i~

Innovation, Sciences et
Développement economique Canada

Office de la Propriéte Intellectuelle du Canada

Innovation, Science and
Economic Development Canada

Canadian Intellectual Property Office

CA 2844451 C 2019/02/12

(11)(21) 2 844 451

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 2012/08/10
(87) Date publication PCT/PCT Publication Date: 2013/02/2
(45) Date de délivrance/lssue Date: 2019/02/12

(51) Cl.Int./Int.Cl. GO6F 3/048(2013.01)

1 (72) Inventeur/Inventor:
URBACH, JULIAN MICHAEL, US

(85) Entree phase nationale/National Entry: 2014/02/05
(86) N° demande PCT/PCT Application No.: US 2012/050331
(87) N° publication PCT/PCT Publication No.: 2013/025521

(30) Priorntes/Priorities: 2011/08/12 (US61/523,142),
2012/08/09 (US13/571,182)

(73) Proprietaire/Owner:
OTOY, INC., US

(74) Agent: MARKS & CLERK

(54) Titre : FONCTION GLISSER-DEPOSER D'OBJETS ENTRE DES APPLICATIONS
(54) Title: DRAG AND DROP OF OBJECTS BETWEEN APPLICATIONS

101

r~

102
N4 prspLay

103 ~_|

GRAPHICS
HARDWARE

104

RENDERING API

105 —~_| AppLICATION APPLICATION ENGINE
! |
106 |
| 109
DETOURED COMMANDS
W~ 1o N\
INTERFACE 110

108 ~_| usER
HARDWARE

(57) Abréegée/Abstract:
Methods, apparatuses and systems directed to capturing an object rendered on the first window of a display by a first program,
extracting the object, permitting a user to drag the object across the display into a second window of the display containing a
second program, and importing the object into the second program In substantially real-time. The drag and drop process occurs
seamlessly to the user and permits a user to select one or more of a plurality of objects in one application, drag the object into a
second application for modification, and drag the modified object back into the first application for real-time preview.

50 rue Victoria

50 Victoria Street e Place du Portage 1l ¢ Gatineau, Quebec

e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca

K1A OC9 e www.cipo.ic.gc.ca

Ll

Canada

wo 2013/025521 A3 || IR VT 0 A0 00 VAR VA

(43) International Publication Date

CA 02844451 2014-02-05

Organization
International Bureau

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/025521 A3

21 February 2013 (21.02.2013) WIPQO | PCT

(51) International Patent Classification: (74) Agent: DECARLO, James, J.; Greenberg Traurig, LLP,
GO6F 3/048 (2013.01) GO6F 9/44 (2006.01) 200 Park Avenue, 34th Fl., New York, NY 10166 (US).
06 17/00 (2006.01) (81) Designated States (unless otherwise indicated, for every

(21) International Application Number: kind of national protection available). AE, AG, AL, AM,

PCT/US2012/050381 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

, o BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(22) International Filing Date: DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
10 Angnst 2012 (10.08.2012) IN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(25) Fi]ing Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

(30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
61/523,142 12 August 2011 (12.08.2011) US IN, IR, T1, 12, UA, UG, US, UZ, VC, VN, ZA, ZM,
13/571,182 9 August 2012 (09.08.2012) US LW.

(71) Applicant (for all designated States except US): OTOY, (84) Designated States (unless otherwise indicated, for every
LLC [US/US]; 13351-d Riverside, Dr., #620, Sherman kind Of regz’onal protection avaz’lable): ARIPO (BW, GH,
Oaks, CA 91423 (US). OM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(72) Inventor; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(75) Inventor/Applicant (for US only): URBACH, Julian, Mi- EE, ES. FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

chael [US/US]; 13351-d Riverside, Dr., #620, Sherman
Oaks, CA 91423 (US).

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(534) Title: DRAG AND DROP OF OBJECTS BETWEEN APPLICATIONS

101

FIG. I

102
N\ prIspuay

103

GRAPHICS
HARDWARE

104
RENDERING AFI

105 —~_| appLIcATION APPLICATION ENGINE
I
106 |
|
DETOURED COMMANDS
107~ 10 N\
INTERFACE 110

108 USER
HARDWARE

(57) Abstract: Methods, apparatuses and systems directed to
capturing an object rendered on the first window of a display
by a first program, extracting the object, permitting a user to
drag the object across the display into a second window of
the display containing a second program, and importing the
object into the second program in substantially real-time. The
drag and drop process occurs seamlessly to the user and per-
mits a user to select one or more of a plurality of objects in
one application, drag the object into a second application for
modification, and drag the modified object back mnto the first
application for real-time preview.

109

CA 02844451 2014-02-05

wO 2013/025521 A3 MO0 AFY 00 D B0 0K R

TR), OAPL(BF, BJ, CF, CG, (1, CM, GA, GN, GQ, GW, _ before the expiration of the time limit for amending the

ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3)) (88) Date of publication of the international search report:
10 May 2013

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

DRAG AND DROP OF OBJECTS BETWEEN APPLICATIONS

INVENTOR
Julian Michael Urbach

ASSIGNEE: OTOY, LLC

ATTORNEYS:

Greenberg Traurig, LLP
MetLife Building

200 Park Ave.

New York, NY 10166

(212) 801-9200

USPTO Customcr Numbcer: 76058

CA 02844451 2016-02-04

DRAG AND DROP OF OBJECTS BETWEEN APPLICATIONS

FIELD

{0001/2] The present disclosure generally relates to exporting and importing a three-
dimensional graphic object from a first application to a second application in real-time, and
more specifically the graphical representation on a user's display of the export/import process

between windows rendering the first and second applications.

BACKGROUND

[0003] Graphics programs, 1n general, render 2D or 3D objects by converting those
objects into draw commands, which are then fed mnto a graphics API, such as OpenGL or
Direct3D. Within the API rendering pipeline, the draw commands undergo various processes
such as hidden surtacc removal, Z-buffcring, rasterization, and clipping before 1t 1s output as a
2D 1mage on the application user's display. Generally exporting a particular 3D object from a
graphics program, if possible, 1s an arduous process, requiring decompiling of the program
data to retrieve an OBJ file or other readable 3D format. Similarly, importing a file into a 3D
graphics program requires compiling the 3D object into the required format of the graphics
program, and often requires repackaging an entire 3D object library for successful object

importation.

SUMMARY

j0004] The present disclosure generally relates to exporting an object from a first 3D
program for rendering 1in a second 3D program in real-time. In one embodiment, a computer
system hosts a plurality ot application instances, each application instance corresponding to a
local client application. The computer system concurrently renders, utilizing the resources of
the graphics processing umt of the computer system, the graphical output ot the application

instances

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

corresponding to the at least two of the local client applications in separate windows on the
computer system display. A user seeking to export a 3D object from the first application selects
an object from the first window and drags the object to the second window. As the user drags
the object, 1t 1s rendered on the computer display pursuant to the user’s drag commands. The
user then drops the object in the second application rendered 1n the second window, and the
object 1s imported 1n real-time 1nto the second application.

[0005] In on¢ embodiment, a first computer system hosts a first application locally and
the second application 1s hosted on an application server. The computer system renders both the
local application and th¢ remotc application through 1ts local hardwarc and rendering AP in two
separate windows on the computer system display. A user seeking to export a 3D object from
the first application selects an object from the first window and drags the object to the second
window. As the user drags the object, 1t 1s rendered on the computer display pursuant to the
user’s drag commands. The user then drops the object in the second application rendered 1n the
second window, and the object 1s imported 1n real-time 1nto the second application.

[0006] In one embodiment, a first computer system hosts a first application locally and
the second application 1s hosted on an application server with server-side rendering. The
computer system renders the local application using 1ts own graphics processor and graphics
API, and the remote application 1s rendered by a server-side graphics API. A user seeking to
export a 3D object from the first application selects an object from the first window and drags
the object to the second window. As the user drags the object, 1t 1s rendered on the computer
display pursuant to the user’s drag commands. The user then drops the object in the second
application rendered in the second window, and the object is imported in real-time into the
second application.

[0007] In one embodiment a method for importing an object into a second application 1s
disclosed. The method comprises recetving, by a processor, a first user input and responsive to
the first user input, selecting, by the processor, an object rendered 1n a first window of a display
by a first application and a rendering API. The method further comprises extracting the object
from the first application via an engine and receiving a second user mput by the processor.
Responsive to second user input, the method comprises dragging, by the processor, the object on
the display from the first window to a second application rendered in a second window and
displaying, by the processor, the object in an intermediate space between the first window and

3

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

the second window during the dragging. Responsive to the object crossing a focus border of the
second window, the method comprises importing the object into the second application.

