

(11)

EP 1 945 820 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

28.08.2013 Bulletin 2013/35

(21) Application number: 06846174.8

(22) Date of filing: 26.10.2006

(51) Int Cl.:
C07K 16/28 (2006.01)

(86) International application number:
PCT/US2006/060305

(87) International publication number:
WO 2007/051164 (03.05.2007 Gazette 2007/18)

(54) TOLL LIKE RECEPTOR 3 MODULATORS, METHODS AND USES

TOLL-ARTIGE REZEPTOR-3-MODULATOREN SOWIE VERFAHREN UND VERWENDUNGEN
DAFÜR

MODULATEURS DU RÉCEPTEUR DE TYPE TOLL 3, ET LEURS PROCÉDÉS ET UTILISATIONS

(84) Designated Contracting States:

**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR**

(30) Priority: 27.10.2005 US 730793 P

(43) Date of publication of application:
23.07.2008 Bulletin 2008/30

(73) Proprietor: **Janssen Biotech, Inc.**
Horsham, PA 19044 (US)

(72) Inventors:

- **DUFFY, Karen, E.**
Trappe, PA 19426 (US)
- **HUANG, Chong, C.**
Paoli, PA 19301 (US)
- **LAMB, Roberta**
Wynnewood, PA 19096 (US)

- **MBOW, Mouhamadou, L.**
King Of Prussia, PA 19406 (US)
- **SARISKY, Robert, T.**
Lansdale, PA 19446 (US)
- **SAN, Mateo, Lani**
Devon, PA 19333 (US)

(74) Representative: **Marshall, Cameron John et al**
Carpmaels & Ransford LLP
One Southampton Row
London WC1B 5HA (GB)

(56) References cited:

EP-A- 1 887 014	US-A1- 2004 091 491
US-A1- 2005 112 659	US-A1- 2005 158 799
• BHATTACHARJEE ET AL.: 'Toll-Like Receptor Signaling: Emerging Opportunities in Human Diseases and Medicine' CURRENT IMMUNOLOGY REVIEWS vol. 1, no. 1, January 2005, pages 81 - 90, XP001538380	

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**Background of the Invention**

5 [0001] Recognition of foreign antigens by mammalian cells can be mediated by a set of innate immune receptors called Toll-like receptors (TLRs) see EP 1 887 014, US 2005/112659 and US 2005/158799. TLRs recognize conserved patterns derived from microbial pathogens identified as pathogen-associated molecular patterns (PAMPs) (Barton et al., *Science* 300:1524-1525, 2003). Interaction of a TLR with a PAMP results in a signaling cascade involving NF- κ B activation and transcription of cytokine gene expression. Ten human toll-like receptors and five TLR adaptor proteins have been identified.

10 [0002] TLRs are able to expand their repertoire of ligands by forming homo- or heterodimers as well as binding different adaptor proteins. For example, TLR3 binds dsRNA, an intermediate in viral replication. TLR3 also interacts with PolyI: C, a synthetic dsRNA analog, and mRNA from necrotic cells. Activation of TLR3 leads to the secretion of Type I interferons, which are important in the control of viral infection. A full-length human TLR3 amino acid sequence and encoding 15 polynucleotide sequence are shown in SEQ ID NOs: 1 and 2, respectively. TLRs TLR7, TLR8, and TLR9 also have nucleic acid ligands; activation of these TLRs can also lead to interferon secretion.

20 [0003] Type I interferons trigger signaling cascades to activate a set of immediate early-response genes (IFN-stimulated genes or ISGs) and have proven useful in the clinic see US 2004 091491. The resulting antiviral activities include mRNA translation inhibition, RNA editing, and RNA degradation (Samuel et al., *Clin Microbiol Rev* 14:778-809, 2001 and Bhattacharjee et al. *Curr. Immunol. Rev* / : 81-90, 2005). Currently, a combination therapy of pegylated interferon and the broad-spectrum antiviral compound ribavirin is being used to treat hepatitis C infection (Manns et al., *Lancet* 358: 958-965, 2001).

25 [0004] The critical anti-viral role of Type I IFNs is further demonstrated by the evolution of viral resistance mechanisms to inhibit the production of Type I IFNs by infected host cells. For example, the NS1 protein of influenza antagonizes IRF-3 activation and IFN β production (Donelan et al., *J Virol* 78: 11574-11582, 2004) and the A52R poxvirus protein associates with IRAK2 and TRAF6 to block signaling downstream of TLR3 (Harte et al., *J Exp Med*, 197:343-351, 2003). Thus, therapies based on triggering TLR activation or enhancing TLR-mediated signaling pathways increase endogenous IFN α / β production and assist the host in the control of acute viral infections.

30 [0005] The use of TLR agonists to modulate the outcome of an immune response is currently being investigated for therapeutic use (O'Neill, *Curr Opin Pharm* 3:396-403, 2003; Schetter et al., *Curr Opin Drug Discov Devel* 7:204-210, 2004). For example, CpG oligodinucleotides (ODN), a TLR9 ligand, are capable of stimulating the production of type I IFN and a T H 1 response (Krieg, *Annu Rev Immunol* 20:709-60, 2002), a finding that suggests the possible use of CpG ODN not only as a vaccine adjuvant but also for the treatment and or prevention of diseases that necessitate a potent T H 1 response. Another example is the synthetic TLR7 agonist imiquimod, an approved agent for the treatment of genital 35 warts; its protective effect is thought to be mediated through the stimulation of inflammatory cytokines such as IFN α , TNF α and IL-1 β (Saunder, *J Amer Acad Derm* 43: S6-S11, 2000). Overall, these findings show that TLR agonists are a novel class of immunomodulatory agents with the potential of having a significant therapeutic benefit.

40 [0006] Thus, a need exists for the identification of novel immunomodulatory agents that potentiate the effect of TLR agonists. Such novel TLR-based therapies are expected to have an advantage of providing a sustained immune response with less frequent dosing regimens.

Brief Description of the Drawings**[0007]**

45 Fig. 1 shows C1130 anti-hTLR3 mAb heavy chain variable region sequences.
 Fig. 2 shows C1130 anti-hTLR3 mAb light chain variable region sequences.
 Fig. 3 shows C1130 induced IL-8, MCP-1, MIP-1 α , RANTES, and TNF α secretion by human peripheral blood mononuclear cells (PBMCs) at 24h.
 50 Fig. 4 shows C1130 enhanced CpG-induced IFN α .production at 24h.
 Fig. 5 shows C1130 decreased R848-induced IL-10 production at 24h.
 Fig. 6 shows C1130 recognition of cell-surface TLR3 on stably transfected HEK293 cells.
 Fig. 7 shows C1130 recognition of cell-surface TLR3 on stably transected A549-TLR3.2 cells.
 Fig. 8 shows C1130 recognition of Cynomolgus macaque PBMCs.

55

Summary of the Invention

56 [0008] One aspect of the disclosure is an isolated antibody reactive with human Toll Like Receptor 3 (hTLR3) or its

homologs that induces cellular production of a cytokine selected from the group consisting of IL-8, MCP-1, MIP1- α , RANTES and TNF- α .

