(54) 发明名称
同步生物反硝化反硫化及自养生物脱氨处理
制药废水的装置和方法

(57) 摘要
本发明涉及一种同步生物反硝化反硫化及自养生物脱氨的制药废水处理装置和方法。其装置设有同步反硝化反硫化池、浓氨池、厌氧池、沉淀池、出水池等。其方法包括：将厌氧池沉淀污泥投加到同步反硝化反硫化池；2) 同步反硝化反硫化池出水进入到厌氧池甲烷池；3) 厌氧池甲烷池出水进入到沉淀池；4) 部分亚硝化池出水通过中间沉淀池进入到自养生物脱氨池；5) 自养生物脱氨池中的混合液通过沉淀池泥水分离后流入出水池。通过同步生物反硝化反硫化、厌氧池甲烷及自养生物脱氨工艺的协同作用实现制药废水的深度处理，适用于制药废水达标处理及再生回用。装置结构和运行方法完善，节能，成本低，废水处理效果好，效率高。
权利要求书

1. 一种同步生物反硝化反硫化及自养生物脱氮的制药废水处理装置，其特征在于：设有同步反硝化反硫化池（1）、厌氧产甲烷池（2）、部分亚硝化池（3）、自养生物脱氮池（4）、出水池（5）；

同步反硝化反硫化池为一圆柱体化反应器，底部设有旋流布水器（1.6），原水管（1.1）和旋流布水器（1.6）连通，中上部设有污泥脱气整流器（1.9），上部设有气液固三相分离器（1.10），气液固三相分离器的集气室（1.11）与排气管（1.13）连接，气液固三相分离器上部设有出水槽（1.12），该出水槽设置的带循环泵（1.3）的循环管（1.4）与系统出水回流管（1.5）连接，并与旋流布水器（1.6）连通，出水槽（1.12）还设有出水管（1.14），同步反硝化反硫化池内壁设置环形阻流板（1.7），下部设置人口（1.15），不同高度设置取样阀（1.8）。

厌氧产甲烷池为一圆柱体化反应器，厌氧产甲烷池的上部设有气液固三相分离器（2.6）、集气室（2.7）、沼气排放管（2.9），气液固三相分离器上部设有出水槽（2.8），该出水槽设置的带循环泵（2.2）的出水循环管（2.12）与所述同步反硝化反硫化池的出水管（1.14）和厌氧产甲烷池的进水管（2.1）连通，该进水管与厌氧产甲烷池的旋流布水器（2.3）连通，出水槽还设有出水管（2.10），气液固三相分离器下部设置两层污泥脱气整流器（2.4），厌氧产甲烷池内壁设置环形阻流板（2.13），下部设置人口（2.5），不同高度设置取样阀（2.11）。

部分亚硝化池为一长方体的反应器，由依序排列的缺氧搅拌区（3.1）、好氧区（3.4）及中间沉淀池（3.7）组成，所述厌氧产甲烷池的出水管（2.10）与中间沉淀池底部带污泥回流泵（3.11）的污泥回流管（3.9）和缺氧搅拌区底部的进水管（3.8）连通，所述缺氧搅拌区设置搅拌器（3.2），部分亚硝化反应器的好氧区底部设置曝气头（3.10），所述厌氧搅拌区的上部设有空气与曝气区连通，好氧区的底部设有空气与中间沉淀池连通，中间沉淀池内设置中心管（3.12），中间沉淀池上部设有溢流口与自养生物脱氮池连通；

自养生物脱氮池是一长方体的反应器，设有好氧反应区（4.2）、终沉池（4.4），所述好氧反应区底部设置曝气头（4.6），并在区中装填高传质生物填料（4.3），所述终沉池中部分设置斜板填料（4.5），底部设置带污泥回流泵（4.9）的污泥回流管与所述好氧反应区前端连接，终沉池的上部设有上清液流入出水池（5）的溢流口；

出水池（5）底部设置系统出水回流管（1.5）通过系统出水回流泵（5.2）与所述同步反硝化反硫化池的进水管（1.1）连通，在出水池上部设有排水管（5.1）。

2. 一种利用权利要求1所述的装置进行制药废水同步生物反硝化反硫化及自养生物脱氮的方法，其特征包括以下步骤：

1) 将从城市污水处理厂污泥消化池取得的厌氧消化污泥投加到同步反硝化反硫化池，投加后的污泥浓度MLSS为10000mg/L，将从制药废水处理厂UASB反应器中取得的厌氧颗粒污泥投加到厌氧产甲烷池中，投加后的污泥浓度MLSS为15000mg/L；将活性良好的城市污水处理厂消化污泥投加到部分亚硝化池与自养生物脱氮池中，投加后的污泥浓度MLSS为6000mg/L；同时将高传质生物填料装填到自养生物脱氮池中，装填高度为2500mm；

