(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

Chemical Company, P.o. Box 6500, Bridgewater, NJ 08807

(43) International Publication Date 17 April 2008 (17.04.2008)

(51) International Patent Classification: C10M 169/04 (2006.01) C10M 103/02 (2006.01)

(21) International Application Number:

PCT/US2007/078113

(22) International Filing Date:

11 September 2007 (11.09.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/545,883 11 October 2006 (11.10.2006)

(71) Applicant (for all designated States except US): NA-TIONAL STARCH AND CHEMICAL INVESTMENT HOLDING CORPORATION [US/US]; 1000 Uniqema Boulevard, New Castle, DE 19720 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUGUES, Laurent [FR/FR]; 15a Rue Du Fort, F-67120 Soultz Les Bains (FR). GANKEMA, Harold [NL/NL]; Boslaan 13, NL-7822 En Emmen (NL). HEIDEMAN, Geert [NL/NL]; Feiko Clockstraat 141i, NL-9665 Bj Qude Pekela (NL). KOK, Douwe, Marten [NL/NL]; Torum 8, NL-9679 Cl Scheemda (NL). ODINK, Gerko [NL/NL]; Sleedoomweg 179, NL-9674 Jn Winschoten (NL).

WO 2008/045647 A1 (74) Agents: GENNARO, Jane E. et al.; National Starch And

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

ZM, ZW.

(US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: LUBRICANT FOR HOT FORGING APPLICATIONS

(57) Abstract: A substantially lead-free lubricant for use in hot forging of metals, especially forging of aluminum and aluminum alloy components. The lubricant comprises one or more oils, graphite, and one or more phosphorus- based additives. Additional additives, such as metallic lubricants and dispersants may also be included. The lubricant does not burn when subjected to temperatures in excess of 300°C.

LUBRICANT FOR HOT FORGING APPLICATIONS

FIELD OF THE INVENTION

Forged metal articles are frequently used for various parts in many items, including airplanes, automobiles, electronic components, etc. Iron has traditionally been the metal of choice for most forged metal applications, however the preferred material for many recent applications is changing from iron to lighter alloys, such as aluminum alloys, in order to meet the demand for reducing the overall weight of the material. In recent years, the demand for lightweight products of high quality with good workability has increased and has led to a similar increase in the use of aluminum alloy forging technology.

In the metal forging work or process, a lubricant or lubricating oil is disposed between the metal mold and the workpiece to be molded so as to avoid adhesion between them and to improve the separation ability of the forged article from the metal mold. The proper lubricant is critical in order to allow for proper movement in the die cavities and to allow the forging process to be repeated as many times as possible in succession

10

15

without re-application of lubricant. Conventional lubricants, which include oil-soluble lubricants with added graphite and water-soluble lubricants consisting of synthetic esters, silicone oils, graphite, extreme-pressure additives and surface active agents, have been typically used as lubricants in aluminum alloy forging.

5

10

15

20

It is difficult to satisfy the demands of hot aluminum forging by using conventional lubricants. With hot aluminum forging, the existing oil-soluble lubricants have disadvantages, such as flammability, causing smoking and/or workshop contamination, etc. In particular, many oil-soluble lubricants that contain graphite burn when the application temperature is greater than 300°C, such as is required for hot forging of aluminum, causing unsafe working conditions and an increased risk of accidents. Furthermore, the existing water-soluble lubricants have disadvantages including the requirement for treatment of waste water to control water pollution after use which results in cost increases, equipment investment and processing inefficiency.

Many non-flammable additives have been unsuccessfully tested for use in hot forging. For example, halogenated products have been tested, but they produce halogenated

residues that are unwelcome for safety and environmental purposes. Magnesium- and borate-based flame retardants have been tested, however they generate residues that negatively affect the lubrication properties. Organic flame retardants in general are not effective because they are not designed to work at temperatures above 300°C. Further, antimony and barium based products are generally not effective in hot forging applications.