[0008] In an embodiment, selecting an object in accordance with the method comprises
detouring, by the processor, the first user mput to the engine, intercepting, by the processor,
draw commands from the first application to the rendering API and determining, by the
processor, the object from the draw commands of the first application. The method further
comprises selecting, by the processor, the object and other objects 1n accordance with a selection
algorithm. In an embodiment, the selection algorithm 1s configured to select all objects
connccted to the first objcct the ray hits. In an cmbodiment, the sclection algorithm 1s configurcd
to sclect all objects with a same object i1dentifier as the first object the ray hits. In an
cmbodiment, the selection algorithm 1s configured to select all objects with a same motion vector
as the first object the ray hits. In an embodiment the selection algorithm 1s configured to sclect
all objects with a same texture as the first object the ray hits.

[0009] In an embodiment, the first user mput selecting an object 1s a cursor selection
from a pointing device. In an embodiment, the first user input selecting an object comprises a
user tracing a border around the object. In an embodiment, the first user input selecting an object
comprises a sclection tool that selects all contiguous pixels of a predetermined set of
characteristics. In an embodiment, the first user mput selecting an object 1s a tap on a touch
interface. In an embodiment, the first user mput selecting an object 1s a gesture on a touch
interface.

[00010] In an embodiment, the method for determining, by the processor, the object
comprises from the draw commands further comprises, assigning, by the processor, a camera on
the near plane of a scene at the coordinates of the first user input and ray casting, by the
processor, from the camera to a far plane and selecting the first object the ray hits. The method
also comprises recerving, by the processor, further user input to expand or filter the selection
wherein expanding or filtering the selection comprises selecting or deselecting, by the processor,
other objects 1n a scene connected to the selected object or objects.

[00011] In an embodiment, the expanding or filtering the selection comprises, selecting or
deselecting, by the processor, other objects in a scene with the same object identifier as the
selected object or objects. In an embodiment, expanding or filtering the selection comprises
selecting or deselecting, by the processor, other objects in a scene with the same motion vector as

4

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

the selected object or objects. In an embodiment, expanding or filtering the selection comprises,
selecting or deselecting, by the processor, other objects in a scene with a same texture as the
selected object or objects. In an embodiment, expanding or filtering the selection comprises,
selecting or deselecting, by the processor, other objects in a scene designated by the further user
input. In an embodiment, the designation process comprises recerving, by the processor, a user
input, assigning, by the processor, a camera on the near plane of the scenc at the coordinates of
the user input and ray casting, by the processor, from the camera to the far plane and designating
the first object the ray hats.

]00012] In an cmbodiment, dragging the objcct on the display by thc proccssor compriscs,
rendering, by the processor, a borderless window and a selection 1n the borderless window,
wherein the selection comprises the object or objects selected by the user. In an embodiment, 1n
response to receiving user mput to drag the borderless window from the first window to the
second window, the method comprises moving, by the processor, the borderless window across
the display pursuant to the user inputs.

[00013] In an embodiment, the method for rendering, by the processor, the selection 1n the
borderless window comprises, copying, by the processor, the draw commands associated with
the selection from the first application, inserting, by the processor, the draw commands from the
first application 1n the rendering API pipeline and rendering, by the processor, the draw
commands via the rendering API.

[00014] In an embodiment, the method of importing the selection to a second application
comprises, converting, by the processor, the selection for implementation into the second
application and rendering, by the processor the selection via the engine 1n the second window
during the conversion. In an embodiment, converting the selection comprises modifying, by the
processor, the draw commands into a file format utilized by the second application. In an
embodiment, the file format 1s an OBJ file.

[00015] Upon completion of the conversion, the method comprises, importing, by the
processor, the selection into the second application. Upon mmporting the object ito the second
application, the method further comprises, halting, by the processor, the engine rendering process
and rendering, by the processor, the object from within the second application.

[00016] In an embodiment, the method of rendering the selection via the engine comprises,
inserting, by the processor, draw commands into a rendering API pipeline which 1s operable to

S

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

instruct the rendering API to render the selection into the second window. In an embodiment,
the second application has its own rendering API, and rendering the selection from within the
second application comprises rendering, by the processor, the selection 1n the second window
using the second application’s rendering API.

[00017] In an embodiment, the method of rendering the selection in the borderless window
comprises, obtaining, by the processor, first conditions, comprising lighting and environmental
ctfects from the first application and second conditions, comprising lighting and environmental
ctfects from the second application. The method also comprises gradually applying, by the
proccssor, the first and sccond conditions depending on a distance of the borderlcss window
from the first and second windows.

[00018] In an embodiment, a system for exporting and importing an object from a first
application to a second application 1s disclosed. In an embodiment, the object 18 a three-
dimensional object. The system comprises a graphics processing unit, a processor and a storage
medium for tangibly storing thereon program logic for execution by the processor. In an
embodiment, the storage medium can additionally comprise one or more of the first and second
applications. The program logic 1n the storage medium comprises first user mput receiving
logic, executed by the processor, to recetve a first user input. Selecting logic, comprised 1n the
storage medium and executed by the processor selects an object rendered 1 a first window of a
display by a first application and a rendering API in response to recerving the first user input The
object 18 extracted from the first application by extracting logic comprised on the storage
medium. In addition, the processor executes second user input receiving logic to receive a
second user mput, dragging logic to drag the object on the display from the first window to a
second application rendered 1n a second window 1n response to receiving the second user input
and 1n response to the object crossing the focus border of the second window, importing logic,
comprised 1n the storage medium 1s executed by the processor, to import the object into the
second application.

[00019] In an embodiment, the selecting logic executed by the processor, to select an object
further comprises detouring logic which 1s also executed by the processor, to detour the first user
inputs from the first application. In addition, the selecting logic comprises intercepting logic
executed by the processor, to intercept the draw commands from the first application to the

rendering API, determining logic executed by the processor, to determine the object from the

6

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

draw commands associated with the first user mnput and seclecting logic, executed by the
processor, to select the three dimensional object and other objects 1n accordance with a selection
algorithm.

[00020] In an embodiment, the determining logic further comprises, assigning logic,
executed by the processor, to assign a camera on the near plane of the scene at the coordinates of
the first user input. The determining logic executed by the processor also comprises ray casting
logic, for ray casting from the camera to the far plane and selecting the first object the ray hits.
[00021] In an embodiment, the dragging logic executed by the processor comprises window
rcndcering logic, to render a borderlcss window, sclcction rendcering logic, to rendcer a sclection 1n
the borderless window, wherein the selection comprises the object or objects selected by the user
and moving logic, to move the borderless window across the display pursuant to the user inputs
in response to recerving user inputs to drag the borderless window from the first window to the
second window.

[00022] In an embodiment, the selection rendering logic executed by the processor further
comprises copying logic, to copy the draw commands associated with the selection, inserting
logic, to 1nsert the draw commands 1n the rendering API pipeline and draw commands rendering
logic, to render the draw commands via the rendering API. In an embodiment, the selection
rendering logic further comprises first condition obtaining logic and second condition obtaining
logic, executed by the processor, to obtain first conditions, comprising the lighting and
environmental effects from the first application and second conditions, comprising the lighting
and environmental effects from the second application. In addition, the selection rendering logic
executed by the processor, comprises conditions applying logic, to gradually apply the first and
second conditions depending on the distance of the windowless border from the first and second
windows.

[00023] In an embodiment, the importing logic executed by the processor further comprises
converting logic, for converting the selection for implementation into the second application
such that the selection 1s imported mto the second application upon completion of the conversion
process, rendering logic for rendering the selection 1n the second window during the conversion
process and halting logic, for halting the engine rendering process and rendering the object from
within the second application upon importing the object into the second application. In an

embodiment, the converting logic executed by the processor for the conversion process further

7

comprises modifying logic to modify the draw commands into a file format utilized by the
second application. In an embodiment, the file format is an OBJ file. In an embodiment, the
rendering logic further comprises inserting logic, executed by the processor, to insert draw
commands into a rendering API pipeline operable to instruct the rendering API to render the
selection into the second window. In an embodiment, second application rendering API render
the sclection in the second window upon importing the object into the second application.
[00024] A computer readable storage medium, having stored thereon, instructions which
when executed by a processor, cause the processor to receive a first user input and responsive to
the first user input, select an objcct rendered in a first window of a display by a first application
and a rendering API. The instructions further cause the processor to extract the object from the
first application via an engine. In addition, thc storage medium comprises instructions to
receive a second user input and to drag, the object on the display from the first window to a
second application rendered in a second window responsive to the second user input. The
storage medium further comprises instructions to import the object into the second application
responsive to the object crossing a focus border of the second window, import the object into
the second application.