[0009] Another aspect of the disclosure is an isolated antibody reactive with hTLR3 or its homologs that modifies an immune response to other Toll Like Receptor ligands.

5 [0010] Another aspect of the disclosure is an isolated antibody reactive with hTLR3 having the antigen binding ability of a monoclonal antibody comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOs: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOs: 19, 21 and 23.

10 [0011] One aspect of the invention is an isolated antibody reactive with hTLR3 comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOs: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOs: 19, 21 and 23.

15 [0012] Another aspect of the invention is an isolated antibody reactive with hTLR3 comprising a heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6 and a light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

20 [0013] Another aspect of the invention is an isolated polynucleotide encoding an antibody heavy chain comprising the CDR amino acid sequences shown in SEQ ID NOs: 9, 11 and 13.

[0014] Another aspect of the invention is an isolated polynucleotide encoding an antibody light chain comprising the CDR amino acid sequences shown in SEQ ID NOs: 19, 21 and 23.

25 [0015] Another aspect of the invention is an isolated polynucleotide encoding an antibody heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6.

[0016] Another aspect of the invention is an isolated polynucleotide encoding an antibody light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

30 [0017] Other aspects of the disclosure include methods of treating or preventing viral infection comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune stimulant.

25 [0018] Another aspect of the disclosure is a method of treating cancer comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune stimulant.

[0019] Another aspect of the disclosure is a method of treating inflammatory bowel disease comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune stimulant.

35 [0020] Other aspects of the disclosure include methods of treating or preventing a viral infection-associated symptom comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a Toll-Like Receptor 7 (TLR7) agonist.

[0021] Other aspects of the disclosure include methods of treating or preventing a pulmonary disease and pathogen-mediated exacerbation comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a TLR9 or TLR7 agonist.

40 [0022] Other aspects of the disclosure include methods of treating or preventing graft-versus-host disease (GVHD) comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a TLR9 or TLR7 agonist.

[0023] Other aspects of the disclosure include methods of treating or preventing autoimmune disease comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune treatment.

Detailed Description of the Invention

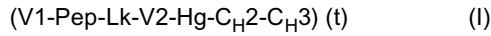
45 [0024] The term "antibodies" as used herein is meant in a broad sense and includes immunoglobulin or antibody molecules including polyclonal antibodies, monoclonal antibodies including murine, human, humanized and chimeric monoclonal antibodies and antibody fragments.

50 [0025] In general, antibodies are proteins or polypeptides that exhibit binding specificity to a specific antigen. Intact antibodies are heterotetrameric glycoproteins, composed of two identical light chains and two identical heavy chains. Typically, each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain and the light chain variable domain is aligned with the variable domain of the heavy chain. Antibody light chains of any vertebrate species can be assigned to one of two clearly distinct types, namely kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains. Immunoglobulins can be assigned to five major classes, namely IgA, IgD, IgE, IgG and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA₁, IgA₂, IgG₁, IgG₂, IgG₃ and IgG₄.

[0026] The term "antibody fragments" means a portion of an intact antibody, generally the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂ and Fv fragments, diabodies, single chain antibody molecules and multispecific antibodies formed from at least two intact antibodies.

5 [0027] The term "antigen" as used herein means any molecule that has the ability to generate antibodies either directly or indirectly. Included within the definition of "antigen" is a protein-encoding nucleic acid.

[0028] "CDRs" are defined as the complementarity determining region amino acid sequences of an antibody which are the hypervariable regions of immunoglobulin heavy and light chains. See, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, 4th ed., U.S. Department of Health and Human Services, National Institutes of Health (1987). There are three heavy chain and three light chain CDRs or CDR regions in the variable portion of an immunoglobulin.


10 Thus, "CDRs" as used herein refers to all three heavy chain CDRs, or all three light chain CDRs or both all heavy and all light chain CDRs, if appropriate.

[0029] CDRs provide the majority of contact residues for the binding of the antibody to the antigen or epitope. CDRs of interest in this invention are derived from donor antibody variable heavy and light chain sequences, and include analogs of the naturally occurring CDRs, which analogs also share or retain the same antigen binding specificity and/or neutralizing ability as the donor antibody from which they were derived.

[0030] The term "homolog" means protein sequences having between 40% and 100% sequence identity to a reference sequence. Homologs of hTLR3 include polypeptides from other species that have between 40% and 100% sequence identity to a known hTLR3 sequence. Percent identity between two peptide chains can be determined by pair wise alignment using the default settings of the AlignX module of Vector NTI v.9.0.0 (Invitrogen Corp., Carlsbad, CA).

20 [0031] The term "in combination with" as used herein means that the described agents can be administered to an animal together in a mixture, concurrently as single agents or sequentially as single agents in any order.

[0032] The term "mimetibody" as used herein means a protein having the generic formula (I) :

25 where V1 is a portion of an N-terminus of an immunoglobulin variable region, Pep is a polypeptide that binds to cell surface TLR3, Lk is a polypeptide or chemical linkage, V2 is a portion of a C-terminus of an immunoglobulin variable region, Hg is a portion of an immunoglobulin hinge region, C_H2 is an immunoglobulin heavy chain C_H2 constant region and C_H3 is an immunoglobulin heavy chain C_H3 constant region and t is independently an integer of 1 to 10. A mimetibody can mimic properties and functions of different types of immunoglobulin molecules such as IgG1, IgG2, IgG3, IgG4, IgA, IgM, IgD and IgE dependent on the heavy chain constant domain amino acid sequence present in the construct. In some mimetibody embodiments, V1 may be absent. A mimetibody disclosed herein modulates TLR biological activity through binding to TLR-expressing cells.

30 [0033] The term "monoclonal antibody" (mAb) as used herein means an antibody (or antibody fragment) obtained from a population of substantially homogeneous antibodies. Monoclonal antibodies are highly specific, typically being directed against a single antigenic determinant. The modifier "monoclonal" indicates the substantially homogeneous character of the antibody and does not require production of the antibody by any particular method. For example, murine mAbs can be made by the hybridoma method of Kohler et al., Nature 256:495-497 (1975). Chimeric mAbs containing a light chain and heavy chain variable region derived from a donor antibody (typically murine) in association with light and heavy chain constant regions derived from an acceptor antibody (typically another mammalian species such as human) can be prepared by the method disclosed in U.S. Pat. No. 4,816,567. Humanized mAbs having CDRs derived from a non-human donor immunoglobulin (typically murine) and the remaining immunoglobulin-derived parts of the molecule being derived from one or more human immunoglobulins, optionally having altered framework support residues to preserve binding affinity, can be obtained by the techniques disclosed in Queen et al., Proc. Natl. Acad. Sci. (USA), 86:10029-10032 (1989) and Hodgson et al., Bio/technology, 9:421 (1991).

35 [0034] Exemplary human framework sequences useful for humanization are disclosed at, e.g., www.