5

10

15

20

Conventional hot aluminum forging lubricants that best facilitate die movement typically include one or more organic lead compounds, such as lead naphthenate and lead stearate. The use of lead in lubricating compositions has come into disfavor because of the health hazards caused by the release of lead into the atmosphere. During the hot forging of aluminum some of the organic lead present in the lubricant is dispersed into the air in quantities which are unacceptable to most local and national governmental regulatory agencies. Such agencies have banned the use of lead in many industries and, where it is still allowed, severely limited the concentrations that may be discharged into the atmosphere. In order to continue using lead-containing lubricants, the hot forging industry would be required to install very expensive exhaust and air filtration

systems to lower the concentration of atmospheric lead to acceptable limits. Such exhaust and filtration systems would not be economically feasible for many aluminum hot forging facilities.

It would therefore be advantageous to provide a substantially lead-free lubricant for use in the aluminum and aluminum alloy hot forging industry. Such lubricants provide superior lubrication properties and should not produce smoke or be flammable at temperatures at or above 300°C.

10

15

20

5

SUMMARY OF THE INVENTION

The present invention discloses a lubricant for use in hot forging or metal deformation of metals, especially aluminum and aluminum alloy components, titanium and superalloys. The lubricant comprises one or more oils, graphite, and one or more phosphorus-based additives. Additional additives, such as metallic lubricants, dispersants, thickeners and wetting agents may also be included. The lubricant of the present invention is substantially lead-free and does not burn when subjected to temperatures in excess of 300°C.

DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses a lubricant for use in hotforging applications, such as those utilized in forging aluminum and aluminum workpieces into the desired articles. Such hot forging applications require lubricant materials that do not produce smoke or flame in the general temperature range of about 300°C to about 600°C. In order to comply with safety and health regulations, such lubricants are substantially lead-free.

5

10

15

20

The lubricant of the present invention is an oil-based lubricant. The oil utilized may be virtually any composition known in the art, including but not limited to mineral oil, such as naphtenic, aliphatic, paraffinic or steam cylinder oil, vegetable oil, such as sunflower oil, olive oil or rapeseed oil, animal oil, such as lard oil, synthetic oil, such as polyalphaolefins and silicone oil, semi-synthetic oil, such as glycerol trioleate and mixtures thereof. Preferred oils include vegetable, mineral and animal oils. Such oils are commercially available as Process Oil 1000 from Texaco (UK), Lard oil from Welch, Holm and Clark Co. (USA), Soybean oil from BG International (USA.).

A second component of the lubricant is a graphite additive. The graphite may be in any form known in the art, including but not limited to coarse, fine, milled, unmilled, natural,

synthetic or mixtures thereof. The graphite component of the lubricant provides for a physical separation between the workpiece and the die during the forging operation. Fine graphite having a particle size distribution with about 90% of the particles below 15 microns in size is especially preferred. Such graphite is commercially available from Acheson Industries, Inc.

5

10

15

20

One or more phosphorus-based additives are included in the lubricant. The phosphorus additive reduces and eliminates burning of the lubricant at high temperatures. The phosphorus can be in any desired form, such as phosphate, ester phosphate, phosphate amine, ammonium phosphate or mixtures thereof. One preferred phosphorous-based material is phosphate ester. Such phosphorous is commercially available from Connect Chemical (F), Ferro (USA).

The hot forging lubricant composition optionally contains one or more metallic lubricating additives. The metallic additives may be chosen from one or more of the metallic elements, including tin, bismuth, zinc, aluminum or any alloys thereof.

The lubricant composition may optionally contain additional ingredients such as dispersants, rheology modifiers, biocides, anticorrosives, extreme pressure additives, antifoam agents, wetting agents, metal soaps and mixtures thereof.

The lubricant of the present invention comprises in the range of about 1 to about 99 weight percent oil, preferably in the range of about 1 to about 70% oil and most preferably in the range of about 15 to about 40 weight percent oil. The lubricant contains in the range of about 1 to about 99 weight percent graphite, preferably in the range of about 1 to about 30 weight percent graphite and most preferably in the range of about 3 to about 20 weight percent graphite. The lubricant contains in the range of about 1 to about 99 weight percent phosphorous additive, preferably in the range of about 1 to about 80 weight percent phosphorous additive and most preferably in the range of about 30 to about 80 weight percent of the phosphorous additive.