2) 制药废水与系统出水混合并进入同步反硝化反硫化池，同步反硝化反硫化池运行温度为35℃，运行pH值为6.0-8.0，水力停留时间HRT为24-48小时，HRT随着制药废水硫酸根SO₄²⁻与回流中硝态氨NO₃⁻浓度的增加而延长，当SO₄²⁻<1000mg/L，NO₃⁻-N
< 300mg/L 时，HRT 为 24 小时 < HRT < 36 小时，当 1000mg/L < SO\(_4^{2-}\) < 2000mg/L，300mg/L < NO\(_3^-\)N < 600mg/L 时，HRT 为 6 小时 < HRT < 48 小时；

3）同步反硝化反硫化池出水进入到厌氧产甲烷池，厌氧产甲烷池运行温度为 35℃，运行 pH 值为 6.5~8.3，水力停留时间 HRT 为 36~72 小时，HRT 随着同步反硝化反硫化池出水 COD 浓度的增加而延长，当 COD ＜ 6000mg/L 时，HRT 为 36 小时 < HRT < 48 小时，当 6000mg/L < COD < 12000mg/L 时，HRT 为 48 小时 < HRT < 72 小时；

4) 厌氧产甲烷池出水进入到部分亚硝化池，部分亚硝化池的脱氮搅拌区与好氧区的水力停留时间 HRT 分别为 12 小时与 24~36 小时，运行温度为 25~30℃，通过调整曝气量，好氧区的溶解氧 DO 浓度控制在 1~3mg/L，部分亚硝化池的氨氮 NH\(_4^+\)N 负荷 ALR 为 0.7kg/m\(^3\)•d 左右，通过调整溶解氧 DO 维持部分亚硝化池出水 NH\(_4^+\)N：NO\(_2^-\)N = 2：1~1：1，随着 DO 增加，NH\(_4^+\)N：NO\(_2^-\)N 比值减小，中间沉淀池的污泥回流比为 100%~150%；

5) 部分亚硝化池出水通过中间沉淀池进入到自养生物脱氮池，自养生物脱氮池的水力停留时间 HRT 为 24 小时，运行温度为 25~30℃，运行 pH 值为 7.0~8.5，溶解氧 DO 通过调整曝气量维持在 0.2~0.7mg/L，污泥回流比维持在 25%~75%；

6) 自养生物脱氮池中的混合液通过终沉池泥水分离后流入出水池，系统出水回流比为 100%~300%，随着自养生物脱氮池脱氮效率的提高，系统出水回流比逐渐由 300%左右降低为 100%左右，系统最终处理后的达标再生水通过出水管排出；

7) 重复第 2)~6) 步骤。
同步生物反硝化反硫化及自养生物脱氮处理制药废水的装置和方法

技术领域
[0001] 本发明涉及一种制药废水的生化处理技术，具体是通过同步生物反硝化反硫化、厌氧产甲烷及自养生物脱氮工艺的协同作用实现制药废水的深度处理，适用于制药废水达标处理及再生回用。

