

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 October 2011 (27.10.2011)

(10) International Publication Number
WO 2011/130834 A1

(51) International Patent Classification:

A61K 31/05 (2006.01) *A61K 9/10* (2006.01)
A61K 47/06 (2006.01) *A61K 9/19* (2006.01)
A61K 47/30 (2006.01) *A61P 25/00* (2006.01)

[CA/CA]; 7825 avenue Querbass, Apartment #1, Montréal, Québec H3N 2B9 (CA).

(21) International Application Number:

PCT/CA2011/000447

(22) International Filing Date:

21 April 2011 (21.04.2011)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/327,348 23 April 2010 (23.04.2010) US

(71) Applicants (for all designated States except US):

LABOPHARM INC. [CA/CA]; 480, Blvd. Armand-Frappier, Laval, Québec H7V 4B4 (CA). **LABOPHARM (BARBADOS) LIMITED** [BB/BB]; Seaston House, Hastings, Christchurch (BB). **LABOPHARM EUROPE LIMITED** [IE/IE]; 5, The Seapoint Building, 44, Clontarf Road, Dublin 3 (IE).

(74) Agents: **RAOUL, Jennifer, M.** et al.; **BORDEN LANDER GERVAIS LLP**, World Exchange Plaza, 100 Queen Street, Suite 1100, Ottawa, Ontario K1P 1J9 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **RAVENELLE, Francois** [CA/CA]; 6387 rue Louis-Hemmon, Montréal, Québec H2G 2K8 (CA). **LE GARREC, Dorothee** [CA/CA]; 6428 Chabot, Montréal, Québec H2G 2T2 (CA). **LESSARD, David** [CA/CA]; 11970 St-Germain, Montréal, Québec H4J 2A2 (CA). **GORI, Sandra** [CA/CA]; 7600 Lajeunesse, #305, Montréal, Québec H2H 1Y2 (CA). **SMITH, Damon** [CA/CA]; 2857 Harfangs Street, Saint-Laurent, Québec H4R 3A5 (CA). **RAHMOUNI, Wiloud** [CA/CA]; 17739 rue Meloche, Pierrefonds, Québec H9J 3P9 (CA). **SANT, Vinayak**

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

WO 2011/130834 A1

(54) Title: NON-INTRAVENOUS DOSAGE FORM COMPRISING SOLID FORMULATION OF LIQUID BIOLOGICALLY ACTIVE AGENT AND USES THEREOF

(57) Abstract: The disclosure relates to a non-intravenous dosage for administration of a liquid biologically active agent. The dosage form contains a solid formulation of the liquid biologically active agent, e.g. propofol, in intimate association with at least one stabilizing agent, e.g. an amphiphilic polymer or surfactant. A liquid biologically active agent is converted to a solid product, e.g. a powder, that can be easily incorporated into a number of different non-intravenous dosage forms. Upon hydration, a nanodispersion or micelle loaded with the active agent is formed. The dosage form can provide a non-intravenous route of administration for active agents that are typically only administered intravenously. Methods, uses, kits and commercial packages related to the non-intravenous dosage form are also disclosed.

NON-INTRAVENOUS DOSAGE FORM COMPRISING SOLID FORMULATION OF LIQUID BIOLOGICALLY ACTIVE AGENT AND USES THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

5 [0001] This application claims the benefit of priority of U.S. Provisional Patent Application No. 61/327,348 filed April 23, 2010, which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

10 [0002] The present disclosure relates to a non-intravenous dosage form comprising a solid formulation of a liquid biologically active agent, wherein the solid formulation comprises the liquid biologically active agent in intimate association with at least one stabilizing agent. The disclosure further relates to formulations, methods, uses, kits and commercial packages pertaining to the non-intravenous dosage form.

15

BACKGROUND

[0003] A variety of methods and procedures have been described in the prior art for preparing stable formulations for the effective delivery of hydrophobic and amphiphilic biologically active agents to a desired location in the body. A number of these methods are 20 based on the use of auxiliary solvents; surfactants; soluble forms of the drug, e. g., salts and solvates; chemically modified forms of the drug, e.g., prodrugs; soluble polymer-drug complexes; special drug carriers such as liposomes and micelles; and others. These methods and procedures generally result in formulations intended for intravenous administration. Furthermore, many of the above methods and procedures have drawbacks 25 related to such factors as toxicity, poor entrapment, relatively large particle sizes, or the time and cost associated with the materials or method of preparation.

[0004] There have also been attempts investigating the use of water-soluble prodrugs, for example, to provide options for oral dosage forms. However, often prodrugs require much higher doses for the same response and usually demonstrate a slower onset of 30 action and slower clearance, which can be a disadvantage where rapid drug action is required. Prodrugs are often unstable resulting in short shelf lives or low storage temperatures to maintain their stability.

[0005] Polymeric and surfactant-based micelles and nanodispersions are being heavily investigated as carriers of poorly water-soluble molecules. Micelles demonstrate a core-shell structure that allows the active agent to be protected during transportation to the target site. The hydrophobic inner core generally serves as a microenvironment for the 5 solubilization of the active agent, whereas the hydrophilic outer shell is responsible for micelle stability and aqueous stability.

[0006] Polymeric micelles are discussed in, for example, Jones and Leroux, Eur. J. Pharm. Biopharm. (1999) 48, 101 111; Kwon and Okano, Adv. Drug Deliv. Rev. (1996) 21, 107-116 and Allen et al. Colloids Surf. B: Biointerf. (1999) 16, 3-27. Pharmaceutical research 10 on polymeric micelles has been mainly focused on copolymers having an AB diblock structure with A representing the hydrophilic shell moieties and B representing the hydrophobic core polymers, respectively. Multiblock copolymers such as poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (A-B-A) can also self-organize into micelles, and have been described as potential drug carriers, e.g. Kabanov et 15 al., FEBS Lett. (1989) 258, 343-345.

[0007] The hydrophobic core which generally consists of a biodegradable polymer such as a poly(β -benzyl-aspartate) (PBLA), poly(D,L-lactic acid) or poly(ϵ -caprolactone), serves as a reservoir for a poorly water-soluble drug, protecting it from contact with the aqueous environment. The core may also consist of a water-soluble polymer, such as 20 poly(aspartic acid) (P(Asp)), which is rendered hydrophobic by the chemical conjugation of a hydrophobic drug, or is formed through the association of two oppositely charged polyions (PICM). Several studies also describe the use of poorly- or non-biodegradable polymers, such as polystyrene (PSI) or poly(methyl methacrylate)(PMMA), as constituents of the inner core. See, e.g., Zhao et al., Langmuir (1990) 6, 514-516; Zhang et al., Science (1995) 268, 25 1728-1731; Inoue et al., J. Controlled Release (1998) 51, 221- 229 and Kataoka J. Macromol. Sci. Pure Appl. Chem. (1994) A31, 1759-1769. The hydrophobic inner core can also consist of a highly hydrophobic small chain such as an alkyl chain or a diacyllipid (e.g. distearoyl phosphatidyl ethanolamine). The hydrophobic chain can be either attached to one 30 end of a polymer, or randomly distributed within the polymeric structure. The shell usually consists of chains of hydrophilic, non-biodegradable, biocompatible polymers such as poly(ethylene oxide) (PEO) (see Allen et al. Colloids Surf. B: Biointerf. (1999) 16, 3-27 and Kataoka et al. J. Controlled Release (2000) 64, 143-153), poly(N-vinyl-2- pyrrolidone) (PVP)

(see Benahmed A et al. *Pharm Res* (2001) 18, 323-328) or poly(2-ethyl-2-oxazoline) (see Lee et al. *Macromolecules* (1999) 32, 1847-1852).

[0008] In general, polymeric micelles have been investigated for intravenous delivery of biologically active agents and are not generally contemplated for non-intravenous routes of administration. Furthermore, polymeric micelles are generally used in the delivery of biologically active agents that are solids. However, a number of important biologically active agents are liquid, for example, propofol.

[0009] Propofol (2,6-bis-(1-methylethyl)phenol, or 2,6-diisopropylphenol) is one of the most popular anesthetics in the world. It is most commonly used for the induction and maintenance of anaesthesia or sedation upon intravenous (i.v.) administration to humans or animals.

[0010] Propofol is an oil that is immiscible with water (aqueous solubility of approximately, 0.154 mg/mL); it is commonly supplied in the form of an emulsion, at concentrations of 1% or 2% (w/w), with 2% being used for longer sedation. Propofol oil-in-water emulsions currently on the market include DIPRIVAN® (manufactured by AstraZeneca Pharmaceuticals, Inc.), BAXTER® IPP (manufactured by Gensia Sicor, Inc.), and a propofol injectable emulsion manufactured by Bedford Laboratories. These are all formulated for intravenous administration.

[0011] WO 06/056064 (Ravenelle et al.) describes a solid formulation of propofol that is reconstituted, prior to intravenous administration, to form a clear, stabilized, nanodispersion or loaded micelles comprising a polymer as a stabilizing agent. However, there is no mention of non-intravenous administration.

[0012] When orally administered as a homogeneous liquid suspension, propofol is reported to exhibit an oral bioavailability of about 5% that of an equivalent intravenous dose of propofol. It is because of its poor oral bioavailability and extensive first-pass metabolism, that propofol is currently administered by injection for intravenous infusion only. Oral administration of propofol has not been considered therapeutically effective and has not been possible with the formulations currently available. This has prevented investigations into the efficacy of propofol for treating diseases or conditions for which intravenous infusion is not appropriate, such as diseases and conditions benefiting from outpatient treatment or where intravenous infusion is not possible or suitable. Thus, despite the widespread use of propofol, it currently has little value in these settings.

[0013] While the main clinical use of propofol is anaesthesia, there is emerging evidence that propofol is useful in the treatment and prevention of headache (e.g. migraine or cluster headache), nausea and emesis. There are a number of patients who suffer from intractable migraine headache, nausea and emesis who are not served by current 5 medications. However, since propofol is only available as an i.v. injection for anaesthesia, it is not suitable for these conditions.

[0014] Examples of treatments for migraine using propofol are disclosed in the following references: Propofol: A New Treatment Strategy for Refractory Migraine Headache, Jacqueline Drummond-Lewis and Corey Scher, Pain Medicine, Volume 3, Number 4, 2002, 10 366-369; Intravenous Propofol: Unique Effectiveness in Treating Intractable Migraine, John Claude Krusc et al., Headache, 2000; 40: 224-230; Intravenous Propofol in the Treatment of Refractory Headache, Headache, 2002; 41:638-641. Krusz J.C. et al (Headache 2000; 40: 224-230) describe the efficacy of intravenous propofol in treating intractable migraine. It will be noted that all these treatments are all intravenous.

[0015] Recent studies have demonstrated the efficacy of propofol in treating emesis and intractable migraines when administered intravenously at sub-sedative, sub-hypnotic doses. In the treatment of emesis, propofol has been used mostly with cancer patients who receive chemotherapy, and the normal treatment is usually by the intravenous route (A. Borgeat, O. H. G. Wilder-Smith and M. Forni, Canadian journal of anaesthesia, 40(69), 20 1993). This is normally achieved through propofol premedication prior to chemotherapy treatments to prevent symptoms. For example, propofol has been used at subhypnotic doses (0.5 – 1 mg/kg/h) for the prevention and treatment of chemotherapy induced emesis (Borgeat et al. Oncology 1993; 50: 456-459; Scher C S et al. Canad. J. Anaesth. 1992; 39: 170-2) and of postoperative emesis (Borgeat A. et al. Anaesthesia and Analgesia 1992; 74: 539-41, and 25 Schulman SR et al. Anaesthesia and Analgesia 1995; 80: 636-37).

[0016] Propofol has been used to control cancer pain in patients (Hooke et al., J Ped Oncology Nursing 2007, 24(1), 29-34), and in pre-clinical studies, locally injected propofol produces an antinociceptive effect in an animal models of inflammatory pain (Guindon et al., Anesth Analg 2007, 104, 1563-1569). Propofol has also been shown to be effective in the 30 treatment of central pain such as trigeminal neuralgia (Kubota et al., Exp Brain Res. 2007, 179(2), 181-190; and Mizuno et al., Neurol Med Chir (Tokyo) 2000, 40(7), 347-50), spinal cord injury (SCI) pain (Canavero and Bonicalzi, Neurol Sci 2001, 22, 271-273; and Canavero and Bonicalzi, Clin Neuropharmacol 2004, 27(4), 182-186), and central post-stroke pain

(CPSP) (Canavero et al., *J Neurol* 1995, 242(9), 561-567; and Canavero and Bonicalzi, *Pain* 1998, 74(2-3), 109-114).

[0017] There is a need for alternative formulations of hydrophobic or amphiphilic liquid biologically active agents capable of achieving levels of bioavailability sufficient for efficacy. In particular, there is an unmet need for non-intravenous dosage forms, such as 5 oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular, otic, or topical dosage forms, suitable for use in a hospital or outpatient setting. One example of an important hydrophobic liquid biologically active agent is propofol. While there is evidence that propofol is effective in treating intractable migraine, headache, nausea, vomiting, and pain, 10 the current dosage forms are for i.v. administration only and therefore are not suitable for outpatient use. Thus, there remains an unmet need for new propofol dosage forms that can be administered conveniently to patients in a non-intravenous manner.

SUMMARY

[0018] It is an object of the present disclosure to obviate or mitigate at least one 15 disadvantage of previous formulations comprising liquid biologically active agents.

[0019] In a first aspect, there is provided a dosage form for non-intravenous administration of a liquid biologically active agent. The dosage form comprising a solid 20 formulation comprising the liquid biologically active agent in intimate association with at least one stabilizing agent. The dosage form may further comprise one or more additives.

[0020] The dosage form, upon hydration, is capable of forming a nanodispersion or 25 micelle loaded with the liquid biologically active agent.

[0021] The stabilizing agent may comprising at least one amphiphilic copolymer or at 30 least one surfactant. The amphiphilic copolymer may comprise a linear, branched or star-shaped block polymer.

[0022] In some embodiments, the amphiphilic polymer includes a hydrophilic segment is selected from poly(ethylene oxide), poly(N-vinylpyrrolidone), poly(N-2-hydroxypropylmethacrylamide), poly(2-ethyl-2-oxazoline), poly(glycidol), poly(2-hydroxyethylmethacrylate), poly(vinylalcohol), polymethacrylic acid derivatives, 35 poly(vinylpyridinium), poly((ammoniumalkyl)methacrylate), poly((aminoalkyl)methacrylate) and combinations and derivatives thereof; and a hydrophobic segment selected from the group comprising a poly(ester), poly(ortho ester), poly(amide), poly(esteramide)

poly(anhydride), poly(propylene oxide), poly(tetrahydrofuran), polystyrene, polymethacrylate, polyacrylate, polymethacrylic acid, polyacrylic acid and combinations and derivatives thereof.

[0023] In some embodiments, the hydrophobic segment comprises a poly(ester) selected from the group consisting of poly(ϵ -caprolactone), poly(lactide), poly(glycolide),

5 poly(lactide-co-glycolide), poly(hydroxyl-alkanoates), poly(β -malic acid), and combinations and derivatives thereof.

[0024] In some embodiments, the amphiphilic copolymer is a PVP-PDLLA or PEG-PMA copolymer. The amphiphilic copolymer may, for example, be a diblock or triblock PEG-PMA copolymer. In some embodiments, the PEG-PMA copolymer is an EG-MAA-BMA 10 copolymer having the composition: EG₍₂₀₋₅₀₀₎-MAA₍₅₋₅₀₀₎-BMA₍₅₋₅₀₀₎, which may include polymers having the following compositions: EG₍₄₅₎-MAA₍₆₃₎-BMA₍₂₈₎; EG₍₄₅₎-MAA₍₆₄₎-BMA₍₃₄₎; or EG₍₄₅₎-MAA₍₅₄₎-BMA₍₂₆₎.

[0025] In some embodiments, the amphiphilic copolymer is a PVP-PDLLA copolymer.

15 **[0026]** In some embodiments, the stabilizing agent comprises a surfactant, such as, lauryl sulphate, hexadecyl pyridinium chloride, polysorbates, sorbitans, poly(oxyethylene) alkyl ethers, poly(oxyethylene) alkyl esters and combinations thereof.

[0027] In some embodiments, the dosage form is prepared from a solid formulation comprising the liquid biologically active agent in intimate association with at least one 20 stabilizing agent, and one or more additives. In some embodiments, the solid formulation is obtained by drying a mixture of the stabilizing agent, the liquid biologically active agent, and at least one solvent therefore, in such a manner as to form the intimate mixture of the liquid biologically active agent and the stabilizing agent. The drying may be lyophilization or freeze-drying. In some embodiments, the drying results in a powder, which may involve spray-drying or fluid bed-drying.

[0028] wherein the liquid biologically active agent is present in the solid formulation in a therapeutically effective amount.

[0029] In some embodiments, the liquid biologically active agent is present in the solid formulation in an amount between about 1 wt% and about 80 wt%, between about 1 30 wt% and about 60 wt%, between about 5 wt% and about 40 wt%, between about 5 wt% and about 30 wt%, between about 10 wt% and about 30 wt%, between about 10 wt% and about 20 wt%, between about 0.1 wt% and 5 wt%, between about 1 wt% and about 5 wt%.

[0030] In some embodiments, the solid formulation is present in the dosage form in an amount from about 1 wt% to about 99 wt%, from about 5 wt% to about 85 wt%, from about 5 wt% to about 60 wt%, 5 wt% to about 40 wt%, between about 5 wt% to about 30 wt%, between about 10 wt% to about 30 wt%, between about 10 wt% to about 20 wt%,
5 between about 0.1% to 5%, between about 1 wt% to about 5 wt%, between about 20 wt% to about 60 wt%.

[0031] In some embodiments, the biologically active agent is present in the dosage form in an amount from about 0.01 wt% to about 80 wt%, 0.01 wt% to about 50 wt%, from about 1 wt% to about 20%, from about 1 wt% to about 15 wt%, from between about 2 wt% to 10 about 10 wt%, between about 1 wt% to about 5 wt%, between about 5 wt% to about 10 wt%, or between about 10 wt% to about 20 wt%.