10

15

20

A further embodiment of the invention comprises a method for forging an article. The method comprises the steps of applying the lead-free lubricant to one or both of the forging apparatus or the workpiece to be forged. The workpiece is inserted into the forging apparatus and forged into the desired article. The forging apparatus is opened and the article is easily removed due to the presence of the lubricant. In an alternative embodiment, the workpiece is inserted before the application of

the lubricant and the workpiece and die surface are then lubricated simultaneously

The invention is further illustrated by the following nonlimiting example:

Example. A lubricant composition may be produced by adequately mixing the raw materials together via standard mixing techniques, such as mastication of stirring. The composition of the samples is shown in Table 1.

10 Table 1. Lubricant Sample Composition

Ingredient	Weight
	Percent
Vegetable/Animal	15%
Oil	
Fine Graphite	4.4%
Mineral Oil	3.2%
Metal containing	3.2%
Fatty Acid	
Derivative	
Phosphate Ester	73%
Dispersant	0.2%

15

The lubricant composition of Table 1was applied on hot forging dies at temperatures of 440°C ± 40°C. The dies were utilized for a series of hot aluminum forging applications and the lubricant did not produce flames during the process. In addition, the lubricant properties relating to the die and the aluminum part being forged were superior.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

We claim:

5

 A lead-free lubricant for hot forging comprising one or more oils, graphite and one or more phosphorus-based additives.

- 2. The lubricant of claim 1, further comprising one or more metallic lubricating additives.
- The lubricant of claim 1, wherein the one or more oils are
 selected from the group consisting of mineral oil, vegetable oil,
 animal oil, synthetic oil, semi-synthetic oil or mixtures thereof.
 - 4. The lubricant of claim 1, wherein the graphite is selected from the group consisting of coarse, fine, milled, unmilled, natural, synthetic or mixtures thereof.
- 5. The lubricant of claim 1, wherein the phosphorus-based additive is selected from the group consisting of phosphate, ester phosphate, phosphate amine, ammonium phosphate or mixtures thereof.
- 6. The lubricant of claim 1, wherein the phosphorus-based additive is phosphate ester.

7. The lubricant of claim 2, wherein the one or more metallic additives are selected from the group consisting of bismuth, zinc, tin, aluminum or any alloys thereof.

- 8. The lubricant of claim 1, wherein the one or more oils comprise in the range of about 1 to about 99 weight percent of the lubricant.
 - 9. The lubricant of claim 1, wherein the one or more oils comprise in the range of about 1 to about 70 weight percent of the lubricant.
- 10. The lubricant of claim 1, wherein the one or more oils comprise in the range of about 15 to about 40 weight percent of the lubricant.
 - 11. The lubricant of claim 1, wherein the graphite comprises in the range of about 1 to about 99 weight percent of the lubricant.

15

- 12. The lubricant of claim 1, wherein the graphite comprises in the range of about 1 to about 30 weight percent of the lubricant.
- 13. The lubricant of claim 1, wherein the graphite comprises20 in the range of about 3 to about 20 weight percent of the lubricant.

14. The lubricant of claim 1, wherein the one or more phosphorus based additives comprise in the range of about 1 to about 99 weight percent of the lubricant.

- 15. The lubricant of claim 1, wherein the one or more phosphorus based additives comprise in the range of about 1 to about 80 weight percent of the lubricant.
 - 16. The lubricant of claim 1, wherein the one or more phosphorus based additives comprise in the range of about 30 to about 80 weight percent of the lubricant.
- 17. The lubricant of claim 1, further comprising one or more of the group consisting of dispersants, rheology modifiers, biocides, anticorrosives, extreme pressure additives, antifoam7 agents, wetting agents, metal soaps or mixtures thereof.
- 18. The lubricant of claim 1, wherein the lubricant does not burn at temperatures greater than about 300°C
 - 19. The lubricant of claim 1, wherein the lubricant does not burn at temperatures in the range of about 300°C to about 600°C.
- 20. A method of hot forging an aluminum or aluminum alloy
 comprising the steps of applying a coating of the lead-free
 lubricant of claim 1 to a hot forging apparatus, inserting a

workpiece into the apparatus and forging an article from the workpiece.