[00024a] In an embodiment, there is provided a method comprising: receiving, by a
processor, a first user input; responsive to the first user input, selecting, by the processor, an
object rendered in a first window of a display by a first application and a rendering API
(Application Programming Interface), wherein selecting the object comprises intercepting draw
commands from the first application to the rendering API; extracting, by the processor, the
object from the first application via an engine that monitors received user inputs; receiving, by
the processor, a second user input for dragging the object on the display from the first window
to a second application rendered in a second window; responsive to the second user input to
drag the object from thc first window to the second window: rendering, by the processor, a
borderless window; rendering, by the processor, a sclection in the borderless window by
detouring the draw commands intercepted from the first application to the rendering API to the
engine, wherein the selection comprises the object selected by the user; and moving, by the
processor, the borderless window comprising the selection across the display from the first
window to the second window pursuant to the second user input; importing, by the processor, in
response to the selection 1n the borderless window crossing a focus border of the second
window, the selection in the borderless window into the second application, the importing
comprising inserting the intercepted draw commands into a rendering API pipeline operable to

instruct the rendering API to render the selection in the second window; and ceasing, by the

CA 2844451 2017-12-12

processor upon importation, intercepting and detouring the draw commands from the first

application to the rendering API.

[00024Db] In an embodiment, there is provided a system comprising: a graphics processing
unit; a processor; and a storage medium for tangibly storing thereon program logic for execution
by the processor, the program logic comprising: first user input receiving logic, executed by the
processor, to receive a first user mput; selecting logic, executed by the processor to select an
object rendered in a first window of a display by a first application and a rendering API in
response to recerving the first user input; extracting logic, executed by the processor, to extract
the object from the first application via an engine that monitors received user inputs, wherein
selecting the object comprises intercepting draw commands from the first application to the
rendering API; second user input recciving logic, executed by the processor, to receive a second
user input; dragging logic, executed by the processor, to drag the object on the display from the
first window to a second application rendered in a second window in response to receiving the
second user input, the dragging logic further comprising: window rendering logic, executed by
the processor to render a borderless window; selection rendering logic, executed by the
processor to render a selection in the borderless window by detouring the draw commands
intercepted from the first application to the rendering API to the engine, wherein the selection
comprises the object selected by the user; and moving logic, executed by the processor, to move
the borderless window across the display from the first window to the second window pursuant
to the second user input in response to receiving the second user input to drag the borderless
window from the first window to the second window; importing logic, executed by the
processor, to 1import, in response to the selection in the borderless window crossing a focus
border of the second window, the selection in the borderless window into the second
application, the importing comprising inserting the intercepted draw commands into a rendering
APl pipeline operable to instruct the rendering API to render the selection in the second
window; and ceasing logic, executed by the processor, to cease, upon importation, intercepting
and detouring the draw commands from the first application to the rendering API.

00024c¢] In an embodiment, there is provided a non-transitory computer readable storage
medium, having stored thereon, processor-executable instructions, the instructions when
executed by a processor performing a method comprising: receiving a first user input;
responsive to the first user input, selecting an object rendered in a first window of a display by a
first application and a rendering API, wherein selecting the object comprises intercepting draw
commands from the first application to the rendering API; extracting the object from the first
application via an engine; receiving a second user input for dragging the 3D object on the

display from the first window to a second application rendered in a second window; responsive
3a

CA 2844451 2017-12-12

to the second user input: rendering a borderless window; rendering a selection in the borderless
window by detouring the draw commands intercepted from the first application to the rendering
API to the engine, wherein the selection comprises the object selected by the user; and moving
the borderless window comprising the selection across the display from the first window to the
second window pursuant to the second user input; importing, in response to the selection in the
borderless window crossing a focus border of the second window, the selection in the borderless
window into the second application, the importing comprising inserting the intercepted draw
commands 1nto a rendering API pipeline operable to instruct the rendering API to render the
sclection 1n the second window; and ceasing, upon importation, intercepting and detouring the
draw commands from the first application to the rendering API.

[00025] T'hese and other embodiments whose features can be combined will be apparent
to those of ordinary skill in thc art by reference to the following detailed description and the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[00026] In the drawing figures, which are not to scale, and where like reference numerals
indicate like elements throughout the several views:

[00027] FIGURE 1 1llustrates an example of a computer system hosting two local
applications and exporting a 3D object from a first application for importation into a second
application;

[00028] FIGURE 2 1llustrates the overall flow of the exportation and importation
process, consisting of grabbing the object from the first application, dragging the object from

the first to the second application, and dropping the object into the second application for

rendering;
[00029] FIGURE 3 illustrates the flow of the grab process;
[00030] FIGURE 4 1llustrates the flow of the drag process;

8b

CA 2844451 2017-12-12

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

[00031] FIGURE 5 1llustrates the flow of the drop process;

[00032] FIGURE 6 1llustrates the process flow of the re-entry process;

[00033] FIGURE 7 1illustrates a representation of the computer system display executing the
process integrating environment effect rendering;

[00034] FIGURE 8 1illustrates an example of a computer system hosting a local application
and an application server hosting a remote second application;

[00035] FIGURE 9 1illustrates an example of a computer system hosting a local application
and an application server with server side rendering hosting a remote second application;

100036] FIGURE 10 1illustratcs an cxamplc computer systcm 1000 suitablc for implementing

one or more portions of particular embodiments.

DESCRIPTION OF EMBODIMENTS

[00037] Subject matter will now be described more fully heremafter with reterence to the
accompanying drawings, which form a part hereof, and which show, by way of 1illustration,
specific example embodiments. Subject matter may, however, be embodied 1n a variety of
different forms and, theretore, covered or claimed subject matter 1s intended to be construed as
not being limited to any example embodiments set forth herein; example embodiments are
provided merely to be 1llustrative. Likewise, a reasonably broad scope for claimed or covered
subject matter 1s intended. Among other things, for example, subject matter may be embodied as
methods, devices, components, or systems. Accordingly, embodiments may, for example, take
the form of hardware, software, firmware or any combination thercot (other than software per
se). The following detailed description is, therefore, not intended to be taken 1n a limiting sense.
[00038] In the accompanying drawings, some features may be exaggerated to show details of
particular components (and any size, material and similar details shown 1n the figures are
intended to be illustrative and not restrictive). Therefore, specific structural and functional
details disclosed herein are not to be interpreted as limiting, but merely as a representative basis
for teaching one skilled 1n the art to variously employ the disclosed embodiments.

[00039] The present invention 1s described below with reference to block diagrams and
operational 1llustrations of methods and devices to select and present media related to a specific
topic. It 1s understood that each block of the block diagrams or operational illustrations, and

combinations of blocks in the block diagrams or operational illustrations, can be implemented by

9

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

means of analog or digital hardware and computer program instructions. These computer
program 1instructions can be provided to a processor of a general purpose computer, special
purpose computer, ASIC, or other programmable data processing apparatus, such that the
instructions, which execute via the processor of the computer or other programmable data
processing apparatus, implements the functions/acts specified 1n the block diagrams or
operational block or blocks. Various aspects or features will be presented in terms of systems
that may include a number of devices, components, modules, and the like. It 1S to be understood
and appreciated that the various systems may include additional devices, components, modules,
ctc. and/or may not includc all of thc devices, componcents, modulcs cte. discusscd 1n conncction
with the figures. A combination of these approaches may also be used.

[00040] In some alternate implementations, the functions/acts noted in the blocks can occur
out of the order noted 1n the operational 1llustrations. For example, two blocks shown 1n
succession can 1n fact be executed substantially concurrently or the blocks can sometimes be
executed 1n the reverse order, depending upon the functionality/acts involved. Furthermore, the
embodiments of methods presented and described as flowcharts 1n this disclosure are provided
by way of example 1n order to provide a more complete understanding of the technology. The
disclosed methods are not limited to the operations and logical flow presented herein.
Alternative embodiments are contemplated 1in which the order of the various operations 1s altered
and in which sub-operations described as being part of a larger operation are performed
independently.

[00041] For the purposes of this disclosure the term “server” should be understood to refer to
a service point which provides processing, database, and communication facilities. By way of
example, and not limitation, the term *‘server” can refer to a single, physical processor with
assoclated communications and data storage and database facilities, or 1t can refer to a networked
or clustered complex of processors and associated network and storage devices, as well as
operating software and one or more database systems and applications software which support
the services provided by the server.

[00042] A computing device may be capable of sending or recerving signals, such as via a
wired or wireless network, or may be capable of processing or storing signals, such as in memory
as physical memory states, and may, therefore, operate as a server. Thus, devices capable of
operating as a server may include, as examples, dedicated rack-mounted servers, desktop

10

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

computers, laptop computers, set top boxes, integrated devices combining various features, such
as two or more features of the foregoing devices, or the like. Servers may vary widely 1n
configuration or capabilities, but generally a server may include one or more central processing
units and memory. A server may also include one or more mass storage devices, one or more
power supplies, one or more wired or wireless network interfaces, one or more 1nput/output
interfaces, or one or more operating systems, such as Windows Server, Mac OS X, Unix, Linux,
FreeBSD, or the like.