背景技术
[0002] 制药废水具有有机污染物种类多、浓度高、成分复杂、并含有大量硫酸盐、残留的制药及其降解物等特征，为公认的难处理有机废水。制药废水的水质因生产工艺的差异而变化，典型的制药废水的NH₃-N浓度为600～3000mg/L，COD浓度为4000～50000mg/L。
[0003] 国家环境保护部于2008年8月1日颁布了制药工业污水排放的新标准《发酵类制药工业水污染物排放标准》(GB21903-2008)，2010年7月正式实施新标准。新标准规定：NH₃-N ≤ 35mg/L，TN ≤ 70mg/L，COD ≤ 120mg/L。按照上述标准计算，制药废水中氮素和COD去除率需达到95%以上。而现有的制药废水处理技术，远不能经济有效的去除制药废水中的高浓度污染物质，研究开发先进制药废水的处理技术刻不容缓。
[0004] 目前现在制药废水实际工程上的氨氮去除主要采用以物化工艺如包括混凝絮凝、化学沉淀、氨吹脱、膜过滤及吸附等，由于投加化学试剂导致运行费用高、能耗高，而且将氨污染物转移到污泥和空气中实现暂时的出水达标排放，并没有实现完全从环境中去除，对处理过程中产生的污泥和浓缩液的处理难度大，带来了二次污染问题也十分严重。生物脱氮具有经济、高效、可持续的优势，可以省去氨吹脱等预处理工艺及高压反渗透等后续工艺，使制药废水治理的建设及运行费用均至少降低20%，而且没有浓缩液等二次污染物产生，真正实现可持续的制药废水化处理。
[0005] 生物脱氮是去除NH₃-N的有效途径，但当NH₃-N浓度较高时，对硝化菌的活性产生强烈的抑制作用，使硝化作用无法进行。对于制药废水内高浓度、成分复杂的有机物的去除，通常选择厌氧生物法作为预处理工艺，但厌氧过程中产生的挥发性脂肪酸VFA对NH₃-N的硝化会产生抑制。
[0006] 可见，由于对制药废水水质及变化规律了解不足或没有给予足够的重视，盲目的将城市污水的处理工艺和设计参数照搬到制药废水处理工艺上，不仅处理费用昂贵，而且出水根本无法达标。现有的制药废水处理技术没有很好的将有机物去除和氮素的去除协调统一，通常是先去除有机物，而后去除氮素，结果导致生物反硝化的有机碳源不足，出水TN远不能达到新的控制标准。开发适合制药废水水质特点的高效协同深度去除有机物和氮素的生化技术，是制药废水达标排放和再生回用的关键。

发明内容
[0007] 本发明的目的是为了解决上述技术问题，提出一种同步生物反硝化反硫化及自养生物脱氮处理制药废水的装置和方法。该装置和方法通过同步生物反硝化反硫化、厌氧产
甲烷及自养生物脱氮工艺的协同作用，实现制药废水的深度处理，装置结构和工艺过程完善，成本和能耗低，对制药废水的处理效果好，效率高。

【0009】所述同步反硝化反硫化池外形为一圆柱形的生化反应器，底部设有旋流布水器，原水进水管和旋流布水器连通，上部设有污泥脱气整流器，上部设有液固三相分离器，气液固三相分离器的集气室与排气管连接，气液固三相分离器上部设有出水槽，该出水槽设置的带循环泵的循环管与系统出水回流管连接，并与旋流布水器连通，出水槽还设有出水管；同步反硝化反硫化池内壁设置环形阻流板，下部设置人口，池体不同高度设置取样阀；

【0010】厌氧产甲烷池外形为一圆柱形生化反应器，厌氧产甲烷池的上部设有气液固三相分离器、集气室、沼气排放管，气液固三相分离器上部设有出水槽，该出水槽设置的带循环泵的出水循环管与所述同步反硝化反硫化池的出水管和厌氧产甲烷池的进水管连通，该进水池与厌氧产甲烷池的旋流布水器连通，出水槽还设有出水管；气液固三相分离器下部设置两层污泥脱气整流器，厌氧产甲烷池内壁设置环形阻流板，下部设置人口，不同高度设置取样阀；

【0011】部分亚硝化池为一长方体的反应器，由下序排列的缺氧搅拌区、好氧区及中间沉淀池组成，所述厌氧产甲烷池的出水管与中间沉淀池底部带污泥回流泵的污泥回流管和缺氧搅拌区底部的进水管连通，所述缺氧搅拌区设置搅拌器，部分亚硝化反应器的好氧区底部设置曝气头，所述厌氧搅拌区的上部设有空洞与好氧区连通，好氧区的底部设有空洞与中间沉淀池连通，中间沉淀池内设置中心管，中间沉淀池上部设有溢流口与自养生物脱氮池连通；

【0012】自养生物脱氮池是一长方体的反应器，设有好氧反应区、终沉池，所述好氧反应区底部设置曝气头，并在反应区中装填高传质生物填料，所述终沉池中部设置斜板填料，底部设置带污泥回流泵的污泥回流管与所述好氧反应区前端连接，终沉池的上部设有上清液流入出水池的溢流口；

【0013】出水池底部设置系统出水回流泵通过系统出水回流泵与所述同步反硝化反硫化池的进水管连通；在出水池的上部设有排水管。

【0014】利用上述的装置进行同步生物反硝化反硫化及自养生物脱氮处理制药废水的方法，其特征包括以下步骤：

【0015】1）将从城市污水厂污泥消化池取得的厌氧消化污泥投加到同步反硝化反硫化池，投加后的污泥浓度 MLSS 为 10000mg/L 左右，将从制药废水处理厂 UASB 反应器中取得的厌氧颗粒污泥投加到厌氧产甲烷池中，投加后的污泥浓度 MLSS 为 15000mg/L 左右；将活性良好的城市污水厂硝化污泥投加到部分亚硝化池与自养生物脱氮池中，投加后的污泥浓度 MLSS 为 6000mg/L 左右；同时将高传质生物填料装填到自养生物脱氮池中，装填高度为 2500mm；

