possible 574 Event Recognized Input sequence
541-3 596 continues 450

..

measure delay 541-4 Event Possible 574 Event Recognized Input sequence

596 © continues 450

...

--

detect finger down Event Possible 574 Event Recognized Input sequence

541-5 596 continues 450

--

measure delay 541-6 Event Possible 574 Event Recognized Input sequence

596 | continues 450
detect finger liftoff Event Recognized Event Recognized Input sequence
| 541-7 1 576 596 | ended 455
[00105] In another embodiment, 1in the event scenario of Fig. 5C, the single tap gesture

1S not recognized, because the single tap event recognizer has a wait-for list that identifies the
double tap event recognizer. As a result, a single tap gesture 1s not recognized until (if ever)
the double tap event recognizer enters the event impossible state. In this example, 1n which a
double tap gesture 1s recognized, the single tap event recognizer would remain in the event
possible state until the double tap gesture 1s recognized, at which point the single tap event

recognizer would transition to the event impossible state.

[00106] Attention 18 now directed to Figures 6A and 6B, which are flow diagrams
illustrating an event recognition method 1n accordance with some embodiments. The method
600 1s performed at an electronic device, which 1n some embodiments, may be an electronic
device 102 or 104, as discussed above. In some embodiments, the electronic device may
include a touch sensitive surface configured to detect multi-touch gestures. Alternatively, the

clectronic device may include a touch screen configured to detect multi-touch gestures.

[00107] The method 600 1s configured to execute software that includes a view

hicrarchy with a plurality of views. The method 600 displays 608 one or more views of the

30

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

view hierarchy, and executes 610 one or more software clements. Each software element 1s
associated with a particular view, and each particular view includes one or more event
recognizers, such as those described 1n Figs. 3B and 3C as event recognizer structures 320

and 360, respectively.

[00108] Each event recognizer generally includes an event definition based on one or

more sub-events, where the event definition may be implemented as a state machine, see e.g.,
Fig. 3B state machine 340. Event recognizers also generally include an event handler, which
specifies an action for a target, and 1s configured to send the action to the target in response to

the event recognizer detecting an event corresponding to the event definition.

[00109] In some embodiments, at least one of the plurality of event recognizers 1s a

gesture recognizer having a gesture definition and a gesture handler as noted 1n step 612 of

Fig. 6A.

[00110] In some embodiments, the event definition defines a user gesture as noted in

step 614 of Fig. 6A.

[00111] Alternatively, event recognizers have a set of event recognition states 616.
These event recognition states may include at least an event possible state, an event

impossible state, and an event recognized state.

[00112] In some embodiments, the event handler initiates preparation 618 of 1ts
corresponding action for delivery to the target 1f the event recognizer enters the event
possible state. As discussed above with respect to Fig. 4A and the examples 1n Figs. SA-5C,
the state machines implemented for each event recognizer generally include an initial state,
e.g., state event recognition begins 405. Receiving a sub-event that forms the mnitial part of
an cvent definition triggers a state change to the event possible state 410. Accordingly, in
some embodiments, as an event recognizer transitions from the state event recognition begins
405 to the state event possible 410, the event recognizer’s event handler may begin preparing
its particular action to deliver to the event recognizer’s target after an event 1s successtully

recognized.

[00113] On the other hand, 1n some embodiments, the event handler may terminate
preparation 620 of 1ts corresponding action 1f the event recognizer enters the state event
impossible 420. In some embodiments, terminating the corresponding action includes

canceling any preparation of the event handler’s corresponding action.

31

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[00114] The example of Fig. 5B 1s informative for this embodiment since tap event
recognizer 590 may have 1nitiated preparation 618 of its action, but then, once the sub-event
detect finger movement 531-3 1s delivered to the tap event recognizer 590, the recognizer 590
will transition to the event impossible state 598, 578. At that point, tap event recognizer 590

may terminate preparation 620 of the action for which 1t had mitiated preparation 618.

[00115] In some embodiments, the event handler completes preparation 622 of 1ts
corresponding action for delivery to the target 1f the event recognizer enters the event
recognized state. The example of Fig. 5C 1llustrates this embodiment since a double tap 18
recognized by actively involved event recognizers for the map view 305, which 1n some
implementations, would be the event bound to selecting and/or executing the search result
depicted by map view 305. Here, after the double tap event recognizer 570 successtully
recognizes the double tap event comprised of the sub-event sequence 540, map view 305°s
cevent handler completes preparation 622 of 1ts action, namely, indicating that 1t has received

an activation command.