10004 3] Throughout the specification and claims, terms may have nuanced meanings
suggcsted or implicd 1n context beyond an cxplicitly statcd mcaning. Likcwisc, the phrasc “in
one embodiment” as used herein does not necessarily refer to the same embodiment and the
phrase “in another embodiment” as used herein does not necessarily refer to a different
embodiment. It 1s mtended, for example, that claimed subject matter include combinations of

example embodiments 1n whole or 1in part. In general, terminology may be understood at least

72 p,

in part from usage 1n context. For example, terms, such as “and”, “or”, or “and/or,” as used
herein may include a variety of meanings that may depend at least in part upon the context in
which such terms are used. Typically, “or” 1f used to associate a list, such as A, B or C, 18
intended to mean A, B, and C, here used 1n the inclusive sense, as well as A, B or C, here used 1n
the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part
upon context, may be used to describe any feature, structure, or characteristic 1n a singular sense
or may be used to describe combinations of features, structures or characteristics in a plural
sense. Similarly, terms, such as “a,” ““an,” or ‘“the,” again, may be understood to convey a
singular usage or to convey a plural usage, depending at least in part upon context. In addition,
the term “based on” may be understood as not necessarily intended to convey an exclusive set of
factors and may, instead, allow for existence of additional factors not necessarily expressly
described, again, depending at least in part on context.

[00044] The present disclosure generally relates to exporting an object from a first 3D
program for rendering in a second 3D program in real-time. In one embodiment, a computer
system hosts a plurality of application mstances, each application instance corresponding to a
local chient application. The computer system concurrently renders, utilizing the resources of the
graphics processing unit of the computer system, the graphical output of the application instances

corresponding to the at least two of the local client applications in separate windows on the

11

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

computer system display. A user seeking to export a 3D object from the first application selects
an object from the first window and drags the object to the second window. As the user drags
the object, 1t 1s rendered on the computer display pursuant to the user’s drag commands. The
user then drops the object in the second application rendered 1n the second window, and the
object 1s imported in real-time into the second application.

[00045] Rendering may be considered as the process of generating an 1mage from a
model, usually by means of computer programs. The model 15 usually a description of three-
dimensional (3D) objects and may be represented 1n a strictly defined language or data structure.
The modcl may contain gcomctry, vicwpoint, texturc, lighting, shading, motion, and othcr
suitable types of information. The mmage into which the model 1s rendered may be a digital
image or a raster graphics image, which may be formed by a collection of pixels. The present
disclosure expands the concept of rendering to generating an 1image that represents any output of
any application. The rendering may be performed based on any data, including two-dimensional
(2D) data as well as 3D data. In addition to generating images based on 3D models, particular
embodiments may render images that represent the output of applications such as, for example
and without limitation, web browsing applications. word processing applications, spread sheet
applications, multimedia applications, scientific and medical applications, and game
applications.

[00046] Modifying an object from a 3D program 1s typically an arduous, 1f not impossible,
task. If the user does not have the original OBJ or other format file for modifying in a 3D
graphics program such as 3D Studio Max or Maya, the user must decompile the 3D graphics file
used by the first 3D program. The graphics file may be stored in a given directory within the
program’s install path, or compiled mnto the actual program code itself. In any case, the user
must perform several steps to obtain the object file in a format that is readable by a 3D graphics
program. Similarly, after moditying the object file, in order to view the appearance of the 3D
object from within the first program, the user must recompile or import the object into the code
of the first program. This process 1s time-consuming, and 1s exacerbated by the use of remote
applications.

[00047] Rendering may be a type of task that 1s suitable to be performed by a server
because the rendering process 1s often resource demanding, as it may be very computational
intensive, especially when the rendered 1mages are of high resolution and high quality. In the

12

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

past, 1t could have taken an older computer system hours or days to render a three-dimensional
model into a single 2D 1image. With the development and advancement of computer hardware,
especially computer hardware specifically designed for computer graphics applications (e.g.,
gaming, multimedia, entertainment, or mapping), present computer systems may be able to
render cach 1mage within seconds or milliseconds. In fact, often it does not take all the available
resources of a server to render a model into a single 1mage. As such, remote applications using
server-side rendering have become more prevalent.

[00048] To better facilitate the export of a 3D object from a first 3D program for
importation mto a sccond 3D program, a softwarc cnginc may rcspond to uscr commands to
select a particular object by intercepting the draw commands from the first application to the 3D
eraphics rendering pipeline, and insert them 1n the draw commands for a given scene from a
seccond application. In particular embodiments, the second application may be a remote
application hosted on a separate server. In other embodiments, the second application may be a
remote application with server side rendering.

[00049] FIGURE 1 1illustrates an example computing system 101 running local first
application 105 and local second application 106. In normal operation, user activates the system
101, for example, via manipulating user hardware 108, and 1/0 interface 107 translates the
signals from the user/hardware 108 1nto instructions to either first application 105 or second
application 106. Both applications 105 and 106 output draw commands to rendering APT 104 for
rendering 2D or 3D scenes. The rendering API 104 passes the draw commands through a
rendering pipeline (not shown) to convert the draw commands into instructions executed by
graphics hardware 103 to render the 2D or 3D scene on display 102. In one embodiment, the
first application 105 1s rendered 1n a first window on a portion of display 102, and the second
application 106 1s rendered in a second window on a different portion of display 102. In an
embodiment, engine 109 is a software routine running on a processor (not shown) comprised
within system 101 concurrently with first application 105 and second application 106. The
engine 109 constantly monitors I/O interface 107 for instructions initiating the drag and drop
process. When these instructions are detected, the instructions are detoured via path 110 to the
engine 109. The user may initiate the drag and drop process 1n a variety of methods, including
but not limited to: a special keystroke, holding a predetermined key in conjunction with a mouse

or other pointing device nput, a tap on a touch nput device, or a specific gesture on a touch

13

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

input device. Once the commands are detoured to the Engine 109 via path 110, the engine 109
allows the user to select a given object in any application window. Engine 109 also monitors the
draw commands from first application 105 and second application 106 to the rendering API 104,
and uses detoured user inputs 110 to determine which object or objects 1in a scene the user wishes
to select. The engine 109 extracts the draw commands corresponding to the object or objects the
user wishes to select, and passes them to the rendering API 104 for rendering during the drag
process. During the drop process, the engine 109 continues to pass the draw commands for the
object or objects to the rendering API 104 for rendering in the second application 106’s window,
but simultancously convcerts the draw commands into a format for importing into the sccond
application 106. Upon completion of the conversion and importation process, the engine 109
stops sending draw commands to the rendering API 104, and the sclected object or objects are
rendered exclusively through the second application 106. A more detailed explanation of the
orab, drag, and drop processes 1s provided below. Only two applications are 1llustrated 1n
FIGURE 1 1n order to simplify the discussion. However, 1t may be appreciated that in practice,
the computing system 101 can concurrently execute any number of applications rendering
various objects which can be exported from one application to another in accordance with
embodiments described herein.

[00050] FIGURE 2 1llustrates a high level flow of the drag and drop process. At step 201,
the computing system begins running multiple applications. At step 202, the user initiates the
orab process, described 1n detail in FIGURE 4. At step 203, the user drags the desired object
from the window displaying the first application to the window displaying the second object,
described 1n detail in FIGURE 5. Finally, at step 204, the user drops the object into the window
for the second application, also referred to as the re-entry process, further described 1n detail 1n
FIGURE 6.

[00051] FIGURE 3 tllustrates a representation of a user’s display during the drag and drop
process. Inttially, the display of the computing system contains two separate windows, a first
window 301 containing the rendered output of the first application, and a second window
containing the rendered output of the second application 304. Rendered within first window 301
ar¢ objects 303a and 303b. In practice, first window 301 and second window 304 may contain

any number of objects FIGURE 3 1s limited to two objects for the purposes of discussion only.

14

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

[00052] The first window 301 1s shown in an enlarged view in FIGURE 3 as 305. The
user selects object 303a 1n a variety of different methods, such as clicking with an input device or
tapping a touch screen a single point 307 on object 303a, tracing a path 308 with an 1n put device
or on a touch screen through the object 303a, or drawing a marquee 306 around the object 303a
with an mput device or on a touch device. Other mput methods, including but not limited to:
gestures, selection wands, and polygonal marquees, can casily be envisioned by one possessing
ordinary skill in the art.