【0016】2）制药废水及系统出水混合并进入同步反硝化反硫化池，同步反硝化反硫化池运行温度为 35℃，运行 pH 值为 6.0~8.0，水力停留时间 HRT 为 24~48 小时，HRT 随着制药废
水硫酸根 SO_4^{2-} 与回流出水中硝态氮 $NO_3^-\cdot N$ 浓度的增加而延长，当 $SO_4^{2-} < 1000 \text{mg/L}$, $NO_3^-\cdot N < 300 \text{mg/L}$ 时，HRT 为 24 小时 < HRT < 36 小时；当 $1000 \text{mg/L} < SO_4^{2-} < 2000 \text{mg/L}, 300 \text{mg/L} < NO_3^-\cdot N < 600 \text{mg/L}$ 时，HRT 为 6 小时 < HRT < 48 小时；

[0017] 3) 同步反硝化反硝化池出水进入到厌氧产甲烷池，厌氧产甲烷池运行温度为 35℃，运行 pH 值为 6.5 8.3, 水力停留时间 HRT 为 36 72 小时，HRT 随着同步反硝化反硝化池出水 COD 浓度的增加而延长，当 COD < 6000 mg/L 时，HRT 为 36 小时 < HRT < 48 小时，

当 $6000 \text{mg/L} < COD < 12000 \text{mg/L}$ 时，HRT 为 48 小时 < HRT < 72 小时；

[0018] 4) 厌氧产甲烷池出水进入到部分亚硝化池，部分亚硝化池的缺氧搅拌区与好氧区的水力停留时间 HRT 分别为 12 小时与 24 36 小时，运行温度为 25 30℃，通过调整曝气量，好氧区的溶解氧 DO 浓度控制在 1 3 mg/L，部分亚硝化池的氨氮 $NH_4^+\cdot N$ 负荷 ALR 为 $0.7 \text{Kg/m}^3\cdot \text{d}$ 左右，通过调整溶解氧 DO 维持部分亚硝化池出水 $NH_4^+\cdot N : NO_2^-\cdot N = 2 : 1 ~ 1 : 1$，随着 DO 增加，$NH_4^+\cdot N : NO_2^-\cdot N$ 比值减小，中间沉淀池的污泥回流比为 $100\% - 150\%$；

[0019] 5) 部分亚硝化池出水通过中间沉淀池进入自养生物脱氨池，自养生物脱氨池的水力停留时间 HRT 为 24 小时，运行温度为 25 30℃，运行 pH 值为 7.0 8.5，溶解氧 DO 通过调整曝气量维持在 0.2 0.7 mg/L, 污泥回流比维持在 25% 75%；

[0020] 6) 自养生物脱氨池中的混合液通过终沉池泥水分离后流入出水池，系统出水回流比为 100% 300%，随着自养生物脱氨池脱氨效率的提高，系统出水回流比逐渐由 300% 左右降低为 100% 左右，系统最终处理后的达标再生水通过出水管排出；

[0021] 7) 重复第 2) 6) 步骤。

[0022] 技术原理：经过预处理的制药废水和回流的系统出水，同时进入到同步反硝化反硝化池中，池中的反硝化菌利用原水中的有机物完成回流出水中硝化态氮 (NO$_3^-\cdot N$ 或 NO$_2^-\cdot N$) 的反硝化，实现生物脱氮，回收氨。同时，硫酸盐还原菌利用原水有机物合成硫酸盐 SO_4^{2-} 的还原。制药废水完成同步反硝化反硝化后流入到厌氧产甲烷池，通过水解酸化菌和厌氧菌的协同作用去除制药废水中的大部分有机物。厌氧产甲烷池出水进入到部分亚硝化池的缺氧搅拌区，完成中间沉淀池回流污泥中硝化态氮 (NO$_3^-\cdot N$ 或 NO$_2^-\cdot N$) 的反硝化。进一步降解废水中的有机物，缺氧区混合液流入好氧区完成氨氮的亚硝化过程，完成深度脱氮。自养生物脱氨池中混合液进入终沉池泥水分离后，最终流入出水池溢流出水，完成制药废水中的有机物和氨的高效深度去除。