21. The method of claim 20, further comprising the step of coating the workpiece with the lubricant.

International application No. **PCT/US2007/078113**

A. CLASSIFICATION OF SUBJECT MATTER

C10M 169/04(2006.01)i, C10M 103/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 C10M 169/04, C10M 103/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched KR, JP IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKIPASS(KIPO internal) "lead-free, lubricant, graphite, phosphorus, oils, metallic"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US2002/0042348 A1 (Hugh A. Meneil et al.) 11 APRIL 2002 See abstract and claims 1-41.	1-21
A	US5864745 A (Taiho Kogyo Co., Ltd.) 26 JANUARY 1999 See abstract and claim 1.	1-21
A	US5830285 A (Nippon Steel Corporation) 3 NOVEMBER 1998 See abstract and claims 1-3.	1-21
A	US5413756 A (Magnolia Metal Corporation) 9 MAY 1995 See abstract and claims 1-12.	1-21
A	US3977838 A (Toyota Jidosha Kogyo Kabushiki Kaisha) 31 AUGUST 1976 See abstract and claim 1.	1-21

		Further	documents	are	listed	in	the	contir	ıuation	of:	Box	C.
--	--	---------	-----------	-----	--------	----	-----	--------	---------	-----	-----	----

 \boxtimes

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

19 FEBRUARY 2008 (19.02.2008)

Date of mailing of the international search report

19 FEBRUARY 2008 (19.02.2008)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

HA, SEUNG KYU

Telephone No. 82-42-481-8116

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/078113

			70320077070113
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US20020042348 A1	11.04.2002	US06573224	03.06.2003
0020020042040 711	11.04.2002	US2002042348A1	11.04.2002
JS05864745 A	26.01.1999	DE20522020H1	23.09.1999
JSU3604743 A	20.01.1999	DE29522030U1 DE69514994C0	16.03.2000
		EP00713972A1	29.05.1996
		EP00713972B1	09.02.2000
		EP713972B1	12.12.2007
		EP713972TD	
		JP07523951	19.11.1998 16.03.1995
			29.11.1999
		JP2982876B2 KR1019960702578	29.11.1999 27.04.1996
		US5864745A	26.01.1999
		W09525224A1	21.09.1995
 JS05830285 A	03.11.1998	CA2183441AA	31.08.1995
)000000Z00 / (00.11.1000	CN1046555C	17.11.1999
		CN1144543	05.03.1997
		DE69514340C0	10.02.2000
		DE69514340T2	24.08.2000
		EP00751232A1	02.01.1997
		EP00751232B1	05.01.2000
		EP0751232A1	02.01.1997
		EP751232B1	05.01.2000
		EP751232A4	21.05.1997
		JP07233419	05.09.1995
		JP08060296	05,03,1996
		JP3093576B2	03.10.2000
		JP3093577B2	03.10.2000
		JP3150523B2	26.03.2001
		JP7233419A2	05.09.1995
		JP8060295A2	05.03.1996
		JP8060296A2	05.03.1996
		KR100210867B1	15.07.1999
		KR1019970701269	17.03.1997
		KR210867B1	B1
		US5830285A	03.11.1998
		W09523241A1	31.08.1995

INTERNATIO	NAL SEARCH REPORT		International application No. PCT/US2007/078113
US05413756 A	09.05.1995	AT171730E CA2151994AA DE69505052C0 EP00687740A1 EP00687740B1 EP687740B1 ES2124500T3 US5413756A	15.10.1998 18.12.1995 05.11.1998 20.12.1995 30.09.1998 20.12.1995 30.09.1998 01.02.1999 09.05.1995
US03977838 A	31.08.1976	DE2428091A1 GB1428584A JP50013207A2 JP56038672B4 US3977838A	16.01.1975 17.03.1976 12.02.1975 08.09.1981 31.08.1976