[00116] In some embodiments, the event handler delivers 624 its corresponding action
to the target associated with the event recognizer. Continuing with the example of Fig. 5C,
the action prepared, i.e. the activation command of the map view 305, would be delivered to
the specific target associated with the map view 305, which may be any suitable

programmatic method or object.

[00117] Alternatively, the plurality of event recognizers may independently process

626 the sequence of one or more sub-events in parallel.

[00118] In some embodiments, one or more event recognizers may be configured as
exclusive event recognizers 628, as discussed above with respect to Fig. 3B and 3C’s
exclusivity flags 324 and 364, respectively. When an event recognizer 1s configured as an
exclusive event recognizer, the event delivery system prevents any other event recognizers
for actively involved views (except those listed 1n the exception list 326, 366 of the event
recognizer that recognizes the event) 1n the view hierarchy from receiving subsequent sub-
cvents (of the same sequence of sub-events) after the exclusive event recognizer recognizes
an event. Furthermore, when a non-exclusive event recognizer recognizes an event, the event
delivery system prevents any exclusive event recognizers for actively involved views in the
view hierarchy from receiving subsequent sub-events, except for those (if any) listed 1n the

exception list 326, 366 of the event recognizer that recognizes the event.

32

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

[00119] In some embodiments, exclusive event recognizers may include 630 an event
exception list, as discussed above with respect to Fig. 3B and 3C’s exclusivity exception lists
326 and 366, respectively. As noted 1n the discussion of Fig. SC above, an event recognizer’s
exclusivity exception list can be used to permit event recognizers to continue with event
recognition even when the sequence of sub-events making up their respective event
definitions overlap. Accordingly, in some embodiments, the event exception list includes
events whose corresponding event definitions have repetitive sub-events 632, such as the

single tap/double tap event example of Fig. 5C.

[00120] Alternately, the event definition may define a user input operation 634.

[00121] In some embodiments, one or more event recognizers may be adapted to delay

delivering every sub-event of the sequence of sub-events until after the event 1s recognized.

[00122] The method 600 detects 636 a sequence of one or more sub-events, and 1n
some embodiments, the sequence of one or more sub-events may include primitive touch
events 638. Primitive touch events may include, without limitation, basic components of a
touch-based gesture on a touch-sensitive surface, such as data related to an initial finger or
stylus touch down, data related to 1nitiation of multi-finger or stylus movement across a
touch-sensitive surface, dual finger movements 1n opposing directions, stylus lift off from a

touch-sensitive surface, etc.

[00123] Sub-events 1n the sequence of one or more sub-events can mnclude many
forms, including without limitation, key presses, key press holds, key press releases, button
presses, button press holds, button press releases, joystick movements, mouse movements,
mouse button presses, mouse button releases, pen stylus touches, pen stylus movements, pen
stylus releases, oral instructions, detected eye movements, biometric inputs, and detected

physiological changes 1n a user, among others.

[00124] The method 600 1dentifies 640 one of the views of the view hierarchy as a hit
view. The hit view establishes which views 1n the view hierarchy are actively involved
views. An example 1s depicted in Fig. 3A, where the actively mvolved views 306 include
scarch results panel 304, and maps view 305 because touch sub-event 301 contacted the arca

assoclated with the maps view 3035.

[00125] In some embodiments, a first actively involved view within the view hierarchy
may be configured 642 to prevent delivery of the respective sub-event to event recognizers

associated with that first actively involved view. This behavior can implement the skip
33

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

property discussed above with respect to Figs. 3B and 3C (330 and 370, respectively). When
the skip property 1s set for an event recognizer, delivery of the respective sub-event 1s still
performed for event recognizers associated with other actively involved views in the view

hierarchy.

[00126] Alternately, a first actively involved view within the view hierarchy may be
configured 644 to prevent delivery of the respective sub-event to event recognizers associated
with that first actively involved view unless the first actively involved view is the hit view.