[0023] 在上述制药废水生物处理系统中，废水中的有机物主要在产甲烷、反硝化与反硝化、回收甲烷，减少 CO$_2$ 排放。在部分亚硝化池和后续的自养生物脱氨池，完成高浓度氨氮的硝化与自养生物脱氨，节省了 40% 以上的曝气量和 60% 的反硝化碳源，整个系统的剩余污泥产量减少 60% 以上。

[0024] 本发明的同步生物反硝化反硝化及自养生物脱氨处理制药废水的装置和方法与现有技术相比，具有下列优点：

[0025] 1) 通过厌氧反应器去除污水中的大部分有机物，回收甲烷能量，传统工艺通过曝气好氧降解有机物，“以能耗能”，同时产生大量难于处理的剩余生物污泥，排泄大量 CO$_2$。

[0026] 2) 利用原水中碳源完成同步反硝化反硝化，减少外碳源投加，回收氨量，防止厌氧产甲烷池过酸化，同时为高氨氮的硝化提供充足的碱度，阻止碳化物抑制产甲烷菌。
3) 通过半亚硝化和自养生物脱氮的结合，实现制药废水中氨氮的高效低耗去除，
与传统工艺比较，节省40%以上的曝气量和60%的反硝化碳源，整个系统的剩余污泥产生
量降低60%以上。
4) 该技术在实现制药废水达标排放和再生利用的同时，体现了最少COD氧化、最
少CO2排放、最少剩余污泥产生、最大限度回收能源的可持续的制药废水生物处理理念。

附图说明
1) 图1为本发明的装置的结构示意图。
2) 本发明的装置的外形并不受此图的限制，仅外形改变也属于本发明的保护范围。

具体实施方式
1) 下面结合附图和实施例对本发明作进一步的说明：实施例1：
2) 同步生物反硝化反硫化及自养生物脱氮处理制药废水的装置和方法：所述装置设
有同步反硝化反硫化池1，厌氧产甲烷池、部分亚硝化池3，自养生物脱氮池4，出水池5；
3) 同步反硝化反硫化池为一圆柱体生化反应器，底部设有旋流布水器1.6，原水进水
管1.1和旋流布水器1.6连通，中上部设有污泥脱气气整流器1.9，上部设有气液固三相分离
器1.10，气液固三相分离器的集气室1.11与排气管1.13连接，气液固三相分离器上部设有
出水槽1.12，该出水槽设置的带循环泵1.3的循环管1.4与系统出水回流管1.5连接，并与
旋流布水器1.6连通，出水槽1.12还设有出水管1.14，同步反硝化反硫化池内壁设置环形
阻流板1.7，下部设置人口1.15，不同高度设置取样阀1.8；
4) 厌氧产甲烷池为一圆柱体生化反应器，厌氧产甲烷池的上部设有气液固三相分离
器2.6，集气室2.7，沼气排放管2.9，气液固三相分离器上部设有出水槽2.8，该出水槽设置
的带循环泵2.2的出水循环管2.12与所述同步反硝化反硫化池的出水管1.14和厌氧产甲
烷池的进水管2.1连通，该进水管与厌氧产甲烷池的旋流布水器2.3连通，出水槽还设有出
水管2.10，气液固三相分离器下部设置两层污泥脱气气整流器2.4，厌氧产甲烷池内壁设置
环形阻流板2.13，下部设置人口2.5，不同高度设置取样阀2.11；
5) 部分亚硝化池为一长方体的反应器，由依序排列的缺氧搅拌区3.1，好氧区3.4及
中间沉淀池3.7组成，所述厌氧产甲烷池的出水管2.10与中间沉淀池底部带污泥回流泵
3.11的污泥回流泵3.9和缺氧搅拌区底部的进水管3.8连通，所述缺氧搅拌区设置搅拌器
3.2，所述亚硝化反应器的好氧区底部设置曝气头3.10，所述好氧搅拌区的上部设有空洞与
好氧区连通，好氧区的底部设有空洞与中间沉淀池连通，中间沉淀池内设置中心管3.12，中
间沉淀池上部设有溢流口与自养生物脱氮池连通；
6) 自养生物脱氮池是一长方体的反应器，设有好氧反应区4.2，终沉池4.4，所述好
氧反应区底部设置曝气头4.6，并在区中装填高传质生物填料4.3，所述终沉池中部设置斜
板填料4.5，底部设置带污泥回流泵4.9的污泥回流泵与所述好氧反应区前端连接，终沉池
的上部设有上清液流入出水池5的溢流口；
7) 出水池5底部设置系统出水回流泵1.5通过系统出水回流泵5.2与所述同步反硝
化反硫化池的进水管1.1连通；在出水池的上部设有排水管5.1；
8) 利用上述装置进行同步生物反硝化反硫化及自养生物脱氮处理制药废水方法，用
水取自某制药废水处理厂的初级沉淀池出水，为典型的高氨氮制药废水。水质如下：COD 12000 ～ 25000mg/L；NH₄⁻-N 500 ～ 900mg/L；SS 300 ～ 700mg/L；碱度 1500 ～ 2000mg/L；SO₄²⁻ 600mg/L；pH 值 5.5 ～ 7.6。试验系统如图 1 所示，由同步反硝化反硫化池、厌氧产甲烷池、部分亚硝化池、自养生物脱氮池、出水池组成。