[0032] In some embodiments, the dosage form provides a bioavailability sufficient for achieving therapeutic efficacy. In some embodiments, the bioavailability of the active agent is at least about 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 15 70%, 75%, 80%, 85%, 90%, 95%, 100%, or higher. In some embodiments, the dosage form exhibits an increase in bioavailability of at least 10% compared to same-route administration of the biologically active agent in the absence of the stabilizing agent. In some embodiments, the dosage form exhibits a relative bioavailability of at least 100%, 110%, 120%, 150%, 200%, 500%, 700%, or 1000%. In some embodiments, the dosage form exhibits an absolute bioavailability of at least 10%. In some embodiments, the bioavailability of the active agent is increased by at least about 1.5-fold, 2-fold, 3-fold, 5-fold, 10-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 75-fold, 100-fold, or higher, in the presence of the stabilizing agent. In some embodiments, the bioavailability of the active agent is increased by at least about 1.5-fold to about 40-fold, from about 2-fold to about 35-fold, from about 5-fold to about 30-fold, in the 25 presence of the stabilizing agent.

[0033] In some embodiments, the solid formulation has a drug loading level (DLL) of up to about 5%, 10%, 15%, 20%, 25%, 50%, 60%, 70%, 80%, or higher. In some embodiments, the solid formulation has a drug loading level (DLL) from about 1% to about 80%, from about 10% to about 80%, or from about 20% to about 60%.

[0034] In some embodiments, the solid formulation forms micelles having a diameter less than about 500 nm, such as, between about between about 5 nm to 500 nm, 10 nm to 500 nm, 10 nm to 400 nm, 20 nm to 300 nm, or 20 nm to 200 nm.

[0035] In some embodiments, the stabilizing agent has a CAC below about 100 mg/L, below about 50 mg/L, below about 25 mg/L, below about 10 mg/L, or below about 5 mg/L. In some embodiments, the stabilizing agent has a CAC in the range of about 0.1 mg/L to about 1000 mg/L, about 0.1 mg/L to about 100 mg/L, about 0.1 mg/L to about 50 mg/L, about 0.1 to about 25 mg/L, about 0.1 to about 10 mg/L, or about 0.1 to about 5 mg/L.

5 **[0036]** In some embodiments, the liquid biologically active agent is hydrophobic or amphiphilic. In some embodiments, the liquid biologically active agent is selected from the group consisting of propofol, quinaldine, methoxyflurane, nicotine, phytonadione, methoxyflurane, dinoprost tromethamine, and mesoprostol, or a prodrug or derivative 10 thereof.

[0037] In some embodiments, the dosage form is suitable for oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular, otic or topical administration.

15 **[0038]** In some embodiments, it suitable for oral administration and may exhibit an absolute bioavailability of at least 10%. In some embodiments, it is suitable for sublingual administration.

[0039] In some embodiments, the dosage form is in the form of a tablet, caplet, capsule, sachet, solution, suspension, emulsion, cream, gel, film, lozenge, chewing gum, paste, ointment, drop, spray, aerosol inhaler, dry powder inhaler, suppository, pessary, or enema.

20 **[0040]** In some embodiments, the additive is one or more of a carrier, a bulk forming agent, a cryoprotectant, a lyoprotectant, a binder, a flavoring agent, a taste masking agent, a coloring agent, an odorant, a buffer, a preservative, a diluent, a dispersant, a surfactant, a disintegrant, or an additional stabilizer.

25 **[0041]** In some embodiments, tablet is a rapid disintegrating tablet (RDT). In some embodiments, the RDT comprises a disintegrant or disintegrating matrix to facilitate rapid release of the solid formulation from the dosage form. In some embodiments, the disintegrating matrix is a starch or a hydrogel. In some embodiments, the starch is a cross-linked high amylose starch, such as, Contramid. In some embodiments, the RDT additionally comprises a sugar, such as, mannitol, trehalose, maltodextran.

30 **[0042]** The dosage form may be an instant release dosage form, an immediate release dosage form, or a controlled release dosage form. In some embodiments, the dosage form is a controlled release dosage form and the controlled release is sustained

release, and wherein the dosage form releases the liquid biologically active agent over a period of about 45 minutes to about 24 hours.

[0043] In some embodiments, the dosage form releases the liquid biologically active agent over a period of at least about 4 hours, at least about 8 hours, at least about 12 hours, 5 at least about 16 hours, at least about 20 hours, or at least about 24 hours.

[0044] In some embodiments, the liquid biologically active agent is propofol or a derivative or prodrug thereof. In some embodiments, the liquid biologically active agent is propofol. In some embodiments, the solid formulation comprises between about 10 wt% and about 30 wt% propofol. In some embodiments, upon oral administration, the absolute 10 bioavailability of propofol is at least about 10%, between about 15% and about 165%, between about 15% and about 100%, between about 15% and about 80%, or between about 20% and about 80%.

[0045] In some embodiments, dosage form is for use in the treatment or prevention of a disease or condition of the central nervous system. In some embodiments, condition of 15 the central nervous system is headache, emesis, nausea, or pain

[0046] In some embodiments, dosage form is for inducing anaesthesia or sedation in a subject in need thereof. In some embodiments, the dosage form is for use in the manufacture of a medicament.

[0047] In another aspect, there is provided a use of a dosage form as described 20 herein in the manufacture of a medicament for the treatment or prevention of a disease or condition of the central nervous system.

[0048] In another aspect, there is provided a use of a dosage form as described herein in the treatment or prevention of a disease or condition of the central nervous system.

[0049] In another aspect, there is provided a use of a dosage form as described 25 herein in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the central nervous system.

[0050] In another aspect, there is provided a use of a solid formulation comprising an intimate mixture of propofol and at least one amphiphilic copolymer in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the 30 central nervous system.

[0051] In another aspect, there is provided a solid formulation comprising an intimate mixture of propofol and at least one stabilizing agent, for use in the manufacture of a non-

intravenous dosage form for the treatment or prevention of headache, nausea, emesis, or pain.

[0052] In another aspect, there is provided a method or treating a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a non-intravenous dosage form as described herein. In some embodiments, the route of administration is oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular or topical administration. In some embodiments, the route of administration is oral administration. In some embodiments, the route of administration is sublingual administration.

10 **[0053]** In some embodiments, the disease or condition to be treated is a disease or condition of the central nervous system. In some embodiments, the disease or condition of the central nervous system is headache, nausea, emesis or pain. In some embodiments, the headache is intractable migraine headache. In some embodiments, the pain is neuropathic pain. In some embodiments, the neuropathic pain is post-herpetic neuralgia, peripheral neuropathy, trigeminal neuralgia, lower back pain, painful diabetic neuropathy, HIV-related neuropathic pain, cancer-related pain, or fibromyalgia.

15 **[0054]** In another aspect, there is provided a method of treating or preventing headache, nausea, emesis or pain, comprising administering to a subject in need thereof a therapeutically effective amount of a non-intravenous dosage form comprising a solid formulation, and, optionally, one or more additives, the solid formulation comprising an intimate mixture of propofol and at least one amphiphilic copolymer, wherein, upon hydration, micelles loaded with the propofol are formed.

20 **[0055]** In another aspect, there is provided a commercial package or kit comprising a non-intravenous dosage form as described herein, together with one or more instructions for use in the treatment or prevention of a disease or condition.

[0056] In another aspect, there is provided a commercial package or kit comprising a non-intravenous dosage form as described herein comprising propofol, together with one or more instructions for use in the treatment or prevention of headache, nausea, emesis, or pain.

30 **[0057]** In another aspect, there is provided a method for the preparation of a dosage form for non-intravenous administration of a liquid biologically active agent which comprises: providing a first mixture of at least one stabilizing agent in at least one solvent, under conditions to achieve micelle or nanodispersion formation, providing a second mixture by

mixing said first mixture and at least one liquid biologically active agent to load said micelle or nanodispersion with said liquid biologically active agent, removing the solvent from said second mixture to form a solid formulation; and optionally, adding one or more additives suitable to prepare the non-intravenous dosage form.

5 [0058] In some embodiments, the solvent is removed by drying. In some embodiments, the drying involves spray drying or drying in a fluid bed. In some embodiments, the drying freeze drying.

10 [0059] Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific 10 embodiments in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0060] Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached Figures.

15 [0061] Fig. 1 is a Figure 1 illustrates the in vitro translocation of propofol from micellar formulations across Caco-2 monolayers.

[0062] Figure 2 illustrates the pharmacokinetic profiles of Diprivan® IV (3.5 mg/kg), PM1a, PM1b (7 mg/kg, PO), and PM3 FD (35 mg/kg, PO) after administration to female Sprague-Dawley rats.

20 [0063] Figure 3 illustrates the total exposure (AUC) after administration of Diprivan® IV (3.5 mg/kg), PM1a, PM1b (7 mg/kg, PO), and PM3 FD (35 mg/kg, PO) to female Sprague-Dawley rats.

25 [0064] Figure 4 illustrates the pharmacokinetic profiles of Diprivan® IV (7 mg/kg), PM1c (7mgkg), and PM1c (3.5, 7 and 14 mg/kg, PO) after administration to female Sprague-Dawley rats.

[0065] Figure 5 illustrates the total exposure (AUC) after administration of PM1c (3.5, 7 and 14 mg/kg, PO) to female Sprague-Dawley rats.

[0066] Figure 6 illustrates the pharmacokinetic profiles of Diprivan® IV (7 mg/kg) and PM2 (3.5, 7 and 14 mg/kg, PO) after administration to female Sprague-Dawley rats.

30 [0067] Figure 7 illustrates the total exposure (AUC) after administration of PM2 (3.5, 7 and 14 mg/kg, PO) to female Sprague-Dawley rats.

[0068] Figure 8 illustrates the pharmacokinetic profiles of Rapinovet® IV (mg/kg), PM3 FD (5mg/kg, PO), and PM5 SD (3, 5 and 15 mg/kg, PO) after administration to male Göttingen Minipigs.

5 DETAILED DESCRIPTION

[0069] Generally, the present disclosure provides a solid formulation of a liquid biologically active agent suitable for non-intravenous administration to a subject. The solid formulation comprises an intimate mixture of a liquid biologically active agent and at least one stabilizing agent, for example, an amphiphilic copolymer or a surfactant. The formulation

10 may be used to improve the bioavailability of the liquid biologically active agent.

Conveniently, the solid formulation permits the incorporation of the liquid biologically active agent into several different dosage forms suitable for non-intravenous administration to a human or animal. Various dosage forms, methods, uses, kits and commercial packages comprising the solid formulation are described herein, following the below definitions of

15 abbreviations and terms used throughout the specification.

[0070] ABBREVIATIONS

[0071] As used herein, the abbreviation n-BMA refers to n-butyl methacrylate.

[0072] As used herein, the abbreviation t-BMA refers to t-butyl methacrylate.

[0073] As used herein, the abbreviation PEGME refers to poly(ethyleneglycol) methyl 20 ether.

[0074] As used herein, the abbreviation THF refers to tetrahydrofuran.

[0075] As used herein, the abbreviation PPF refers to propofol.

[0076] As used herein, the abbreviation PVP-PDLLA refers to polyvinyl pyrrolidone – polylactide block copolymers.

25 [0077] As used herein, the abbreviation PEG-PMA refers to poly(ethyleneglycol)-poly(methacrylate-co-methacrylic acid) block copolymers

[0078] As used herein, the abbreviation DDL refers to drug loading level

[0079] As used herein, the abbreviation SLS refers to static light scattering.

[0080] As used herein, the abbreviation NMR refers to nuclear magnetic resonance.

30 [0081] As used herein, the abbreviation Mn refers to number average molecular weight.

[0082] As used herein, the abbreviation Mw refers to weight average molecular weight.

[0083] As used herein, the abbreviation PO administration refers to per os.

[0084] As used herein, the abbreviation PI refers to polydispersity index.

[0085] As used herein, the abbreviation AUC refers to area under the curve.

[0086] As used herein, the abbreviation TGA refers to thermogravimetric analysis.

5 [0087] As used herein, the abbreviation ODT refers to oral disintegrating tablet.

[0088] As used herein, the abbreviation PPF-PNDS refers to propofol polymeric nanodelivery system.

[0089] As used herein, the abbreviation PEG refers to polyethylene glycol.

[0090] As used herein, the abbreviation CMC refers to critical micellar concentration.

10 [0091] As used herein, the abbreviation IV refers to intravenous.

[0092] DEFINITIONS

[0093] The following section defines various terms and expressions used throughout the instant specification.

[0094] As used herein, the term "solid formulation" refers to a substantially dry, solid state, formulation prepared from drying (e.g. removing solvent from) a mixture of a liquid biologically active agent and at least one stabilizing agent in such a manner to form an intimate mixture of the liquid biologically active agent and the at least one stabilizing agent and, optionally, one or more additives.

15 [0095] As used herein, the term "stabilizing agent" refers to any vehicle or material which allows aqueous preparation of the liquid biologically active agent, which is capable of forming, under appropriate conditions, a nanodispersion or micelle loaded with the liquid biologically active agent, for example, an amphiphilic copolymer or surfactant.

20 [0096] As used herein, the term "liquid biologically active agent" refers to a hydrophobic or amphiphilic therapeutic agent that is liquid (e.g. oil), or can be liquefied, at temperatures between about 0°C to about 100°C. Preferably, the liquid biologically active agent is liquid at room temperature, for example, between about 16°C to about 25°C.

25 [0097] As used herein, the term "therapeutic agent" refers to an agent that has a therapeutic or health-promoting effect when administered to a human or an animal, for example, an agent capable of treating or preventing a disease or condition. Examples of therapeutic agents include, but are not limited to, drugs, prodrugs, vitamins and supplements.

30 [0098] As used herein, the term "additives" refers to excipients, carriers, diluents, and the like, having substantially no pharmacological activity. The additives are preferably

"pharmaceutically acceptable" referring to additives which are nontoxic when administered to a patient in an amount sufficient to provide a therapeutic effect and which do not destroy the biological activity of the active agent.

[0099] As used herein, the term "hydrogel" refers to three-dimensional, water-swollen

5 structures composed of mainly hydrophilic homopolymers or copolymers, for example, polycarbophilic acid. There are natural hydrogels and synthetic hydrogels. Typical examples of natural hydrogels are those comprising alginate or polysaccharides. Typical examples of synthetic hydrogels are those comprising polyvinyl alcohol (PVAL), polyvinyl pyrrolidone (PVP), polyethylene oxide (PEO), polyacrylamide (PAAm), polyacrylic acid (PAA), or 10 polyvinyl methyl ether (PVME). Hydroxypropyl distarch phosphates are another example of a hydrogel.

[00100] As used herein, the terms "intimate mixture" or "in intimate association with"

means that at least a portion of the liquid biologically active agent is in intimate contact with the core (e.g. hydrophobic segment) of the stabilizing agent, for example, in the form of a 15 nanodispersion or micelle loaded with the liquid biologically active agent.

[00101] As used herein, the term "nanodispersion" refers to a system of nanoparticles which are capable of sequestering a liquid biologically active agent. Examples include, for example, micelles, liposomes, nanocapsules, nanospheres, lipid complexes, cyclodextrin complexes, polymersomes, dendrimers, nanoemulsions, latexes and the like.

20 **[00102]** As used herein, the term "micelle" refers to a supramolecular self-assembly capable of sequestering a liquid biologically active agent, for example, to improve miscibility of the biological agent in an aqueous environment.

[00103] As used herein, the term "hydrophobic" means substantially immiscible with aqueous medium.

25 **[00104]** As used herein, the term "hydrophilic" means substantially miscible with aqueous medium.

[00105] As used herein, the term "amphiphilic" means having at least one hydrophobic segment and at least one hydrophilic segment.

30 **[00106]** As used herein, the term "hydration" refers to partial or full reconstitution of the solid formulation in an aqueous medium, for example, a biological fluid, water, or aqueous solution.

[00107] The term "powder" refers to a substantially dry, free-flowing, particulate material having high bulk density. Spray-dried powders typically have a bulk density in the

range of about 0.05 -1.00 g/cc, more typically between about 0.2 - 0.5 g/cc. Advantageously, powders are suitable for incorporation into various non-intravenous dosage forms, including but not limited to, tablets, including rapid disintegrating tablets, caplets, capsules, sachets, solutions, suspensions, creams, gels, ointments, pessaries, suppositories, enema, drops,

5 aerosol or dry powder inhalers, and the like.

[00108] The term "cake", as compared to a powder, refers to a non-flowing, non-particulate material having a low bulk density, typically in the range of about 0.0001 – 0.05 g/cc. In accordance with the methods disclosed herein, a cake may be formed, for example, as a result of lyophilization or freeze-drying.

10 **[00109]** As used herein, the term "substantially dry" indicates that the at least about 90%, preferably at least about 95%, 96%, 97%, 98%, 99%, or 99.9%, of the solvent has been removed during the drying process.

15 **[00110]** The expression, "under conditions to achieve nanodispersion or micelle formation" includes dissolving in one or more suitable solvents and, optionally, one or more of heating, cooling, pressurizing, mixing, shaking, stirring, vortexing, blending, homogenizing, sonicating, or the like.

20 **[00111]** As used herein, the term "dosage form" refers to a pharmaceutical composition comprising a solid formulation as described herein, together with one or more additives, in a form or device suitable for non-intravenous administration to a patient.

25 Examples include, but are not limited to tablets, including rapid disintegrating tablets, caplets, capsules, sachet formulations, solutions, suspensions, emulsions, creams, gels, hydrogels, films, lozenges, chewing gum, pastes, ointments, sprays, aerosol inhalers, dry powder inhalers, suppositories, pessaries, enemas, and the like.