40 ncbi.nlm.nih.gov/entrez/query.fcgi; www.ncbi.nih.gov/igblast;
 www.atcc.org/phage/hdb.html;
 www.mrc-cpe.cam.ac.uk/ALIGNMENTS.php;
 www.kabatdatabase.com/top.html;
 ftp.ncbi.nih.gov/repository/kabat; www.sciquest.com;
 www.abcam.com; www.antibodyresource.com/onlinecomp.html;
 www.public.iastate.edu/~pedro/research_tools.html;
 www.whfreeman.com/immunology/CH05/kuby05.htm;
 www.hhmi.org/grants/lectures/1996/vlab;
 www.path.cam.ac.uk/~mrc7/mikeimages.html;
 mcb.harvard.edu/BioLinks/Immunology.html;

www. immunologylink.com; pathbox.wustl.edu/~hcenter/index.html;
 www. appliedbiosystems.com; www.nal.usda.gov/awic/pubs/antibody;
 www. m.ehime-u.ac.jp/~yasuhito/Elisa.html; www. biodesign.com;
 www. cancerresearchuk.org; www. biotech.ufl.edu;
 www. isac-net.org; baserv.uci.kun.nl/~jraats/links1.html;
 www. recab.uni-hd.de/immuno.bme.nwu.edu; www. mrc-cpe.cam.ac.uk;
 www. ibt.unam.mx/vir/V_mice.html; http://www. bioinf.org.uk/abs;
 antibody.bath.ac.uk; www. unizh.ch;
 www. cryst.bbk.ac.uk/~ubcg07s;
 www. nimir.mrc.ac.uk/CC/ccaewg/ccaewg.html;
 www. path.cam.ac.uk/~mrc7/humanisation/TAHHP.html;
 www. ibt.unam.mx/vir/structure/stat_aim.html;
 www. biosci.missouri.edu/smithgp/index.html; www. jerini.de;
 imgt.cines.fr; and Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Dept. Health (1987).

15 [0035] Fully human mAbs lacking any non-human sequences can be prepared from human immunoglobulin transgenic mice by techniques referenced in, e.g., Lonberg et al., *Nature* 368:856-859 (1994); Fishwild et al., *Nature Biotechnology* 14:845-851 (1996) and Mendez et al., *Nature Genetics* 15:146-156 (1997). Human mAbs can also be prepared and optimized from phage display libraries by techniques referenced in, e.g., Knappik et al., *J. Mol. Biol.* 296:57-86 (2000) and Krebs et al., *J. Immunol. Meth.* 254:67-84 (2001).

20 [0036] The present disclosure relates to TLR3 receptor binding agents capable of modulating TLR3 receptor-mediated signaling. Such binding agents include anti-TLR3 antibodies having the properties of binding a TLR3 receptor and modulating TLR3 receptor-mediated signaling.

25 [0037] One aspect of the disclosure is an antibody reactive with human Toll Like Receptor 3 (hTLR3) or hTLR3 homologs that induces cellular production of a cytokine selected from the group consisting of IL-8, MCP-1, MIP1- α , RANTES and TNF- α . These antibodies are useful as research reagents, diagnostic reagents and therapeutic agents. In particular, the antibodies are useful as therapeutic agents that can stimulate an immune response against foreign antigens.

30 [0038] Another aspect of the disclosure is an antibody reactive with hTLR3 or TLR3 homologs that modulates a cytokine response induced by other TLR ligands. Modulation of a cytokine response results in potentiation or modification of the immune response to other TLR ligands including CpG ODN and R848. For example, antibodies disclosure can enhance the production of Type 1 interferons such as interferon- α (IFN- α) when used in combination with TLR9 ligands such as CpG oligodinucleotides (CpG ODN).

35 [0039] Another aspect of the disclosure is an antibody reactive with TLR3 or hTLR3 homologs that decreases the production of IL-10 produced by TLR7 agonists. For example, the antibodies disclosed herein significantly decrease the production of the antiinflammatory cytokine IL-10 produced by the TLR7 agonist R848, also known as resiquimod. While not wishing to be bound to any particular theory, it is believed that the antibodies disclosed herein potentiate the inflammatory response to TLR7 agonists.

40 [0040] In one embodiment, the antibody disclosed herein is an isolated antibody reactive with hTLR3 having the antigen binding ability of a monoclonal antibody having the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as set forth in SEQ ID NOS: 9 (CDR H1), 11 (CDR H2) and 13 (CDR H3) and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19 (CDR L1), 21 (CDR L2) and 23 (CDR L3). An exemplary antibody is a monoclonal antibody having heavy chain CDR amino acid sequences as shown in SEQ ID NOS: 9, 11 and 13 and light chain CDR amino acid sequences as shown in SEQ ID NOS: 19, 21 and 23.

45 [0041] Another embodiment of the invention is an isolated polynucleotide encoding an antibody heavy chain having the CDR amino acid sequences shown in SEQ ID NOS: 9, 11 and 13 or a complementary nucleic acid. Other polynucleotides which, given the degeneracy of the genetic code or codon preferences in a given expression system, encode the heavy chain variable region CDRs shown in SEQ ID NOS: 9, 11 and 13 are also within the scope of the invention.

50 [0042] Another embodiment of the invention is an isolated polynucleotide encoding an antibody light chain having the CDR amino acid sequences shown in SEQ ID NOS: 19, 21 and 23 or a complementary nucleic acid. Other polynucleotides which, given the degeneracy of the genetic code or codon preferences in a given expression system, encode the light chain variable region CDRs shown in SEQ ID NOS: 19, 21 and 23 are also within the scope of the invention.

55 [0043] Another embodiment of the invention is an isolated antibody reactive with hTLR3 comprising a heavy chain having the amino acid sequence shown in SEQ ID NO: 6 and a light chain having the amino acid sequence shown in SEQ ID NO: 16.

[0044] Another embodiment of the invention is an isolated polynucleotide encoding the amino acid sequence shown in SEQ ID NO: 6 or its complement. An exemplary polynucleotide encoding the amino acid sequence shown in SEQ NO: 6 has the sequence shown in SEQ ID NO: 5.

[0045] Another embodiment of the invention is an isolated polynucleotide encoding the amino acid sequence shown in SEQ ID NO: 16 or its complement. An exemplary polynucleotide encoding the amino acid sequence shown in SEQ NO: 16 has the sequence shown in SEQ ID NO: 15.

[0046] Exemplary antibodies may be antibodies of the IgG, IgD, IgGA or IgM isotypes. Additionally, such antibodies can be post-translationally modified by processes such as glycosylation, isomerization, aglycosylation or non-naturally occurring covalent modification such as the addition of polyethylene glycol moieties (pegylation) and lipidation. Such modifications may occur *in vivo* or *in vitro*. Fully human, humanized and affinity-matured antibody molecules or antibody fragments are within the scope of the invention as are mimetibodies, fusion proteins and chimeric proteins.