This behavior can implement the conditional skip property discussed above with respect to

Figs. 3B and 3C (332 and 372, respectively).

[00127] In some embodiments, a second actively involved view within the view
hierarchy 1s configured 646 to prevent delivery of the respective sub-event to event
recognizers associated with the second actively involved view and to event recognizers
associated with ancestors of the second actively involved view. This behavior can implement
the stop property discussed above with respect to Figs. 3B and 3C (328 and 368,

respectively).

[00128] The method 600 delivers 648 a respective sub-event to event recognizers for
cach actively involved view within the view hierarchy. In some embodiments, event
recognizers for actively involved views 1n the view hierarchy process the respective sub-
event prior to processing a next sub-event in the sequence of sub-events. Alternately, event
recognizers for the actively involved views 1n the view hierarchy make their sub-event

recognition decisions while processing the respective sub-event.

[00129] In some embodiments, event recognizers for actively involved views in the
view hiecrarchy may process the sequence of one or more sub-events concurrently 6350;
alternatively, event recognizers for actively involved views 1n the view hierarchy may

process the sequence of one or more sub-events in parallel.

[00130] In some embodiments, one or more event recognizers may be adapted to delay
delivering 652 one or more sub-events of the sequence of sub-events until after the event
recognizer recognizes the event. This behavior reflects a delayed event. For example,
consider a single tap gesture in a view for which multiple tap gestures are possible. In that
case, a tap event becomes a "tap + delay" recognizer. In essence, when an event recognizer
implements this behavior, the event recognizer will delay event recognition until 1t 1S certain

that the sequence of sub-events does 1n fact correspond to 1ts event definition. This behavior

34

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

may be appropriate when a recipient view 1s incapable of appropriately responding to
cancelled events. In some embodiments, an event recognizer will delay updating 1ts event
recognition status to its respective actively involved view until the event recognizer 1s certain
that the sequence of sub-events does not correspond to its event definition. As discussed
above with respect to Figs. 3B and 3C, delay touch began flag 328, 368, delay touch end flag
330, 370, and touch cancellation flag 332, 372 are provided to tailor sub-event delivery

techniques, as well as event recognizer and view status information updates to specific needs.

[00131] The foregoing description, for purpose of explanation, has been described with
reference to specific embodiments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the precise forms disclosed. Many
modifications and variations are possible 1n view of the above teachings. The embodiments
were chosen and described 1n order to best explain the principles of the invention and its
practical applications, to thereby enable others skilled 1n the art to best utilize the invention
and various embodiments with various modifications as are suited to the particular use

contemplated.

35

CA 02755443 2013-05-09

What 1s claimed 1s:

1. A method, comprising:
at an electronic device configured to execute software that includes a view hierarchy with a
plurality of views:
displaying one or more views of the view hierarchy:
executing one or more software elements, each software element being associated
with a particular view that includes one or more event recognizers, each event recognizer
having:
an event definition based on one or more sub-events, and
an event handler. wherein the event handler:
specifies an action for a target, and
1s configured to send the action to the target in response to the event
recognizer detecting an event corresponding to the event definition;
detecting a sequence of one or more sub-events;
identifying one of the views of the view hierarchy as a hit view, wherein the hit view
establishes which views in the view hierarchy are actively involved views:
delivering a respective sub-event to event recognizers for multiple actively mvolved
views within the view hierarchy; and
at event recognizers for the multiple actively involved views in the view hierarchy,
processing the respective sub-event prior to processing a next sub-event 1n the sequence of

sub-events.

2. The method of claim 1, wherein each event recognizer for the multiple actively
involved views in the view hierarchy processes the sequence of one or more sub-events

concurrently.

3. The method of any of claims 1 to 2, wherein a first actively involved view within the
view hierarchy i1s configured to prevent delivery of the respective sub-event to one or more

event recognizers associated with the first actively involved view.

73 The method of any of claims 1 to 2, wherein a first actively involved view within the
view hierarchy 1s configured to prevent delivery of the respective sub-event to one or more
event recognizers associated with the first actively involved view unless the first actively

involved view 1s the hit view.

360

CA 02755443 2013-05-09

e

. The method of any of claims 1 to 4, wherein a second actively involved view within
the view hierarchy 1s configured to prevent delivery of the respective sub-event to one or
more event recognizers associated with the second actively involved view and to one or more

~event recognizers associated with ancestors of the second actively involved view.

