» UK Patent Application

(19) GB (11) 2 450 574 (13) A

(43) Date of A Publication 31.12.2008
(21) Application No: 0804683.1 (51) INT CL:
HO4L 9/32 (2006.01) GO6F 21/24 (2006.01)
(22) Date of Filing: 13.03.2008
(56) Documents Cited:
(30) Priority Data: WO 2007/105749 A1 WO 2006/104362 A1
(31) 2007165892 (32) 25.06.2007 (33) JP Cheon & Lee, Use of Sparse and/or Complex
Exponents in Batch Verification of Exponentiations,
IEEE Transactions on Computers, Vol. 55, No. 12,
(71) Applicant(s): December 2006, downloaded 18th June 2008 from:
Hitachi Ltd http://ieeexplore.ieee.org/iel5/12/36126/01717386.pdf?t
(Incorporated in Japan) p=&is humber=&arnumber=1717386
6-6 Marunouchi 1-chome, Chiyoda-ku,
Tokyo, Japan (58) Field of Search:
INT CL GO6F, HO4L
(72) Inventor(s): Other: WPI, EPODOC, INSPEC and the Internet
Keisuke Hakuta
Hisayoshi Sato
(74) Agent and/or Address for Service:
Mewburn Ellis LLP
York House, 23 Kingsway, LONDON,
WC2B 6HP, United Kingdom
(54) Abstract Title: Batch verification of multiple signature data
(57) This invention is concerned with providing highly secure and FIG. 3
highly efficient batch verification of multiple signature data. A) 130
mathematical function computing part replaces an order of a /
multiple batch instances, specifies a number corresponding to
the replaced order, and carries out verification based on whether 12 VERIFICATION DEVICE a1
or not a value calculated by carrying out a modular 2 Ve
- o : : PROCESSING PART MEMORY PART
exponentiation of a generator of a finite cyclic group, with a 135 132
multiplied value, obtained by multiplying a first value of a batch SIGNATURE BATCH SIGNATURE
instance by a number corresponding to the order, as an e N ART TRy A EY
exponent, and a value calculated by carrying out a modular 136 133
exponentiation of a second value of the batch instance, with a MATHEMATICAL SIGNATURE DATA
- . FUNCTION MEMORY PART
number corresponding to the order as an exponent, are in COMPUTING PART
agreement. In an alternative embodiment, scalar multiplication is 137 138
used in place of modular exponentiation. INPUT PART | r OUTPUT PART |
139
COMMUNICATIONS
PART

V v/.505F ¢ 99O

Original Printed on Recycled Paper

1/13

FIG. 1

100
150
110 130
Z /
SIGNATURE VERIFICATION
DEVICE DEVICE
110
SIGNATURE DEVICE
114 111
e Z
PROCESSING PART MEMORY PART
115 112
Z Z
SIONATURE SIGNING KEY
OENERAII
PROCESSING PART MEMORY AREA
116 113
MATHEMATICAL DATA MEMORY
FUNCTION ALA
COMPUTING PART A
1/1 7 1/1 8
INPUT PART OUTPUT PART
119
COMMUNICATIONS
PART

2/13

130
VERIFICATION DEVICE
134 131
e ’
PROCESSING PART MEMORY PART
135 132
Z Z
SIGNATURE BATCH SIGNATURE
VERIFICATION VERIFICATION KEY
PROCESSING PART MEMORY AREA
136 133
Z Z
MATHEMATICAL SIGNATURE DATA
FUNCTION MEMORY PART
COMPUTING PART
137 138
Z Z
INPUT PART OUTPUT PART
139
Z
COMMUNICATIONS

PART

3/13

FIG. 4

136

136a
Z

MATHEMATICAL FUNCTION
COMPUTING PART

136b
~

1§§g

BATCH INSTANCE
GENERATING PART

PERMUTATION PART

136¢
P

- PSEUDO-RANDOM
NUMBER
GENERATING PART

136d
P

PART

INTERMEDIATE
STATE STORAGE

136e
p

REPLACING PART

136f
"

ITERATIVE
JUDGMENT PART

MODULAR

EXPONENTATION
COMPUTING PART

FIG. 5

160

1§1

162
~

1§3

CPU

MEMORY

EXTERNAL

MEMORY
DEVICE

165
Z

COMMUNICATIONS
DEVICE

OUTPUT
DEVICE

INPUT
DEVICE

DEVICE

READING

{
168

{
167

(
166

o

164

4/13

FIG. 6

115
/

116
~

111
~

SIGNATURE
GENERATION
PROCESSING PART

MATHEMATICAL
FUNCTION
COMPUTING PART

MEMORY PART

INPUT MESSAGE (M)

-

S11

/
S10

S13

MESSAGE (M),

j INPUT DATA (H)
GENERATION

<

S12

/ SIGNING KEY (sk)

2| SIGNING KEY (sk
AN

INPUT DATA (H),

S14

?1\5 SIGNATURE (S)

~ SIGNATURE (S)
~ 7
S16

FIG. 7

135
/

136
2

SIGNATURE (S)
CALCULATION

131
L

SIGNATURE BATCH
VERIFICATION
PROCESSING PART

MATHEMATICAL
FUNCTION
COMPUTING PART

MEMORY PART

MULTIPLE
MESSAGES (M) AND
SIGNATURE (S))

>

Pad
S20

VALID OR INVALID

<

SIGNATURE

VERIFICATION KEY (pk)

MULTIPLE MESSAGES
(M) AND SIGNATURES
(S). SIGNATURE
VERIFICATION KEY (pk)

{521

S23

32/2 j BATCH INSTANCE
GENERATION
VERIFICATION BATCH
RESULTS VERIFICATION
N 7 S24
S25

57

5/13

FIG. 8
(START)

\

INPUT OF MULTIPLE SIGNATURES S;(i=1,---,n) ~S30

Y

GENERATION OF BATCH INSTANCE (x, y) i= 1.+, n) ~S31

Y

PERMUTATION & RANDOMLY SELECTED FROM ~S32
PERMUTATION GROUP SIFTn, ORDER OF BATCH INSTANCE
(Xi, y,) (I =1, ',. n) REPLACED WITH (XE(i), Yi(i)) (| =1,--, n)
Y
GENERATION OF L_S33
a
z=g er(n) mod q--- (8) AND w= n yia' mod q-- (g)
Y
S35 vauD INVALD [~S36

6/13

FIG. 9
(START)

\d

T {(x, ¥i) - (Xn, Yn)}

~S40

Y

GENERATION OF RANDOM [~S41
NUMBER k

Y

RANDOM NUMBER k AND INITIAL VECTOR IV INPUT INTO [~S42

THE PSEUDO-RANDOM NUMBER GENERATING PART,
OUTPUT OF RANDOM NUMBER SERIES rg, ry- -+, ra-1

j—1 "\-'843

Y S44

i+1

~S46

S45
J

REPLACING (r; mod n) AND (ry.s mod n) OF T

END

77113

TEST NUMBER OF TIMES OF MODULAR
MULTIPLICATION
NORMAL VERIFICATION ExpCost x n

Random Subset

mm / 2+ExpCost x m

Small Exponents

m+nm / 2+ExpCost

Randam Shuffle 3n-1+ExpCost
m: SECURITY PARAMETER OF BATCH VERIFICATION
n: NUMBER OF SIGNATURES TO BE VERIFIED
ExpCost: ONE TIME MODULAR EXPONENTIATION
210
SIGNATURE DEVICE
214 211
e Z
PROCESSING PART MEMORY PART
215 212
Z 2
SIGNATURE SIGNING KEY
GENERATION MEMORY AREA
PROCESSING PART
216 213
Z Z
'}”GJS%%QT'CAL DATA MEMORY
COMPUTING PART AREA
1 /1 7 1/1 8
INPUT PART OUTPUT PART
1/1 9
COMMUNICATIONS
PART

8/13

230
VERIFICATION DEVICE
234 231
Z el
PROCESSING PART MEMORY PART
2/35 %32
SIGNATURE BATCH SIGNATURE
VERIFICATION VERIFICATION KEY
PROCESSING PART MEMORY AREA
236 233
Z Z
MATHEMATICAL SIGNATURE
FUNCTION DATA MEMORY
COMPUTING PART AREA
137 138
Z Z
INPUT PART OUTPUT PART
139
Z
COMMUNICATIONS
PART

9/13

FIG. 13
(START)

4

INPUT OF MULTIPLE SIGNATURES Si(i=1,"*-, n) ~S50

\

INPUT OF BATCH INSTANCE (A, a;, b)(i=1,2,3,---, n) ~S51

\
RANDOM SELECTION OF t FROM PERMUTATION GROUP ~—S52
SIFTn, REPLACE THE BATCH INSTANCE (A, a, b)(i=1, 2,
3,“‘, n) WITH ()\t(i); arq, bz(i))(i = 1, 2, 3,"', n)