[0047] The antibody of the invention may bind hTLR3 with a K_d less than or equal to about 10^{-7} , 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} or 10^{-12} M. The affinity of a given molecule for a hTLR3 receptor can be determined experimentally using any suitable method. Such methods may utilize Biacore or KinExA instrumentation, ELISA or competitive binding assays known to those skilled in the art.

[0048] Antibody molecules binding a given TLR3 homolog with a desired affinity can be selected from libraries of variants or fragments by techniques including antibody affinity maturation and other art-recognized techniques suitable for non-antibody molecules.

[0049] Another embodiment of the invention is a vector comprising at least one polynucleotide of the invention. Such vectors may be plasmid vectors, viral vectors, transposon based vectors or any other vector suitable for introduction of the polynucleotides of the invention into a given organism or genetic background by any means.

[0050] Another embodiment of the invention is a host cell comprising any of the polynucleotides of the invention such as a polynucleotide encoding a polypeptide comprising SEQ ID NO: 9, SEQ ID NO: 11 and SEQ ID NO: 13 and a polynucleotide encoding a polypeptide comprising SEQ ID NO: 19, SEQ ID NO: 21 and SEQ ID NO: 23. Such host cells may be eukaryotic cells, bacterial cells, plant cells or archeal cells. Exemplary eukaryotic cells may be of mammalian, insect, avian or other animal origins. Mammalian eukaryotic cells include immortalized cell lines such as hybridomas or myeloma cell lines such as SP2/0 (American Type Culture Collection (ATCC), Manassas, VA, CRL-1581), NS0 (European Collection of Cell Cultures (ECACC), Salisbury, Wiltshire, UK, ECACC No. 85110503), FO (ATCC CRL-1646) and Ag653 (ATCC CRL-1580) murine cell lines. An exemplary human myeloma cell line is U266 (ATTC CRL-TIB-196). Other useful cell lines include those derived from Chinese Hamster Ovary (CHO) cells such as CHO-K1 (ATCC CRL-61) or DG44.

[0051] Another embodiment of the invention is a method of making an antibody of the invention comprising culturing a host cell of the invention and recovering the antibody produced by the host cell. Such an antibody may be the hTLR3 antibody exemplified below as mAb C1130 having heavy and light amino acid sequences as shown in SEQ ID NOs: 6 and 16, respectively

[0052] The ability of the antibodies disclosed herein to potentiate CpG-mediated IFN- α production provides for various combination-type therapies. For example, the use of an antibody disclosed herein in combination with foreign antigens such as TLR agonist molecules or vaccine antigens will modulate an immune response and be useful in treating infections.

Thus, another aspect of the disclosure is the use of an antibody disclosed herein in combination with other immune stimulants such as interferon or TLR9 agonists including, but not limited to, CpG ODN to stimulate and sustain an immune response as measured by enhanced production of Type I IFN (e.g., IFN α) to prevent or treat viral infections including hepatitis viruses, herpes simplex virus, human immunodeficiency virus and human papilloma virus and other cutaneous and mucosal-associated infections. Also, the use of an antibody disclosed herein in combination with other immune stimulants such as interferon or TLR9 agonists including, but not limited to, CpG ODN to treat cancers including multiple myeloma, chronic myelogenous leukemia, hairy cell leukemia, malignant melanoma, and sarcomas (including Kaposi's sarcoma) is disclosed. Further, the disclosure also provides for the use of an antibody disclosed herein in combination with other immune stimulants such as interferon or TLR9 agonists including but not limited to CpG ODN to treat inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis).

[0053] Another aspect of the disclosure is the use of an antibody disclosed herein in combination with a TLR7 agonist such as R848 (resiquimod) or imiquimod to provide for a combination therapy to prevent or treat viral infection-associated symptoms such as genital warts. The synthetic TLR7 agonist imiquimod has been approved by regulatory authorities for the treatment of genital warts. Another aspect of the disclosure is the use of an antibody disclosed herein in combination with TLR9 or TLR7 agonists to prevent or treat pulmonary diseases including bacterial, fungal and viral pneumonias, and pathogen-mediated exacerbation of pulmonary diseases such as asthma, bronchitis and chronic obstructive pulmonary diseases. Yet another aspect of disclosure is the use of an antibody disclosed herein in combination with TLR9 or TLR7 agonists to prevent or treat graft-versus-host disease (GVHD). Yet another aspect of the disclosure is the use of an antibody disclosed herein in combination with immune treatments, such as interferon, to prevent or treat autoimmune diseases, including multiple sclerosis and lupus.

[0054] The methods disclosed herein may be used to treat an animal belonging to any genus. Examples of such animals include humans, mice, birds, reptiles, and fish.

[0055] Amounts of a given TLR3 antibody sufficient to treat a given condition can be readily determined. In the method disclosed herein the TLR3 antibody may be administered singly or in combination with at least one other TLR agonist

molecule or vaccine antigen.

[0056] The mode of administration for therapeutic use of the antibodies of the invention may be any suitable route that delivers the agent to the host. The proteins, antibodies, antibody fragments and mimetibodies and pharmaceutical compositions of these agents are particularly useful for parenteral administration, *i.e.*, subcutaneously, intramuscularly, 5 intradermally, intravenously or intranasally.

[0057] Antibodies disclosed herein may be prepared as pharmaceutical compositions containing an effective amount of the antibody as an active ingredient in a pharmaceutically acceptable carrier. An aqueous suspension or solution containing the antibody, preferably buffered at physiological pH, in a form ready for injection is preferred. The compositions for parenteral administration will commonly comprise a solution of the antibody disclosed herein or a cocktail thereof 10 dissolved in an pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be employed, *e.g.*, 0.4% saline, 0.3% glycine and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well-known sterilization techniques (*e.g.*, filtration). The 15 compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antibody disclosed herein in such pharmaceutical formulation can vary widely, *i.e.*, from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.

[0058] Thus, a pharmaceutical composition disclosed herein for intramuscular injection could be prepared to contain 1 mL sterile buffered water, and between about 1 ng to about 100 mg, *e.g.* about 50 ng to about 30 mg or more preferably, 20 about 5 mg to about 25 mg, of an antibody of the invention. Similarly, a pharmaceutical composition disclosed herein for intravenous infusion could be made up to contain about 250 ml of sterile Ringer's solution, and about 1 mg to about 30 mg and preferably 5 mg to about 25 mg of an antibody as disclosed herein. Actual methods for preparing parenterally 25 administrable compositions are well known and are described in more detail in, for example, "Remington's Pharmaceutical Science", 15th ed., Mack Publishing Company, Easton, PA.

[0059] The antibodies disclosed herein, when in a pharmaceutical preparation, can be present in unit dose forms. The appropriate therapeutically effective dose can be determined readily by those of skill in the art. A determined dose may, if necessary, be repeated at appropriate time intervals selected as appropriate by a physician during the treatment period.

[0060] The antibodies disclosed herein can be lyophilized for storage and reconstituted in a suitable carrier prior to 30 use. This technique has been shown to be effective with conventional immunoglobulins and protein preparations and art-known lyophilization and reconstitution techniques can be employed.