30 **[00112]** As used herein, the term "non-intravenous" or "non-intravenous administration" refers to any suitable route of administration other than by injection or infusion, in particular, it includes routes of administration involving contact with mucous membranes, such as oral, sublingual, intranasal, intrapulmonary, ocular, topical, rectal, urethral and vaginal. The route of administration may be "non-parenteral", thereby excluding all forms of parenteral administration.

[00113] The term "enteral" refers to routes of administration involving the alimentary canal, digestive tract or intestinal which, as used herein, includes at least oral, sublingual, and rectal.

[00114] As used herein, the term "instant release" refers to a dosage form that releases the solid formulation within about 1 second to about 30 seconds. When the solid formulation is released in an aqueous environment, e.g. upon hydration, the solid formulation is capable of forming a nanodispersion or micelle loaded with the biologically active agent.

5 **[00115]** As used herein, the term "immediate release" refers to a dosage form that releases the solid formulation within about 30 seconds to about 45 minutes.

[00116] As used herein, the term "controlled release" refers to any of a number of dosage forms that are capable of controlling the release of the biologically active agent, for example, timed release, delayed release, sustained release, pH-dependent release, and so 10 on.

[00117] As used herein, the term "sustained release" refers to a dosage form that releases the solid formulation within about 45 minutes to about 24 hours.

[00118] As used herein, the term "therapeutic efficacy" refers to achieving a desired therapeutic outcome in the treatment or prevention of a named disease or condition, such as, 15 for example, efficacy in alleviating or eliminating symptoms either on a temporary or permanent basis, or preventing or slowing the appearance of symptoms of the named disease or condition.

[00119] As used herein, the term "treat" or "treating" means to alleviate or eliminate 20 symptoms, either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disease or condition. The act of treating may not eliminate symptoms altogether but will provide relief or improvement to the subject being treated.

[00120] As used herein, the term "disease or condition" refers to a disease, disorder, condition, pathology, or symptom of any of the foregoing.

[00121] The term "subject" is used interchangeably with "patient" herein and includes 25 mammals, including humans and animals.

[00122] As used herein, the term "therapeutically effective amount" refers to an amount of the biologically active agent that, when administered to a patient, is sufficient to achieve a desired therapeutic efficacy. The therapeutically effective amount can vary depending, for example, on the active agent, the disease, disorder, and/or symptoms of the 30 disease or disorder, severity of the disease, disorder, and/or symptoms of the disease or disorder, the age, weight, and/or health of the patient to be treated, and the judgment of the prescribing physician. An appropriate therapeutically effective amount in any given instance

may be ascertained by those skilled in the art or capable of determination by routine experimentation.

[00123] A "dose" refers to the amount of biologically active agent to be administered to a patient in a given unit(s) of a dosage form. The dose required to achieve therapeutic efficacy can vary depending on, for example, the disease or disorder to be treated, the dosage form, and the route of administration.

[00124] As used herein the term "AUC" is the area under a curve representing the concentration of a biologically active agent in a biological fluid of a patient within a defined period of time following administration of the biologically active agent to the patient.

10 Examples of biological fluids include plasma, blood, lymphatic fluids and cerebro-spinal fluid. AUC may be determined by measuring the concentration of a biologically active agent in a biological fluid such as the plasma or blood over a given time period using known methods such as various chromatography methods and then calculating the area under the plasma concentration-versus-time curve. Suitable methods for calculating the AUC from a 15 biologically active agent concentration-versus-time curve are well known in the art. As relevant to the disclosure herein, an AUC for propofol can be determined by measuring the concentration of propofol in a biological fluid of a patient following administration of a dosage form comprising propofol.

[00125] As used herein, "bioavailability" refers to the amount of a biologically active 20 agent within a specific body compartment (such as the blood of the systemic circulation) of a patient, following administration of the biologically active agent to that patient, as a percentage of the amount of the biologically active agent administered. Bioavailability values may be expressed in terms of either absolute bioavailability or relative bioavailability. It is the absolute bioavailability of the biologically active agent in the body compartment that is of 25 concern when comparing formulations developed for intravenous administration with those developed for non-intravenous administration.

[00126] Absolute bioavailability compares the bioavailability of the biologically active agent in the systemic circulation following non-intravenous administration (for example after oral, rectal, transdermal, subcutaneous, or sublingual administration), with the bioavailability 30 of the same biologically active agent administered intravenously, that is; the AUC generated by the biologically active agent in the systemic circulation post non-intravenous administration compared with the corresponding AUC generated by intravenous administration of the same biologically active agent. The comparison must be dose

normalized to account for different doses or varying weights of the subjects. Thus, the absolute bioavailability is the dose-corrected area under curve (AUC) for the non-intravenous dose divided by the AUC generated by the intravenous dose. For example, the formula for calculating the absolute bioavailability F for a biologically active agent administered by the 5 oral route (po) is:

$$F = \frac{[AUC]_{po} * dose_{IV}}{[AUC]_{IV} * dose_{po}}$$

[00127] Therefore, a biologically active agent given by the intravenous route will have 10 an absolute bioavailability of 1 (F=1) while biologically active agents given by other routes usually have an absolute bioavailability of less than one. Expressed as a percentage, a biologically active agent given by the intravenous route will have an absolute bioavailability of 100% while those administered by other routes will have values less than 100%.

[00128] As used herein, the term "apical side" refers to the surface of the plasma 15 membrane of a polarized cell that faces the lumen.

[00129] As used herein, the term "basolateral side" refers to the surface of the plasma membrane of a polarized cell that forms its basal and lateral surfaces. It faces towards the interstitium, and away from the lumen.

[00130] When introducing elements disclosed herein, the articles "a", "an", "the", and 20 "said" are intended to mean that there are one or more of the elements. The terms "comprising", "having", "including" are intended to be open-ended and mean that there may be additional elements other than the listed elements.

[00131] As used herein, the term "about" in association with a numeric value or range refers to a variation of +/- 10%.

[00132] Reference is now made in detail to embodiments of the present disclosure. 25 The disclosed embodiments are not intended to be limiting of the claims. To the contrary, the claims are intended to cover alternatives, modifications, and equivalents.

[00133] SOLID FORMULATIONS

[00134] It has now been found that a solid formulation of a liquid biologically active 30 agent, as described herein, when administered in a non-intravenous dosage form, is capable of achieving sufficient plasma levels to have therapeutic effect in vivo. To date, such a solid

formulation was only thought to be suitable for reconstitution and administration in an intravenous dosage form (see WO 2006/05064).

[00135] The present disclosure thus provides effective non-intravenous dosage forms suitable for use in a hospital or outpatient setting. Importantly, the present disclosure 5 provides a means of converting a liquid biologically active agent, including some that are currently administered intravenously only, e.g. propofol, into a solid formulation suitable for administration in a non-intravenous dosage form. Moreover, the solid formulation, as described herein, when administered in a non-intravenous dosage form, may improve the bioavailability of a liquid biologically active agent compared to administration of the same 10 agent alone.

[00136] The present disclosure thus provides a solid formulation of a liquid biologically active agent suitable for use in a non-intravenous dosage form.

[00137] The solid formulation comprises a liquid biologically active agent in intimate association with at least one stabilizing agent. The solid formulation, upon hydration, is 15 capable of forming a nanodispersion or micelle loaded with the liquid biologically active agent.

[00138] The solid formulation may be obtained by drying (e.g. removing solvent or 20 solvents from) a mixture of a liquid biologically active agent and at least one stabilizing agent and, optionally, one or more additives, in such a manner as to form an intimate mixture of the liquid biologically active agent and the stabilizing agent.

[00139] In some embodiments, the solid formulation is obtained by freeze-drying (e.g. lyophilizing) the mixture.

[00140] In some embodiments, the solid formulation is obtained by spray-drying the mixture or drying the mixture in a fluidized bed (e.g. fluid bed-drying). This method of 25 obtaining the solid formulation poses additional challenge compared to freeze-drying, since the components of the mixture remain in the liquid state during the process, thereby providing opportunity for mixing of the liquid biological agent with the solvent, with potential for loss of active agent during the drying process. However, it has been found that, according to methods disclosed herein, substantially none of the active agent is lost.

30 [00141] Other suitable forms of drying known in the art may also be used.

[00142] In some embodiments, the formulation is in the form of a substantially dry powder or a cake.

[00143] A powder may be formed, for example, as a result of spray-drying or fluid bed-drying a mixture of a biologically active agent, at least one stabilizing agent, and a suitable solvent therefor. A cake may be formed, for example, as a lyophilizing or freeze-drying a mixture of a biologically active agent, at least one stabilizing agent, and a suitable solvent therefor.

5

[00144] In some embodiments, the powder is a spray-dried powder. In some embodiments, the powder is a fluid-bed dried powder. In some embodiments, the powder has a bulk density in the range of about 0.05 – about 1.00 g/cc. In some embodiments, the powder has a bulk density in the range of about 0.2 – about 0.5 g/cc. Advantageously, 10 powders are suitable for incorporation into various non-intravenous dosage forms.

10

[00145] In some embodiments, the formulation is in the form of a “cake”. In some embodiments, the cake has a bulk density in the range of about 0.0001 – about 0.05 g/cc.

15

[00146] The solid formulations are suitable for use in a number of different non-intravenous dosage forms, particularly, the powder formulations due to their free-flowing, particulate, nature as compared to cakes.

15

[00147] The solid formulation can improve the bioavailability of the biologically active agent compared to administration of the biologically active agent alone (e.g. in the absence of the stabilizing agent). For instance, as demonstrated in the Examples, oral administration of a reconstituted solid formulation comprising propofol increased propofol bioavailability 20 levels compared to reported oral bioavailability levels of about 5-8%. The oral bioavailability levels of propofol demonstrated in the examples herein ranged from about 14% to about 165%, depending on the stabilizing agent used. Even a bioavailability of 14% represents an increase compared to reported values.

25

[00148] In some embodiments, the bioavailability of the active agent is at least about 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160% or higher. Bioavailability is typically measured as absolute bioavailability.

30

[00149] In one embodiment, the liquid biologically active agent is propofol and the bioavailability of propofol is at least about 10%, preferably between about 15% and about 165%, between about 15% and about 100%, between about 15% and about 80%, or between about 20% and about 80% compared to an equivalent intravenous dose of propofol.

[00150] In some embodiments, the bioavailability is improved or increased compared to same-route administration of the active agent in the absence of the stabilizing agent.

[00151] In some embodiments, the bioavailability of the active agent is increased by at least about 1.5-fold, 2-fold, 3-fold, 5-fold, 10-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 75-fold, 100-fold, 250-fold, 500-fold, 1000-fold, 1500-fold, 3000-fold, 5000-fold, 7500-fold, 10000-fold, or higher. In the examples provided herein, oral bioavailability of propofol was increased by about 3-fold to about 33-fold based on a reported oral bioavailability level of about 5%. Thus, in some embodiments, the bioavailability of the active agent is increased by at least about 1.5-fold to about 40-fold, from about 2-fold to about 35-fold, from about 5-fold to about 30-fold,

[00152] Solid formulations meeting desired criteria for a given application can easily be selected by those of skill in the art.

[00153] LIQUID BIOLOGICALLY ACTIVE AGENT

[00154] The liquid biologically active agent may be any liquid therapeutic agent that is compatible with the stabilizing agent used in the formation of the solid formulation, and which is capable of forming a nanodispersion or micelle loaded with the biologically active agent under appropriate conditions. It will be understood that the liquid biologically active agent is one which is compatible with the methods of preparation disclosed herein.

[00155] The biologically active agent comprises a hydrophobic or amphiphilic molecule, such as a hydrophobic or amphiphilic drug, prodrug, vitamin or supplement.

[00156] In some embodiments, the liquid biologically active agent is a liquid drug, such as, propofol, quinaldine, methoxyflurane, nicotine, phytomedicine, methoxyflurane, dinoprost tromethamine, mesoprostol.

[00157] In some embodiments, the liquid biologically active agent is a liquid vitamin or supplement, such as alpha-linolenic acid, vitamin E, fish oil, an essential oil, or an extract.

[00158] In some embodiments, the liquid biologically active agent is present in the solid formulation in a therapeutically effective amount. The therapeutically effective amount can be determined by those of skill in the art.

[00159] In some embodiments, the therapeutically effective amount is an amount that, when administered to a subject, is capable of treating or preventing a disease or condition.

[00160] In some embodiments, the liquid biologically active agent is present in the solid formulation in an amount between about 1 wt% and about 80 wt%, 1 wt% and about 60 wt%, 5 wt% and about 40 wt%, between about 5 wt% and about 30 wt%, between about 10 wt% and about 30 wt%, between about 10 wt% and about 20 wt%, between about 0.1 wt%

and 5 wt%, between about 1 wt% and about 5 wt%. This range can vary to a large extent as will be appreciated by one skilled in the art.

[00161] In some embodiments, the liquid biologically active agent is propofol or a derivative or prodrug thereof. Various prodrug forms of propofol are known from the prior art.

5 A skilled person will be able to select those prodrug forms that are compatible with the present disclosure.

[00162] In some embodiments, the therapeutically effective amount is an amount of propofol that, when administered to a subject, is capable of treating or preventing a disease or condition. The disease or condition may, for example, be headache (e.g. migraine

10 headache and/or intractable migraine headache), emesis and/or nausea (e.g. associated with chemotherapy or surgery), or pain (e.g. pain associated with cancer, central pain, surgical pain, neuropathic pain. For treatment of such conditions, propofol is preferably administered at a dose less than that required to achieve moderate sedation or anaesthesia.

[00163] wherein the neuropathic pain is chosen from post-herpetic neuralgia, peripheral neuropathy, trigeminal neuralgia, lower back pain, painful diabetic neuropathy, HIV-related neuropathic pain, cancer-related pain, and fibromyalgia.

[00164] In some embodiments, the therapeutically effective amount of propofol is an amount that, when administered to a subject, induces moderate sedation or anaesthesia.

[00165] Other known uses of propofol are also contemplated.

20 **[00166]** Although the liquid biologically active agent is referred to as a liquid, the skilled person will appreciate that, once incorporated into the dry solid formulation, it is no longer in true liquid form.

[00167] MICELLES

[00168] The solid formulations described herein have the characteristic of forming 25 micelles or nanodispersions upon hydration, for example, upon contact with an aqueous fluid, which may be an aqueous bodily fluid, such as saliva, mucous or gastric fluid. It has been found that the micelles form immediately and spontaneously upon hydration and will form across a wide range of pH levels, for example, from pH 1 to 12, depending on the stabilizing agent selected.

30 **[00169]** The micelles or nanodispersions allow high loading levels of propofol or other liquid biologically active agent to be achieved, with substantially no effect on stability. In some embodiments, the drug loading level (DLL) is up to about 5%, 10%, 15%, 20%, 25%,

50%, 60%, 70%, 80%, or higher. In some embodiments, the DLL is from about 1% to about 80%, from about 10% to about 80%, or from about 20% to about 60%.

[00170] Micelle formation occurs as a result of two forces. One is an attractive force

that leads to the association of molecules, while the other is a repulsive force that prevents

5 unlimited growth of the micelles to a distinct macroscopic phase. Amphiphilic copolymers

self-associate when placed in a solvent that is selective for either the hydrophilic or

hydrophobic polymer. The micellization process of amphiphilic copolymers is similar to that

for low molecular weight surfactants. At very low concentrations, the polymers exist only as

single chains. As the concentration increases to reach a critical value called the critical

10 association concentration ("CAC"), polymer chains start to associate to form micelles in such

a way that the hydrophobic part of the copolymer will avoid contact with the aqueous media in which the polymer is diluted.

[00171] Amphiphilic copolymers usually exhibit a CAC which is much lower than that

of low molecular weight surfactants. For example, the CAC of PEO PBLA and PNIPA-PSt

15 are between 5-20 mg/L. Some amphiphilic copolymers, however, exhibit much higher CAC,

reaching up to 100 mg/L to 100,000 mg/L, as in the case of poloxamers. Amphiphilic

copolymers with high CAC may not be suitable as drug targeting devices since they are

unstable in an aqueous environment and are easily dissociated upon dilution. Preferred

polymers are those having a relatively low CAC, for example, below about 1000 mg/L.

[00172] The micellization of amphiphilic copolymers can result in two different types of

micelles depending on whether the hydrophobic chain is randomly bound to the hydrophilic

polymer or grafted to one end of the hydrophilic chain. Micelles formed from randomly

modified polymers are generally smaller than end-modified polymers. The micellar size is

mainly determined by the hydrophobic forces which sequester the hydrophobic chains in the

25 core, and by the excluded volume repulsion between the chains which limits their size. The

difference in the balance of these two forces in random and end-modified copolymers may

account for their different size.

[00173] Light scattering is widely used for the determination of the molecular weight

and aggregation number of micelles.

[00174] A preferred method to determine the CAC involves the use of fluorescent

probes, among which pyrene is widely used. Pyrene is a condensed aromatic hydrocarbon

that is highly hydrophobic and sensitive to the polarity of the surrounding environment. Below

the CAC, pyrene is solubilized in water, a medium of high polarity. When micelles are

formed, pyrene partitions preferentially toward the hydrophobic domain afforded by the micellar core, and thus experiences a nonpolar environment. Consequently, numerous changes such as an increase in the fluorescence intensity, a change in the vibrational fine structure of the emission spectra, and a red shift of the (0,0) band in the excitation spectra are observed. The apparent CAC can be obtained from the plot of the fluorescence of pyrene, the 11/13 ratio from emission spectra or the 1338/1333 ratio from the excitation spectra versus concentration. A major change in the slope indicates the onset of micellization. Changes in anisotropy of fluorescent probes have also been associated with the onset 25 of micellization. E.g. see Jones and Leroux Eur. J. Pharm. Biopharm. 1 (1999) 48, 101-111.

[00175] In some embodiments, a “nanodispersion” is formed upon hydration of the solid formulation. In some embodiments, the nanodispersion comprises or consists of micelles, liposomes, nanocapsules, nanospheres, lipid complexes, cyclodextrin complexes, polymersomes, dendrimers, nanoemulsions, latexes or the like.