0. The method of any of claims 1 to 5, wherein. for the particular view, at least one of

the one or more event recognizers 1S a gesture recognizer having a gesture definition and a

gesture handler.

7. The method of any of claims [to 6, wherein the event definition defines a user
gesture.
3. The method of any of claims 1 to 7, wherein the electronic device further comprises a

touch sensitive surface configured to detect multi-touch gestures.

9. The method of any of claims 1 to 7, wherein the electronic device further comprises a

touch screen configured to detect multi-touch gestures.

10, The method of any of claims 1 to 9, wherein the sequence of one or more sub-events

includes primitive touch events.

11, The method of any of claims 1 to 10, wherein each event recognizer has a set of event

recognition states including at least an event possible state, an event impossible state. and an

event recognized state.

12. The method of claim 11, wherein a respective event handler 1s configured to initiate

preparation of a corresponding action for delivery to the target if a corresponding event

recognizer enters the event possible state.

13. The method of claim 12, wherein the respective event handler is configured to
complete preparation of the corresponding action for delivery to the target if the

corresponding event recognizer enters the event recognized state.

14. The method of claim 13, wherein the respective event handler i1s configured to deliver

the corresponding action to the target.

CA 02755443 2013-05-09

13. The method of any of claims 1 to 14, wherein, for the multiple actively mvolved
views, the event recognizers independently process the sequence of one or more sub-events in

parallel.

16. T'he method of any of claims 1 to 13, wherein at least one event recognizer of the one
or more event recognizers 1s adapted to delay delivering one or more sub-events of the

sequence of sub-events until after the event is recognized.

17. I'he method of any of claims 1 to 16. wherein:'

one or more exclusive event recognizers. comprising a subset of the event recognizers
for the multiple actively involved views, are configured to perform exclusive event
recognition, and

the method further comprises, when any of the one or more exclusive event
recognizers recognizes an event, preventing any other event recognizers for the multiple
actively involved views in the view hierarchy from receiving subsequent sub-events of the

sequence of sub-events.

18. The method of claim 17, wherein the one or more exclusive event recognizers include

an event exception list.

19. T'he method of claim 18, wherein the event exception list includes events whose

corresponding event definitions have repetitive sub-events.

20. T'he method of any of claims 1 to 19, wherein the event definition defines a user Input
operation.
21. I'he method of any of claims 1 to 20, wherein a respective sub-event of the sequence

of one or more sub-events is selected from the group consisting of a key press, a key press
hold, a key press release, a button press, a button press hold, a button press release. a joystick
movement, a mouse movement, a mouse button press, a mouse button release. a pen stylus
touch, a pen stylus movement, a pen stylus release, an oral instruction. a detected eve

movement, a biometric input, and a detected physiological change in a user.

22, A computer readable storage medium storing one or more programs for execution by
one or more processors of a computer system or device, the one or more programs including:

one or more application programs for displaying one or more views of a view

hierarchy with a plurality of views:
38

CA 02755443 2013-05-09

the one or more application programs including one or more software elements. each
software element being associated with a particular view that includes one or more event
recognizers, each event recognizer having:
an event definition based on one or more sub-events, and
an event handler, wherein the event handler:
specifies an action for a target, and
1s configured to send the action to the target in response to the event
recognizer detecting an event corresponding to the event definition:
event management instructions, which when executed by the one or more Processors
of the computer system or device, cause the computer system or device to:
detect a sequence of one or more sub-events:
1dentify one of the views of the view hierarchy as a hit view, wherein the hit
view establishes which views in the view hierarchy are actively involved views:
deliver a respective sub-event to event recognizers for multiple actively
involved views within the view hierarchy; and
at event recognizers for the multiple actively involved views in the view
hierarchy, process the respective sub-event prior to processing a next sub-event in the

sequence of sub-events.

23. The computer readable storage medium of claim 22, wherein each event recognizer
for the multiple actively involved views in the view hierarchy processes the sequence of one

Or more sub-events concurrently.

24, T'he computer readable storage medium of any of claims 22 to 23, wherein a first
actively involved view within the view hierarchy is configured to prevent delivery of the

respective sub-event to event recognizers associated with the first actively involved view.