[0061] The present invention will now be described with reference to the following specific, non-limiting examples.

Example 1

35 Generation of anti-TLR3 mAbs

[0062] The anti-TLR3 mAb was generated using standard hybridoma technology in normal Balb/c mice (Kohler *et al.*, *J Immunol* 6:511-519, 1976). All animal procedures were performed in accordance with the guidelines established by 40 the Institutional Animal Care and Use Committee. The mice were injected intradermally twice with plasmid DNA encoding amino acids 1-703 of human TLR3 (SEQ ID NO: 3). Amino acids 1-703 correspond to the predicted extracellular domain of TLR3 (SEQ ID NO: 4). The mice received the plasmid DNA injections of 10 pg/mouse two weeks apart. The mice were boosted by intradermal injection with the extracellular domain of the purified recombinant human TLR3 protein. The first and second protein immunizations, with 15 µg protein, occurred two and four weeks after the second plasmid 45 DNA injection. The third boost (10 µg protein) occurred five months later. Three days prior to the harvest of the spleens, the mice were injected intravenously with the TLR3 protein (15 µg/mouse). B cell fusions were performed using standard methods (Kohler *et al.*, *supra*). Hybridomas were selected using media containing hypoxanthine-aminopterinthymidine. Wells were screened by ELISA to detect anti-TLR3 antibodies. Positive wells were expanded and cloned using limiting dilution. A large batch of antibody was prepared and purified using a Protein G column. The endotoxin levels were confirmed to be <1 EU/mg. mAb C1130 was generated in this manner. The antibody sequence is shown in Figs. 1 and 2.

50

Example 2

Isolation of Human Periperal Blood Mononuclear Cells

[0063] PBMCs were isolated from human blood. Whole blood was collected from a human donor into heparin-coated 55 syringes. Approximately 50 mL of sterile Hank's Balanced Salt Solution (HBSS) (Invitrogen) was added to every 100 mL of blood. Thirtyeight mL of blood:HBSS were added to a 50 mL conical tube and 11 mL Ficoll-Paque Plus solution (Amersham) was slowly layered underneath. The tubes were centrifuged at 400x g for 40 minutes at room temperature.

The centrifuge brake was turned off to preserve the gradient. The PBMCs form a white layer just above the Ficoll. The PBMCs from one conical were aspirated with a pipette into a new 50 mL conical. The tube was filled with HBSS to wash away the remainder of the Ficoll. The cells were spun at 600x g for 10 minutes. The supernatant was poured off and the pellet was resuspended in 10 mL Red Blood Cell Lysis Solution (Sigma) in a single tube. The tube was incubated at room temperature for ten minutes. The tube was brought to 50 mL with HBSS, and the cells were pelleted by centrifugation at 600x g. The cells were washed twice more with HBSS. After the final wash the pellet was resuspended in complete media: RPMI 1640 media/10% FBS/1X Non-Essential Amino Acids/ 1X Sodium Pyruvate/ 10 ug/mL gentamycin. Gentamycin was purchased from Sigma; the other media components were purchased from Invitrogen. An aliquot of the cells was removed and mixed with 50 μ L trypan blue to obtain a live cell count. The cells were plated in 48-well plates at a concentration of 3×10^6 cells/well (0.5 mL/well).

Example 3

Determination of Anti-hTLR3 Antibody Effects on Cytokine/Chemokine Production

[0064] Purified antibodies were added to PBMCs to a final concentration of 20 μ g/mL. The cells and the antibodies were incubated at 37°C for 30 minutes to one hour before the addition of 1 μ g/mL CpG2216 (synthesized by Invitrogen), or 1 μ g/mL R848 (Invivogen). CpG2216 has the sequence 5'-ggG GGA CGA TCG TCg ggg gg-3'. The bases in capital letters are linked by phosphodiester bonds and those in lowercase are linked by phosphorothioate bonds. R848, also known as resiquimod, is an imidazoquinolinamine, and is in the same compound class as imiquimod. Supernatants were harvested after 24h and frozen at -20°C.

[0065] Cytokine and chemokine concentrations in the supernatants were measured using Luminex technology. A Luminex Kit from Biosource was used to measure the following cytokines/chemokines: IL- β , IL-6, IL-8, IL-10, IL-12, TNF α , IFN α , IFN γ , RANTES, MCP-1, MIP-1 α and IP-10. In some instances, IFN α levels were measured using an ELISA kit (PBL Biomedical Labs). Statistical analysis was performed using two-factor analysis of variance with follow-up pairwise comparisons.

[0066] The results are shown in Fig. 3 and indicate that incubation of PBMCs with C1130 resulted in the production of IL-8, MCP-1, MIP-1 α , RANTES, and TNF α by the human cells (n=3 experiments). These effects were not seen in PBMCs incubated with another anti-TLR3 murine IgG1 antibody, C1068 that was generated in a similar manner to C1130. Lots of purified antibody were tested for endotoxin and the levels were below 1 EU/mg.

Example 4

Determination of Anti-hTLR3 Antibody Effects on IFN α Production

[0067] Since some TLRs are known to dimerize and/or use different adaptor proteins to alter ligand-binding specificity, PBMCs that were pretreated with the anti-hTLR3 antibody C1130 were stimulated with ligands for other TLRs, in particular CpG2216 as described in Example 3 to examine the effect of TLR3 modulation on the response to other TLR ligands. Since the ligands for TLR3 and TLR9 are nucleic acids, and both activate interferon secretion, it was hypothesized that they could share a signaling pathway. The results from three experiments are shown in Fig. 4 and indicate that PBMCs incubated with C1130 and CpG2216 secreted more IFN α than cells stimulated with CpG alone. The average increase was 7-fold.

Example 5

Determination of Anti-hTLR3 Antibody Effects on IL10 Production

[0068] The ligands for TLR7 and TLR8 are also nucleic acids. R848 (resiquimod) is a synthetic ligand for TLR7 and TLR8 in humans, which have been shown to recognize guanosine- and uridine-rich single-stranded RNA (Heil et al., Science 5663: 1526, 2004) and was used to stimulate human PBMCs. Activation of TLR7, like TLR3, triggers the secretion of Type-I interferons. The results in Fig. 5 indicate that C1130 did not affect levels of IFN α secreted by PBMCs in response to R848. Though PBMCs usually secrete very high levels of IFN α in response to R848, in two of three experiments stimulation with R848 induced the production of ~500 pg/mL IFN α (a level low enough to presumably see any effect by an agonist or antagonist mAb). C1130 did affect R848-induced IL-10 levels. In three experiments, C1130 decreased R848-induced IL-10 by an average of 5-fold.