[00176] Polymeric micelles, such as those described herein, are characterized by their small size, typically less than about 500 nm. In some embodiments, the micelles formed are between about 5 nm to 500 nm, 10 nm to 500 nm, 10 nm to 400 nm, 20 nm to 300 nm, 20 nm to 200 nm.

[00177] Micellar size depends on several factors including copolymer molecular weight, relative proportion of hydrophilic and hydrophobic chains and aggregation number. Micellar diameter and size polydispersity can be obtained directly by dynamic light scattering (DLS) or other methods known to those skilled in the art.

[00178] Loading of one or more biologically active agents into the micelles can be realized according to techniques well known to one skilled in the art.

[00179] STABILIZING AGENT

[00180] The stabilizing agent may be any material or vehicle capable of forming a nanodispersion or micelle loaded with the liquid biologically active agent under appropriate conditions.

[00181] In some embodiments, the stabilizing agent comprises at least one amphiphilic copolymer or at least one surfactant.

[00182] In some embodiments, the stabilizing agent comprises at least one amphiphilic copolymer. The amphiphilic copolymer may be a linear, branched or star-shaped polymer.

[00183] Suitable polymers are described herein below and also in, for example, WO 2006/056064, WO 02/100439, WO 03/077882, U.S. 6,939,564, WO 02/00194, WO 01/87227, U.S 6,939,564, WO 02/100529, WO 03/078489, WO 2005/054319, WO 2007/073596, and WO 2008/035229.

5 **[00184]** Amphiphilic copolymers have at least one hydrophilic segment and at least one hydrophobic segment.

[00185] In some embodiments, the hydrophilic segment is selected from poly(ethylene oxide), poly(N-vinylpyrrolidone), poly(N-2-hydroxypropylmethacrylamide), poly(2-ethyl-2-oxazoline), poly(glycidol), poly(2-hydroxyethylmethacrylate), poly(vinylalcohol),
10 polymethacrylic acid derivatives, poly(vinylpyridinium), poly((ammoniumalkyl)methacrylate), poly((aminoalkyl)methacrylate) and combinations and derivatives thereof; and a hydrophobic segment selected from the group comprising a poly(ester), poly(ortho ester), poly(amide), poly(esteramide) poly(anhydride), poly(propylene oxide), poly(tetrahydrofuran), polystyrene, polymethacrylate, polyacrylate, polymethacrylic acid, polyacrylic acid and combinations and
15 derivatives thereof.

[00186] The hydrophobic segment may comprise a poly(ester) selected among poly(ϵ -caprolactone), poly(lactide), poly(glycolide), poly(lactide-co-glycolide), poly(hydroxyl-alkanoates), poly(β -malic acid), and combinations and derivatives thereof.

20 **[00187]** In some embodiments, the amphiphilic copolymer comprises PVP-PDLLA or PEG-PMA. In some embodiments, the amphiphilic copolymer consists of PVP-PDLLA or PEG-PMA. Other amphiphilic copolymers, or combinations thereof, could also be used.

[00188] In some embodiments, the copolymer is a diblock or triblock copolymer.

[00189] In some embodiments, the amphiphilic copolymer is a PEG-PMA copolymer.

25 **[00190]** In some embodiments, the PEG-PMA copolymer is an EG-MAA-BMA block copolymer. Suitable EG-MAA-BMA block copolymers may, for example, have the following composition: EG₍₂₀₋₅₀₀₎-MAA₍₅₋₅₀₀₎-BMA₍₅₋₅₀₀₎. In some embodiments, the EG-MAA-BMA copolymer has the following composition: EG₍₃₅₋₅₀₎-MAA₍₅₀₋₇₀₎-BMA₍₂₀₋₄₀₎.

[00191] In one embodiment, the EG-MAA-BMA copolymer has one of the following structures: EG₍₄₅₎-MAA₍₆₃₎-BMA₍₂₈₎; EG₍₄₅₎-MAA₍₆₄₎-BMA₍₃₄₎; or EG₍₄₅₎-MAA₍₅₄₎-BMA₍₂₆₎.

30 **[00192]** In some embodiments, the copolymer is (PEG₄₅-b-P(MAA₅₀-co-nBMA₂₅)), PEG -b-P(DMAEMA₇₀-co-EMA₃₀); or PEG-b-P(EA₅₀-co-MAA₅₀).

[00193] In some embodiments, the amphiphilic copolymer is a PVP-PDLLA copolymer.

[00194] In one embodiment, the copolymer is a PVP-PDLLA copolymer having the following characteristics: % PDLLA: 34.4% (by TGA); M_w = 4961; M_n = 4177; PI = 1.2 (P1).

5 **[00195]** In one embodiment, the copolymer is a PEG-PMA copolymer having the following characteristics: PEG-MAA-nBMA: 45 – 54 – 26; M_w = 13600 (by SLS); M_n = 10709 (by NMR); PI – 1.28 (P3).

10 **[00196]** The stabilizing agent may also be a surfactant, such as lauryl sulphate, hexadecyl pyridinium chloride, polysorbates, sorbitans, poly(oxyethylene) alkyl ethers, poly(oxyethylene) alkyl esters and combinations thereof.

[00197] The stabilizing agent may further comprise a targeting moiety. Micelles presenting functional groups at their surface for conjugation with a targeting moiety have also been described in, for example, Scholz, C. et al., *Macromolecules* (1995) 28, 7295-7297).

15 **[00198]** In some embodiments, the CAC of the copolymers is in the range of about 0.1 mg/L to about 1000 mg/L, about 0.1 mg/L to about 100 mg/L, about 0.1 mg/L to about 50 mg/L, about 0.1 to about 25 mg/L, about 0.1 to about 10 mg/L, or about 0.1 to about 5 mg/L. Particularly preferred polymers have a low CAC, for example, below 100 mg/L, below about 50 mg/L, below about 25 mg/L, below about 10 mg/L, or below about 5 mg/L. CAC may be determined, for example, by measuring the influence of polymer concentration on the 20 excitation shift of pyrene fluorescence on a Varian fluorimeter.

[00199] Without being bound to the theory, it is believed that the formulation described herein, when administered to a mammal, is capable of producing loaded micelles or nanodispersions which result in a sufficient bioavailability for the purpose of medical use, for example, for achieving therapeutic efficacy.

25 **[00200]** DOSAGE FORMS

[00201] The solid formulation can be formulated in a dosage form suitable for non-intravenous administration, for example, a dosage form for oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular, otic, or topical administration. Such dosage forms are generally suitable for use in either a hospital or outpatient setting.

30 **[00202]** In some embodiments, the dosage form is for enteral administration.

[00203] In one embodiment, the dosage form is for oral administration.

[00204] In one embodiment, the dosage form is for sublingual administration.

[00205] In some embodiments, the dosage form is selected from the group consisting of pills, tablets, caplets, capsules, sachet formulations, solutions, suspensions, emulsions, creams, gels, films, lozenges, chewing gum, pastes, drops, ointments, sprays, aerosol inhalers, dry powder inhalers, suppositories, pessaries, enemas, and the like.

5 **[00206]** In one embodiment, the dosage form is a rapid disintegrating tablet. A rapid disintegrating tablet is one which comprises a disintegrant or disintegrating matrix to facilitate rapid release of the solid formulation from the dosage form. In some embodiments the disintegrating matrix is provided by a starch or a hydrogel. In some embodiments, the starch is a cross-linked high amylose starch, such as ContramidTM (Labopharm Inc, Quebec, CA).

10 **[00207]** In some embodiments, the solid formulation is present in the dosage form in an amount from about 1 wt% to about 99 wt%, from about 5 wt% to about 85 wt%, from about 5 wt% to about 60 wt%, 5 wt% to about 40 wt%, between about 5 wt% to about 30 wt%, between about 10 wt% to about 30 wt%, between about 10 wt% to about 20 wt%, between about 0.1% to 5%, between about 1 wt% to about 5 wt%, between about 20 wt% to 15 about 60 wt%. This range can vary to a large extent as will be appreciated by one skilled in the art.

20 **[00208]** In some embodiments, the biologically active agent is present in the dosage form in an amount from about 0.01 wt% to about 80 wt%, 0.01 wt% to about 50 wt%, from about 1 wt% to about 20%, from about 1 wt% to about 15 wt%, from between about 2 wt% to about 10 wt%, between about 1 wt% to about 5 wt%, between about 5 wt% to about 10 wt%, or between about 10 wt% to about 20 wt%. This range can vary to a large extent as will be appreciated by one skilled in the art.

[00209] ADDITIVES

25 **[00210]** The dosage form may consist of the solid formulation in a suitable vehicle, such as a capsule or sachet. Optionally, the dosage form may comprise the solid formulation and one or more additives. The additives are preferably pharmaceutical grade and may include, for example, a carrier, a bulk forming agent, a cryoprotectant, a lyoprotectant, a binder, a flavoring agent, a taste masking agent, a coloring agent, an odorant, a buffer, a preservative, a diluent, a dispersant, a surfactant, a disintegrant, or an additional stabilizer.

30 **[00211]** In some embodiments, tablet is a rapid disintegrating tablet (RDT) comprising a disintegrant or disintegrating matrix to facilitate rapid release of the biologically active agent from the dosage form. In some embodiments, the disintegrating matrix is a starch or a hydrogel. In some embodiments, the starch is a cross-linked high amylose starch. In some

embodiments, the additive is a cross-linked starch, such as a cross-linked high amylose starch. In some embodiments, the cross-linked high amylose starch is Contramid® (Labopharm, Quebec, CA). In some embodiments, the RDT additionally comprises a sugar, such as, mannitol, trehalose, maltodextran.

5 [00212] Other suitable additives include, but are not limited to poly(vinylpyrrolidone), poly(ethylene glycol), sugars (lactose, trehalose), polyols (mannitol), saccharides and amino acids.

[00213] Flavouring agents may, for example, include a sweetener, such as an artificial sweetener. The artificial sweetener may be, for example, aspartame or sucralose.

10 [00214] A bulk forming agent may, for example, be a commercially available poly(vinylpyrrolidone), such as, Kollidon® 12 PF or 17 PF (BASF).

[00215] In the case of tablets, carriers that are commonly used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate and talc, are also commonly used in tablets.

15 [00216] For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. If desired, certain sweetening and/or flavoring agents are added.

[00217] For ocular administration, ointments or droppable liquids may be delivered by delivery systems known to the art such as applicators or droppers. Such compositions can include mucomimetics such as hyaluronic acid, chondroitin sulfate, hydroxypropyl methylcellulose or polyvinyl alcohol, preservatives such as sorbic acid, EDTA or benzyl chromium chloride, and the usual quantities of diluents and/or carriers. They may also include buffers and antioxidants.

20 [00218] For pulmonary administration, diluents and/or carriers will be selected to be appropriate to allow the formation of an aerosol or dry powder inhaler.

[00219] Suppository dosage forms are useful for vaginal, urethral and rectal administrations. Such suppositories will generally be constructed of a mixture of substances that is solid at room temperature but melts at body temperature. The substances commonly used to create such vehicles include the obroma oil, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weight and fatty acid esters of polyethylene glycol. See, Remington's Pharmaceutical Sciences, 16th Ed., Mack Publishing, Easton, PA, 1980, pp. 1530-1533 for further discussion of suppository dosage forms.

[00220] Gels, creams, ointments and pastes can be used for vaginal, urethral and rectal and topical administrations.

[00221] In some embodiments, the dosage form is one which will enhance delivery of the biologically active agent to the brain, such as a sublingual disintegrating tablet or nasal or 5 pulmonary inhaler.

[00222] The dosage form may be an instant release dosage form, an immediate release dosage form, or a controlled release dosage form. In some embodiments, the dosage form is a controlled release dosage form and the controlled release is sustained release, for example, wherein the dosage form releases the liquid biologically active agent 10 over a period of about 45 minutes to about 24 hours. In some embodiments, the dosage form releases the liquid biologically active agent over a period of at least about 4 hours, at least about 8 hours, at least about 12 hours, at least about 16 hours, at least about 20 hours, or at least about 24 hours.

[00223] Dosage forms may have instant release, immediate release or controlled 15 release characteristics. Immediate release oral dosage forms release the propofol from the dosage form within about 30 minutes following ingestion. In certain embodiments, an oral dosage form provided by the present disclosure may be a controlled release dosage form. Controlled delivery technologies may improve the absorption of a drug in a particular region or regions of the gastrointestinal tract. Controlled drug delivery systems may be designed to 20 deliver a drug in such a way that the drug level is maintained within a therapeutically effective blood concentration range for a period as long as the system continues to deliver the drug at a particular rate. Controlled drug delivery may produce substantially constant blood levels of a drug as compared to fluctuations observed with immediate release dosage forms. For some diseases maintaining a controlled concentration of propofol in the blood or in a tissue 25 throughout the course of therapy is desirable. Immediate release dosage forms may cause blood levels to peak above the level required to elicit the desired response, which may cause or exacerbate side effects. Controlled drug delivery may result in optimum therapy, reduce the frequency of dosing, and reduce the occurrence, frequency, and/or severity of side effects. Examples of controlled release dosage forms include dissolution controlled systems, 30 diffusion controlled systems, ion exchange resins, osmotically controlled systems, erodible matrix systems, pH independent formulations, gastric retention systems, and the like.

[00224] Controlled release oral dosage forms may additionally include an exterior coating to provide, for example, acid protection, ease of swallowing, flavor, identification, and the like.

5 **[00225]** Various controlled release preparations are described, for example, in WO 2004/038428, WO 2010/028489, WO 02/02084, WO 94/02121, WO 98/35992, WO 99/43305. Controlled release tablets capable of being bisected while maintaining substantially the same release profile of active agent are described, for example, in WO 2007/048219. Misuse preventative formulation are described, for example, in WO 2009/076764 and WO 2010/069050.

10 **[00226]** Regardless of the specific dosage form used, propofol may be released from the administered dosage form over a sufficient period of time to provide prolonged therapeutic concentrations of propofol in blood of a patient. Following administration, dosage forms comprising propofol may provide a therapeutically effective concentration of propofol in the blood of a patient for a continuous time period of at least about 4 hours, of at least about 15 8 hours, for at least about 12 hours, for at least about 16 hours, and in certain embodiments, for at least about 20 hours following administration of the dosage form to the patient. The continuous period of time during which a therapeutically effective blood concentration of propofol is maintained may begin shortly after oral administration or following a time interval.

20 **[00227]** For administration by intranasal or intrapulmonary inhalation or insufflation, the formulation may be formulated into an aqueous or partially aqueous solution, which can then be utilized in the form of an aerosol. Dry powder inhalers may also be used.

[00228] METHODS

25 **[00229]** In one aspect, there is provided a method for the preparation of a solid formulation as defined herein which comprises forming a first mixture comprising a solution of at least one stabilizing agent and at least one solvent, under conditions to achieve micelle or nanodispersion formation, adding at least one liquid biologically active agent to said first mixture in a manner to load said micelle or nanodispersion therewith and form a second mixture, treating said second mixture to remove said solvent therefrom, while forming a substantially solid product that contains said liquid biologically active agent intimately 30 associated with said stabilizing agent, said solid product upon hydration being capable of forming a nanodispersion or micelle loaded with said at least one biologically active agent.

[00230] In another aspect, there is provided a method for the preparation of a dosage form for non-intravenous administration of a liquid biologically active agent which comprises:

providing a first mixture of at least one stabilizing agent in at least one solvent, under conditions to achieve micelle or nanodispersion formation, providing a second mixture by mixing said first mixture and at least one liquid biologically active agent to load said micelle or nanodispersion with said liquid biologically active agent, removing the solvent from said second mixture to form a solid formulation; and optionally, adding one or more additives suitable to prepare the non-intravenous dosage form.

5 [00231] In some embodiments, the solvent is removed by drying. In some embodiments, the drying involves spray drying or drying in a fluid bed. In some embodiments, the drying freeze drying.

10 [00232] In some embodiments, the biologically active agent may be pre-treated before being mixed with the stabilizing agent, for example, by heating or cooling to achieve a suitable liquid state.

[00233] The solid formulations according to the present invention can be prepared for example by any of the procedures disclosed in copending U.S. Application Serial No. 15 11/286,301 filed November 25, 2005 and U.S. Patent No. 6,939,564, which are incorporated herein by reference, in their entirety.

20 [00234] The method relies on a treatment, such as lyophilization, spray drying, fluid bed drying or the like well known to those skilled in the art, which is obtained by mixing a solvent selected from water, or an aqueous solution, or non-aqueous solvent, or combinations thereof with at least one stabilizing agent under conditions to provide a first solution, to which is added at least one liquid biologically active agent, such as propofol or the like, to give a second solution. The latter is lyophilized, spray-dried, subjected to solvent removal in a fluid bed, or the like, under conditions which yield a solid product, in which the liquid biologically active agent is intimately associated, and from which substantially all the 25 solvent or solvents have been removed. Preferably, the solvent removal process results in virtually no loss of drug during the treatment. Optionally, one or more additives may be added at any stage during the treatment.

[00235] While in liquid state, the mixture could be subjected to a sterilizing filtration step prior to the above treatment which involves drying to form a powder, a cake or the like. 30 The solid product resulting from the above treatment is a material that can be stored, easily transported and incorporated into dosage forms for non-intravenous administration, such as oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular, otic or topical

route. Optionally, the solid formulation may be dispersed in a liquid dosage form, such as a solution, suspension, syrup elixir, or drop, for non-intravenous administration

[00236] The instant process illustrates a simple and elegant procedure for forming a solid formulation from a liquid containing an intimate association of an insoluble liquid drug and a stabilizing agent. The liquid, comprising an intimate association of the solvent, insoluble liquid drug and stabilizing agent, may be dried by a process, whereby the insoluble liquid drug remains in close association with the stabilizing agent such that virtually all drug is retained during the process. The product is a substantially dry solid as mentioned above. The dry solid product, upon hydration, spontaneously forms a nanodispersion or micelle or loaded 10 with a liquid biologically active agent.