Y S&83
, 20 20 E
< nAt(i)ZI modngzarh) yzbl’(l) mod g ? NO
YES 355
\
i
854\/" AL I, lNVALID
VALIUV

10/13

71 0
SIGNATURE DEVICE
314 ‘ 311
P e
PROCESSING PART MEMORY AREA
315 312
g, Z
SIGNATURE SIGNING KEY
GENERATION MEMORY AREA
PROCESSING PART
316 313
Py, Z
%&T(*:jﬁgﬁT'CAL DATA MEMORY
COMPUTING PART AREA
117 118
Y, Z.
INPUT PART OUTPUT PART
119
Z.
COMMUNICATIONS
rANi

11/13

FIG. 15

330
VERIFICATION DEVICE
334 331
Z Z
PROCESSING PART MEMORY PART
3/135 %32
SIGNATURE BATCH SIGNATURE
VERIFICATION VERIFICATION KEY
PROCESSING PART MEMORY AREA
3/36 %33
MATHEMATICAL SIGNATURE
FUNCTION DATA MEMORY
COMPUTING PART AREA
137 138
/ Z
INPUT PART OUTPUT PART
139
Z
COMMUNICATIONS

PART

12/13

FIG. 16
(START)

Y

INPUT OF MULTIPLE OF SIGNATURES S;(i=1,-*-, n)

~ S60

y

INPUT OF BATCH INSTANCE (R, @, b)(i=1,-,n)

~ S61

Y

RANDOMLY SELECTE PERMUTATION ¢ FROM
PERMUTATION GROUP SIFT;, REPLACE ORDER OF
BATCH INSTANCE

(Ri,a b)(i=1, -~ n) WITH Rz, arp beg)i=1, -+,)

~S62

\

< Y 2Ry =(Z ary® mod n) P+ (X b, %'mod n) Q7 >ﬂ0_

YES

\J

S64-1 vauD

S63

Y

S65
Yot

INVALID

A

END

13/13

170
150 MONITOR |~172
110,210,310
Z
SIGNATURE VERIFICATION | 130,230,330
DEVICE DEVICE

171

10

15

20

25

2450574

BATCH VERIFICATION DEVICE, PROGRAM AND BATCH VERIFICATION METHOD

This application claims priority based on the Japanese Patent
Application No. 2007-165892 filed on June 25, 2007, the entire

content of which is hereby incorporated by reference.

The present invention relates to technology for batching and
verifying of multiple digital signatures.

By having signers generate signature data for digital signatures
using a signature generation key in which the signers are kept secret
withrespecttotheelectronicdatatobesigned,andhavingsignature
verifiers decode the signature data using signature verification
keys that are open to the public and comparing with the electronic
data that is signed, it is possible to detect the presence or absence
of any alterations with respect to the authenticity of the signers
or the electronic data.

For this type of signature, it is necessary to carry out
repetitive and complicated processing when verifying, but in
technology described in, for example, M. Bellare, J. Garay and T.
Rabin, "“Fast Batch Verification for Modular Exponentiation and
Digital Signatures”, Advances in Cryptology - EUORCRYPT 1998, LNCS
1403, pp. 236-250, 1998, (referred to as Reference 1), batch
verifying of multiple digital signatures enables improvement in the
efficiency of verification processing of the digital signatures.

The batch verification method described in Reference 1 is
explained below.

Furthermore, below, G is a finite cyclic group of order q (g

1

10

15

20

25

is a large prime number)and g is a generator of the group G. Also,
(xi, Yi) (i is an index indicating order and is a natural number
satisfying 1 £ i £ n) is a set (batch instance) to verify whether

or not Equation (1) below is satisfied.

g = ¥y (1)

Here, for each i (i =1, -+, n) x;, y; satisfy Equations (2)

and {(3) below.

y, € G- (3)

A batch instance (x;, yi), (i =1, *-- , n), is “valid” when it
satisfies Equation (1) with respect to each i (i = 1, **+ , n),
and “invalid” when it does not. Furthermore, when the batch instance
is valid, the signature data is also deemed to be “valid” and when
the batch instance is invalid, the signature data is also deemed
to be “invalid”.

Additionally in batch verification, valid batch instances are
always accepted as “valid” but there are instances when an invalid
batch instance with an extremely small probability is also accepted
as “valid”. When the upper limit of the probability that an invalid
batch instance will be accepted as “valid” is a maximum of 1/2™ (m
is a positive integer), m is called the security level of batch
verification. It is well known that with the capability of recent
computers it is preferable to have m set to approximately 80.
Furthermore, it is well known that the larger the security level
m, the higher the security of the digital signatures.

Here, whether or not Equations (4) and (5) below are satisfied

is verified with the Random Subset Test described in Reference 1
while in normal signature verification, whether or not Equation (1)
is satisfied with respect to the digital signature corresponding

toeach i (i =1, *+, n) is verified for each separate instance.
Tsx;. _ II S; 4
g =il y; " (4)

5; =0FIX Ki=1,---,n)---(5)

Here, as shown in Equation (5), 0 or 1 are randomly selected

for s; with respect to each i (i = 1, ---, n).
Furthermore, the Small Exponents Test described in Reference

10 1 verifies whether Equations (6) and (7) below are satisfied.

g>' =11 py,% - (6)

0

IA

s, =27 —1(i = L,---,n)-- (7)
Here, S; (i =1, -+, n) is a randomly selected integer from
[0,+++, 2™-1]. Here, m is an arbitrary positive integer and the

15 security level is determined ffom this m.
Additionally, as shown in Equation (5), “Random” in the Random
Subset Test stems from randomly selecting s; for each i (I =1, 2,
3, **+ , n). The Random Subset Test accepts an “invalid” batch
instance as “valid” with a probability of 3 at most. Consequently,
20 in order to actually set the security level at m, the Atomic Random
Subset Test is used to perform the Random Subset Test m times
independently. By doing this, the probability that the Atomic
Random Subset Test, which carries out the Random Subset Text m times

independently, will accept an “invalid” batch instance as “valid”

10

15

20

25

is 1/2"™ at most. Furthermore, even in the Small Exponents Test
mentioned above, the probability of an “invalid” batch instance
being accepted as “valid” is a 1/2™ at most.

On this point, the efficiency of the batch verification
described in Reference 1 depends on the number n of batch instances

and the security level m.

The efficiency of the batch verification described in Reference
1 depends on the number n of batch instances and the security level
m but there is a trade-off relationship between efficiency and
security (security level m) in that if high security is desired,
high efficiency cannot be expected.

This invention achieves batch verification combining both high
security and high efficiency.

In order to resolve the above problem, this invention specifies
an order in multiple signature data and produces a number in
accordance with the specified order.

For instance, this invention is a batch verification device that
collectively verifies batch instances of multiple signature data;
wherein the order in the multiple signature data is specified; the
batch instances comprise a first value and a second value; and the
batchverificationpartcomprisesa;uocessingpartforverification
based on whether or not a value calculated by carrying out an
exponentiation of a generator of a finite multiplicative cyclic
group, with a multiplied value obtained by multiplying the first
value by a number which differs depending on the order, as an
exponent; and a value calculated by carrying out an exponentiation

of the second value, with a number which differs depending on the

4

10

15

20

25

order as an exponent, are in agreement.

As shown above, according to this invention, it is possible to
achieve batch verification combining high security and high
efficiency.

These and other benefits are described throughout the present
specification. Afurtherunderstandingcﬂfthenatureandadvantages
of the invention may be realized by reference to the remaining

portions of the specification and the attached drawings.

In the drawings:

Fig. 1 is a diagram exemplifying an outline of a signature batch
verification system for a first embodiment;

Fig. 2 is a diagram exemplifying an outline of a signature
device;

Fig. 3 is a diagram exemplifying an outline of a verification
device;

Fig. 4 is a diagram exemplifying an outline of a mathematical
function computing part;

Fig. 5 is a diagram exemplifying an outline of a hardware
structure of a computer;

Fig. 6 is a sequence diagram exemplifying signature generation
processing in the signature device:;

Fig. 7 is a sequence diagram exemplifying signature batch
verification processing in the verification device;

Fig. 8 is a flow chart exemplifying the batch verification
processing in the mathematical function computing part;

Fig. 9 is a flow chart exemplifying replacement processing in
a permutation part;

Fig. 10 is a diagram comparing computing costs (processing

5

10

15

20

25

time);

Fig. 11 is a diagram exemplifying an outline of the signature
device;

Fig. 12 is a diagram exemplifying an outline of the verification
device;

Fig. 13 is a flow chart exemplifying the batch verification
processing in the mathematical function computing part;

Fig. 14 is a diagram exemplifying an outline of the signature
device; |

Fig. 15 is a diagram exemplifying an outline of the verification
device;

Fig. 16 is a flow chart exemplifying the batch verification
processing in the mathematical function computing part; and

Fig. 17 is a diagram exemplifying an outline of network

surveillance camera system.