Example 6**Recognition of Epithelial Cell Surface TLR3 by Antibody C1130**

5 [0069] Flow cytometry analyses were conducted on a Fluorescence-Activated Cell Sorter (FACS) instrument. C1130 antibody was conjugated to APC using a Zenon mouse IgG1 labeling kit according to the manufacturer's protocol. Five microliters of labeling reagent per 1 μ g of mAb were incubated for 5 minutes at room temperature and protected from light. Blocking reagent was added at a ratio of 5 μ l to 1 μ g of mAb according to the manufacturer's protocol. Zenon-labeled antibodies were used within 30 minutes of conjugation. HEK293 (human embryonic kidney epithelial cells) that were stably transfected with human TLR3 were purchased from Invivogen.

10 [0070] 293-TLR3 were fixed by 15 minute incubation in Cytofix either prior to or following staining. Approximately 1x10⁶ cells in 50 μ l were incubated with APC-labeled antibody in 96-well round bottom plate for 30-60 minutes on ice. Cells were washed 3 times in PBS+1% FBS by centrifugation at 1600rpm for 2 minutes. Data acquisition was performed on a Becton-Dickinson FACSCalibur instrument and data analysis was performed using WinList (Verity Software House, 15 Topsham, ME).

19 [0071] The results in Fig. 6 show that antibody C1130 binds to surface TLR3 on 293-hTLR3 cells fixed either before or after staining. A commercially available PE-labeled anti-hTLR3 (clone 3.7) was used as a positive control and Zenon APC-labeled mouse IgG1 as a negative control. These data demonstrate that the anti-hTLR3 antibody C1130 recognizes epithelial cells.

Example 7**Recognition of Lung Epithelial Cell Surface TLR3 by Antibody C1130**

25 [0072] A549 cells, a human lung epithelial cell line, were obtained from the American Type Culture Collection (ATCC Accession No. CCL-185). Cells were transfected with a mammalian expression vector encoding a neomycin selectable marker along with a full-length copy of the human TLR3 gene under the control of the cytomegalovirus (CMV) promoter using Lipofectamine 2000 reagent (Invitrogen, Inc). A549 cells were also transfected in parallel with the vector plasmid DNA-only (encoding neomycin resistance) as a control. Twenty-four hours post-transfection, cells were then trypsinized and seeded at dilution of 1:20 in media containing neomycin (G418) at 0.5 mg/ml. Cell clones appeared after 2 weeks growth in selection media containing G418. Cell colonies from each transfection were separately pooled. A549 cell lines derived from transfection and selection with the full-length human TLR3 expression vector (A549-hTLR3) or vector control (A549-neo) were maintained in growth media containing 0.5 mg/ml of G418.

30 [0073] C1130 antibody was conjugated to APC as described in Example 7. A549-TLR3.2 cells were fixed by 15 minute incubation in Cytofix either prior to or following staining. Approximately 1x10⁶ cells in 50 μ l were incubated with APC-labeled antibody in 96-well round bottom plate for 30-60 minutes on ice. Cells were washed 3 times in PBS+1% FBS by centrifugation at 1600rpm for 2 minutes. Data acquisition and analysis was performed as described in Example 7. The results in Fig. 7 shows that C1130 binds to surface TLR3 on A549-TLR3.2 cells fixed either before or after staining. 35 A commercially available PE-labeled anti-TLR3 (Clone 3.7) was used as a positive control and Zenon APC-labeled mouse IgG1 as a negative control. The ability of C1130 to recognize lung epithelial cells indicates that it has potential therapeutic use in pulmonary infections.

Example 8**Recognition of Cynomolgus White Blood Cells by Antibody C1130**

45 [0074] Whole blood from Cynomolgus macaques was diluted 1:10 in FACSlyse buffer and incubated for 15 minutes at room temperature to lyse the red blood cells. Cells were then washed in PBS+1% FBS 4 times by centrifugation at 1400 rpm for 8 minutes. The resulting cell pellet was resuspended in PBS+1% FBS and counted manually using a hemacytometer. Cell viability was determined by staining a sample cell population with 0.2% trypan blue. All samples tested were at least 95% viable.

50 [0075] The total cell pellet was resuspended in 1-2 ml of PBS supplemented with 10% FBS and kept at either 4°C or 37°C to evaluate for differences in receptor internalization. Fifty microliters (approximately 2x10⁶ cells) were distributed to each well in 96-well round bottom plates. FITC, PE and APC labeled mAbs were added at 1 μ g per well, incubated for at least 30 minutes at either 4°C or 37°C and, protected from light. Cells were then washed 3 times in PBS + 1% FBS by centrifugation at 1600 rpm for 2 minutes. After the final wash the cells were resuspended in Cytofix buffer and incubated for 15 minutes at either 4°C or 37°C. Following paraformaldehyde fixation in the Cytofix buffer, the cells were washed once by centrifugation at 1600 rpm for 2 minutes and resuspended in 200 μ l of PBS+1% FBS. Samples were either

<210> 2

<211> 904

<212> PRT

<213> Homo sapiens

<400> 2

EP 1 945 820 B1

Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro
1 5 10 15
Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His
20 25 30
5 Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp
35 40 45
Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg
50 55 60
10 Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu
65 70 75 80
Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln
85 90 95
Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser
100 105 110
15 Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu
115 120 125
His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val
130 135 140
20 Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser
145 150 155 160
Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu
165 170 175
Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp
180 185 190
25 Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln
195 200 205
Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe
210 215 220