[00237] Suitable solvents or mixtures thereof will have the ability to solubilize appropriate amounts of the stabilizing agent without denaturation or degradation of the liquid biological agent. Suitable solvents (or mixtures of solvents) are those capable of being removed during the drying process, e.g. lyophilization, spray-drying, fluid bed, or the like 15 process. While numerous solvents are capable of functioning in accordance with the process disclosed herein, non-limiting illustrative examples of such solvents include water, aqueous solutions which may be pH adjusted, dextrose solution in water, saline, DMSO, DMF, dioxane, pyridine, pyrimidine, and piperidine, alcohols such as methanol, ethanol, n-butanol and t-butanol, and acetone, which are useful either alone or in combination, and may be 20 further admixed, e.g. with water, to form a binary mixture. Other solvents may be added in small amounts to facilitate the dissolution of the drug.

[00238] In accordance with some embodiments, a predetermined amount of a stabilizing agent, e.g. a suitable polymer, copolymer or a surfactant, and optionally, an additive, e.g. a buffer, a cryoprotectant, a lyoprotectant, a bulk forming agent or the like, 25 and/or additional stabilizing agents are dissolved in a solvent, e.g. water, an aqueous solution, at least one non-aqueous organic solvent, or combinations of water or an aqueous solution and said at least one non-aqueous organic solvent to form a first mixture in the form of a micellar solution. It has been realized that proper mixing can aid in achieving micelle or nanodispersion formation within the first mixture.

[00239] Once the first mixture is well formed, a liquid drug, here propofol, although any other liquid biologically active agent may be used as will be appreciated by one skilled in the art, is added to the first mixture under conditions well known to those skilled in the art,

whereby the micelle or nanodispersion will be loaded with the liquid drug in a second mixture in the form of a drug micellar clear solution.

[00240] In either or both of the mixing steps described above, a suitable "additive" could be added for purposes well known to those skilled in the art. Non limiting examples of additives include, but are not limited to buffers, cryoprotectants, lyoprotectants and bulk forming agents. Other suitable additives include, but are not limited to poly(vinylpyrrolidone), poly(ethylene glycol), sugars (lactose, trehalose), polyols (mannitol), saccharides and amino acids soluble in the solvent or solvent mixture. As broadly recited herein, the term "solvent" is understood to mean water alone, water with at least one non-aqueous organic solvent, or combinations of water and said at least one non-aqueous organic solvent.

[00241] In one illustrative embodiment, additional dissolution enhancing means, here stirring, may be employed to aid in the forming of the liquid comprising a biologically active agent, a stabilizing agent and a solvent, prior to treatment to form a solid product. Illustrative, but non-limiting examples of said dissolution enhancing means may include a process, for example, wherein the mixture may be stirred, vortexed, or sonicated, if needed. For some polymers, the solution may also need to be heated to speed up dissolution.

[00242] Optionally, the solution may be filtered through a sterilizing filter, e.g. through a 0.2 μ m filter. Subsequently, the solution is freeze-dried to form a sterile dry cake or powder or the like.

[00243] The solid formulation may be first formed and then subsequently incorporated into a dosage form suitable for non-intravenous administration. Alternatively, the components of the solid dosage form may be combined with additional additives required to make the non-intravenous dosage form and the resulting mixture may be dried to form the dosage form comprising the solid formulation.

[00244] **METHODS OF TREATMENT**

[00245] In another aspect, the present disclosure provides a method of treating a disease or condition, comprising administering to a subject in need thereof, typically a mammal selected from a human or animal, a therapeutically effective amount of a non-intravenous dosage form as described herein.

[00246] The dosage form may be administered by any suitable non-intravenous route as may be determined by a skilled professional. In some embodiments, the route of administration is oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular.

otic or topical administration. In some embodiments, the dosage form is for enteral administration.

[00247] In one embodiment, the route of administration is oral administration.

[00248] In one embodiment, the route of administration is sublingual administration.

5 [00249] In some embodiments, the disorder or condition to be treated is a disorder or condition of the central nervous system, such as, headache, nausea, emesis or pain.

10 [00250] In some embodiments, the headache is migraine headache, such as intractable migraine headache. In some embodiments, the emesis or nausea is due to cancer chemotherapy or surgery. In some embodiments, the pain is cancer pain, central pain, neurophathic pain or surgical pain. In some embodiments, the neuropathic pain is post-herpetic neuralgia, peripheral neuropathy, trigeminal neuralgia, lower back pain, painful diabetic neuropathy, HIV-related neuropathic pain, cancer-related pain, and fibromyalgia

15 [00251] In some embodiments, there is provided a method of treating or preventing headache, nausea, emesis or pain, comprising administering to a subject in need thereof a therapeutically effective amount of a dosage form as described herein which comprises propofol as an active ingredient. A subject in need thereof is a subject suffering from, prone to, or anticipated to suffer from, one or more of headache, nausea, emesis or pain.

[00252] In some embodiments, there is provided a method of treating or preventing intractable migraine headache.

20 [00253] In another aspect, there is provided a method of treating or preventing headache, nausea, emesis or pain, comprising administering to a subject in need thereof a therapeutically effective amount of a non-intravenous dosage form comprising a solid formulation, and, optionally, one or more additives, the solid formulation comprising an intimate mixture of propofol and at least one amphiphilic copolymer, wherein, upon hydration, 25 micelles loaded with the propofol are formed.

[00254] The dosage form may be administered in a suitable amount to achieve therapeutic efficacy without significant toxicity or side effects. In some embodiments, the dosage form is administered in an amount sufficient to achieve a therapeutically effective amount of the biologically active agent in the blood or plasma of a subject treated with the 30 dosage form.

[00255] The dosage requirements vary with the particular formulations and dosage forms employed, the route of administration, the severity of the symptoms presented and the particular subject being treated. Treatment will generally be initiated with small dosages less

than the optimum dose of the compound. Thereafter the dosage is increased until the optimum effect under the circumstances is reached. Precise dosages for , rectal, urethral, vaginal, ocular or topical administration will be determined by the administering physician based on experience with the individual subject treated. In general, the active agent is most

5 desirably administered at a concentration that will generally afford effective results without causing harmful or deleterious side effects, and can be administered either as a single unit dose, or if desired, the dosage may be divided into convenient subunits at suitable times throughout the day.

[00256] In addition, in vitro or in vivo assays may optionally be employed to help

10 identify optimal dosage ranges. For example, a dose may be formulated in animal models to achieve a beneficial circulating composition concentration range. Initial doses may also be estimated from in vivo data, e.g., animal models, using techniques that are known in the art. Such information may be used to more accurately determine useful doses in humans. One having ordinary skill in the art may optimize administration to humans based on animal data.

15 **[00257]** The amount of a active agent administered can depend on, among other factors, the patient being treated, the weight of the patient, the health of the patient, the disease being treated, the severity of the affliction, the route of administration, the potency of the compound, and the judgment of the prescribing physician.

[00258] The amount of active agent that will be effective in the treatment of a particular

20 disease, disorder, or condition disclosed herein will depend on the nature of the disease, disorder, or condition, and can be determined by standard clinical techniques known in the art.

[00259] A dose may be administered in a single dosage form or in multiple dosage forms. When multiple dosage forms are used the amount of active agent contained within

25 each of the multiple dosage forms may be the same or different.

[00260] In certain embodiments, an administered dose is less than a toxic dose. Toxicity of the compositions described herein may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD₅₀ (the dose lethal to 50% of the population) or the LD₁₀₀ (the dose lethal to 100% of the

30 population). The dose ratio between toxic and therapeutic effect is the therapeutic index. In certain embodiments, a pharmaceutical composition may exhibit a high therapeutic index. The data obtained from these cell culture assays and animal studies may be used in formulating a dosage range that is not toxic for use in humans.

[00261] With respect to propofol, a dose of a highly bioavailable agent may be within a range of circulating concentrations in for example the blood, plasma, or central nervous system, that is therapeutically effective, that is less than a sedative dose, and that exhibits little or no toxicity. A dose may vary within this range depending upon the dosage form

5 employed.

[00262] During treatment a dose and dosing schedule may provide sufficient or steady state systemic concentrations of a therapeutically effective amount of propofol to treat a disease. In certain embodiments, an escalating dose may be administered.

[00263] The active agent may be administered at intervals for as long as necessary to 10 obtain an intended or desired therapeutic effect.

[00264] USES

[00265] The solid formulations and dosage forms described herein may be used in a number of different therapeutic applications. Thus, another aspect of the disclosure includes uses of the solid formulations and dosage forms described herein.

15 [00266] In one embodiment, there is provided a use of a non-intravenous dosage form as described herein in the manufacture of a medicament. In one embodiment, there is provided a non-intravenous dosage form as described herein for use in the manufacture of a medicament.

20 [00267] In one embodiment, there is provided a use of a solid formulation as described herein in the manufacture of a non-intravenous dosage form for treating or preventing a disease or condition. In one embodiment, there is provided a solid formulation as described herein for use of in the manufacture of a non-intravenous dosage form for treating or preventing a disease or condition.

25 [00268] In some embodiments, the biologically active agent is propofol. Thus, in one embodiment, there is provided a use of a solid formulation comprising an intimate mixture of propofol and at least one stabilizing agent, in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the central nervous system. In another aspect, there is provided a use of a dosage form as described herein for the treatment or prevention of a disease or condition of the central nervous system. In some 30 embodiments, condition of the central nervous system is headache, emesis, nausea, or pain.

[00269] In another embodiment, there is provided a solid formulation comprising an intimate mixture of propofol and at least one stabilizing agent, for use in the manufacture of a

non-intravenous dosage form for the treatment or prevention of headache, nausea, emesis, or pain.

[00270] In some embodiments, the dosage form is for inducing anaesthesia or sedation in a subject in need thereof. In some embodiments, the dosage form is for use in the manufacture of a medicament for inducing anaesthesia or sedation in a subject in need thereof.

[00271] In another aspect, there is provided a use of a solid formulation comprising an intimate mixture of propofol and at least one amphiphilic copolymer in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the central nervous system.

[00272] In another aspect, there is provided a solid formulation comprising an intimate mixture of propofol and at least one stabilizing agent, for use in the manufacture of a non-intravenous dosage form for the treatment or prevention of headache, nausea, emesis, or pain.

[00273] KITS AND COMMERCIAL PACKAGES

[00274] In another aspect of the disclosure, there are provided commercial packages and kits comprising a non-intravenous dosage form as described herein, together with one or more instructions for use in the treatment or prevention of a disease or condition.

[00275] The dosage form and, optionally, other components of the kit or commercial package, may be packaged in an appropriate container and, associated with such containers, can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical or biological products, which notice reflects approval by the agency of manufacture, use or sale for human or animal administration.

[00276] When the components of the kit or commercial package may be provided in one or more liquid solutions, the liquid solution can be an aqueous solution or suspension, for example, a sterile aqueous solution or suspension. In this case the container means may itself be an inhaler, syringe, pipette, eye dropper, nasal dropper, ear dropper, or other such like apparatus, from which the formulation may be administered to a patient. The container may also be a dry powder inhaler.

[00277] Irrespective of the number or type of containers, the kit or commercial package may comprise an instrument for assisting with the administration of the composition to a patient. Such an instrument may be an inhalant, syringe, pipette, forceps, measured spoon, eye dropper or any such medically approved delivery vehicle.

[00278] The following examples are provided to assist the reader. The examples are not intended to limit the scope of the disclosure. While the liquid biologically active agent exemplified is propofol, it is understood that other liquid biologically active agents could also be used with similar results as will be appreciated by one skilled in the art.

5 **[00279]** With respect to polymer formulae, the subscript text indicates the repeat number in a polymeric segment. The letter *b* features that polymers and/or polymeric arms are based on a diblock copolymeric structure. The term *co* means the repeating units are disposed randomly along the polymeric segment.

10 EXAMPLES

Example 1. Synthesis of diblock PEG-PMA

[00280] 80 g poly(ethylene glycol) (MW 2,000, 40.0 mmol) is dried by azeotropic distillation with 250 ml toluene (bath set at 140°C). After the polymer is cooled down to room temperature, 2400 mg KH (60.00 mmol, 4000 mg (4.0 ml) 30 % KH dispersion in mineral oil) 15 is added under argon atmosphere. 850 ml freshly distilled THF is added to dissolve the polymer. The reaction between KH and PEG is carried out for 120 min under rigid stirring. Then, without any distillation 256 mL of t-BMA (d 0.875, 224 g MW142.2 and 1575.2mmol) and 130 mL of n-BMA (d 0.894, 116.2 g MW142.2, 817.3mmol) are added to the reaction mixture and the solution is stirred for a further 120 min at 20°C for the block copolymerization 20 to take place. The polymer was collected by evaporation of solvent. Without any purification and characterization, the crude polymer was hydrolyzed with 320 mL of concentrated HCl in dioxane. The mixture is refluxed overnight. A PEG-PMA with the following empirical structure is obtained: (PEG₄₅-*b*-P(MMA₅₀-co-nBMA₂₅))

[00281] The resulting product is concentrated to about 600 mL by rotovap. 600 mL of 25 water are added to the concentrated solution under rigid stirring. 100 mL of the new solution are retrieved and are added to a dialysis membrane (30 cm is required, molecular weight cut off (MWCO) of 3500, internal diameter 47 nm) and the dialysis membrane is put into distilled water (5 membranes are used per 5 L of water). Water is changed as frequently as possible, especially at the beginning, until the obtained pH is between 6 and 7. Each solution is 30 transferred to a cake plate and frozen at -80°C overnight. If desired, the solutions may be freeze-dried. The obtained product is a white powder.

Example 2. Synthesis of triblock PEG-PMA (P4 and P5)

[00282] 60.05 g of poly(ethylene glycol) methyl ether (PEGMe) (M_w 2,000, 30.0 mmol)

are dried under vacuum while stirring at 110°C for 16 hours. After the polymer is cooled

down to room temperature, 900 mL of freshly distilled THF are added. When the polymer is

5 completely dissolved and the solution is at room temperature, 1800 mg KH (45.00 mmol,

6000 mg (6.0 ml) 30 % KH dispersion in mineral oil) are added under an atmosphere of

argon. The reaction between KH and PEGMe is carried out for 120 min under rigid stirring.

Then, 192 mL of t-BMA (d 0.875, 168 g M_w 142.2, 1.181 mol) is added to the reaction vessel.

The solution is stirred for a further 120 min at 20°C for the diblock copolymerization to take

10 place. Once reaction with t-BMA is completed, 108 mL of n-BMA (d 0.894, 96.55 g M_w 142.2,

678.98 mmol) are added to the reaction vessel using an addition flask. The solution is stirred

for a further 120 min at 20°C for the triblock copolymerization to take place. When the

reaction is completed, the polymer was collected by evaporation of solvent. Without any

purification and characterization, the crude polymer was hydrolyzed with 320 ml of

15 concentrated HCl [>1.5 eq of HCl (\approx 3.75 mol HCl \approx 320 mL HCl_{conc})] and 780 mL of dioxane

are added to the polymer solution. This new mixture is kept under reflux overnight at 110°C.

After the hydrolysis was completed, the solution was concentrated to about 600 mL, and the

polymer was precipitated in cold water (ca. 2000 mL). The polymer was then centrifuged at

10000 rpm for 10 min. To remove the remaining impurities, the crude polymer obtained in

20 previous step is dissolved in THF (as little as possible) and precipitated again in cold water

(ca. 2000 mL). The polymer was then centrifuged at 10000 rpm for 10 min.

[00283] Dissolve again the obtained polymer in THF and repeat the precipitation and

the centrifuge processes. Dry the final polymer.

[00284] Characterization of the PEG-PMA diblock (P3) and triblocks (P4 and P5) was

25 performed by different techniques. The composition of the block copolymer and their

molecular weight (M_n) was assessed by 1H NMR and the critical micellar concentration

(CMC) was determined by measuring the influence of polymer concentration on the

excitation shift of pyrene fluorescence on a Varian fluorimeter (M. Francis *et al.* J. Control.

Release, 93:59 (2003)). Acid content and pKa were determined by titration using an auto

30 titrator (Malvern), molecular weight (M_w) was determined by light scattering (Malvern

Zetasizer). Characteristics are presented in Table 1.

Table 1. Physicochemical characteristics of PEG-PMA triblock polymers (P4 and P5) vs diblock copolymer (P3)

Polymers	Structure (EG-MAA-BMA)	Molecular weight (kDa)		CMC (mg/L)				Acid content	pKa
		M _n (NMR)	M _w (LS)	pH 5	pH 6	pH 7	pH 10		
P3	45-63-28	11.5	14.1	2.3	2.0	1.6	6.9	30.6 %	6.7
P4	45-64-34	12.3	21.2	0.6	0.7	0.5	0.7	29.6 %	6.3
P5	45-54-26	10.3	22.5	1.2	0.7	1.2	1.2	25.9 %	6.0

5 **Example 3: Preparation of PEG-PMA formulation by spray-drying**

[00285] A 50 mg/mL solution of PEG-PMA is prepared in 0.1 N NaOH. Sonication is used in order to get a complete dissolution of the polymer. An appropriate amount of solid NaOH is added until obtaining a final pH = 8. Propofol is added to the polymer solution in order to get desired drug loading level (weight ratio drug/ (polymer + drug)) (eg. 10% w/w)

10 under vigorous magnetic stirring. The solution is stirred overnight. Deionized water is added in a quantity to obtain a final concentration of 5 mg/mL PPF.

[00286] The formulation was spray-dried using a lab-scale spray drier Buchi B-290 with the following conditions:

Spray nozzle	Main air flow (m ³ /h)	Spray rate (mL/min)	Temperature (°C)	
			Inlet	product
1.5 mm	40	7	170	80

The yield of the spray drier powder is 86%.

15 [00287] The characteristics of the formulation are shown in Table 2.