具体的操作过程如下：

1) 将从城市污水处理厂污泥消化池取得的厌氧消化污泥投加到同步反硝化反硫化池，接种后的污泥浓度 MLSS 为 10000mg/L 左右，将从制药废水处理厂 UASB 反应器中取得的厌氧颗粒污泥投加到厌氧产甲烷池中，投加后的污泥浓度 MLSS 为 15000mg/L 左右；将活性良好的城市污水处理厂硝化污泥投加到部分亚硝化池与自养生物脱氮池，投加后的污泥浓度 MLSS 为 6000mg/L 左右；同时将高传质生物填料填充到部分亚硝化池中，装填高度为 2500mm；

2) 经过预处理的制药废水与系统出水混合后进入同步反硝化反硫化池，同步反硝化反硫化池运行温度为 35℃，运行 pH 值为 6.5 ～ 8.0，水力停留时间 HRT 为 36 小时，HRT 随着制药废水硫酸根 SO₄²⁻ 与回流水中硝态氮 NO₃⁻-N 浓度的增加而延长；

3) 同步反硝化反硫化池出水进入厌氧产甲烷池，厌氧产甲烷池运行温度为 35℃，运行 pH 值为 6.5 ～ 8.3，水力停留时间 HRT 为 60 小时，HRT 随着同步反硝化反硫化池出水 COD 浓度的增加而延长；

4) 厌氧产甲烷池出水进入到部分亚硝化池，部分亚硝化池的缺氧搅拌区与好氧区的水力停留时间 HRT 分别为 12 小时与 24 小时，运行温度为 25 ～ 30℃，通过调整曝气量，好氧区的溶解氧 DO 浓度控制在 1 ～ 3mg/L，部分亚硝化池的氨氮 NH₄⁻-N 负荷 ALR 为 0.6kg/m³·d 左右，通过调整溶解氧 DO 维持部分亚硝化池出水 NH₄⁻-N：NO₂⁻-N = 2：1 ～ 1：1，随着 DO 增加，NH₄⁻-N：NO₂⁻-N 比值减小，中间沉淀池的污泥回流比为 100% ～ 150%；

5) 部分亚硝化池出水通过中间沉淀池进入到自养生物脱氮池，自养生物脱氮池的水力停留时间 HRT 为 24 小时，运行温度为 25 ～ 30℃，运行 pH 值为 7.0 ～ 8.5，溶解氧 DO 通过调整曝气量维持在 0.2 ～ 0.6mg/L，污泥回流比维持在 50% ～ 75%；

6) 自养生物脱氮池中的混合液通过终沉池泥水分离后流入出水池，系统的最终处理水通过出水管流出，系统出水回流比为 100 ～ 300%，随着自养生物脱氮池脱氮效率的提高，系统出水回流比逐渐由 300% 左右降低为 100% 左右。

连续试验结果表明：出水 COD 浓度 < 300mg/L，COD 去除率高于 85%，出水 TN < 70mg/L，NH₄⁻-N < 35mg/L，部分亚硝化池出水 NH₄⁻-N：NO₂⁻-N 比值为 1.5：1.0，NO₂⁻-N 累积率 > 70%，自养生物脱氮池 TN 去除负荷为 0.25Kg/m³·d。在能耗降低、CO₂ 与剩余污泥减排的前提下，系统出水水质达到制药废水国家排放标准，该技术为可持续的污水处理技术。

应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明原理的前提下，还可以做出若干改变和改进，这些改变和改进也应视为本发明的保护范围。