30

35

40

45

50

55

	Gly	Leu	Phe	Leu	Asn	Asn	Val	Gln	Leu	Gly	Pro	Ser	Leu	Thr	Glu	Lys	
225							230				235				240		
	Leu	Cys	Leu	Glu	Leu	Ala	Asn	Thr	Ser	Ile	Arg	Asn	Leu	Ser	Leu	Ser	
							245				250				255		
5		Asn	Ser	Gln	Leu	Ser	Thr	Thr	Ser	Asn	Thr	Thr	Phe	Leu	Gly	Leu	Lys
							260				265				270		
	Trp	Thr	Asn	Leu	Thr	Met	Leu	Asp	Leu	Ser	Tyr	Asn	Asn	Leu	Asn	Val	
							275				280				285		
10		Val	Gly	Asn	Asp	Ser	Phe	Ala	Trp	Leu	Pro	Gln	Leu	Glu	Tyr	Phe	Phe
							290				295				300		
	Leu	Glu	Tyr	Asn	Asn	Ile	Gln	His	Leu	Phe	Ser	His	Ser	Leu	His	Gly	
							305				310				315		
		Leu	Phe	Asn	Val	Arg	Tyr	Leu	Asn	Leu	Lys	Arg	Ser	Phe	Thr	Lys	Gln
							325				330				335		
15		Ser	Ile	Ser	Leu	Ala	Ser	Leu	Pro	Lys	Ile	Asp	Asp	Phe	Ser	Phe	Gln
							340				345				350		
	Trp	Leu	Lys	Cys	Leu	Glu	His	Leu	Asn	Met	Glu	Asp	Asn	Asp	Ile	Pro	
							355				360				365		
20		Gly	Ile	Lys	Ser	Asn	Met	Phe	Thr	Gly	Leu	Ile	Asn	Leu	Lys	Tyr	Leu
							370				375				380		
	Ser	Leu	Ser	Asn	Ser	Phe	Thr	Ser	Leu	Arg	Thr	Leu	Thr	Asn	Glu	Thr	
							385				390				395		
		Phe	Val	Ser	Leu	Ala	His	Ser	Pro	Leu	His	Ile	Leu	Asn	Leu	Thr	Lys
							405				410				415		
25		Asn	Lys	Ile	Ser	Lys	Ile	Glu	Ser	Asp	Ala	Phe	Ser	Trp	Leu	Gly	His
							420				425				430		
		Leu	Glu	Val	Leu	Asp	Leu	Gly	Leu	Asn	Glu	Ile	Gly	Gln	Glu	Leu	Thr
							435				440				445		
		Gly	Gln	Glu	Trp	Arg	Gly	Leu	Glu	Asn	Ile	Phe	Glu	Ile	Tyr	Leu	Ser
							450				455				460		
30		Tyr	Asn	Lys	Tyr	Leu	Gln	Leu	Thr	Arg	Asn	Ser	Phe	Ala	Leu	Val	Pro
							465				470				475		
		Ser	Leu	Gln	Arg	Leu	Met	Leu	Arg	Arg	Val	Ala	Leu	Lys	Asn	Val	Asp
							485				490				495		
35		Ser	Ser	Pro	Pro	Phe	Gln	Pro	Leu	Arg	Asn	Leu	Thr	Ile	Leu	Asp	
							500				505				510		
		Leu	Ser	Asn	Asn	Ile	Ala	Asn	Ile	Asn	Asp	Asp	Met	Leu	Glu	Gly	
							515				520				525		
		Leu	Glu	Lys	Leu	Glu	Ile	Leu	Asp	Leu	Gln	His	Asn	Asn	Leu	Ala	Arg
							530				535				540		
40		Leu	Trp	Lys	His	Ala	Asn	Pro	Gly	Gly	Pro	Ile	Tyr	Phe	Leu	Lys	Gly
							545				550				555		
		Leu	Ser	His	Leu	His	Ile	Leu	Asn	Leu	Glu	Ser	Asn	Gly	Phe	Asp	Glu
							565				570				575		
		Ile	Pro	Val	Glu	Val	Phe	Lys	Asp	Leu	Phe	Glu	Leu	Lys	Ile	Ile	Asp
							580				585				590		
45		Leu	Gly	Leu	Asn	Asn	Leu	Asn	Thr	Leu	Pro	Ala	Ser	Val	Phe	Asn	Asn
							595				600				605		
		Gln	Val	Ser	Leu	Lys	Ser	Leu	Asn	Leu	Gln	Lys	Asn	Leu	Ile	Thr	Ser
							610				615				620		
50		Val	Glu	Lys	Lys	Val	Phe	Gly	Pro	Ala	Phe	Arg	Asn	Leu	Thr	Glu	Leu
							625				630				635		
		Asp	Met	Arg	Phe	Asn	Pro	Phe	Asp	Cys	Thr	Cys	Glu	Ser	Ile	Ala	Trp
							645				650				655		

Phe Val Asn Trp Ile Asn Glu Thr His Thr Asn Ile Pro Glu Leu Ser
 660 665 670
 Ser His Tyr Leu Cys Asn Thr Pro Pro His Tyr His Gly Phe Pro Val
 675 680 685
 5 Arg Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu Leu
 690 695 700
 Phe Phe Met Ile Asn Thr Ser Ile Leu Leu Ile Phe Ile Phe Ile Val
 705 710 715 720
 10 Leu Leu Ile His Phe Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val
 725 730 735
 Ser Val His Arg Val Leu Gly Phe Lys Glu Ile Asp Arg Gln Thr Glu
 740 745 750
 Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp
 755 760 765
 15 Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu
 770 775 780
 Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu
 785 790 795 800
 Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val
 20 805 810 815
 Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val
 820 825 830
 His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile
 835 840 845
 25 Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu
 850 855 860
 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro
 865 870 875 880
 Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala
 885 890 895
 30 Leu Gly Ser Lys Asn Ser Val His
 900

<210> 3
 <211> 2109
 35 <212> DNA
 <213> Homo sapiens

<400> 3

40 atgagacaga ctttgccttg tatctacttt tgggggggccc ttttgcctt tgggatgctg 60
 tgtgcacccctt ccaccaccaa gtgcactgtt agccatgaag ttgctgactg cagccacctg 120
 aagtgtactc aggtacccga tggatctaccc acaaacataa cagtgttggaa ccttacccat 180
 aatcaactca gaagattacc agccgccaac ttcacaaggat atagccagct aactagctt 240
 gatgttagat ttaacaccat ctcaaaaactg gagccagaat tggccagaa acttcccatt 300
 ttaaaaagttt tgaacctcca gcacaaatgag ctatctcaac tttctgataa aaccctttgcc 360
 ttctgcacga atttgactga actccatctc atgtccaact caatccagaa aattaaaaat 420
 aatcccttttgc tcaaggcagaa gaatttaatc acatttagatc tggcttcataa tggcttgtca 480
 tctacaaaaat taggaactca ggttcagctg gaaaatctcc aagagcttctt attatcaaac 540
 aataaaaattc aaggcgctaaa aagtgaagaa ctggatatact ttgccaattc atctttaaaa 600
 50 aaatttagatgt tggcatcgaa tcaaattaaa gagttttctc cagggtgttt tcacgcaatt 660
 ggaagattat ttggcctctt tctgaacaat gtccagctgg gtcccagcct tacagagaag 720
 ctatgtttgg aatttagcaaa cacaaggattt cggaaatctgtt ctctgagtaa cagccagctg 780
 tccaccacca gcaatacacaac tttcttggga ctaaagtggaa caaatctcac tatgctcgat 840

cttccttaca acaaacttaaa tgtggttgggt aacgattcct ttgcttggt tccacaacta 900
gaatatttct tccttagagta taataatata cagcatttgt tttctcaactc tttgcacggg 960
ctttcaatg tgaggtacct gaatttggaa cggtctttta ctaaacaag tattttccctt 1020
gcctcactcc ccaagattga tgattttct tttcagtggt taaaatgttt ggagcacctt 1080
aacatggaag ataatgatat tccaggcata aaaagcaata tgttcacagg attgataaac 1140
ctgaaatact taagtctatc caactccctt acaagttgc gaactttgac aaatgaaaaca 1200
tttgtatcac ttgctcattt tcccttacac atactcaacc taaccaagaa taaaatctca 1260
aaaatagaga gtgtatgcttt ctcttggtt ggccacccat aagttacttga cctgggcctt 1320
aatgaaattt ggcaagaact cacaggccag gaatggagag gtctagaaaa tattttcgaa 1380
atctatcttt cctacaacaa gtacctgcag ctgacttagga actcccttgc cttggccca 1440
agccttcaac gactgatgct ccgaagggtt gcccattttttt atgtggatag ctctccctca 1500
ccattccagc ctcttcgttaa ctggaccatt ctggatctaa gcaacaacaa catagccaaac 1560
ataaatgatg acatgttggg gggcttggag aaactagaaa ttctcgattt gcagcataac 1620
aacttagcac ggctctggaa acacgcaaaac cctgggtgtc ccatttattt cctaaagggt 1680
ctgtctcacc tccacatcct taacttggag tccaacggct ttgacgagat cccagtttag 1740
gtcttcaagg atttatttga actaaagatc atcgatttag gattgaataa tttaaacaca 1800
cttccagcat ctgtctttaa taatcaggtg tctctaaagt cattgaacct tcagaagaat 1860
ctcataacat ccgttgagaaa gaaggtttc gggccagct tcaggaacct gactgagtt 1920
gatatgcgct ttaatccctt tgattgcacg tggaaagta ttgcctggtt tggtaattgg 1980
attaacgaga cccataccaa catccctgag ctgtcaagcc actacctttt caacactcca 2040
cctcaactatc atgggttccc agtgagactt tttgatacat catcttgcaaa agacagtgcc 2100
ccctttgaa 2109