Table 2 : Spray-dried formulation characteristics as in example 3

Formulation	Polymer	Drug Loading level (% w/w)*	Assay	Average micelle size (nm)
PM4 SD	P4	10	77%	477
PM5 SD	P5	10	63%	216

Example 4. Preparation of PEG-PMA formulation using a fluid-bed dryer

[00288] In this example, 20 mL of aqueous solution of PEG-PMA micelles loaded with 10% of propofol was sprayed on 50g fast-flow lactose using the Hüttlin fluid bed equipment.

5 Experimental conditions for this trial are summarized in table 3.

Table 3: Experimental conditions of lactose-PEG-PMA granulation

Spray nozzle	Main air flow (m ³ /h)	Pressure spray (bar)	Spray rate (g/min)	<u>Temperature (°C)</u>	
				Inlet	product
0.8 mm	10	0.5	0.4	40	27

[00289] The dry granules were then solubilised in deionised water and micelle-size

10 was measured. Also propofol content was determined by HPLC method.

[00290] The results are shown in Table 4 below:

Table 4: Assay and micelle-size of granulated lactose-PEG-PMA-propofol

	Average micelle-size (nm)	Assay (%)
Before granulation	136	100%
After granulation	66	73%

15

Example 5. Preparation of PEG-PMA formulation by freeze-drying

[00291] A 50 mg/mL solution of PEG-PMA in 0.1 N NaOH is prepared. Sonication was used in order to get complete dissolution of the polymer. A drug solution is added to the polymer solution in order to get desired drug loading level (weight ratio drug/(polymer+drug))

20 under vigorous magnetic stirring, e.g. 10%w/w. The solution is stirred overnight. Deionized water is added to obtain a final concentration of 5 mg/mL PPF. The solution is divided into aliquots and each formulation is freeze-dried.

[00292] The cakes obtained were white and none of them melted. The protocol for the preparation of the formulation is summarized below in Table 5.

[00293] Characteristics of the above PPF formulations are given in the following Table 5.

Table 5 : Freeze-dried formulation characteristics as example 5

Formulation	Polymer	Drug Loading level (% w/w)*	Assay	Average micelle size (nm)	Visual Stability Precipitation time
PM3 FD	P3	10	52%	150	24h
PM5 FD	P5	10	92%	278	24h

5

[00294] Similar propofol products can be prepared using polymers of the same nature and by using the above procedures or the procedures disclosed in U.S. Serial No.

11/286,301.

10 [00295] Legends of propofol formulations used in the in vitro and in vivo studies are given in table 6.

Table 6. Propofol Formulations

Abbreviation	DLL%*	Description	Polymer
PM1a	10	PVP-PDLLA	P1
PM1b	20		
PM1c	10		
PM2	10	PVP-PDLLA	P2
PM3 FD	10	PEG-PMA	P3
PM3 SD	10		
PM4 FD	10	PEG-PMA	P4
PM4 SD	10		
PM5 FD	10	PEG-PMA	P5
PM5 SD	10		

*Drug loading level is calculated from the amount of drug and polymer used during the formulation process:

$$\text{DLL\%} = 100\% \times (\text{amount of drug} / (\text{amount of drug} + \text{amount of polymer}))$$

Example 6. In Vitro Permeability Studies

[00296] Permeability studies were performed in vitro in a well established model of drug bioavailability. Caco-2 cells were seeded onto 12-well polyester filter membranes at a cell density of 60,000 cells/filter and cultivated for 21 days. Transport of PPF from Apical to Basolateral sides was evaluated after 120 min at 37°C. Formulations were dissolved in Hank's buffer media pH 6.8.

[00297] Flux rate of PPF across Caco-2 monolayers is presented in figure 1. The results demonstrated that each of the micellar formulations released the PPF for absorption. Levels of translocation were similar for all. The formulations thus demonstrated the ability to translocate propofol across the human endothelial cell monolayers, which is indicative of in vivo bioavailability.

Example 7. In Vivo Pharmacokinetic Studies

[00298] Rodent pharmacokinetic studies

[00299] Formulation characteristics of the propofol based products used in the studies reported in this specification are given in Table 7.

TABLE 7. Formulation Characteristics

	PM1a	PM1b	PM3 FD	PM1c	PM2
DLL* content	10%	20%	10%	10%	10%
Cake appearance	White to yellowish				
Solution appearance	Clear yellowish	Clear yellowish	opalescent	Clear yellowish	Clear yellowish
Micelle size (nm)	45.5	81.8	150	40.5	36.2
Osmolarity	364	294	NA	291	250
pH	7.1	7.2	NA	7.16	7.14

DLL: Drug Loading Level

20 Reconstituted to 1% propofol (10 mg/ml)

[00300] In the above Table 7, PM1a stands for a solid product comprising propofol (hereinafter referred to as PPF) loaded to a drug loading level (DLL) of 10%, referred to as P1 which is a PVP-PDLLA having the following characteristics:

% PDLLA: 34.4% (by TGA)

5 M_w = 4961

M_n = 4177

PI = 1.2

[00301] Similarly, PPF-PM2 stands for a product of the same nature except that propofol is loaded to a drug loading level of 20%.

10 **[00302]** PM3 FD stands for a solid product comprising PPF loaded to a drug loading level of 10% into a polymer of PEG-PMA having the following characteristics:

PEG-MAA-nBMA: 45 – 58 – 26

M_w = 13600 (by SLS)

M_n = 10709 (by NMR)

15 PI – 1.28

[00303] PM1b stands for a solid product having the same polymer composition as PM1a but from a different lot.

[00304] PM2 stands for a solid product comprising PPF loaded to a level of 10% into a polymer referred to as P2 which is a PVP-PDLLA having the following characteristics:

20 % PDLLA: 29.4% (by TGA)

M_w: 4685

M_n = 3872

PI = 1.2

[00305] Pharmacokinetic studies were carried out as follows. Compounds were administered once on Day 1 by a single intravenous (IV, tail vein) bolus injection or per os (PO, oral gavage) to 10-12 week-old female Sprague Dawley rats (body weight ~ 170-190 g). Serial blood samples were taken at pre-dose, 1, 5, 10, 20 30 and 60 minutes and 1.5, 2, 4, and 8 hrs post-IV administration and at pre-dose, 5, 10, 15, 20 30 and 60 minutes and 2, 3, 4, 8 and 12 hrs post-PO administration. The blood was immediately transferred in tubes containing heparin as anticoagulant, inverted several times and stored at 4°C pending further analysis. Propofol concentrations in blood were determined using a LC-ESI/MS/MS analytical method (Beaudry et al.; J. Pharm. Biomed. Anal., 39: 411-417, 2005.). Briefly, the analytical procedure for the determination of PPF in rat whole blood consisted in extraction

and levels determinations by a HPLC-MS/MS method using Eugenol as internal standard. The assay sensitivity was 20 to 10 000 ng/ml.

[00306] Two pharmacokinetic studies were performed. In the first one, the effect of DLL% was evaluated. Mean concentration-time profiles of PPF in blood following a single IV or PO administration of PM1a, PM2 and PM3 FD are presented in Figure 2. The pharmacokinetic profiles of PM1a, PM1b and PM3 FD formulations were compared to the commercial formulation: Diprivan® administered IV. Data were normalized to PPF target dose.

[00307] Oral administration of three different oral propofol formulations (viz. PM1a, PM1b and PM3) to Sprague-Dawley rats generated absolute bioavailability values of between 38% and 165% compared to a commercial formulation (Diprivan) given intravenously. F values varied considerably depending on the oral dose administered (Figure 3). Table 8 gives a summary of the pharmacokinetic parameters obtained from the study.

Table 8: Summary of pharmacokinetic parameters in rats

	IV Diprivan	PM1a	PM1a	PM1b	PM1b	PM3
Route	IV	PO	PO	PO	PO	PO
Dose (mg/kg)	3.5	7	35	7	35	35
AUC(ng/ml*h)	1153	1210	18986	876	6730	9173
Normalized AUC (ng/ml*h)	1153	605	1899	438	673	917.3
Bioavailability(F%)	100	52	165	38	58	80

[00308] As may be seen, there was a pronounced difference between formulations although F values were always considerably higher than those reported for commercially available intravenous formulations given orally. There was also a clear dose/response effect for all formulations. Surprisingly, when formulations were given orally at concentrations of 35mg/kg absolute bioavailabilities increased versus their corresponding 7mg/kg dose.

[00309] This 'saturation' effect was not seen in a second study where lower doses up to 14mg/kg of a third oral micellar formulation were administered (viz. PM1c - Table 9; Figures 5 and 7). While F values were higher than those reported for commercially available intravenous formulations given orally, they were lower than those generated by formulations shown in Table 8 and there was no general increase in bioavailability as dose increased.

[00310] Table 9 gives a summary of the pharmacokinetic parameters obtained from the study.

Table 9: Summary of pharmacokinetic parameters in rats

	Diprivan	PM1c	PM1c	PM1c	PM2	PM2	PM2
Route	IV	PO	PO	PO	PO	PO	PO
Dose (mg/kg)	7	3.5	7	14	3.5	7	14
AUC (ng/ml*h)	2417	290	800	1368	453	553	730
Normalized AUC (ng/ml*h)	2417	580	800	684	906	553	365
Bioavailability(%)	100	24	33	28	37	23	15

[00311] Minipig pharmacokinetic studies

5 [00312] Minipig pharmacokinetic studies were performed in 8-12 kg, 3-6 months-old male Göttingen minipigs as follows:

[00313] Test formulations were administered once either orally (oral gavage of micellar formulations) or by intravenous bolus injection (Rapinovet® - a commercially available veterinary formulation of propofol) on day 1 of the study. Serial blood samples were taken;

10 i) Pre dose and at 1, 5, 10, 20, 30, 60, 120, 240 and 480 minutes post intravenous administration and
ii) Pre dose, 5, 10, 15, 20, 30 and 60, 120, 240, 480 and 720 minutes post-oral administration.

[00314] Propofol concentrations were determined using the method described by

15 Beaudry et al. (J. Pharm. Biomed. Anal., 39: 411-417, 2005) Mean propofol concentration-time profiles of PPF following a single IV or PO administration are presented in Figure 8. Absolute bioavailability values for the oral formulations were generated by comparison with AUC generated by (Rapinovet®) administered intravenously. Absolute bioavailability values of between 14 and 18% were obtained in this model again values considerably higher than
20 those reported for intravenous formulations given by this route: Table 10 summarises the pharmacokinetic data generated.

Table 10: Summary of pharmacokinetic parameters in minipigs

	Rapinovet	PM3	PM5	PM5	PM5
Route	IV	PO	PO	PO	PO
Dose (mg/kg)	1	5	3	5	15
AUC (ng/ml*h)	391	264	193	353	814

Normalized AUC (ng/ml*h)	391	52.8	64	71	54
Bioavailability(F%)	100	14	16	18	14

Example 8. Rapid Disintegrating Tablet

5 [00315] A rapid disintegrating tablet (RDT), or 'wafer', suitable for sublingual administration of propofol was prepared having the formulation defined below in Table 11.

TABLE 11. Composition of Oral Disintegrating Tablet (Wafer)

Sr. No.	Ingredient	Composition (mg/wafer)	
		07R01801	07R01901
1	Propofol	2.5 mg	2.5 mg
2	Block copolymer	22.5 mg	22.5 mg
3	Contramid®	35 mg	15 mg
4	Mannitol	35 mg	55 mg
5	Aspartame	5 mg	5 mg
	Total	100 mg	100 mg

10 [00316] Preparation of Propofol Micelles:

[00317] Block copolymer was dissolved in 0.1N NaOH solution and propofol was added to the solution. The mixture was stirred overnight and solution pH was adjusted to 7.5. The Z average diameter of micelles was 158 nm with unimodal size distribution (polydispersity = 0.04). Final theoretical propofol concentration of micelles will be 5 mg/ml.

15 [00318] Preparation of RDT:

[00319] Aspartame and mannitol were dissolved in above micelle solution and then Contramid® (Labopharm) was dispersed at room temperature.

[00320] The above suspension was transferred to the wells of blisters (0.5ml equivalent to 2.5 mg of propofol) and frozen to -80C.

20 [00321] The blisters were then lyophilized to form a solid product.

Example 9. Propofol wafers with PEG-PMA polymer

[00322] Propofol Micelles preparation:

25 [00323] PEG-PMA polymer was dissolved in 0.1N NaOH solution and propofol was added to the solution. The mixture was stirred overnight and solution pH was adjusted to 7.5. Final theoretical propofol concentration in micelles will be 5 mg/ml.

[00324] Preparation of wafers:

1. Aspartame and mannitol were dissolved in above micelle solution and then Contramid was dispersed at room temperature.
2. The above suspension was transferred to the wells of blisters (0.5ml equivalent to 2.5 mg of propofol) and frozen to -80C.
3. The blisters were then lyophilized.

5

[00325] The results are summarised in the following Table 12.

Table 12

Sr. No.	Ingredient	Composition (mg/wafer)	
		Lot 1	Lot 2
1	Propofol	2.5 mg	2.5 mg
2	PEG-PMA triblock polymer	22.5 mg	22.5 mg
3	Contramid	35 mg	15 mg
4	Mannitol	35 mg	55 mg
5	Aspartame	5 mg	5 mg
	Total	100 mg	100 mg
Micelles size (before wafer formulation)		158 nm	
Micelle size from wafers (pH 6.8)		159 nm	154 nm
Wafer disintegration time (pH 6.8)		Less than 10 sec	Less than 10 sec

10

Example 10. Propofol wafers with PVP-PLA polymer

[00326] Propofol Micelles preparation:

[00327] PVP-PLA polymer was dissolved in phosphate buffer pH 6.8 and propofol was added to the solution. The mixture was stirred overnight. Final theoretical propofol concentration in micelles will be 10 mg/ml.

[00328] Preparation of wafers:

5 1. Aspartame and mannitol were dissolved in above micelle solution and then Contramid was dispersed at room temperature.

2. The above suspension was transferred to the wells of blisters (0.5ml equivalent to 5 mg of propofol) and frozen to -80C.

3. The blisters were then lyophilized.

10 **[00329]** The results are summarised in following Table 13.

Table. 13

Sr. No.	Ingredient	Composition (mg/wafer)	
		Lot 3	Lot 4
1	Propofol	5 mg	5 mg
2	PVP-PLA polymer	45 mg	45 mg
3	Contramid	35 mg	15 mg
4	Mannitol	35 mg	55 mg
5	Aspartame	5 mg	5 mg
	Total	125 mg	125 mg
Micelles size (before wafer formulation)		26 nm	
Micelle size from wafers (pH 6.8)		63 nm	38 nm
Wafer disintegration time (pH 6.8)		Less than 10 sec	Less than 10 sec

[00330] All referenced documents are incorporated herein in their entirety.

[00331] The above-described embodiments are intended to be examples only.

Alterations, modifications and variations can be effected to the particular embodiments by those of skill in the art without departing from the scope of the present disclosure, which is

5 defined solely by the claims appended hereto.

CLAIMS:

1. A dosage form for non-intravenous administration of a liquid biologically active agent, the dosage form comprising a solid formulation comprising the liquid biologically active agent in intimate association with at least one stabilizing agent.
2. The dosage form according to claim 1, further comprising one or more additives.
3. The dosage form of claim 1 or 2, which, upon hydration, is capable of forming a nanodispersion or micelle loaded with the liquid biologically active agent.
4. The dosage form according to any one of claims 1 to 3, wherein the stabilizing agent comprising at least one amphiphilic copolymer or at least one surfactant.
5. The dosage form according to claim 4, wherein said amphiphilic copolymer comprises a linear, branched or star-shaped block polymer.
6. The dosage form according to claim 4 or 5 wherein the amphiphilic polymer includes a hydrophilic segment selected from poly(ethylene oxide), poly(N-vinylpyrrolidone), poly(N-2-hydroxypropylmethacrylamide), poly(2-ethyl-2-oxazoline), poly(glycidol), poly(2-hydroxyethylmethacrylate), poly(vinylalcohol), polymethacrylic acid derivatives, poly(vinylpyridinium), poly((ammoniumalkyl)methacrylate), poly((aminoalkyl)methacrylate) and combinations and derivatives thereof; and a hydrophobic segment selected from the group comprising a poly(ester), poly(ortho ester), poly(amide), poly(esteramide), poly(anhydride), poly(propylene oxide), poly(tetrahydrofuran), polystyrene, polymethacrylate, polyacrylate, polymethacrylic acid, polyacrylic acid and combinations and derivatives thereof.
7. The dosage form according to claim 6, wherein said hydrophobic segment comprises a poly(ester) selected from the group consisting of poly(ϵ -caprolactone), poly(lactide), poly(glycolide), poly(lactide-co-glycolide), poly(hydroxyl-alkanoates), poly(β -malic acid), and combinations and derivatives thereof.

8. The dosage form according to any one of claims 4 to 8, wherein said amphiphilic copolymer is a PVP-PDLLA or PEG-PMA copolymer.

5 9. The dosage form according to claim 8, wherein said amphiphilic copolymer is a diblock or triblock PEG-PMA copolymer.

10. The dosage form according to claim 9, wherein the PEG-PMA copolymer is an EG-MAA-BMA copolymer.

10 11. The dosage form according to claim 10, wherein the EG-MAA-BMA copolymer has the following composition: EG₍₂₀₋₅₀₀₎-MAA₍₅₋₅₀₀₎-BMA₍₅₋₅₀₀₎.

15 12. The dosage form according to claim 11, wherein the EG-MAA-BMA has one of the following compositions: EG₍₄₅₎-MAA₍₆₃₎-BMA₍₂₈₎; EG₍₄₅₎-MAA₍₆₄₎-BMA₍₃₄₎; or EG₍₄₅₎-MAA₍₅₄₎-BMA₍₂₆₎.

13. The dosage form according to claim 8, wherein said amphiphilic copolymer is a PVP-PDLLA copolymer.

20 14. The dosage form according to claim 1 wherein said stabilizing agent comprises a surfactant.