Fig. 1 is an outline of a signature batch verification system
100 which is a first embodiment of this invention.

Asshownjjxthediagram,thesignaturebatchverificationsystem
100 includes a signature device 110 and a verification device 130
and it is possible with this signature device 110 and verification
device130tonmtuallysendandreceiveinformationthrougharmtwork
150. In this embodiment of the signature batch verification system
100, signatures are generated with respect to messages M in the
signature device 110 and batch verification of the signatures is
carried out in the verification device 130.

Fig. 2 is an outline of the signature device 110.

As shown in the diagram, the signature device 110 is composed

6

10

15

20

25

of a memory part 111, a processing part 114, an input part 117, an
output part 118 and a communications part 119.

A signing key memory area 112 and a data memory area 113 are
set up in the memory part 111.

A signing key, which is the key information when executing the
signature, is stored in the signing key memory area 112.

A message which is data to be electronically signed is stored
in a data storage area 113.

The processing part 114 is composed of a signature generation
processing part 115 and a mathematical function computing part 116.

The signature generation processing part 115 controls
processing in which the signature data is generated with respect
to the message to be electronically signed.

For instance, in this embodiment, the signature generation
processing par 115 generates the input data by inputting the message
to be electronically signed into a predetermined hash function.

The signature generation processing par 115 obtains the signing
key stored in the signing key memory area 112 and inputs it into
the mathematical function computing part 116 along with the input
data.

The signature generation processing par 115 obtains the
signature generated from the mathematical function computing part
116 and transmits it with the signature and the message as the
signature data to the verification device 130 through the
communications part 139.

The mathematical function computing part 116 with respect to
the input data input from the signature generation processing par
115 generates a signature using the signing key input from the

signature generation processing par 115 and encodes it by means of

10

15

20

25

a predetermined algorithm.

The mathematical function computing part 116 outputs the
signature generated in this manner to the signature generation
processing par 115.

The input part 117 receives the input information.

The output part 118 outputs the information.

The communications part 119 carries out the transmitting and
receiving of the information through the network 150.

The signature device 110 described above can be achieved with,
as shown in Fig. 5 (outline of computer 160), a general computer
160 comprising a CPU 161, memory 162, an external memory device 163
such as an HDD, a reading device 165 which reads the information
from a storage medium 164 which is portable, such as a CD-ROM or
a DVD-ROM, an input device 166 such as a keyboard or mouse, an output
device 167 such as a display, and a communications device 168 such
as an NIC (Network Interface Card) for connecting to a communications
network.

For example, the memory part 111 is realizable by having the
CPU 161 use the memory 162 or external storage device 163; the
processing part 114 is realizable by having a predetermined program
stored in the external memory device 163 loaded in the memory 162
and executed by the CPU 161; the input part 117 is realizable by
having the CPU 161 use the input device 166, the output part 118
is realizable by having the CPU 161 use the output device 167, and
the communications part 119 is realizable by having the CPU 161 use
the communications device 168.

This predetermined program may be downloaded to the external
storage device 163 from the storage medium 164 through the reading

device 165 or from the network through the communications device

10

15

20

25

168 and then loaded in the memory 162 and executed by the CPU 161.
Additionally, it may be directly loaded to the memory 162 from the
storage medium 164 through the reading device 165 or from the network
through the communications device 168 and executed by the CPU 161l.

Fig. 3 is an outline of the verification device 130.

The verification device 130 is composed of the memory part 131,
the processing part 134, the input part 137, the output part 138,
and the communications part 139.

The signature verification key memory area 132 and the signature
data memory area 133 are set up in the memory part 131.

The signature verification key, which is the key information
for encoding and verifying the signature contained in the signature
data transmitted from the signature device 110, is stored in the
signature verification key memory area 132.

The signature data transmitted from the signature device 110
is stored in the signature data storage area 133.

The processing part 134 is composed of the signature batch
verification processing part 135 and the mathematical function
computing part 136.

The signature batch verification processing part 135 controls
the processing that batches and verifies the signature data
transmitted from the signature device 110.

For example, in this embodiment, the signature batch
verification processing part 135 receives the signature
verification key pk stored in the signature verification key memory
area 132 and the signature data stored in the signature data storage
area 133 from the storage part 131 and inputs them into the
mathematical function computing part 136.

The signature batch verification processing part 135 receives

9

[¥4]

10

15

20

25

the fesults of the batch verification from the mathematical function
computing part 136 and either stores it to the storage area 131 or
outputs the verification results through the output part 138 or the
communications part 139.

The mathematical function computing part 136, with respect to
the signatures contained in the signature data input from the
signature batch verification part 136, uses the signature
verification key input from the signature batch verification part
135, carries out batch processing of the signatures by means of a
predetermined algorithm, and confirms the wvalidity of the
signatures.

For example, in this embodiment, the mathematical function
computing part 136 as shown in Fig. 4 (outline of the mathematical
function computing part 136) is composed of a batch instance
generating part 136a, a substitute part 136b and a modular
exponentiation computing part 136f.

The batch instance generating part 136a generates a batch
instance from the signature contained in the signature data input

from the signature batch verification part 135, Here, the batch

- N R - AT e

"

instance generating method depends on the form of the signature used
in the signature device 110 and the verification device 130.
Furthermore, when the signature generated by the form of the
signature used in the signature device 110 and the verification
device 130 becomes the batch instance, it is not necessary to set
up the batch instance generating part 136a in tﬁe mathematical
function computing part 136. Additionally, an explanation will be
given in Embodiments 2 and 3 described later regarding the specific
generating method of the batch instances.

The permutation part 136b carries out processing to change the

10

10

15

20

25

order of the batch instances.

An arbitrary change method may be used for changing the order

-~ of the batch instances, but in this embodiment the change is effected

using a pseudo-random number generating part 136c, an intermediate
state storage part 136d, a replacing part 136e, and an iterative
judgment part 136f. Furthermore, a detailed explanation regarding
the specific change method will be given using Fig. 9.

The modular exponentiation computing part 136f carries out
verification by performing modular exponentiation on the batch
instances which have been replaced by the permutation part 136b.
Additionally, a detailed explanation will be given using Fig. 8
regardingprocessingwiththenmdularexpoﬁentiationcomputingpart
136¢.

The input part 137 receives the input of the information.

The output part 138 outputs the information.

The communications part 139 transmits and receives the
information through the network 150.

The above described verification device 130 may also be used

w1t +h A AANnATall
with 2 general computer 160 as

for example, shown in Fig. 5 (outline

] aalRait

U

of the computer 160).

For example, the memory part 131 is realizable by having the
CPU 161 use the memory 162 or external storage device 163; the
processing part 134 is realizable by having a predetermined program
stored in the external memory device 163 loaded in the memory 162
and executed by the CPU 161; the input part 137 is realizable by
having the CPU 161 use the input device 166; the output part 138
is realizable by having the CPU 161 use the output device 167, and
the communications part 139 is realizable by having the CPU 161 use

the communications device 168.

11

10

15

20

25

This predetermined program may be downloaded to the external
storage device 163 from the storage medium 164 through the reading
device 165 or from the network through the communications device
168, and then loaded in the memory 162 and executed by the CPU 161.
Additionally, it may be directly loaded to the memory 162 from the
storage medium 164 through the reading device 165 or from the network
through the communications device 168 and executed by the CPU 161.

Fig. 6 is a sequence diagram for exemplifying the signature
generating processing in the signature device 110.

First, the signature generation processing par 115 in the
signature device 110 obtains the message M input through the input
part 117 or stored in the data memory area 113 (S10). Here, the
message M may be digitalized data and it does not matter what type
the text, graphics or images or sound 1is.

Next, the signature generation processing par 115 generates the
input daﬁa H from the received message M (S11). The input data H,
for example, in the hash value of the message M, depends on the message

M or the type of signature used.

T

h

D

Next. the signature generation processing par 115 reads
signing key sk that is stored in the signing key memory area 112
in the memory area 111 (S12).

The signature generation processing par 115 inputs the read
signing key sk and the input data H generated in Sl1 into the
mathematical function computing part 116 (S13).