[00053] Upon sclecting object 303a, user drags the object on the display along path 302
from thc first window 301 to thc sccond window 304. In somc cmbodiments, the objcct 18
copied, and remains rendered in window 301 while a copy 303c¢ 1s rendered along the path 302 1n
an mtermediate space extending between the first window 301 and the second window 304. In
other embodiments, the actual object 303a 1s moved from window 301 to window 304. The path
302 1s determined by user inputs and can take any path to or from window 301 to window 304.
[00054] Upon crossing the focus border for second window 304, the engine 1itiates the

re-entry, or drop, process. When the user has positioned object 303a as he or she desires 1n

window 304, the user imnitiates a command to drop the object 303a into window 304. At that
point, the drag and drop process 1s complete and the engine imports the object 303a as object
303d into the second application for rendering in the second window 304.

[00055] FIGURE 4 depicts the process flow of the grab process. At 401, the engine
recerves a selection input selecting the desired object. The invention envisions multiple selection
mput methods, as described above. Upon receiving the selection input, the engine detours the
draw commands from the first application destined for the rendering API to the engine itself.
From these draw commands, the engine 1s capable of re-creating the scene rendered by the first
application. In the context of a 3D scene, the engine now has all the 3D objects 1n a given scene,
as well as the camera point and field of view used by the first application to render the scene.
[00056] In one embodiment, the user input 1s a single point on the first window on the
desired object. At step 402, the engine resolves the input selection to a graphic object 1n the
rendered display. In order to translate this two-dimensional mput to a three-dimensional object,
traditional methods of 3D object selection are employed. One such method of 1s to assign a
camera on the near plane of the 3D scene at the location of the user input, and ray cast from the

camera to the far plane, selecting the first object that the ray hits. In another embodiment, a

15

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

selection tool selects all objects touching the first object the ray hits. In another embodiment, a
selection tool selects all the objects with the same object identifier, such as a tag or other meta-
data, as the first object the ray hits. In another embodiment, a sclection tool selects all the
objects with the same texture as the first object the ray hits. In yet another embodiment, a
selection tool selects all the objects with the same motion vector as the first object the ray hats.
[00057] At step 403, the engine filters or expands the user sclection based upon user
inputs. The user may choose to increase the selected object 1n the same way the original object
was selected, or some other mput method, such as holding down a modifier to add to the
sclcction and drawing a marqucce around othcr objccts to be sclected. Similarly, the uscr may be
presented with a pop up window to select other objects with the same motion vector, texture,
meta-data, etc. Similarly, the user may filter out objects from the selection 1n an analogous
manner. The user may have a key for subtracting objects from a selection and click individual
objects or draw a marquee around objects to be excluded from the selection. Additionally, the
user may be provided a drop down menu to filter out objects with a given texture, motion vector,
meta-data tag, etc. The invention envisions multiple methods of adding to or subtracting from a
selection that are known to one of ordinary skill in the art.

[00058] After the user 1s satisfied, the user inputs commands to mitiate the drag process at
step 404. The commands may 1nclude but are not limited to: holding down the button of an mput
device 1n conjunction with moving the input device to drag the selected object, a specific gesture
on a touch mput device, holding down a key on the keyboard 1in conjunction with moving the
mput device, and the like. The invention envisions multiple methods of initiating the drag
process 404.

[00059] FIGURE 35 1illustrates the process flow of the drag process. At 501, the engine
creates a window on the computing system display. In an embodiment, the widow can have a
visible border. In an embodiment, the widow 1s borderless. A borderless window 1s merely a
designated area on the second display that 1s completely transparent, the only objects actually
rendered on the display are the graphic objects contained within the borderless window. At step
502, the engine writes the object to the borderless window. The engine performs this step by
detouring the draw commands associated with the selection from the first application to the
engine. The engine then sends these draw commands to the rendering API as objects to be

rendered within the borderless window. The rendering API processes the draw commands

16

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

through the rendering pipeline as normal and renders the scene on the display within the
borderless window. Because the borderless window is transparent, only the object appears to
move from the first window to the second window. Thus during the drag process, the rendering
API 1s processing draw commands from at least two applications 1n addition to the engine.
[00060] The engine transmits the draw commands associated with the selected object or
objects 1n accordance to borderless window movement commands received from the user
through input output interface 107. As stated, the disclosure envisions multiple mnput methods
for the user to adjust the position of the borderless window during the drag process.

100061] At any timc thc cnginc 18 not rceciving uscr commands to movce the bordcrlcss
window, the engine polls for a user mput command to determine if a drop command has been
1ssued at step 504. The detection of a drop command sends the process to the re-entry process in
step 505. Drop commands may be any command from user input equipment to indicate the user
wishes to import the object into the second application rendered 1n the second window. Drop
commands may comprise but are not limited to, releasing a held button on a mouse or other mput
device, a gesture on a touch mput device, or other key press on an iput device. Other user input
methods for the drop commands may be envisioned by one of ordinary skill in the art. In one
embodiment, the re-entry process begins as soon as the object 1s dragged past the focus border of
the second window.

[00062] FIGURE 6 1llustrates the process flow of the re-entry process. At 601, the re-
entry process begins. The re-entry process may be triggered by either an explicit drop instruction
from the user, or the act of dragging the selection across the focus border of the second window.
When the re-entry process begins, the engine begins to convert the object from draw commands
into a format for implementation into the second application. In the 3D context, the engine
begins converting the draw commands into a 3D object file for importation into the second
application. For example, a user might be running a 3D game application in a first window and a
3D graphics editing program 1n the second window for editing a given model. After selecting
the desired object, the user drags the object to the second window, and the re-entry process
begins converting the draw commands associated with the object into a 3D object file such as an
OBJ file.

[00063] At step 602, the engine continues to render the object by passing the draw

commands associated with the object to the rendering API. Because the conversion process 1s

17

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

time consuming and processor intensive, the engine continues to render the object while the
conversion 18 taking place. The engine renders the object by inserting draw commands into the
draw command stream from the second application to the rendering API. Thus during re-entry,
the engine 1s not merely rendering the object in the borderless window overlaid on top of the
second window, but actually integrating the object into the second application as if 1t were
imported and rendered by the second application itself, including environmental effects. A
detailed 1llustration of this feature is provided in FIGURE 7.

[00064] At step 603, the conversion 1s completed and the object file 18 imported into the
sccond application. Thc importing process diffcrs for cach application and cach filc format. In
the context of a 3D graphics editing program, the file 1s imported into the workspace of the
program as 1f the user had opened the file directly from the 3D graphics editing program. At step
604, after successful importation of the object into the second program, the engine halts 1ts
rendering of the object, and the object 1s rendered by the second application. The entire re-entry
process occurs scamlessly, without any indication of multiple rendering processes or a file
conversion to the user. The user 1s unaware of these background processes by the engine, and
the object 18 rendered as 1f the object were simply dragged from the first window and dropped 1n
the second window.

[00065] FIGURE 7 depicts a representation of the drag and drop process integrating
environmental effects. In the first window 701, an object 702a, shown for simplicity as a sphere
sits with a light source 703 from the upper left of window 701. In the second window 704, the
environment of the 3D scene includes a light source 705 from the upper right. During the grab
process, the engine obtains the environment effects and lighting of both windows 701 and 704,
and adaptively applies the environmental effects and lighting to the selected object 702a
depending on the distance of the object from each window. Thus, as the object 702a 1s dragged
towards the second window, the shading of the object 702a changes depending on the distance
from the light sources 703 and 705, as shown by representations 702b, 702¢, 702d, and 702e.
The engine renders these environmental effects by applymg them to the draw commands for the
object before passing them to the rendering API. Environmental effects are not limited to merely
lighting, but, as one skilled 1n the art can envision, can apply to fog, smoke, blurning, particle

eftects, retlections, and other well-known environmental effects.

18

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

[00066] FIGURE 8 depicts an embodiment of a computing system 801 wherein one of the
two applications 1s a remote application 810 running on an application server 809. In such a
case, the operation of the engine 805 does not vary. The engine intercepts instructions from the
[/O interface 807 and detours the instructions to the engine along path 811 during the operation
of the drag and drop process. Assuming the user 1s dragging from the local application 806 and
dropping to the remote application 810, draw commands from the local application 806 to the
rendering API 804 are intercepted and used during the grab process for the user to select the
desired objects. During the drag process, the engine 805 handles the rendering of the object 1n
th¢ bordcerless window by dctouring the draw commands for the sclcction to the rendering AP
804. When the user drops the object into the window of the remote application 810, the engine
805 begins the conversion process while continuing to render the selected object. Upon
completing the conversion, the converted object file 1s transferred over network link ¥14 to
application server 809 for importation into remote application 810. After importation, the engine
805 ceases to pass draw commands to the rendering API 804 and the system operates as normal.
In another embodiment, the user drags an object from a remote application to a locally hosted
application. The system operates by a substantially similar mechanism 1n this arrangement.