25 15. The dosage form according to claim 14, wherein said surfactant is selected from the group comprising lauryl sulphate, hexadecyl pyridinium chloride, polysorbates, sorbitans, poly(oxyethylene) alkyl ethers, poly(oxyethylene) alkyl esters and combinations thereof.

30 16. The dosage form according to any one of claims 1 to 15, which is prepared from a solid formulation comprising the liquid biologically active agent in intimate association with at least one stabilizing agent, and one or more additives.

17. The dosage form according to any one of claims 1 to 16, wherein the solid formulation is obtained by drying a mixture of the stabilizing agent, the liquid biologically active agent, and at least one solvent therefore, in such a manner as to form the intimate mixture of the liquid biologically active agent and the stabilizing agent.

5

18. The dosage form according to claim 17, wherein the drying is lyophilization or freeze-drying.

19. The dosage form according to claim 17, wherein the drying results in a powder.

10

20. The dosage form according to claim 19, wherein the drying is spray-drying or fluid bed-drying.

21. The dosage form according to any one of claims 1 to 20, wherein the liquid biologically active agent is present in the solid formulation in a therapeutically effective amount.

22. The dosage form according to any one of claims 1 to 21, wherein the liquid biologically active agent is present in the solid formulation in an amount between about 1 wt% and about 80 wt%, between about 1 wt% and about 60 wt%, between about 5 wt% and about 40 wt%, between about 5 wt% and about 30 wt%, between about 10 wt% and about 30 wt%, between about 10 wt% and about 20 wt%, between about 0.1 wt% and 5 wt%, between about 1 wt% and about 5 wt%.

23. The dosage form according to any one of claims 1 to 21, wherein the solid formulation is present in the dosage form in an amount from about 1 wt% to about 99 wt%, from about 5 wt% to about 85 wt%, from about 5 wt% to about 60 wt%, 5 wt% to about 40 wt%, between about 5 wt% to about 30 wt%, between about 10 wt% to about 30 wt%, between about 10 wt% to about 20 wt%, between about 0.1% to 5%, between about 1 wt% to about 5 wt%, between about 20 wt% to about 60 wt%.

24. The dosage form according to any one of claims 1 to 21, wherein the biologically active agent is present in the dosage form in an amount from about 0.01 wt% to about 80

wt%, 0.01 wt% to about 50 wt%, from about 1 wt% to about 20%, from about 1 wt% to about 15 wt%, from between about 2 wt% to about 10 wt%, between about 1 wt% to about 5 wt%, between about 5 wt% to about 10 wt%, or between about 10 wt% to about 20 wt%.

5 25. The dosage form according to any one of claims 1 to 24, wherein, upon administration to a subject, the dosage form provides a bioavailability sufficient for achieving therapeutic efficacy.

10 26. The dosage form according to claim 25, wherein the bioavailability of the active agent is at least about 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or higher.

15 27. The dosage form according to claim 25, wherein the dosage form exhibits an increase in bioavailability of at least 10% compared to same-route administration of the biologically active agent in the absence of the stabilizing agent.

20 28. The dosage form according to claim 25, wherein the dosage form exhibits a relative bioavailability of at least 100%, 110%, 120%, 150%, 200%, 500%, 700%, or 1000%.

25 29. The dosage form according to claim 25, wherein the dosage form exhibits a absolute bioavailability of at least 10%.

30 30. The dosage form according to claim 25, wherein the bioavailability of the active agent is increased by at least about 1.5-fold, 2-fold, 3-fold, 5-fold, 10-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 75-fold, 100-fold, or higher, in the presence of the stabilizing agent.

35 31. The dosage form according to claim 25, wherein the bioavailability of the active agent is increased by at least about 1.5-fold to about 40-fold, from about 2-fold to about 35-fold, from about 5-fold to about 30-fold, in the presence of the stabilizing agent.

40 32. The dosage form according to any one of claims 1 to 31, wherein the solid formulation has a drug loading level (DLL) of up to about 5%, 10%, 15%, 20%, 25%, 50%, 60%, 70%, 80%, or higher.

33. The dosage form according to any one of claims 1 to 31, wherein the solid formulation has a drug loading level (DLL) from about 1% to about 80%, from about 10% to about 80%, or from about 20% to about 60%.

5

34. The dosage form according to any one of claims 3 to 33, wherein, the micelles have a diameter less than about 500 nm, such as, between about 5 nm to 500 nm, 10 nm to 500 nm, 10 nm to 400 nm, 20 nm to 300 nm, or 20 nm to 200 nm.

10 35. The dosage form according to any one of claims 3 to 34, wherein the stabilizing agent has a CAC below about 100 mg/L, below about 50 mg/L, below about 25 mg/L, below about 10 mg/L, or below about 5 mg/L.

15 36. The dosage form according to any one of claims 3 to 34, wherein the stabilizing agent has a CAC in the range of about 0.1 mg/L to about 1000 mg/L, about 0.1 mg/L to about 100 mg/L, about 0.1 mg/L to about 50 mg/L, about 0.1 to about 25 mg/L, about 0.1 to about 10 mg/L, or about 0.1 to about 5 mg/L.

20 37. The dosage form according to any one of claims 1 to 36, wherein the liquid biologically active agent is hydrophobic or amphiphilic.

25 38. The dosage form according to claim 37, wherein the liquid biologically active agent is selected from the group consisting of propofol, quinaldine, methoxyflurane, nicotine, phytonadione, methoxyflurane, dinoprost tromethamine, and mesoprostol, or a prodrug or derivative thereof.

30 39. The dosage form according to any one of claims 1 to 38, which is suitable for oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular, otic or topical administration.

40. The dosage form according to claim 39, which is suitable for oral administration.

41. The dosage form according to claim 40 wherein the dosage form exhibits an absolute bioavailability of at least 10%.

42. The dosage form according to claim 39, which is suitable for sublingual 5 administration.

43. The dosage form according to any one of claims 1 to 42, wherein the dosage form is in the form of a tablet, caplet, capsule, sachet, solution, suspension, emulsion, cream, gel, film, lozenge, chewing gum, paste, ointment, drop, spray, aerosol inhaler, dry powder inhaler, 10 suppository, pessary, or enema.

44. The dosage form according to any one of claims 2 to 43, wherein the additive is one or more of a carrier, a bulk forming agent, a cryoprotectant, a lyoprotectant, a binder, a flavoring agent, a taste masking agent, a coloring agent, an odorant, a buffer, a preservative, 15 a diluent, a dispersant, a surfactant, a disintegrant, or an additional stabilizer.

45. The dosage form according to claim 43, wherein the tablet is a rapid disintegrating tablet (RDT).

20 46. The dosage form according to claim 44, wherein the RDT comprises a disintegrant or disintegrating matrix to facilitate rapid release of the solid formulation from the dosage form.

47. The dosage form according to claim 45, wherein the disintegrating matrix is a starch or a hydrogel.

25 48. The dosage form according to claim 46, wherein the starch is a cross-linked high amylose starch, such as, Contramid.

49. The dosage form according to any one of claims 45 to 48, wherein the RDT 30 additionally comprises a sugar, such as, mannitol, trehalose, maltodextran.

50. The dosage form according to any one of claims 1 to 49, which is an instant release dosage form, an immediate release dosage form, or a controlled release dosage form.

51. The dosage form according to claim 50, wherein the controlled release is sustained release, and wherein the dosage form releases the liquid biologically active agent over a period of about 45 minutes to about 24 hours.

52. The dosage form according claim 51, wherein the controlled release is sustained release, and wherein the dosage form releases the liquid biologically active agent over a period of at least about 4 hours, at least about 8 hours, at least about 12 hours, at least about 16 hours, at least about 20 hours, or at least about 24 hours.

53. The dosage form according to claim any one of claims 1 to 52, wherein the liquid biologically active agent is propofol or a derivative or prodrug thereof.

15 54. The dosage form according to claim 53, wherein the liquid biologically active agent is propofol.

20 55. The dosage form according to any one of claims 1 to 54, wherein the solid formulation comprises between about 10 wt% and about 30 wt% propofol.

25 56. The dosage form according to claim 54 or 55, wherein, upon oral administration, the absolute bioavailability of propofol is at least about 10%, between about 15% and about 165%, between about 15% and about 100%, between about 15% and about 80%, or between about 20% and about 80%.

57. The dosage form according to any one of claims 53 to 56 for use in the treatment or prevention of a disease or condition of the central nervous system.

30 58. The dosage form according to claim 57 wherein the disease or condition of the central nervous system is headache, emesis, nausea, or pain.

59. The dosage form according to any one of claims 53 to 56 for inducing anaesthesia or sedation in a subject in need thereof.
60. The dosage form according to any one of claims 1 to 56 for use in the manufacture of 5 a medicament.
61. Use of the dosage form according to any one of claims 53 to 56 in the treatment or prevention of a disease or condition of the central nervous system.
- 10 62. Use of the dosage form according to any one of claims 53 to 56 in the manufacture of a medicament for the treatment or prevention of a disease or condition of the central nervous system.
- 15 63. Use of a solid formulation as defined in any one of claims 1 to 56 in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the central nervous system.
- 20 64. Use of a solid formulation comprising an intimate mixture of propofol and at least one amphiphilic copolymer in the manufacture of a non-intravenous dosage form for the treatment or prevention of a disease or condition of the central nervous system.
65. The use according to any one of claims 61 to 63, wherein the condition of the central nervous system is headache, nausea, emesis, or pain.
- 25 66. A solid formulation comprising an intimate mixture of propofol and at least one stabilizing agent, for use in the manufacture of a non-intravenous dosage form for the treatment or prevention of headache, nausea, emesis, or pain.
- 30 67. A method or treating a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a non-intravenous dosage form as defined in any one of claims 1 to 56.

68. The method according to claim 67, wherein the route of administration is oral, sublingual, intranasal, intrapulmonary, rectal, urethral, vaginal, ocular or topical administration.

5 69. The method according to claim 68, wherein the route of administration is oral administration.

70. The method according to claim 68, wherein the route of administration is sublingual administration.

10 71. The method according to any one of claims 67 to 70, wherein the disorder or condition to be treated is disease or condition of the central nervous system.

72. The method according to claim 71, wherein the condition is headache, nausea, 15 emesis or pain, and wherein the dosage form is as defined in any one of claims 53 to 56.

73. The method according to claim 72, wherein the headache is intractable migraine headache.

20 74. The method according to claim 72, wherein the pain is neuropathic pain.

75. The method according to claim 74, wherein neuropathic pain is post-herpetic neuralgia, peripheral neuropathy, trigeminal neuralgia, lower back pain, painful diabetic neuropathy, HIV-related neuropathic pain, cancer-related pain, or fibromyalgia.

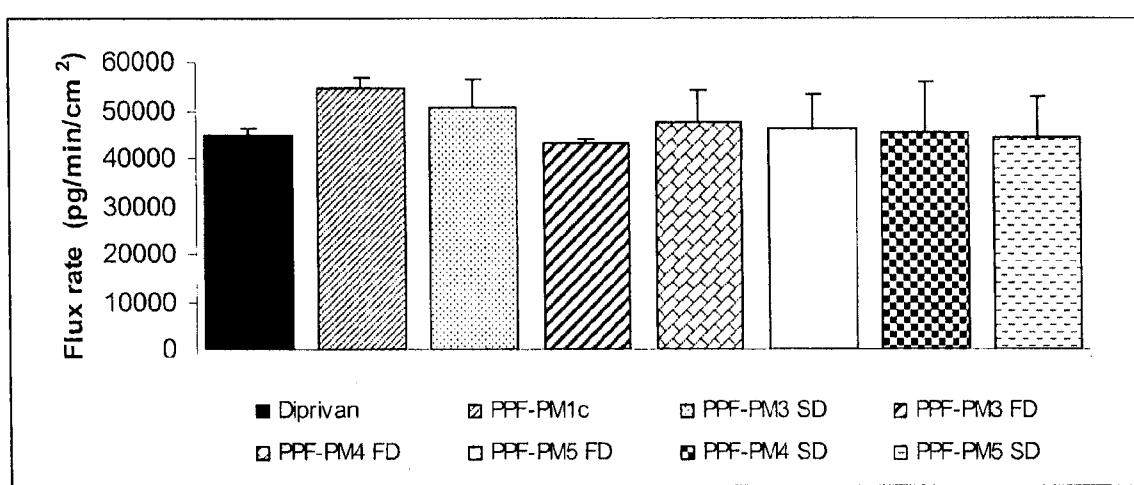
25 76. A method of treating or preventing headache, nausea, emesis or pain, comprising administering to a subject in need thereof a therapeutically effective amount of a non-intravenous dosage form comprising a solid formulation, and, optionally, one or more additives, the solid formulation comprising an intimate mixture of propofol and at least one 30 amphiphilic copolymer, wherein, upon hydration, micelles loaded with the propofol are formed.

77. A commercial package or kit comprising a non-intravenous dosage form as described in any one of claims 1 to 56, together with one or more instructions for use in the treatment or prevention of a disease or condition.

5 78. A commercial package or kit comprising a non-intravenous dosage form as described in any one of claims 53 to 56, together with one or more instructions for use in the treatment or prevention of headache, nausea, emesis, or pain.

10 79. A method for the preparation of a dosage form for non-intravenous administration of a liquid biologically active agent which comprises:

providing a first mixture of at least one stabilizing agent in at least one solvent, under conditions to achieve micelle or nanodispersion formation,


15 providing a second mixture by mixing said first mixture and at least one liquid biologically active agent to load said micelle or nanodispersion with said liquid biologically active agent,

removing the solvent from said second mixture to form a solid formulation; and optionally, adding one or more additives suitable to prepare the non-intravenous dosage form.

20 80. The method of claim 79, wherein the solvent is removed by drying.

81. The method of claim 80, wherein the drying involves spray drying or drying in a fluid bed.

25 82. The invention as hereinbefore described.