The mathematical function computing part 116 computes the
signature S from the input signing key sk and the input data H (S14).
Here, the signature S is a computed value that depends on the
signature method adopted.

The mathematical function computing part 116 outputs the

12

10

15

20

25

computed signature S to the signature generation processing par 115
(S15).

The signature generation processing par 115 transmits as the
signature data the received signature S and the message M to the
verification device 130 through the communications part 119 (S16).

Furthermore, the reception timing of the signing key sk from
the memory part 111 in step S12 may be before the signing key sk
is output to the mathematical function computing part 116 and may,
for example, be before the message M is received (S10).

Fig. 7 is a sequence diagram exemplifying the batch verification
processing of signatures in the verification device 130.

First, the signature batch verification processing part 135 in
the verification device 130 receives an arbitrary amount of
signature data input through the input part 137 or the communications
part 139 or stored in the signature data memory area 133 in the memory
part 131 (S20).

Also, the signature batch verification processing part 135 reads
the signature verification key pk stored in the signature
verification key memoryv area 132 in the memory part 131 (S21).

The signature batch verification processing part 135 inputs the
receivedmultiple signature data and the read signature verification
key pk into the mathematical function computing part 136 (S22).

The batch instance is generated by the mathematical function
computing part 136 from the signature S contained in the input
multiple signature data (S23). Additionally, when the signature S
is already a batch instance, it is not necessary to generate a batch
instance.

The mathematical function computing part 136 carries out

predetermined batch verification from the input signature

13

10

15

20

25

verification key pk and the batch instances (S24), and outputs the
results as verification results to the signature batch verification
processing part 135 (S25). Furthermore, a detailed description
using Fig. 8 to be described later will be given regarding batch
verification processing of the signatures with the mathematical
function computing part 136.

The signature batch verification processing part 135 which has
received these verification results either stores them in the
storage part 131 or outputs the verification results (whether the
signature data is valid or invalid) through the output part 138 or
the communications part 139 (S26).

Furthermore, reading the signature verification key pk from the
memory part 131 may be done before carrying out the batch verification
in the mathematical function computing part 136 and, for example,
may be before the signature data is received in step S20.

Fig. 8 is a flow chart exemplifying the batch verification
processing in the mathematical function computing part 136.

Here, in this embodiment, regarding the batch verification of
roup of order q (g is a large
prime number), g is a generator of the group G, and the signature
verification key pk is (G, g, q). A specific explanation is given
below about the batch verification method for multiple signatures
Si (i =1, **+, n) (n is an arbitrary positive integer).

Batch verification processing in the mathematical function
computing part 136 is begun by receiving the input of a random
quantity of signature data from the signature batch verification
processing part 135 (S30).

When the input of an arbitrary amount of signature data is

received from the signature batch verification processing part 135,

14

10

15

20

25

the batch instance generating part 136a of the mathematical function
computing part 136 generates a batch instance (x;, y;) (i =1, -+ ,n)
from themultiple signatures S; (i=1, --- ,n)containedjmltheinpﬁt
signature data (S31). Here, the batch instance permutation method
depends on the type of signature used. Furthermore, the specific
batch instance permutation method will be explained in the second
and third embodiments to be described later. Additionally, as
explained in Embodiments 2 and 3, signature types 'in which
substitution into the batch instance is unnecessary include, for
example, RSA-FDH signature, DSA* signature and ECDSA* signature in
Reference 1 and signature types requiring substitution into the
batch instance include, for example, DSA* signature and ECDSA*
signature in Reference 1.

Additionally, the ECDSA* signature and the ECDSA signature
scheme are described in A. Antipa, D. Brown, R. Gallant, R. Lambert,
R. Struik, and S. Vanstone, "Accelerated Verification of ECDSA
Signatures", Selected Areas in Cryptography - SAC 2005, LNCS 3897,
pp.307-318, 2006 (referred to below as Reference 2).

ntheamathamatical fuan
n themnatcthematical Tun

"l""l-\n ~ vy

The porm ction computing

part 136 randomly selects a permutation ¢ from a permutation group
SIFT,, that is, by an arbitrary permutation method the order of the
batch instance (X;, Y;) (i =1, *-+ ,n) is replaced with (X¢(), Ye(iy)
{i=1, - ,n)(S32). Here, the permutation group SIFT, is the total
permutation set from the set {1, 2, °--,n} to the set {1, 2, *+* ,n}
and it 1is preferable for the permutation to be bijective.
Additionally, a specific example of permutation will be explained
in detail using Fig. 9 to be described later.

Next, the modular exponentiation computing part 136f in the

mathematical function computing part 136 computes Equations (8) and

15

10

[
[P,

20

(9) below, using the substituted (Xe(i), Yeriy) (i =1, == ,n) (S33).

z=gZ""" mod g (8)

)

w=1Tly" mod g (9)

Here, a in Equations (8) and (9) is an arbitrary natural number

and for at least one verification is determined beforehand so as

. to be the same number in Equations (8) and (9). Furthermore,

regarding o in Equations (8) and (9), there is no limitation to this
type of state and a number that differs according to the order i
is possible: for example, an arbitrary function £ (i) with i as the
variable.

The modular exponentiation computing part 136f determines
whether or not z computed in Equation (8) and w computed in Equation
(9) satisfy Equation (10) below and if they do (Yes in step S34),
the signature is deemed to be valid (S35), and if not (No in step
s considered to be invalid (S36).

iMnatnrs 3
ignature 2

§34), the s

z=w--(10)

Furthermore, in this embodiment, verification processing is
carried out with z =w, but if verification processing can be carried
out, any verification formula may be used and it does not matter
what the type of verification formula is.

Fig. 9 is a flow chart exemplifying the permutation processing
in the permutation part 136b.

First, the intermediate state storage part 136d in the

permutation part 136b stores the batch instance (x;, yi) (i =1, *-- ,

16

10

15

20

25

n) in the area T (S40).

Next, the pseudo-random number generating part 136c in the
permutation part 136b generates a random number k. Here, the
pseudo-random number generating part 136c inputs the random number
k and a predetermined initial vector IV into the pseudo-random number
generator and outputs the random number series rg, ry,--", Izc-1 With
respect to a predetermined integer t (S42). Here, the integer t
expresses the number of times the batch instance is replaced and
is determined beforehand.

The iterative judgment part 136f initializes i (stores 1 in 1)
(S43) .

Next, the iterative judgmeﬁt part 136f determines whether or
not i £t (S44). When i £t (Yes in step $44), the process proceeds
to step S45 and when not i £ t (No in step S44), the processing is
completed.

In step S45, the replacing part 136e replaces the (rz; mod n)
of the batch instance stored in the area T with (r;i+s; mod n) (S45).

Additionally, a detailed description of the pseudo-random

D. Watanabe, S. Furuva,

numher generator is given in, for example
H. Yoshida, K. Takaragi, and B. Preneel, "A New Keystream Generator
MUGI", 1IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E87-A, No.l, 2004.

Processing is repeated in which i is incremented (i « i + 1)
(S46) and a return is made to step (S44).

Furthermore, the value of the integer t may be a predetermined
fixed value or may change for each batch verification.

Additionally, the substitution preparation method 1is not
limited to this mode, and, for example, once a table (a table

corresponding to the order prior to the permutation and the order

17

10

15

20

25

after the permutation) is prepared and stored beforehand indicating
the permutations, and the permutations are carried out based on this
table, the method is not limited. .

Additionally, the permutation method may be changed each time
for the batch verification and may be changed after being used a
multiple times. However, when a specific permutationmethod is used
a multiple times, from the standpoint of security it is necessary
that the permutation method not be known to the signature verifiers.

Furthermore, in the batch instance (x;, y;) (i =1,-*-, n), if

Equation (1) above is satisfied with respect to each i (i =1,""",
n), Equation (10) above is satisfied. That is, the signature batch
verification method always receives a valid batch instance as
“valid”. The reason is given below.

If Equation (1) is satisfied with respect to each i (i =1, ",

n), Equation (11) below will hold.
g*" modgq =y, modg---(11)
Equation (12) below is formed from Equation (11).
g™ modg = y,,* modg--(12)

The upper limit of the probability that the above described
signature batch verification method will receive an invalid batch
instance as “valid” is a maximum 1/q. The reason for this is given
below.

When the integer j(i) (1 £ j S n)corresponding to i (i =1,"-"-°,
n) outside of ig(l £ ig € n) is determined, the probability that j (i)
which satisfies Equations (13) and (14) below is present is a maximum

1/q. Here, 1 £ j(io) £ n.