[00067] FIGURE 9 depicts an embodiment of a computing system 901 wherem one of the
applications 908 1s a remote application run on application server 907 that has server-side
rendering through 1ts own rendering AP1 909. As an example, the user drags an application from
the window of the local application 905 to the window of the remote rendered application 908.
The operation of the system 901 1s substantially the same as in FIGURE 8. The engine 910
intercepts I/0 mputs from I/O interface 906 and detours them along path 914 for the duration of
the drag and drop process. During the grab process, the engine 910 detours draw commands
from the local application 905 to destined for the local rendering API 904 to the engine. After
the user selects the object, the engine 910 detours the commands to either the local rendering
API 904 along path 915. During the drag process, the detoured draw commands for the selected
object are rendered by the local rendering engine 904 to render the object 1n the borderless
window. Upon 1nitiation of the re-entry process, the engine begins file conversion of the object
into an object file for importation into remote application 908. When the file 18 converted, the

file 1s 1mmported nto the remote application 908 through path 916. Then the engine stops

19

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

rendering the object through local rendering API 904, and the object 1s exclusively rendered
through remote rendering API 909.

[00068] A special case exists for the embodiment where a user wishes to select an object
from a remote application with server-side rendering, such as application 908. In such an
embodiment, the engine must have access to the output of remote application 908 before 1t enters
the remote rendering API 909. This must be a special implementation requiring software
residing on remote application server 907, or at a bare minimum, permission from the server 907
for engine 910 to monitor the path between the remote application 908 and rendering API 909.
In such a casc, thc draw commands from application 908 arc dctourcd over a nctwork conncction
913 to the engine 910. This special case only arises when grabbing objects from remote
applications with server side rendering.

100069] The disclosure envisions multiple arrangements, such as dragging from one
remote application to another, or variations of copy/pasting an object from one application to
multiple other applications. Such embodiments should be readily contemplated by those of
ordinary skill in the art. Although the disclosure describes a single instance of dragging and
dropping from a first application to a second application, skilled artisans 1n the art can envision
dragging from a first application to a second application, editing the object, and dragging the
edited object back 1nto the first application to view the changes 1n real-time.

[00070] Particular embodiments may be implemented as hardware, software, or a
combination of hardware and software. For example and without limitation, one or more
computer systems may execute particular logic or software to perform one or more steps of one
or more processes described or illustrated herein. One or more of the computer systems may be
unitary or distributed, spanning multiple computer systems or multiple datacenters, where
appropriate. The present disclosure contemplates any suitable computer system. In particular
embodiments, performing one or more steps of one or more processes described or illustrated
herein need not necessarily be limited to one or more particular geographic locations and need
not necessarily have temporal limitations. As an example and not by way of limitation, one or

2% ¢¢

more computer systems may carry out their functions 1n “real time,” “offline,” m “batch mode,”
otherwise, or 1n a suitable combination of the foregoing, where appropriate. One or more of the
computer systems may carry out one or more portions of their functions at different times, at

different locations, using different processing, where appropriate. Herein, reference to logic may

20

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

encompass software, and vice versa, where appropriate. Reference to software may encompass
one or more computer programs, and vice versa, where appropriate. Reference to software may
encompass data, instructions, or both, and vice versa, where appropriate. Similarly, reference to
data may encompass instructions, and vice versa, where appropriate.

[00071] Onec or more computer-readable storage media may store or otherwise embody
software implementing particular embodiments. A computer-readable medium may be any
medium capable of carrying, communicating, containing, holding, maintaining, propagating,
retaining, storing, transmitting, transporting, or otherwise embodying software, where
appropriatc. A computcr-rcadablc mcdium may bc a biological, chcmical, clectronic,
clectromagnetic, infrared, magnetic, optical, quantum, or other suitable medium or a combination
of two or more such media, where appropriate. A computer-readable medium may include one
or more nanometer-scale components or otherwise embody nanometer-scale design or
fabrication. Example computer-readable storage media include, but are not limited to, compact
discs (CDs), field-programmable gate arrays (FPGAS), tloppy disks, floptical disks, hard disks,
holographic storage devices, integrated circuits (ICs) (such as application-specific integrated
circuits (ASICs)), magnetic tape, caches, programmable logic devices (PLDs), random-access
memory (RAM) devices, read-only memory (ROM) devices, semiconductor memory devices,
and other suitable computer-readable storage media.

[00072] Software implementing particular embodiments may be written 1in any suitable
programming language (which may be procedural or object oriented) or combination of
programming languages, where appropriate. Any suitable type of computer system (such as a
single- or multiple-processor computer system) or systems may execute software implementing
particular embodiments, where appropriate. A general-purpose computer system may execute
software implementing particular embodiments, where appropriate.

[00073] For example, FIGURE 10 1illustrates an example computer system 1000 suitable
for implementing one or more portions of particular embodiments. Although the present
disclosure describes and 1llustrates a particular computer system 1000 having particular
components 1 a particular configuration, the present disclosure contemplates any suitable
computer system having any suitable components in any suitable configuration. Moreover,
computer system 1000 may have take any suitable physical form, such as for example one or
more integrated circuit (ICs), one or more printed circuit boards (PCBs), one or more handheld

21

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

or other devices (such as mobile telephones or PDAS), one or more personal computers, or one or
more super computers.

[00074] System bus 1010 couples subsystems of computer system 1000 to cach other.
Herein, reference to a bus encompasses one or more digital signal lines serving a common
function. The present disclosure contemplates any suitable system bus 1010 including any
suitable bus structures (such as one or more memory buses, one or more peripheral buses, one or
more a local buses, or a combination of the foregoing) having any suitable bus architectures.
Example bus architectures include, but are not limited to, Industry Standard Architecture (ISA)
bus, Enhanccd ISA (EISA) bus, Micro Channcl Architccturc (MCA) bus, Vidco Elcctronics
Standards Association local (VLB) bus, Peripheral Component Interconnect (PCI) bus, PCI-
Express bus (PCI-X), and Accelerated Graphics Port (AGP) bus.

[00075] Computer system 1000 1ncludes one or more processors 1020 (or central
processing units (CPUs)). A processor 1020 may contain a cache 1022 for temporary local
storage of instructions, data, or computer addresses. Processors 1020 are coupled to one or more
storage devices, including memory 1030. Memory 1030 may include random access memory
(RAM) 1032 and read-only memory (ROM) 1034. Data and istructions may transter bi-
directionally between processors 1020 and RAM 1032. Data and instructions may transfer uni-
directionally to processors 1020 from ROM 1034. RAM 1032 and ROM 1034 may include any
suitable computer-readable storage media.

[00076] Computer system 1000 includes fixed storage 1040 coupled bi-directionally to
processors 1020. Fixed storage 1040 may be coupled to processors 1020 via storage control unit
10102. Fixed storage 1040 may provide additional data storage capacity and may include any
suitable computer-readable storage media. Fixed storage 1040 may store an operating system
(OS) 1042, one or more executables 1044, one or more applications or programs 1046, data
1048, and the like. Fixed storage 1040 1s typically a secondary storage medium (such as a hard
disk) that 1s slower than primary storage. In appropriate cases, the information stored by fixed
storage 1040 may be incorporated as virtual memory 1into memory 1030.

[00077] Processors 1020 may be coupled to a variety of interfaces, such as, for example,
graphics control 10104, video interface 10108, input intertace 1060, output interface 1062, and
storage interface 1064, which 1n turn may be respectively coupled to appropriate devices.
Example mput or output devices include, but are not limited to, video displays, track balls, mice,

22

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper
tape readers, tablets, styli, voice or handwriting recognizers, biometrics readers, or computer
systems. Network interface 10106 may couple processors 1020 to another computer system or to
network 1080. With network interface 10106, processors 1020 may receive or send information
from or to network 1080 1n the course of performing steps of particular embodiments. Particular
embodiments may execute solely on processors 1020. Particular embodiments may execute on
processors 1020 and on one or more remote processors operating together.

[00078] In a network environment, where computer system 1000 1s connected to network
1080, computcr systcm 1000 may communicatc with othcr devices connccted to nctwork 1080.
Computer system 1000 may communicate with network 1080 via network interface 10106. For
example, computer system 1000 may receive information (such as a request or a response from
another device) from network 1080 1in the form of one or more incoming packets at network
interface 10106 and memory 1030 may store the imncoming packets for subsequent processing.
Computer system 1000 may send information (such as a request or a response to another device)
to network 1080 1n the form of one or more outgoing packets from network interface 10106,
which memory 1030 may store prior to being sent. Processors 1020 may access an incoming or
outgoing packet in memory 1030 to process 1t, according to particular needs.