25, The computer readable storage medium of any of claims 22 to 23, wherein a first
actively involved view within the view hierarchy is configured to prevent delivery of the
respective sub-event to event recognizers associated with the first actively involved view

unless the first actively involved view is the hit view,

26. T'he computer readable storage medium of any of claims 22 to 25, wherein a second

actively involved view within the view hierarchy is configured to prevent delivery of the

39

CA 02755443 2013-05-09

respective sub-event to event recognizers associated with the second actively involved view

and to event recognizers associated with ancestors of the second actively mvolved view.

27. The computer readable storage medium of anv of claims 2?2 to 26, wherein, for the
o -
particular view, at least one of the one or more event recognizers 1s a gesture recognizer

having a gesture definition and a gesture handler.

28. An apparatus, comprising:
a display;
one or more processors; and
memory storing one or more programs configured to display one or more views of a
view hierarchy with a plurality of views,
the one or more programs including one or more software elements, each software
element being associated with a particular view that includes one or more event recognizers,
each event recognizer having:
an event definition based on one or more sub-events. and
an event handler, wherein the event handler:
specities an action for a target, and
1s configured to send the action to the target in response to the event
recognizer detecting an event corresponding to the event definition:;
the one or more programs including an event delivery program, which, when executed
by the one or more processors of the apparatus, cause the apparatus to:
detect a sequence of one or more sub-events:
identify one of the views of the view hierarchy as a hit view, wherein the hit
view establishes which views in the view hierarchy are actively involved views:
deliver a respective sub-event to event recognizers for multiple actively
mvolved views within the view hierarchy; and
at event recognizers for the multiple actively involved views in the view

hierarchy, process the respective sub-event prior 10 processing a next sub-event in the

sequence of sub-events.

29. The apparatus of claim 28, wherein each event recognizer for the multiple actively
involved views in the view hierarchy processes the sequence of one or more sub-events

concurrently.

40

CA 02755443 2013-05-09

30. The apparatus of any of claims 28 to 29. wherein a first actively involved view within
the view hierarchy is configured to prevent delivery of the respective sub-event to event

recognizers associated with the first actively involved view.

31. The apparatus of any of claims 28 to 29, wherein a first actively involved view within
the view hierarchy is configured to prevent delivery of the respective sub-event to event
recognizers associated with the first actively involved view unless the first actively mvolved

view 1S the hit view.

32, The apparatus of any of claims 28 to 31, wherein a second actively mvolved view
within the view hierarchy is configured to prevent delivery of the respective sub-event to
event recognizers associated with the second actively involved view and to event reCOgniZers

associated with ancestors of the second actively invoived view.

53. The apparatus of any of claims 28 to 32, wherein, for the particular view. at least one
of the one or more event recognizers is a gesture recognizer having a gesture definition and a

gesture handler.

4]

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
Electronic Device
102 ”O'Aﬁ Memory 111-A -
\ CPU(S) Operating System — _118-A
icati —_120-A
115-A— Communications Module
__ —1122-A
113-A : §
126 \ 130_A\ ‘Event Delivery System | —_124-A
N :
\\User interface Sensor(s) | | | . T
~ Display . Application Software
(optional)
Input Device(s)
AN
128-A Communication _JUZ-A
iInterface(s)
Figure 1A
- - 110-B
Electronic Device Memory 111-B
104 . N
\‘ CPU Operating System —_118-B
Communications Module | ——120-B
115-B —
““““““““““““““““““““““““““ —+— - 122-B
156 1 13_8\ 130'8\ Event Delivery System | — 124-B
\ |
\User interface Sensor(s) | | |
Touch-Sensitive (optional) Application Software
Display
Input Device(s)
\\\ Communication | 112-B
128-B interface(s)
Figure 1B

1/13

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

Input/Output

Processing
200

202
Application Software e
204

Application and User Interface Vs
APl Software
Operating System APl Software 206

vat
T
e

v

Figure 2

2/13

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

View Hierarchy 300 \

301-1
B 7

I-)

2] (=] (A

Contacts Mail Safari IPod

Mail IPod

Safari

307 Contacts

310-1 310-2 310-3 310-4

Figure 3A

3/13

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
Event Recognizer Event Recognizer
Global Methods Structure
312 320