18

10

15

20

25

i
Lx@

g modqg =[] y,,, modg---(13)

j(’o) ¢J(Z) (1= 1>'“,i0 .—l’iO’iO +1’“.’n)”'(14)

Fig. 10 is a comparative diagram exemplifying the computing cost
(computing time) in the batch verification in Reference 1 and the
batch verification (called the Random Shuffle Test in Fig. 10) in
this embodiment.

As described above, the computing cost of the batch verification
described in Reference 1 depends on both the number n of batch
instances tobeverified and a security parameter m, while in contrast
the computing cost of the Random Shuffle Test in this invention only
depends on the number n of batch instances to be verified.

Consequently, it can be seen that the batch verification
described in this embodiment is more efficient compared to the batch
verification in Reference 1.

The reason that the batch verification described in this

embodiment provides high security is given below.

As mentioned above, it is known from the capabilities of recent
computers that m should preferably be set at approximately 80. On
the other hand, from the capability of recent computers and from
attack methods with respect to mathematical functions as known up
to the present, it is necessary to use a prime number of approximately
160 bits or greater for q.

Here, in contrast to the security level in the batch verification
in Reference 1 being approximately 80, the security level in the
batch verification in this embodiment is approximately 160.

According to the above, it is well known that the higher the security

19

10

15

20

level, the greater the security. Consequently, it can be seen that
the batch verification of this embodiment also has high security.

As described above, according to the batch verification of this
embodiment, by carrying out permutation and using a type of
verification that can be computed efficiently, it is possible to
obtain signature batch verification having both high security and
high efficiency.

Furthermore, in the embodiment described above, instead of
verifying Equation (15) below, Equation (16) is verified but there

1s no limitation to this mode.

g =y, (15)

gx.a" — yi“' - (16)

For instance, instead of verifying Equation (17) below, Equation

(18) may be verified.

xX;8 = Y, (17)

a'x,g=a'y,--- (18)

However, the finite group G is an additive group.

Here, a in Equations (17) and (18) is an arbitrary natural number
as described above but it is not limited to this condition and may
be a number that is different due to the order i and may be, for
example, an arbitrary function f(i) with i as the variable.

Next, an explanation is given regarding the signature batch

verification system for the second embodiment. Embodiment 2 is an

20

10

15

20

25

example inwhich this invention is applied to a DSA signature. Here,
the dual signature batch system in this embodiment also has a
signature device 210 and a verificationdevice 230 in a manner similar
to the first embodiment.

Fig. 11 is an outline of the signature device 210 used in this
embodiment.

As shown in the diagram, the signature device 210 is composed
of a memory part 211, a processing part 214, an input part 117, an
output part 118 and a communications part 119, and because the input
part 117, output part 118 and the communication part 119 are the
same as those in the first embodiment, their explanation is omitted.

A signing key memory area 212 and a data memory area 213 are
set up in the memory part 211.

The signing key, which is the key information when executing
the signature, is stored in the signing key memory area 212. Here,
the signing key x in the DSA signature is an integer such that
X:1x€2zq..

The message, which is the data to be electronically signed, is
stored in the data memory area 213.

The processing part 214 is composed of the signature generation
processing par 215 and the mathematical function computing part 216.

The signature generation processing par 215 controls the
processing for generating the signature data with respect to the
message, which is the data to be electronically signed.

For example, in this embodiment the signature generation
processing par 215 generates the input data by inputting the message,
which is the data to be electronically signed, into a predetermined
hash function.

The signature generation processing par 215 receives the signing

21

10

15

20

key stored in the signing key memory area 212 and inputs it along
with the input data into the mathematical function computing part
216.

The signature generation processing par 215 receives the
signature generated from the mathematical function computing part
216 and transmits it with the signature and the message as signature
data to the verification device 230 through the communication part
139.

The mathematical function computing part 216 uses the signing
key input from the signature generation processing par 215 with
respect to the input data input from the signature generation
processing par 215, encodes it by means of a predetermined algorithm
and generates the signature.

In the DSA signature, the signature S; is computed by Equations

(19) and (20) below with respect to the message Mj (i = 1,---, n)

that uses the above described signing key x.

S;=(4,,0,) (19)

A, =g modgqg-- (20)

Here, K; is a random number generated when generating the

signature and satisfies Equation (21) below.

k,e Z. " (21)

Also, o; satisfies Equation (22) below.

22

10

15

20

25

o, ={HM,)+xA}k, " 'modgq--(22)

Here, H is a cryptographic hash function.

Furthermore, (p, q, g), which are system parameters in the DSA
signature, are as given below.

The prime number p:2*!'< p < 2% 512 < L < 1024, Lmod64 = 0.

The prime number q:q | (p-1), 2%° < q < 2,

g:g = h®9modp with respect to a certain h € z, .

These system parameters are publicly available on the network.

Here, Z; is the entire set of positive integers that is smaller
than g in which the greatest common denominator of x and q is 1.

The mathematical function computing part 216 in this manner
outputs the generated signature to the signature generation
processing par 215.

The above described signature device 210 can also be realized
with, for example, a general computer as shown in Fig. 5.

For example, the memory part 211 is realizable by having the
CP 161 use a memory 162 or an external memory device 163: the
processing part 214 is realizable by having a predetermined program
stored in the external memory device 163 loaded in the memory 162
and executed by the CPU 161; the input part 117 is realizable by
having the CPU 161 use an input device 166: the output part 118 is
realizable by having the CPU 161 use an output device 167; and the
communication part 119 is realizable by having the CPU 161 use a
communications device 168.

The predetermined program may be downloaded to the external

memory device 163 from the memory medium 164 through the reading

device 165 or from a network through the communications device 168

23

10

15

20

25

and then loaded into the memory 162 and executed by the CPU 161.
Furthermore, it may also be directly loaded into the memory 162 from
the memory medium 164 through the reading device 165 or from the
network through the communication device 168 and executed by the
CPU 161.

Fig. 12 is an outline of the verification device 230 used in
this embodiment.

The verification device 230 is composed of the memory part 231,
the processing part 234, the input part 137, the output part 138
and the communications part 139 and since the input part 137, the
output part 138 and the communications part 139 are the same as in
Embodiment 1, their explanation is omitted.

The signature verification key memory area 232 and the signature
data memory area 233 are set up in the memory part 231.

The signature verification key which decodes the signature
contained in the signature data transmitted from the signature
device 210 and is the key information for verification is stored

in the signature verification key memory area 232. Here, the

o= ey

signature verification key in the DSA signature is (v, g. pb. Q).
And y=g*.

The signature data transmitted from the signature device 210
is stored in the signature data memory area 233.

The processing part 234 is composed of the signature batch
verification processing part 235 and the mathematical function
computing part 236.

The signature batch verification processing part 235 controls
the processing in which the signature data transmitted from the
signature device 210 is batched and verified.

For example, in this embodiment, the signature batch

24

10

15

20

25

verification processing part 235 receives the signature
verification key stored in the signature verification key memory
area 232 and the signature data stored in the signature data memory
area 233 and inputs them into the mathematical function computing
part 236.

The signature batch verification processing part 235 receives
the results of batch verification from the mathematical function
computing part 236 and either stores them in the memory part 231
or outputs the verification results through the output part 138 or
the communications part 139.

The mathematical function computing part 236 carries out batch
verification of the signatures by means of a predetermined algorithm
using the signature verification key input from the signature batch
verification part 235 with respect to the signatures contained in
the signature data input from the signature batch verification part
235 and carries out batch processing of the signatures by means of
a predetermined algorithm, and confirms the wvalidity of the
signatures.

Here, the mathematical function computing part 236 is not shown
in the diagram but is composed of a batch instance generating part,
a permutation part and a modular exponentiation computing part in
a manner similar to the first embodiment.

With regard to the signatures generated by the DSA signature
method, because it is necessary to transform the batch verification
method so that it can be applied, the batch instance generating part
in the mathematical function computing part 236 transforms the
signatures received from the signature device 210 into a batch
instance.

Specifically, the batch instance generating part of the

25

10

15

20

mathematical function computing part 236 calculates the signature
S; computed in Equation (19) above using A;, ki, o; which satisfy
Equations (20}, (21) and (22) above and computes the batch instance
by means of Equations (23), (24) and (25) below.

S, = (4

1

» A s bi) - (23)

i

a, =0, 'H(M,)mod q-- (24)

]

b,=0c,'2,modg- (25)

i

The permutation part in the mathematical function computing part
236 carries out permutation of the batch instance converted by the
batch instance generating part by an arbitrary method. Here, the
permutation is carried out by a method similar to that in Embodiment
1.

For example, the order of the hatch instance (A;; a;; b;) i (i
=1,--, n) is changed to (A{(yraviy/bry) (L =1,-"*, n). Here, 1
is the symbol to identify the permutation method.