Figure 1

2/8

Figure 2

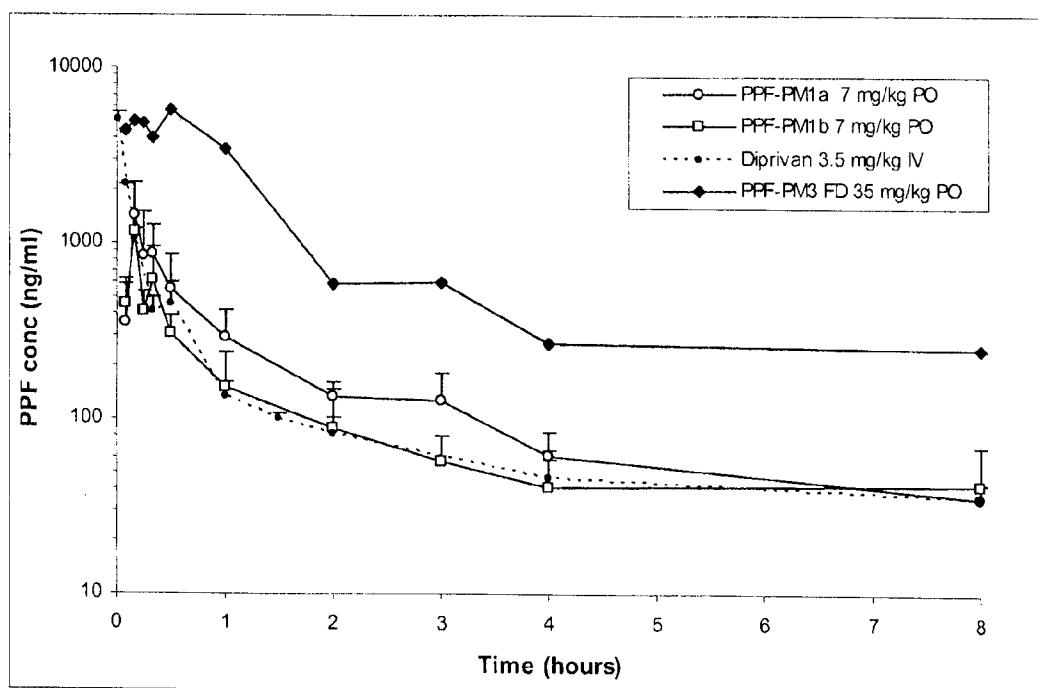
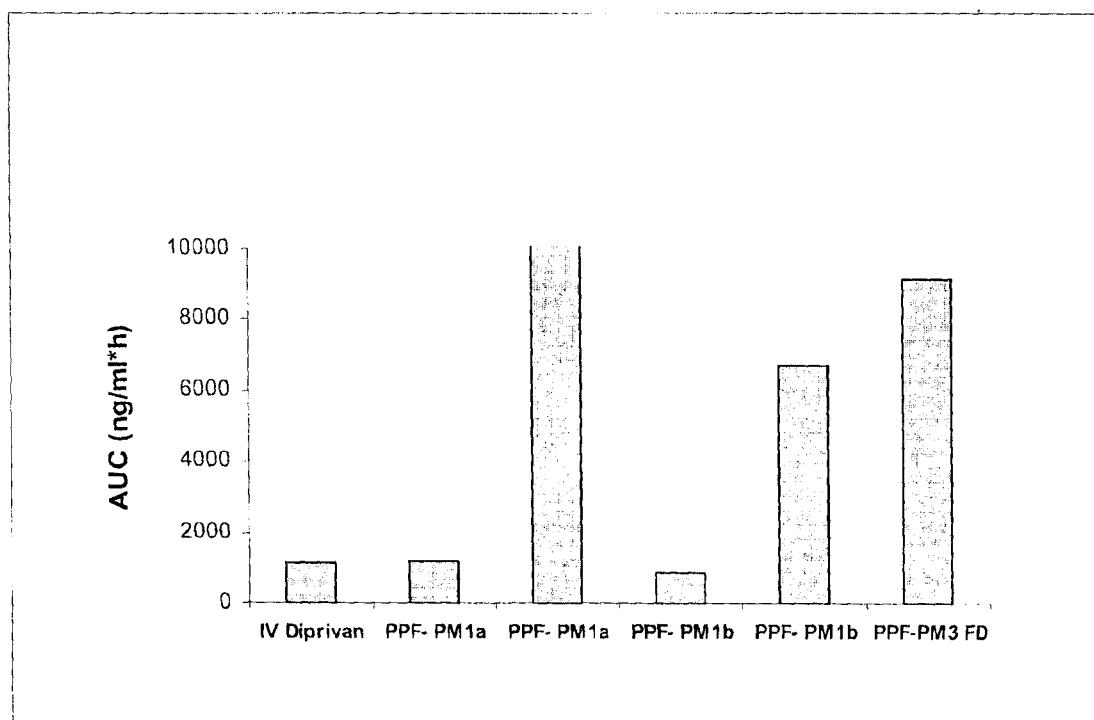
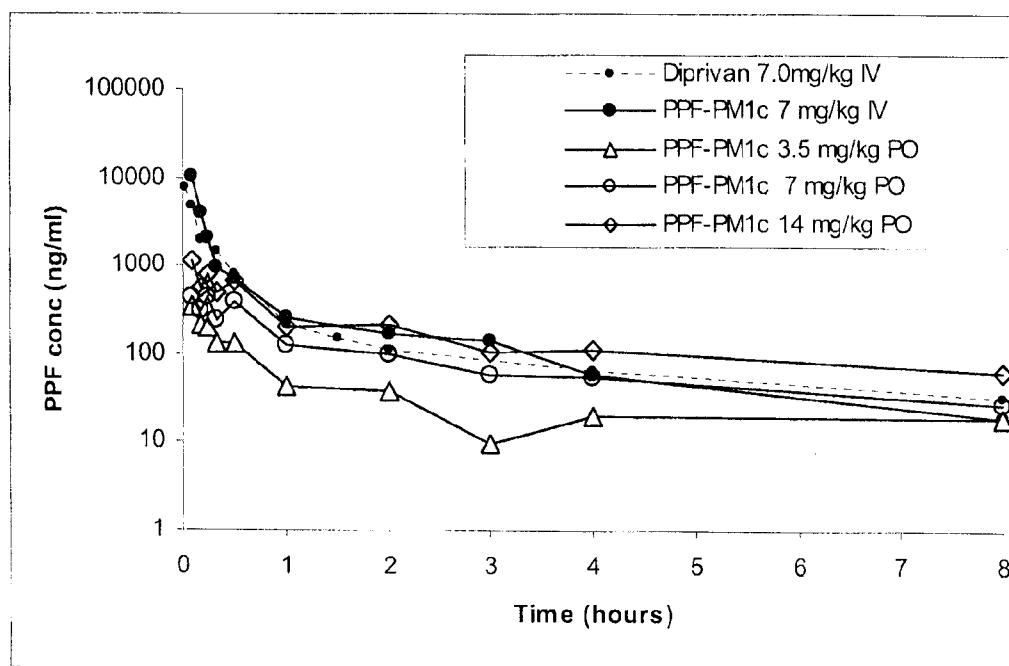
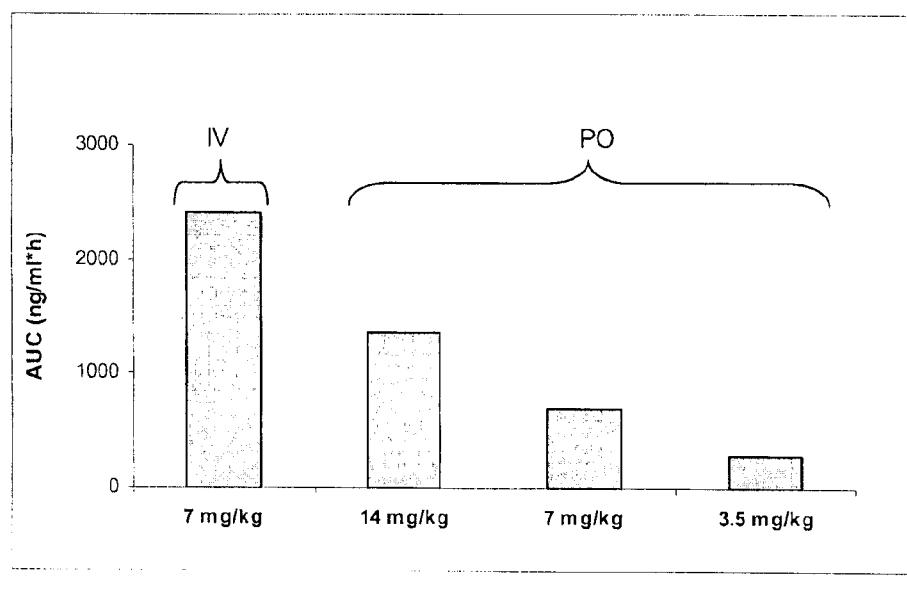





Figure 3

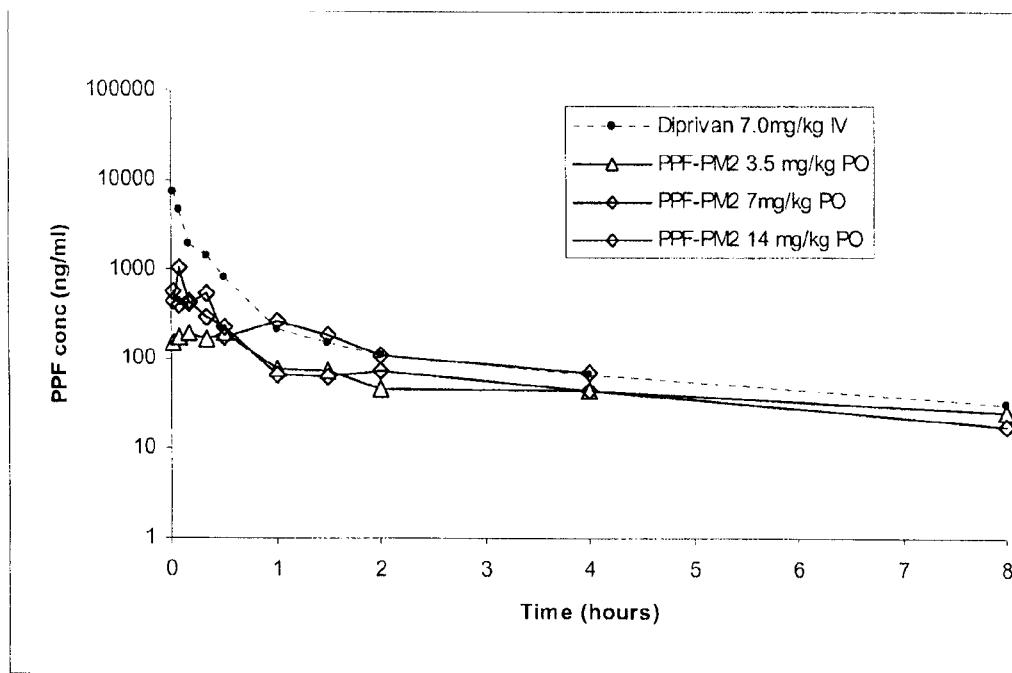
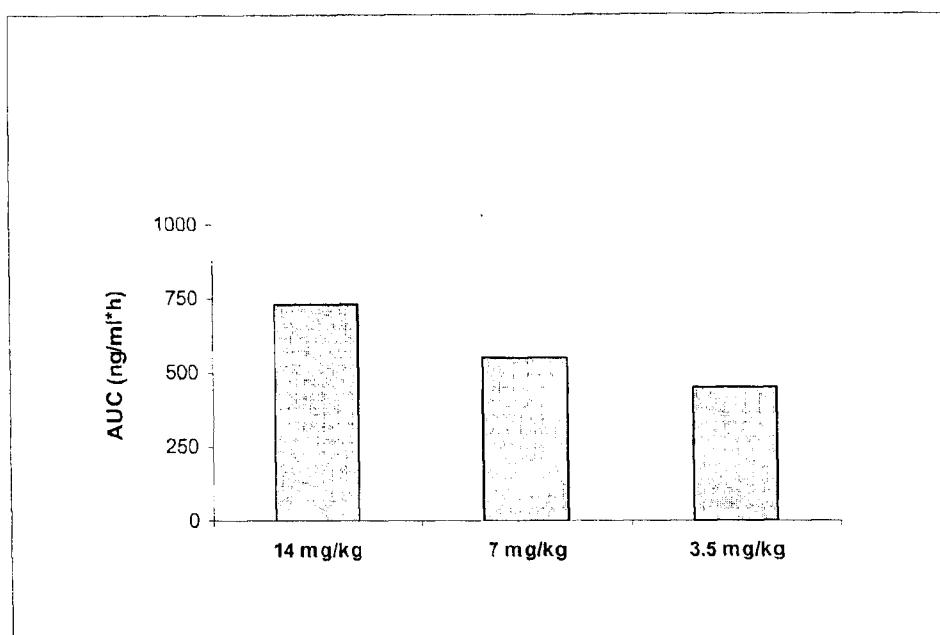

	IV Diprovan	PM1a	PM1a	PM1b	PM1b	PM3 FD
Route	IV	PO	PO	PO	PO	PO
Dose (mg/kg)	3.5	7	35	7	35	35
Cmax (ng/ml)	3650	1455	7497	630	2356	4925
AUC _{0-t} (ng/ml*h)	1153	1210	18986	876	6730	9173
Bioavailability(%)	100	53	166	38	59	80

Figure 4


Figure 5

	PPF-PM1c	PPF-PM1c	PPF-PM1c	PPF-PM1c
Route	IV	PO	PO	PO
Dose (mg/kg)	7	14	7	3.5
AUC (0->t) (ng/ml*h)	2417	1368	800	290
Bioavailability(%)	100	28	29	24

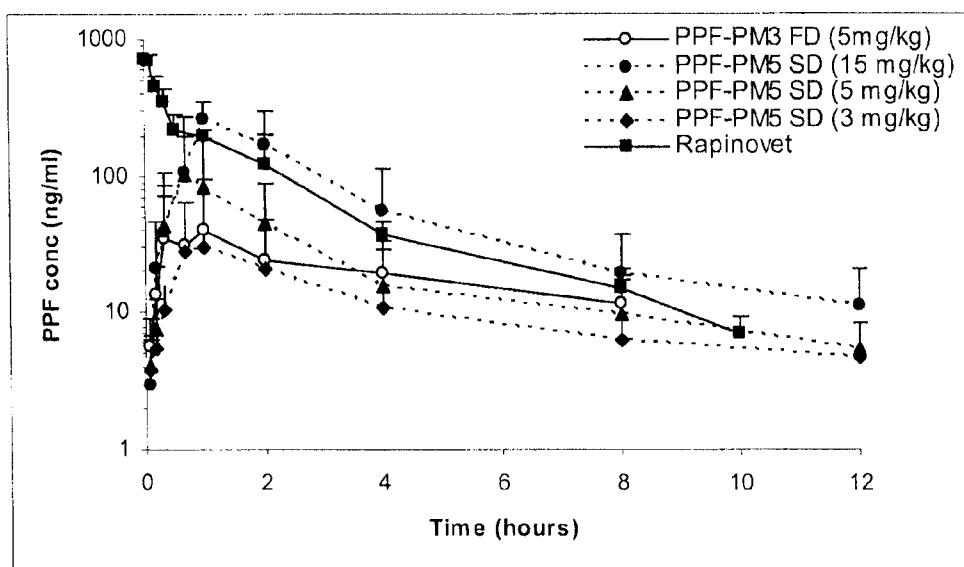

6/8

Figure 6

7/8

Figure 7

	PPF-PM1c	PPF-PM2	PPF-PM2	PPF-PM2
Route	IV	PO	PO	PO
Dose (mg/kg)	7	14	7	3.5
AUC (0->t) (ng/ml*h)	2417	730	553	453
Bioavailability(%)	100	15	23	37

Figure 8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2011/000447

A. CLASSIFICATION OF SUBJECT MATTER IPC: <i>A61K 31/05</i> (2006.01), <i>A61K 47/06</i> (2006.01), <i>A61K 47/30</i> (2006.01), <i>A61K 9/10</i> (2006.01), <i>A61K 9/19</i> (2006.01), <i>A61P 25/00</i> (2006.01) According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC: <i>A61K 31/05</i> (2006.01), <i>A61K 47/06</i> (2006.01), <i>A61K 47/30</i> (2006.01), <i>A61K 9/10</i> (2006.01), <i>A61K 9/19</i> (2006.01), <i>A61P 25/00</i> (2006.01)		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used) Canadian Patent Database, USPTO database, EPOQUE (EPDOC), Scopus (keywords: resveratrol, diisopropylphenol, diprivan, diprofol, diprifusor, amphiphilic; PEG, PEO, POP; ethylene glycol; PMMA; PBMA; MMA; BMA; oral; migraine; emesis; headache; pain; neuralgia		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CA 2589242 A1 (Ravenelle, F, <i>et al.</i>) 01 June 2006 (01-06-2006) entire application	1-8, 13-25, 32-34, 37-38, 43-44, 50, 53-55, 59-60, 79-82
X	CA 2700426 A1 (Temtsin Krayz, G. <i>et al.</i>) 02 April 2009 (02-04-2009) see Abstract, claims 1, 4, 5 (see p. 76, last line), 6	1-7, 16-21, 33-34, 37-40, 42-50, 53-54, 79-82
Y	WO 2008/035229 A2 (Lessard, D., <i>et al.</i>) 27 March 2008 (27-03-2008) entire application, especially the claims	9-12
Y	CA 2548216 A1 (Slusher, B. <i>et al.</i>) 30 June 2005 (30-06-2005) entire application, especially the Abstract, para [35], [39], [40]	57-59, 61-78
[] Further documents are listed in the continuation of Box C.		[X] See patent family annex.
* Special categories of cited documents : “A” document defining the general state of the art which is not considered to be of particular relevance “E” earlier application or patent but published on or after the international filing date “L” document which may throw doubts on priority claim(s) or which is		“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand “X” the principle or theory underlying the invention “Y” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Date of the actual completion of the international search 30 June 2011 (30-06-2011)		Date of mailing of the international search report 4 August 2011 (04-08-2011)
Name and mailing address of the ISA/CA Canadian Intellectual Property Office Place du Portage I, C114 - 1st Floor, Box PCT 50 Victoria Street Gatineau, Quebec K1A 0C9 Facsimile No.: 001-819-953-2476		Authorized officer Cristina Belyea (819) 934-6739

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/CA2011/000447**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons :

1. Claim Nos. : 67-76

because they relate to subject matter not required to be searched by this Authority, namely :

Claims 67-76 are directed to a method for treatment of the human or animal body by surgery or therapy which the International Search Authority is not required to search. However, this Authority has carried out a search based on the alleged effects or purposes/uses of the product defined in claims 1-56.

2. Claim Nos. : in part (1-52, 63, 65, 77-82)

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically :

The above claims are directed to dosage forms containing a solid formulation comprising any liquid biologically active ingredient and a stabilizing agent. Both terms: the liquid active ingredient and the stabilizing agent are extremely broad terms that embrace an extremely large number of possibilities as described by the applicant, resulting in an indefinite number of possible dosage forms. Considering that the only active ingredient tested by the applicant is propofol, the search was limited to those dosage forms that include propofol as the active ingredient.

3. Claim Nos. :

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows :

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos. :

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos. :

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/CA2011/000447

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date
CA2589242A1	01 June 2006 (01-06-2006)	AU2005309283A1 BRPI0518677A2 CN101065128A EP1817035A1 IL183252D0 JP2008521755A KR20070094609A MX2007006243A NO20073339A NZ555287A RU2007124374A US2006198891A1 WO2006056064A1 ZA200704900A	01 June 2006 (01-06-2006) 02 December 2008 (02-12-2008) 31 October 2007 (31-10-2007) 15 August 2007 (15-08-2007) 31 October 2007 (31-10-2007) 26 June 2008 (26-06-2008) 20 September 2007 (20-09-2007) 08 October 2007 (08-10-2007) 29 August 2007 (29-08-2007) 25 February 2011 (25-02-2011) 10 January 2009 (10-01-2009) 07 September 2006 (07-09-2006) 01 June 2006 (01-06-2006) 25 September 2008 (25-09-2008)
CA2700426A1	02 April 2009 (02-04-2009)	AU2008303129A1 EP2200588A1 IL204711D0 US2009098200A1 WO2009040818A1 WO2009040818A9	02 April 2009 (02-04-2009) 30 June 2010 (30-06-2010) 30 November 2010 (30-11-2010) 16 April 2009 (16-04-2009) 02 April 2009 (02-04-2009) 20 May 2010 (20-05-2010)
WO2008035229A2	27 March 2008 (27-03-2008)	AU2007298674A1 CA2699184A1 EP2081548A2 IL197680D0 JP2010504318A KR20090080046A MX2009003092A US2009258071A1 WO2008035229A3	27 March 2008 (27-03-2008) 27 March 2008 (27-03-2008) 29 July 2009 (29-07-2009) 24 December 2009 (24-12-2009) 12 February 2010 (12-02-2010) 23 July 2009 (23-07-2009) 08 May 2009 (08-05-2009) 15 October 2009 (15-10-2009) 13 August 2009 (13-08-2009)
CA2548216A1	30 June 2005 (30-06-2005)	AU2004299109A1 BRPI0417472A CN101001530A EP1694277A2 IL175913D0 JP2007524661A KR20060124619A NO20062409A RU2006118260A US2007202158A1 WO2005058250A2 WO2005058250A3 ZA200604619A	30 June 2005 (30-06-2005) 08 May 2007 (08-05-2007) 18 July 2007 (18-07-2007) 30 August 2006 (30-08-2006) 05 October 2006 (05-10-2006) 30 August 2007 (30-08-2007) 05 December 2006 (05-12-2006) 18 September 2006 (18-09-2006) 27 January 2008 (27-01-2008) 30 August 2007 (30-08-2007) 30 June 2005 (30-06-2005) 22 March 2007 (22-03-2007) 31 October 2007 (31-10-2007)