Hit View Determination Metadata 322
314
Module 324

. . Exclusivity Flag
Active Event Recognizer _ . .
Determination Module 316 Exclusivity Exception List 326
| 318 \optional) 327
Sub-Event Delivery Module Wait-for List 258
Delay Touch Began Flag 330
View Metadata Delay Touch End Flag
341 Touch Cancellation Flag |/~ °>2
. 333
onF
t t
335
Skip Propert
, o
NoHit Skip Property Event Recognizer State
View Hierarchy Reference(s) 336
Event Recognizer specific code 338
340
State Machine
Touch-Specific Fields 339
(optional)
First Touch For View 49
. 346
Time Stamp
o 347
nfo
Figure 3B o |
Y Tap Count
o

4/13

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
Event Recognizer Event Recognizer
Global Methods Structure
390 360

Hit Level Determination 392 | Metadata 3%32
Module Exclusivity Flag
Active Event Recognizer 354 Exclusivity Exception List 306
Determination Module (optional) 367
396 it -
Sub-Event Delivery Module Wait-for List 368
Delay Touch Began Flag

370
Delay Touch End Flag
. 372
L evel Metadata Touch Cancellation Flag -
381 Action
375

382 Target
Stop Property
. 383 74
SKIp Property Event Recognizer State .
NoHit Skip Property 384 —
Programmatic Hierarchy 376

Reference(s)

Event Recognizer specific code 378
380
State Machine
Input Source Specific Fields 319
(optional)
First Input For Level 385
. 386
Time Stamp
387
388
' Event Count
Figure 3C .

5/13

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

Event Recognizer

State Machine @\
/ Event \

405
Recognition
Begins

N

Event Possible

Event 420

Impossible

Event
415
Recognized e

Figure 4A

6/13

CA 02755443 2011-09-14
WO 2010/107669 PCT/US2010/027118

Input Source
Handling Process\
440

InpUt 445
Sequence e

Begin

N

Input
Seguence
Continues

Input
Sequence
Cancelled

460

Input
Seguence
Ended

— 455

Figure 4B

7/13

CA 02755443 2011-09-14

WO 2010/107669

Sub-Event Sequence 465

o Detect finger down 465-1

o Measure delay 465-2

o Detect finger vertical swipe of
at least N pixels 465-3

e Detect finger lift off 465-4

PCT/US2010/027118

Vertical Swipe
Event Recognizer 468

470

Event
Possible

Event

Impossible

Event

474

Recognized

476

Figure 4C

8/13

Actively Involved View
Input Source Handler 480

Input Seaq. 432
Begins

484

Input Seq.
Continues

Input Seaq.

Cancelled

Input Seq.

Ended 486 RN

483

WO 2010/107669

Sub-Event Sequence 520

o Detect finger down 521-1
o NMeasure delay 521-2
e Detect finger liftoff 521-3

CA 02755443 2011-09-14

PCT/US2010/027118

Scrolling Event Recognizer 580

582

Event
Possible

Event

Impossible

Event
Recognized

5806
538

Tap Event Recognizer 590

592

Event

Possible

Event

Impossible

Event
Recognized

-~ 9596
5938

Figure S5A

9/13

CA 02755443 2011-09-14

WO 2010/107669

Sub-Event Sequence 530

Detect finger down 531-1
Measure delay 531-2

Detect finger movement 531-3
Detect finger lift off 531-4

PCT/US2010/027118

Scrolling Event Recognizer 580

582

Event
Possible

Event

Impossible

Event
Recognized

5806
538

Figure 5B

10/13

Tap Event Recognizer 590

592

Event

Possible

Event

Impossible

Event
Recognized

-~ 9596
5938

WO 2010/107669

Sub-Event Sequence 540

Detect finger down 541-1
Measure delay 541-2
Detect finger liftoff 541-3
Measure delay 541-4
Detect finger down 541-5
Measure delay 541-6
Detect finger liftoff 541-7

CA 02755443 2011-09-14

PCT/US2010/027118

Double Tap Event Recognizer 570

572

Event

Possible

Event

Impossible

Event
Recognized

576

5738

Tap Event Recognizer 590

592

Event
Possible

Event

Impossible

Event

596

Recognized

5938

Figure 5C

11/13

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
000
Display one or more views of the view hierarchy. 608
Execute one or more software eclements, cach software element being associated 610

with a particular view, wherein each particular view includes one or more event
recognizers, each event recognizer having an event definition based on one or more sub-
events, and an event handler, wherein the event handler specifies an action for a target, and
1s configured to send the action to the target in response to the event recognizer detecting

an cvent corresponding to the event definition.