The modular exponentiation computing part in the mathematical
function computing part 236 carries out verification based on if

Equation (26) below is satisfied.

A, =g x y"* modgq-- (26)

That is, when Equation (26) is satisfied, the signature S; is

received as “valid” and when it is not, the signature S; is rejected

26

10

15

20

25

as “invalid”. Furthermore, o in Equation (26) is an arbitrary
natural number. Here, o in Equation (26) is not limited to this
condition and may be a number that is different than the order i
and may, for example, be an arbitrary function f (i) in which i is
the variable.

The above described verification device 230 may also be realized
by a general computer 160 as shown in Fig. 5.

For example, the memory part 231 is realizable by having the
CPU 161 use a memory 162 or an external memory device 163; the
processing part 234 is realizable by having a predetermined program
stored in the external memory device 163 loaded in the memory 162
and executed by the CPU 161; the input part 137 is realizable by
having the CPU 161 use an input device 166: the output part 138 is
realizable by having the CPU 161 use an output device 167; and the
communication part 139 is realizable by having the CPU 161 use a
communications device 168.

This predetermined program may be downloaded to the external

memory device 163 from the memory medium 164 through the reading

device 165 or from the network through the communications device
168, loaded into the memory 162 and executed by the CPU 161.
Additionally, it may also be directly downloaded to the memory 162
from the memory medium 164 through the reading device 165 or from
the network through the communications device 168 and executed by
the CPU 161.

Fig. 13 is a flow chart exemplifying the batch verification
processing in the mathematical function computing part 236 in this

embodiment.

Batch verification processing in the mathematical function

computing part 236 is started by the reception of the input of an

27

10

15

20

25

arbitrary amount of signature data from the signature batch
verification processing part 235 (S50).

When the input of the arbitrary amount of signature data is
received from the signature batch verification processing part 235,
the batch instance generating part in the mathematical function
computing part 236 generates the batch instance (A;, ai, bi) (1 =
1, **+ , n)from the multiple signatures Si (i =1, -+ , n) contained
in the input signature data (S51).

The permutation part in the mathematical function computing part
236 randomly selects the permutation 1 from the permutation group
SIFT,, that is, it replaces order of the batch inétance (Ai, ai, bi) ((1
=1, **+ , n) to (Aguiy, 2r(iys bry) (L =1, ===, n) (S52).

Next, the modular exponentiation computing part 1in the
mathematical function computing part 236 computes Equation (26)
above using the replaced (A,(i), a«(i)r bry) (S53).

The modular exponentiation computing part checks to see whether
Equation (26) is satisfied and when it is (Yes in step S53), the
signature is deemed to be valid (S54) and when it is not (No in step
S&82)

the signature is deemed to he invalid (S55).

Furthermore, in this embodiment, verification processing is
carried out with Equation (26) but if verification processing can
be carried out, any verification equation may be used and the type
of verification equation does not matter.

.For this embodiment, an explanation has been given when
batch-verifying multiple signatures (or batch instances) signed by
certain singers, but multiple signatures (or batch instances) signed
by multiple signers may also be batch-verified.

For example, the following methods are given for batch

verification with respect to batch instance (A%, a;™, by (1 <

28

10

15

20

25

j € n (i)} variously generated by at least one user A;(l1 £ i £ r)
having a combination of the signing key sk; and the signature
verification key pki {Sk; = xi, pki =(yi, g, p, 4)} (here, y; = g .

The first method replaces the batch instance for each user and
verifies whether or not the equation in which both sides of Equation
(23) above are variously multiplied for each user is satisfied.

The second method verifies whether or not Equation (26) is
satisfied after the batch instances for all users A;(1 £ i £ r) are
replaced. However, with this method, it is necessary to change y
on the right side of Equation (26) according to which user has
generated a batch instance b;.

The reason that the batch verification described in this
embodiment can be more efficient when compared to the batch
verification in Reference 1 is the same as for the first embodiment.

Additionally, the reason why the batch verification described
in this embodiment has high security is also the same as for the
first embodiment.

From the above, according to the batch verification of this
embodiment, DSA signature batch verification is possible having both
high security and high efficiency by using permutation and a
verification equation that can be computed efficiently.

Furthermore, in the above described batch verification methods,
a DSA signature method was used but it is also possible to use a
DSA* signature in place of the DSA signature.

For a DSA* signature, because the batch instance is a signature
computed using Equations (23), (24) and (25) above (because it is
computed in the signature device), it is not necessary to generate
a batch instance in the verification device 230.

Also, the DSA* signature is described in Reference 1 and its

29

10

15

20

25

security is the same value as with the DSA signature.

Next, an explanation is given regarding the signature batch
verification system in Embodiment 3. Embodiment 3 is an example in
which this invention is applied to the ECDSA signature scheme. Here,
the dual signature batch verification system in this embodiment is
also composed of a signature device 310 and a verification device
330 in a manner similar to-the first embodiment.

Fig. 14 is an outline of the signature device 310 used in this
embodiment.

As shown in the diagrém, the signature device 310 is composed
of a memory part 311, a processing part 314, an input part 117, an
output part 118 and a communications part 119 and because the input
part 117, the output part 118 and the communications part 119 are
the same as in Embodiment 1, their explanation is omitted.

The signing key memory area 312 and the data memory area 313
are set up in the memory part 311.

The signing key, which is the key information when executing
the signature, is stored in the signing key memory area 312. Here,
the signing keyd in the ECDSA signature scheme is an inteqgerd:d€E 2z, ;.

The message, which is the targeted data to be electronically
signed, is stored in the data memory area 313.

The processing part 314 is composed of the signature generation
processing par 315 and the mathematical function computing part 316.

The signature generation processing par 315 controls the
processing for generating the signature data with respect to the
message, which is the targeted data to be electronically signed.

For example, in this embodiment, the signature generation
processing par 315 generates the input data by inputting the message,

which is the targeted data for executing the signature, into a

30

(5,1

10

15

20

predetermined hash function.

The signature generation processing par 315 receives the signing
key stored in the signing key memory area 312 and inputs it along
with the input data into the mathematical function computing part
316.

The signature generation processing par 315 receives the
signature generated by the mathematical function computing part 316
and transmits it with the signature and the message as the signature
data to the verification device 330 through the communications part
139.

The mathematical function computing part 316 uses the signing
key input from the signature generation processing par 315 with
respect to the input data input from the signature generation
processing par 315, carries out encoding by a predetermined
algorithm and generates the signature.

In the ECDSA signature scheme, the signature S; is calculated
with Equations (27), (28) and (29) below with respect to the message

M; (1 =1,°-, n), which uses the above described signing key d.

S, =(r,0,) (27)

R, = k,P- (28)

]

r, = x(R,)modn--- (29)

L

o, = {H(Mi)+dx(R)}k,” modn---(30)
Here, H is a cryptographic hash function. Also, x(R;) is the

31

10

15

20

25

x coordinate of a point R; on an elliptic curve E(Fg).
Additionally, K; is a random number generated when generating

the signature, and satisfies Equation (31} below.

k, e Z,. .+ (31)

Furthermore, the system parameters in the ECDSA signature scheme
are given below. .

E/Fq: the elliptic curve defined over a finite field Fg.

g: a power of a prime number p in which the bit size is 160 or
greater.

#E (Fq) =n x h (here, h is a small integer, n is a large prime
number) .

P: a point on E (Fq) such that the order is n.

These system parameters are publicly available on the network.

The mathematical function computing part 316 outputs the
signature generated in this manner to the signature generation
processing par 315.

The signature device 310 described above can also be realized
with, for example, a general computer 160 as shown in Fig. 5.

For example, the memory part 311 is realizable by having the
CPU 161 use a memory 162 or an external memory device 163; the
processing part 314 is realizable by having a predetermined program
stored in the external memory device 163 loaded into the memory 162
and executed by the CPU 161; the input part 117 is realizable by
having the CPU 161 use the input device 166; the output part 118
is realizable by having the CPU 161 use the output device 167; and
the communications part 119 is realizable by having the CPU 161 use
the communications device 168.

This predetermined program may be downloaded to the external

32

10

15

20

25

memory device 163 from the memory medium 164 through the reading
device 165 or from the network through the communications device
168, loaded into the memory 162 and executed by the CPU 1l61.
Additionally, it may be directly loaded in the memory 162 from the
memory medium 164 through the reading device 165 or from the network
through the communications device 168 and executed by the CPU 161.

Fig. 15 is an outline of the verification device 330 used in
this embodiment.

The verification device 330 is composed of the memory part 331,
the processing part 334, the input part 137, the output part 138
and the communications part 139 and because the input part 137, the
output part 138 and the communications part 139 are the same as in
the first embodiment, their explanation is omitted.