[00079] Computer system 1000 may have one or more mput devices 1066 (which may
include a keypad, keyboard, mouse, stylus, etc.), one or more output devices 1068 (which may
include one or more displays, one or more speakers, one or more printers, etc.), one or more
storage devices 1070, and one or more storage medium 1072. An mput device 1066 may be
external or internal to computer system 1000. An output device 1068 may be external or internal
to computer system 1000. A storage device 1070 may be external or internal to computer system
1000. A storage medium 1072 may be external or internal to computer system 1000.

[00080] Particular embodiments involve one or more computer-storage products that
include one or more computer-readable storage media that embody software for performing one
or more steps of one or more processes described or illustrated herein. In particular
embodiments, one or more portions of the media, the software, or both may be designed and
manufactured specifically to perform one or more steps of one or more processes described or
illustrated herein. In addition or as an alternative, in particular embodiments, one or more
portions of the media, the software, or both may be generally available without design or

23

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

manufacture specific to processes described or 1llustrated herein. Example computer-readable
storage media include, but are not limited to, CDs (such as CD-ROMs), FPGAs, floppy disks,
floptical disks, hard disks, holographic storage devices, ICs (such as ASICs), magnetic tape,
caches, PLDs, RAM devices, ROM devices, semiconductor memory devices, and other suitable
computer-readable storage media. In particular embodiments, software may be machine code
which a compiler may generate or one or more files containing higher-level code which a
computer may execute using an iterpreter.
[00081] As an example and not by way of limitation, memory 1030 may include one or
morc computcr-rcadablc storage mcdia cmbodying softwarc and computcr system 1000 may
provide particular functionality described or illustrated herein as a result of processors 1020
executing the software. Memory 1030 may store and processors 1020 may execute the software.
Memory 1030 may read the software from the computer-readable storage media 1n mass storage
device 1030 embodying the software or from one or more other sources via network interface
10106. When executing the software, processors 1020 may perform one or more steps of one or
more processes described or illustrated herein, which may include defining one or more data
structures for storage 1n memory 1030 and modifying one or more of the data structures as
directed by one or more portions the software, according to particular needs. In addition or as an
alternative, computer system 1000 may provide particular functionality described or 1llustrated
herein as a result of logic hardwired or otherwise embodied 1n a circuit, which may operate 1n
place of or together with software to perform one or more steps of one or more processes
described or 1llustrated herein. The present disclosure encompasses any suitable combination of
hardware and software, according to particular needs.
[00082] In particular embodiments, computer system 1000 may include one or more
Graphics Processing Units (GPUs) 1024. In particular embodiments, GPU 1024 may comprise
one or more Integrated circuits and/or processing cores that are directed to mathematical
operations commonly used 1n graphics rendering. In some embodiments, the GPU 1024 may use
a special graphics unit instruction set, while 1n other implementations, the GPU may use a CPU-
like (e.g. a modified x86) 1nstruction set. Graphics processing unit 1024 may implement a
number of graphics primitive operations, such as blitting, texture mapping, pixel shading, frame
buffering, and the like. In particular embodiments, GPU 1024 may be a graphics accelerator, a
General Purpose GPU (GPGPU), or any other suitable processing unit.

24

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

[00083] In particular embodiments, GPU 1024 may be embodied 1n a graphics or display
card that attaches to the hardware system architecture via a card slot. In other implementations,
GPU 1024 may be integrated on the motherboard of computer system architecture. Suitable
graphics processing units may include Advanced Micro Devices(r)AMD R7XX based GPU
devices (Radeon(r) HD 4XXX), AMD R8XX based GPU devices (Radeon(r) HD 10XXX),
Intel(r) Larabee based GPU devices (yet to be released), nVidia(r) & series GPUs, nVidia(r) 9
serics GPUs, nVidia(r) 100 series GPUs, nVidia(r) 200 seriecs GPUs, and any other DX 1-
capable GPUEs.

]00084] Although thc present disclosure describes or illustrates particular opcrations as
occurring 1n a particular order, the present disclosure contemplates any suitable operations
occurring in any suitable order. Morcover, the present disclosure contemplates any suitable
operations being repeated one or more times 1n any suitable order. Although the present
disclosure describes or 1illustrates particular operations as occurring 1n sequence, the present
disclosure contemplates any suitable operations occurring at substantially the same time, where
appropriate. Any suitable operation or sequence of operations described or illustrated herein
may be mterrupted, suspended, or otherwise controlled by another process, such as an operating
system or kernel, where appropriate. The acts can operate in an operating system environment or
as stand-alone routines occupying all or a substantial part of the system processing.

[00085] The present disclosure encompasses all changes, substitutions, variations,
alterations, and modifications to the example embodiments herein that a person having ordinary
skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass
all changes, substitutions, variations, alterations, and modifications to the example embodiments
herein that a person having ordinary skill in the art would comprehend.

[00086] For the purposes of this disclosure a computer readable medium stores computer
data, which data can include computer program code that is executable by a computer, in
machine readable form. By way of example, and not limitation, a computer readable medium
may comprise computer readable storage media, for tangible or fixed storage of data, or
communication media for transient interpretation of code-containing signals. Computer readable
storage media, as used heren, refers to physical or tangible storage (as opposed to signals) and
includes without limitation volatile and non-volatile, removable and non-removable media

implemented 1n any method or technology for the tangible storage of information such as

25

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

computer-readable instructions, data structures, program modules or other data.
Computer readable storage media includes, but 1s not Immited to, RAM, ROM, EPROM,
EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other physical or material medium which can be used to tangibly store

the desired information or data or instructions and which can be accessed by a computer or

PTroCESSOr.

26

What is claimed is:

1. A method comprising;
recetving, by a processor, a first user input;
responsive to the first user mput, selecting, by the processor, an object rendered in a
first window of a display by a first application and a rendering API (Application
Programming Interface), wherein selecting the object comprises intercepting draw
commands from the first application to the rendering API;
extracting, by the processor, the object from the first application via an engine that
monitors received user inputs;
recetving, by the processor, a second user input for dragging the object on the display
from the first window to a second application rendered in a second window:
responsive to the second user input to drag the object from the first window to the
second window:
rendering, by the processor, a borderless window;
rendering, by the processor, a selection in the borderless window by
detouring the draw commands intercepted from the first application to the rendering API to
the engine, wherein the selection comprises the object selected by the user; and
moving, by the processor, the borderless window comprising the selection
across the display from the first window to the second window pursuant to the second user
input;
importing, by the processor, 1n response to the selection in the borderless window
crossing a focus border ot the second window, the selection in the borderless window 1nto
the second application, the importing comprising inserting the intercepted draw commands
into a rendering API pipeline opcrable to instruct the rendering API to render the selection in
the second window; and
ceasing, by the processor upon importation, intercepting and detouring the draw

commands from the first application to the rendering API.

2. The method of claim 1, wherein selecting the object further comprises:
detouring, by the processor, the first user input to the engine;

determining, by the processor, the object from the draw commands; and

27

CA 2844451 2017-12-12

selecting, by the processor, the object and other objects in accordance with a

selection algorithm.

3. The method of claim 2, wherein deteﬁrmining, by the processor, the object comprises:
assigning, by the processor, a camera on a near plane of a scene at coordinates of the
first user input;
ray casting, by the processor, from the camera to a far planc; and

sclecting, by the processor, a first object the ray haits.

4, The method of claim 3, further comprising:

receiving, by the processor, further user input to expand or filter the selection.

3. The method of claim 4, wherein expanding or filtering the selection comprises:
selecting or deselecting, by the processor, other objects in a scene connected to the

selected object or objects.

6. The method of claim 4, wherein expanding or filtering the selection comprises:
selecting or deselecting, by the processor, other objects in a scene designated by the

further user mput, wherein the designation process comprises:

receiving, by the processor, another user input for one of an object selection
or deselection;

assigning, by the processor, another camera on the near planc of the scenc at
the coordinates of the other user input; and

ray casting, by the processor, from the camera to the far plane and

designating the first object the ray hits.

7. The method of any one of claims 1 to 6, wherein rendering, by the processor, the
selection in the borderless window comprses:

copying, by the processor, draw commands associated with the selection from the
first application;

inserting, by the processor, the draw commands from the first application in a
pipeline of the rendering API; and

rendering, by the processor, the draw commands via the rendering APL.

28

CA 2844451 2017-12-12

8. The method of any one of claims 1 to 6, wherein rendering the selection n the
borderless window comprises:

obtaining, by the processor, first conditions, comprising lighting and cnvironmental
effects from the first application;

obtaining, by the proccssor, sccond conditions, comprising lighting and
environmental cffects from the second application; and

eradually applying, by the processor, the first and second conditions depending on a

distance of the borderless window from the first and second windows.