At least one of the plurality of event recognizers 18 a gesture recognizer havinga 1 | §12
gesture definition and a gesture handler. |
e . T 11614
The event definition defines a user gesture. |
Each event recognizer has a set of event recognition states including at Ieast an event : 616
possible state, an event impossible state, and an event recognized state. |
S
| The event handler initiates preparation of 1ts corresponding action for delivery to : : 618
: the target 1f the event recognizer enters the event possible state. 5
I ——
: : : : .. ||
: The event handler terminates preparation of its corresponding action if the || 620
| event recognizer enters the event impossible state. ! : :
| T L L L L L L L L L L L L T T L L LT T T T T T T
I : : : : |
| The event handler completes preparation of 1ts corresponding action for L1622
: delivery to the target 1f the the event recognizer enters the event recognized | : :
: state. o
1R . LT LT T ik 1 624
|0 The event handler delivers its corresponding action to the target. S
| - - - - - - e — - I | |
e B
I —
The plurality of event recognizers independ.ently process the sequence of one or more : 626
sub-events in parallel. vl'/
- T T . . T T T T . T |
| One or more of the plurality of event recognizers, comprising exclusive event 6238
: recognizers, are configured to perform exclusive event recognition, and the event :
: delivery system prevents any non-¢xclusive event recognizers for actively involved :
| views 1n the view hierarchy from recognizing respective events after any of the
: exclusive event recognizers recognizes an event. :
N . T T T T T T ' 1+-630
: : One or more exclusive event recognizers include an event exception list. 1
- C e
: : | The event exception list includes events whose corresponding event definitions : : | 532
: | : have repetitive sub-cvents. 1 :
|l___ll
___ ;
The event definition defines a user input operation. EJ:/ 634
e

Figure 6A
12/13

CA 02755443 2011-09-14

WO 2010/107669 PCT/US2010/027118
Detect a sequence of one or more sub-events. 036
T T T T T T T T T T T TS T TS TTTTTTTToTTT T T s |
| . o |
. The sequence of one or more sub-events includes primitive touch events. 633

Identify one of the views of the view hierarchy as a hit view, wherein the hit view
establishes which views in the view hierarchy are actively involved views. 640

A first actively involved view within the view hierarchy is configured to
: prevent delivery of the respective sub-event to event recognizers associated
| with the first actively involved view.

A first actively involved view within the view hierarchy is configured to :

prevent delivery of the respective sub-event to event recognizers associated |

with the first actively involved view unless the first actively involved view 18 :
the hit view.

644

A second actively involved view within the view hierarchy 1s configured to

prevent delivery of the respective sub-event to event recognizers associated

with the second actively involved view and to event recognizers associated
with ancestors of the second actively involved view.

040

Deliver a respective sub-event to event recognizers for each actively involved view
within the view hierarchy, wherein each event recognizer for actively involved
views 1n the view hierarchy processes the respective sub-event prior to processing a
next sub-event 1n the sequence of sub-events.

048

| Each event recognizer for actively involved views in the view hierarchy
: processes the sequence of one or more sub-events concurrently.

: One or more of the plurality of event recognizers 1s adapted to delay delivering

|

|

. |

| one or more sub-events of the sequence of sub-events until after the event —
|

|

|

recognizer recognizes the event.

Figure 6B
13/13

Electronic Device

—_118-A

—_120-A

— 122-A

—_ 124-A

102 110'Aﬂ Memory 111-A -
\ CPU(s) Operating System
115-A — Communications Module
113-A i .
126 \ 130'A\ Event Delivery System
A i a
\\User interface sensor(s) | | | . L
| Display . Application Software
(optional)
Input Device(s)
<
128-A Communication | 112-A

iInterface(s)

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - abstract drawing