The signature verification key memory area 332 and the signature
data memory area 333 are set up in the memory part 331.

The signature verification key, which is the key information
to decode and verify the signature contained in the signature data
transmitted from the signature device 310, is stored in the signature
verification key memory area 332. Here, in +the signature
verification key Q in the ECDSA signature scheme, Q= dP.

The signature data transmitted from the signature device 310
is stored in the signature data memory area 333.

The processing part 334 is composed of the signature batch
verification processing part 335 and the mathematical function
computing part 336.

The signature batch verification processing part 335 controls
the processing for batch verification of the signature data
transmitted from the signature device 310.

For example, in this embodiment, the signature batch

33

10

15

20

25

verification processing part 335 receives the signature
verification key stored in the signature verification key memory
area 332 and the signature data stored in the signature data memory
area 333 from memory part 331 and inputs them into the mathematical
function computing part 336.

The signature batch verification processing part 335 receives
the results of the batch verification from the mathematical function
computing part 336 and either stores them in the memory part 331
or outputs the verification results through the output part 138 or
the communications part 139.

The mathematical function computing part 336, with respect to
the signatures contained in the signature data input from the
signature batch verification part 335, uses the signature
verification key input from the signature batch verification part
335, carries out the batch verification of the signatures by means
of a predetermined algorithm, and verifies the validity of the
signatures.

Here, the mathematical function computing part 336 is not shown
in the diagram but is different from the first embodiment and is
composed of a batch instance generating part, a permutation part,
and a scalar multiplication computing part.

Furthermore, the scalar multiplication computing part carries
out verification by scalar multiplication computing of the batch
instances replaced by the permutation part.

With regard to the signatures generated by the ECDSA signature
scheme method, because it is necessary to transform the batch
verification method so that it may be applied, the batch instance
generating part in the mathematical function computing part 336

transforms the signatures received from the signature device 310

34

10

15

20

into the batch instances.

Specifically, the batch instance generating part in the
mathematical function computing part 336 calculates the batch
instance shown in Equation (32) below in which the signature S;
calculated in Equation (27) above is shown using Equations (28),

(29) and (30) above.
Si = (criS‘R ;)"’ (32)

The permutation part in the mathematical function computing part
336 carries out permutation of the batch instance transformed by
the batch instance generating part by an arbitrary method. Here,
it is the same method that carries out the replacement in the first
embodiment.

For example, the order of the batch instance (o;, Ry) (i =1,"-",
n) is changed to (C;(), Rey) (1 =1, *+- , n). Here, 1 is the symbol
representing the replacement method.

The scalar multiplication computing part in the mathematical

Ve e e ams e A

v+ A6 rcarrioecs At varificatinn nf whother
rt =23 out whether

Equation (33) below 1s satisfied or not.

Ya'R,,, =X a,,e modn)P+(Xb,,a modn)Q--(33)

That is, when Equation (33) is satisfied, the signature S; is
received as “valid” and when it is not, the signature S; is rejected
as “invalid”. Furthermore, o in Equation (33) is an arbitrary
natural number. Here, o' in Equation (33) is not limited to this

condition and may be a number that depends on the order i, for example,

35

10

15

20

25

an arbitrary function f£(i) with i as the variable.

The above described verification device 330 may also be achieved
with a general computer 160 as shown in Fig. 5.

For example, the memory part 331 is realizable by having the
CPU 161 use a memory 162 or an external memory device 163; the
processing part 334 is realizable by having a predetermined program
stored in the external memory device 163 loaded into the memory 162
and executed by the CPU 161; the input part 137 is realizable by
having the CPU 161 use the input device 166; the output part 138
is realizable by having the CPU 161 use the output device 167; and
the communications part 139 is realizable by having the CPU 161 use
the communications device 168.

This predetermined program may be downloaded to the external
memory device 163 from the memory medium 164 through the reading
device 165 or from the network through the communications device
168, loaded into the memory 162 and executed by the CPU 161.
Additionally, it may be directly loaded into the memory 162 from
the memory medium 164 through the reading device 165 or from the
network through the communications device 168 and executed by the
CPU 161.

Fig. 16 is a flow chart exemplifying the batch verification
processing with the mathematical function computing part 336 for
this embodiment.

The batch verification processing in the mathematical function
part 336 is begun with the reception of the input of an arbitrary
amount of signature data by the signature batch verification
processing part 335 (S60).

When receiving the input of the arbitrary amount of signature

data from the signature batch verification processing part 335, the

36

10

15

20

25

batch instance generating part in the mathematical function
computing part 336 generates the batch instance (o;, Ry) (1 =1, -,
n) from the multiple signatures Si (i =1, -+, n) contained in the
input signature data (S6l).

The permutation part in the mathematical function computing part
336 randomly selects the permutation t from the permutation group
SIFT,, that is, with the arbitrary permutation method the order of
the batch instance (o, Ry) (i =1, *-+ , n) is changed to (o,¢), Riiy)
(i =1, ===, n) (S62).

Next, the scalar multiplication computing part in the
mathematical function computing part 336 calculates Equation (33)
above using the replaced batch instance (o,(),Ry) (L =1, =+, n)
(S63) .

The scalar multiplication computing part checks whether or not
Equation (33) is satisfied and when it is (Yes in step S63), the
signature is determined to be valid (S64) and when it is not (No
in step S53), the signature is determined to be invalid (S65).

Furthermore, in this embodiment, verification processing 1is
carried out with Eguation (33) but if it is possible to carry cut
verification processing, any verification equation may be used and
the verification equation may be of any type.

In this embodiment, an explanation has been given when batch
verifyingmultiple signatures (or batch instances) signed by certain
signers but it is also possible to batch verify multiple signatures
(or batch instance) signed by a multiple signers.

For example, the following methods are cited as batch ‘processing
with regard to the batch instance (o;*', a;"*', by") {1 £3§ < n (i)}
in which at least more than one user A;(1 £ i £ r) has generated a

signing key sk; and a signature verification key pk; pair (sk; = dj,

37

10

15

20

25

pki = Qi) (here, Q; = diP).

The first method replaces the batch instance for each user and
verifies whether or not the equation in which both sides of Equation
(33) above are variously multiplied for each user is satisfied.

The second method verifies whether or not Equation (33) is
satisfied after the batch instances for all users A;(1 £ i £ r) are
replaced. However, with this method, it is necessary to change Q
on the right side of Equation (33) due to whether or not it is a
batch instance in which R; is generated depending on who the user
is. -

The reason the above described batch verification in this
embodiment can be more efficient when compared to the batch
verification in Reference 1 is the same as for the first embodiment.

Furthermore, the reason the batch verification in this
embodiment has high security is also the same as for the first
embodiment.

From the above, according to this embodiment, by using
permutation and using an efficiently computable verification
equation, it is possible to obtain ECDSA signature batch
verification having both high security and high efficiency.

Moreover, the ECDSA signature scheme method was used in the above
described batch verification method but ECDSA* signatures may also
be used in place of the ECDSA signature schemes.

For the ECDSA* batch signatures, it is not necessary to generate
a batch instance in the verification device 330 because the batch
instance computed by Equation (32) is a signature (computed by the
signature device).

Also, the ECDSA* signature is described in Reference 2 and its

security is equivalent to that of the ECDSA signature scheme.

38

10

15

20

25

Furthermore, in each of the above described embodiments, the
signature generation processing par and the signature batch
verification processing part have been explained as being achievable
with software, but they may also be achieved using special hardware.
Additionally, the mathematical function computing part may also be
achieved with special hardware.

The above described signature batch verification systems can
be used as systems in which a large quantity of signature data from
the signature devices 110, 210 and 310 is transmitted to the
verification devices 130, 230 and 330.

For iﬁstance, they can be used in the real time monitoring system
170 which uses a monitoring camera as shown in Fig. 17 (outline of
the real time monitoring system 170).

As shown in the diagram, the real time monitoring system 170
is composed of a monitoring camera 171; a signature device 110. 210
or 310; a verification device 130, 230 or 330; and a monitor 172,
and the signature device 110, 210 or 310 and the verification device

130, 230 or 330 is connected to the network 150.

For example, the meoni in the targete
observation area, the images taken are sent to the verification
device 130, 230 or 330 set up in the observation center in, for example,
the security company through the network 150 as the signature data
in the signature device 110, 210 or 310 and stored in the verification
device 130, 230 or 330.

In the verification device 130, 230 or 330, when the necessity
arises to verify the images taken which are contained in the stored
signature data, by batching and checking the required part in the
stored signature data, it is possible to check that it was taken

by the specific monitoring camera 171 and that the data has not been

39

altered.