9. The method of any one of claims 1 to 8, wherein importing the selection to the
second application comprises:

converting, by the processor, the selection for implementation into the second
application;

rendering, by the processor, the selection via the engine 1n the second window during
the conversion,;

upon completion of the conversion, importing, by the processor, the selection 1nto the
second application; and

upon importing the object into the second application, halting, by the processor, the
engine rendering process and rendering, by the processor, the object from within the second

application.

10. The method of claim 9, wherein converting the selection comprises:

modifying, by the processor, the draw commands into a file format utilized by the

second application.

11. The method of claim 10, wherein the second application has its own rendering API,
and rendering the selection from within the second application comprises rendering, by the

processor, the selection in the second window using the second application’s rendering API.

29

CA 2844451 2017-12-12

12. A system comprising:
a graphics processing unit;
a processor; and
a storage medium for tangibly storing thereon program logic for execution by the
processor, the program logic comprising:
first user input receiving logic, executed by the processor, to receive a first
user input;
selecting logic, executed by the processor to select an object rendered 1n a
first window of a display by a first application and a rendering API in response to recerving
the first user input;
extracting logic, executed by the processor, to extract the object from the first
application via an cnginc that monitors received user mputs, whercein sclecting the object
comprises intercepting draw commands from the first application to the rendering API;
second user input receiving logic, executed by the processor, to receive a

second user mnput;
dragging logic, executed by the processor, to drag the object on the display

from the first window to a second application rendered 1n a second window 1n response to
recelving the second user input, the dragging logic further comprising:

window rendering logic, executed by the processor to render a
borderless window;

selection rendering logic, executed by the processor to render a
selection 1n the borderless window by detouring the draw commands intercepted from the
first application to the rendering API to the engine, wherein the selection comprises the
object selected by the user; and

moving logic, executed by the processor, to move the horderless

window across the display from the first window to the second window pursuant to the
second user mput in response to receiving the second user input to drag the borderless
window from the first window to the second window;

importing logic, executed by the processor, to import, in response to the
selection in the borderless window crossing a focus border of the second window, the
selection in the borderless window into the second application, the importing comprising
inserting the intercepted draw commands into a rendering API pipeline operable to 1nstruct

the rendering API to render the selection 1n the second window; and

30

CA 2844451 2017-12-12

ceasing logic, executed by the processor, to cease, upon importation,

intercepting and detouring the draw commands from the first application to the rendenng

API.

13. The system of claim 12, wherein the selecting logic executed by the processor, to
select the object further comprises:

detouring logic, executed by the processor, to detour the first user input from the first
application;

determining logic, executed by the processor, to determine the object from the draw
commands associated with the first uscr input; and

selecting logic, executed by the processor, to select the object and other objects 1n

accordance with a selection algorithm.

14, The system of claim 13, wherein the determining logic comprises:

assigning logic, executed by the processor, to assign a camera on a near plane of a
scene at coordinates of the first user input; and

ray casting logic, executed by the processor, for ray casting {rom the camera to a lar

plane and selecting the first object the ray hits.

15. The system of any one of claims 12 to 14, wherein the importing logic further
COMPIISES:

converting logic, executed by the processor, for converting the sclection for
implementation into the second application such that the selection 1s imported nto the
second application upon completion of the conversion;

rendering logic, executed by the processor, for rendering the selection in the second

window during the conversion process; and
halting logic, executed by the processor, for halting the engine rendering process and
rendering the object from within the second application upon importing the object into the

second application.

16. The system of any one of claims 12 to 15, wherein the selection rendering logic

further comprises:

31

CA 2844451 2017-12-12

first condition obtaining logic, executed by the processor, to obtain first conditions,
comprising lighting and environmental eflects from the first application;

second condition obtaining logic, executed by the processor, to obtain second
conditions, comprising lighting and environmental effects from the second application; and

conditions applying logic, executed by the proccssor, to gradually apply the first and

second conditions depending on the distance of the bordcrless window from the first and

second windows.

17. A non-transitory computer readable storage medium, having stored thereon,
processor-executable instructions, the instructions when executed by a processor performing
a method comprising:
receiving a first user input;
responsive to the first user input, selecting an object rendered 1n a first window of a
display by a first application and a rendering API, wherein selecting the object comprises
intercepting draw commands from the first application to the rendering API;
extracting the object from the first application via an engine;
receiving a second user input for dragging the 3D object on the display from the first
window to a second application rendered 1n a second window;
responsive to the second user 1nput:
rendering a borderless window;
rendering a selection in the borderless window by detouring the draw
commands intcrcepted from the first application to the rendering API to the engine, wherein
the selection compriscs the object selected by the user; and
moving the borderless window comprising the selection across the display

from the first window to the second window pursuant to the second user input;

importing, in response to the selection in the borderless window crossing a focus
border of the second window, the selection 1n the borderless window into the second
application, the importing comprising inserting the intercepted draw commands into a
rendering API pipeline operable to instruct the rendering API to render the selection 1n the
second window; and

ceasing, upon importation, intercepting and detouring the draw commands from the

first application to the rendering API.

32

CA 2844451 2017-12-12

18. The computer readable storage medium of claim 17, wherein instructions for

importing the object into the second application further comprise instructions for:
recelving a user gesture for importing the object into the second application

responsive to the borderless window comprising the object crossing the focus border of the

second window.

CA 2844451 2017-12-12

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

1/10

101

FIG. 1

02
DISPLAY
03 GRAPHICS
HARDWARE
104
RENDERING API

105 APPLICATION APPLICATION ENGINE
1 7
|
|

I
I

106

DETOURED COMMANDS
107 1/0 \
INTERFACE 110
108 USER
HARDWARE

109

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

2/10

' BEGIN APPLICATIONS !

201

GRAB PROCESS \\

202
DRAG PROCESS
203
RE-ENTRY PROCESS
204

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

3/10

304

FIG. 5

303d

Ve
"
o9

301
3030

WO 2013/025521

CA 02844451 2014-02-05

4/10

(start)

RECEIVE SELECTION

INPUT

:_‘ 401
'RESOLVE INPUT SELECTION
. TO GRAPHIC OBJECT IN

RENDERED DISPLAY
: 402
FILTER/EXPAND ;
SELECTION \
403
DRAG PROCESS _
........... Y,
.
START
e

PCT/US2012/050381

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

5/10

' CREATE BORDERLESS |
: WINDOW ‘

--- 501
. WRITE OBJECTTO |
' BORDERLESS WINDOW | ™
5 502
...... e
MOVEMENT o~
COMMANDS 503
505

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

6/10

START

' CONVERT OBJECT FOR
IMPLEMENTATION INTO |,
' SECOND APPLICATION \

601

WINDOW WHILE \

CONVERTING -y
...............

' IMPORT OBJECT INTO

' SECOND APPLICATION {™

STOP RENDERING
604
END

FIG. 6

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

/7/10

/04

FIG. /

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

8/10

FIG. 8 [B

802
DISPLAY
GRAPHICS 805
HARDWARE
809
804
RENDERING API

3
\ ENGINE —83 2— —J

APPLICATION SERVER

I APPLICATION I
Z

81

I____

814 | 05 APPLICATION 806
I
81 iy

/0
INTERFACE
USER
HARDWARE

CA 02844451 2014-02-05
WO 2013/025521 PCT/US2012/050381

910

901
FIG. 9 [
DISPLAY
903

APPLICATION GRAPHICS
SERVER HARDWARE
RENDERING API

904

915 RENDERING API

<

ENGINE |~~~ =7 —~1 DRAW COMMANDS

908
APPUgA Ll ' 910 APPLICATION oo
I
916 /|
- /O REPORTS

907 I/0 906
INTERFACE

USER
HARDWARE

CA 02844451 2014-02-05

PCT/US2012/050381

WO 2013/025521

10/10

cL0T

00T
8901

9901

0 O

0801

WNIdIW
FJOVH0OLS
EWIE(Y
JOVHOLS

4IINd
1d1N0

4IINd
1NdNI

vc0r

—
—
——

0901

8501

(Nd9) LINN

onisszovwd K>

SIIHAVHO

FIVAYSLNT
JOVHOLS

FIVHHTINI
11dIN0

FIVAYTINI
L1dNI

FOVHHTINT
O4dIN

10HINOD
SIIHdVYD

FIOVHHTINT
NHOMLIN

SNOLLYOI IddV
/IdV

10HINOD
JOVYOLS

Wy
vEOT

T
cEOT

AYOWIW

0v01

0E01

0c0r

————_—___—_“*_“—“

| F Spring l _ 21

|

|

|

| - F Coil 20 l
D+ e

l + F coil |

|

' |

|

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