When conducting this verification, by carrying out batch
verification according to this invention, it is possible for the
verification to be executed efficiently with high security.

The specification and drawings are, accordingly, to be regarded
inanillustrative rather thana restrictive sense. It will, however,
be evident that various modifications and changes may be made thereto
without departing from the spirit and scope of the invention as set

forth in the claims, as interpreted by the description and drawings.

40

10

15

20

25

Claims:

1. A batch verification device that batch-verifies batch
instances of multiple signature data, an order being specified in
the multiple signature data, and the batch instance having a first
value and a second value, the batch verification device comprising:
a processing part which carries out verification based on whether
or not a value calculated by carrying out a modular exponentiation
of a generator of a finite multiplicative cyclic group, with a
multiplied value, obtained by multiplying the first value by a number
which differs depending on the order, as an exponent, and a
value calculated by carrying out a modular exponentiation of the
second value, with a number which differs depending on the order

as an exponent, are in agreement.

2. The batch verification device according to claim 1 wherein

the processing part carries out verification based on whether or

not

A xra ey
“A VoLl

calculated by multiplying a value calculaied by carrying

0]

out an exponentiation of the generator of a finite multiplicative
cyclic group in all of the batch instances, with a multiplied value,
obtained by multiplying the first value by a number which differs
depending on the order, as an exponent, and

a value calculated by multiplying a value calculated by carrying
out a modular exponentiation of the second value in all of the batch
instances, with a number which differs depending on the order as

an exponent, are in agreement.

3. The batch verification device according to claim 1 wherein

4]

10

15

20

25

the processing part carries out verification after the order of the

batch instances is changed at least once.

4. The batch verification device according to claim 3, wherein
the processing part, having a multiple change methods that change
the order of the batch instances, changes the order of the batch
instances using a positional change method selected from the

multiple change methods.

5. A batch Verificatioﬁ device that batch-verifies batch
instances of multiple signature data, an ordef being specified in
the multiple signaturevdata, and the batch instance having a first
value and a second value, the batch verification device comprising:

a processing part which carries out verification based on whether
or not a value obtained by calculating a scalar multiplication of
a generator of a finite additive cyclic group, with a multiplied
value, calculated by multiplying the first value by a number which
differs depending on the order, as a scalar value, and a value
obtained by calculating a scalar multiplication of the second value,
with a number which differs depending on the order, as a scalar value,

are in agreement.

6. The batch verification device according to claim 5 wherein
the processing part carries out verification based on whether or
not a value obtained by calculating a scalar multiplication of a
generator of a finite additive cyclic group inall the batch instances
and adding all the calculated values, with a multiplied value,
calculated by multiplying the first value by a number which differs

depending on the order, as a scalar value, and a value obtained by

42

10

15

20

25

calculating a scalar multiplication of the second value in all the
batch instances and adding all the calculated values, with a number
which differs depending 6n the order, as a scalar value, are in

agreement.

7. The batch verification device according to claim 5 wherein
the processing part carries out verification after the order of the

batch instances is changed at least once.

8. The batch verification device according to claim 7 wherein
the processing part has a multiple change methods that change the
order of the batch instances and change the order of the batch
instances using a positional change method selected from the

multiple change methods.

9. A program that causes a computer to carry out processing in
whichbatch instances of multiple signature data are batch-verified,
an order being specified in the multiple signature data, and a batch
instance having a first value and a second value, wherein

the program causes the computer to function as a processor which
carries out verification based on whether or not a value calculated
by carrying out an exponentiation of a generator of a finite
multiplicative cyclic group, with a multiplied value, obtained by
multiplying the first value by numbers which differ depending on
the order, as an exponent, and a value calculated by carrying out
a modular exponentiation of the second value, with a number which

differs depending on the order, as an exponent, are in agreement.

10. The program according to claim 9, wherein the processor

43

10

15

20

25

carries out verification based on whether or not a value calculated
by multiplying a value calculated by carrying out a modular
exponentiation of a generator of a finite multiplicative cyclic
group in all of the batch instances, withamultiplied value, obtained
by multiplying the first value by a number which differs depending
on the order, as an exponent, and the value calculated by multiplying
a value calculated by carrying out a modular exponentiation of the
second value in all of the batch instances, with a number which

differs according to the order as an exponent, are in agreement.

11. The program according to claim 9 wherein the processor carries

out verification after the order of the batch instances is changed

at least once.

12. The program according to claim 11 wherein the processor,
having a multiple change methods that change the order of the batch
instances, changes the order of the batch instances using a

positional change method selected from the multiple change methods.

13. A program that causes a computer to carry out processing in
which batch instances of multiple signature data are batch-verified,
an order being specified in the multiple signature data, and a batch
instance having a first value and a second value, wherein

the program causes the computer to function as a processor which
carries out verification based on whether or not a value obtained
by calculating a scalar multiplication of a generator of a finite
additive cyclic group, with a multiplied value, calculated by
multiplying the first value by a number which differs depending on

the order, as a scalar value, and a value obtained by calculating

44

10

15

20

25

a scalar multiplication of the second value, with a number which

differs depending on the order as a scalar value, are in agreement.

14. The program according to claim 13 wherein the processor
carries out verification based on whether or not a value obtained
by calculating a scalar multiplication of a generator of a finite
additive cyclic group in all the batch instances and adding all the
calculated values, with a multiplied value, calculated by
multiplying the first value by a number which differs depending on
the order, as a scalar value; and a value obtained by calculating
a scalarmultiplication of the second value in all the batch instances
and adding all the calculated values, with a number which differs

depending on the order a scalar value, are in agreement.

15. The program according to claim 13 wherein the processor
carries out verification after the order of the batch instances is
changed at least once.

15N

1C ml - = laa
140 . e i cuc

A Ay AW o ot~ or 3 £
11iC plLuvylLailtl ai 1% L

atch wverificatic
claim 15, wherein the processor , having a multiple change methods
for changing the order of the batch instances, changes the order
of the batch instances using a positional change method selected

from the multiple change methods.

17. A batch verification method in which a batch verification
device comprises a processing part that batch-verifies batch
instances of multiple signature data, an order being specified in
the multiple signature data, and a batch instance having a first

value and a second value, wherein the processing part performs a

45

10

15

20

verifying process based on whether or not a value calculated by
carrying out a modular exponentiation of a generator of a finite
multiplicative cyclic group, with a multiplied value, obtained by
multiplying the first value by a number which differs depending on
the order, as an exponent, and a value calculated by carrying out
a modular exponentiation of the second value, with a number which

differs depending on the order as an exponent, are in agreement.

18. A batch verification method in which a batch verification
device comprises a processing part that batch-verifies batch
instances of multiple signature data, an order being specified in
the multiple signature data, and a batch instance having a first
value and a second value, wherein the processing part performs a
process of determining whether or not a value obtained by calculatihg
a scalar multiplication of a generator of a finite additive cyclic
group, with a multiplied value, obtained by multiplying the first
value by a number which differs depending on a value of i, as a scalar
value, and a value obtained by calculating a scalar multiplication
of the second value, with a number which differs depending on the

value i, as a scalar value, are in agreement.

46

¥ intellectual
> Pronerty

Ot

$ 0000

For Crealivily and Innovation

Application No: GB0804683.1 Examiner: Daniel Voisey

Claims searched: l|to 18 Date of search: 19 June 2008

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category {Relevant | Identity of document and passage or figure of particular relevance
to claims

A - WO 2006/104362 Al
(CHEON) see particularly the abstract, and paragraphs [1], [3] to [7],
[25] and [29] to [32].

A - WO 2007/105749 Al
(NEC) see the abstract.

A - Cheon & Lee, Use of Sparse and/or Complex Exponents in Batch
Verification of Exponentiations, IEEE Transactions on Computers, Vol.
55, No. 12, December 2006, downloaded 18th June 2008 from:
http://ieeexplore.ieece.org/iel5/12/36126/01717386.pdf ?tp=&isnumber=
&arnumber=1717386

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of betore the filing date of this invention.
same category.

& Member of the same patent family . Patent document published on or alter, but with priority date

earlier than. the filing date of this application.
Field of Search:

Scarch of GB. LIP. WO & US patent documents classified in the following arcas of the UKC™:

Worldwide scarch of patent documents classified in the following arcas of the 1PC

| GOG6F; HO4L

The following online and other databases have been used in the preparation of this scarch report

| WPIL, EPODOC, INSPEC and the Internet

International Classification:

Subclass Subgroup Valid From
HO4L 0009/32 01/01/2006
GO6F 0021724 01/01/2006

4

UK Intellectual Propertv Office is an operatina name of The Patent Office

	ABSTRACT
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