<210> 4

<211> 703

<212> PRT

<213> Homo sapiens

<400> 4

Met	Arg	Gln	Thr	Leu	Pro	Cys	Ile	Tyr	Phe	Trp	Gly	Gly	Leu	Leu	Pro	
1				5					10				15			
Phe	Gly	Met	Leu	Cys	Ala	Ser	Ser	Thr	Thr	Lys	Cys	Thr	Val	Ser	His	
				20				25					30			
Glu	Val	Ala	Asp	Cys	Ser	His		Leu	Lys	Leu	Thr	Gln	Val	Pro	Asp	Asp
							35		40			45				
Leu	Pro	Thr	Asn	Ile	Thr	Val	Leu	Asn	Leu	Thr	His	Asn	Gln	Leu	Arg	
						50		55			60					
Arg	Leu	Pro	Ala	Ala	Asn	Phe	Thr	Arg	Tyr	Ser	Gln	Leu	Thr	Ser	Leu	
						65		70		75			80			
Asp	Val	Gly	Phe	Asn	Thr	Ile	Ser	Lys	Leu	Glu	Pro	Glu	Leu	Cys	Gln	
						85			90			95				
Lys	Leu	Pro	Met	Leu	Lys	Val	Leu	Asn	Leu	Gln	His	Asn	Glu	Leu	Ser	
						100			105			110				
Gln	Leu	Ser	Asp	Lys	Thr	Phe	Ala	Phe	Cys	Thr	Asn	Leu	Thr	Glu	Leu	
						115			120			125				
His	Leu	Met	Ser	Asn	Ser	Ile	Gln	Lys	Ile	Lys	Asn	Asn	Pro	Phe	Val	
						130		135			140					
Lys	Gln	Lys	Asn	Leu	Ile	Thr	Leu	Asp	Leu	Ser	His	Asn	Gly	Leu	Ser	
						145		150			155			160		
Ser	Thr	Lys	Leu	Gly	Thr	Gln	Val	Gln	Leu	Glu	Asn	Leu	Gln	Glu	Leu	
						165			170			175				
Leu	Leu	Ser	Asn	Asn	Lys	Ile	Gln	Ala	Leu	Lys	Ser	Glu	Glu	Leu	Asp	
						180			185			190				

	Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln			
	195	200	205	
	Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe			
5	210	215	220	
	Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys			
	225	230	235	240
	Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser			
	245	250	255	
10	Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys			
	260	265	270	
	Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val			
	275	280	285	
	Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe			
15	290	295	300	
	Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly			
	305	310	315	320
	Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln			
	325	330	335	
20	Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln			
	340	345	350	
	Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro			
	355	360	365	
	Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu			
	370	375	380	
25	Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr			
	385	390	395	400
	Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys			
	405	410	415	
	Asn Lys Ile Ser Lys Ile Glu Ser Asp Ala Phe Ser Trp Leu Gly His			
	420	425	430	
30	Leu Glu Val Leu Asp Leu Gly Leu Asn Glu Ile Gly Gln Glu Leu Thr			
	435	440	445	
	Gly Gln Glu Trp Arg Gly Leu Glu Asn Ile Phe Glu Ile Tyr Leu Ser			
	450	455	460	
	Tyr Asn Lys Tyr Leu Gln Leu Thr Arg Asn Ser Phe Ala Leu Val Pro			
35	465	470	475	480
	Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val Asp			
	485	490	495	
	Ser Ser Pro Ser Pro Phe Gln Pro Leu Arg Asn Leu Thr Ile Leu Asp			
	500	505	510	
40	Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Asp Asp Met Leu Glu Gly			
	515	520	525	
	Leu Glu Lys Leu Glu Ile Leu Asp Leu Gln His Asn Asn Leu Ala Arg			
	530	535	540	
	Leu Trp Lys His Ala Asn Pro Gly Gly Pro Ile Tyr Phe Leu Lys Gly			
45	545	550	555	560
	Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Phe Asp Glu			
	565	570	575	
	Ile Pro Val Glu Val Phe Lys Asp Leu Phe Glu Leu Lys Ile Ile Asp			
	580	585	590	
	Leu Gly Leu Asn Asn Leu Asn Thr Leu Pro Ala Ser Val Phe Asn Asn			
50	595	600	605	
	Gln Val Ser Leu Lys Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser			
	610	615	620	

EP 1 945 820 B1

Val Glu Lys Lys Val Phe Gly Pro Ala Phe Arg Asn Leu Thr Glu Leu
 625 630 635 640
 Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ala Trp
 645 650 655
 5 Phe Val Asn Trp Ile Asn Glu Thr His Thr Asn Ile Pro Glu Leu Ser
 660 665 670
 Ser His Tyr Leu Cys Asn Thr Pro Pro His Tyr His Gly Phe Pro Val
 675 680 685
 10 Arg Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu
 690 695 700

<210> 5

<211> 399

<212> DNA

15 <213> Mus musculus

<400> 5

20 atggaatgta actggatact tcctttatt ctgtcgtaa tttcaggggt ctactcagag 60
 gttcagctcc agcagtcgtt gactgtgtctg gcaaggcctg gggcttcgtt gaagatgtcc 120
 tgcaaggctt ctggctacag gtttccagc tacggatgc actgggtaaa acagaggcct 180
 ggacagggtc tagaatggat tgggtctatt tatcctggaa acaatgatata tacttatact 240
 cagaagttca agggcaaggc caaactgact gcagtcacat ccgcccagcac tacctacatg 300
 25 gaactcagca gcctgacaaa tgaagactct gcggcttatt actgttcaac tctaattttt 360
 gcttattttt gccaagggac tctggtaact gtcactgca 399

<210> 6

<211> 133

<212> PRT

30 <213> Mus musculus

<400> 6

35 Met Glu Cys Asn Trp Ile Leu Pro Phe Ile Leu Ser Val Ile Ser Gly
 1 5 10 15
 Val Tyr Ser Glu Val Gln Leu Gln Gln Ser Gly Thr Val Leu Ala Arg
 20 25 30
 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Arg Phe
 35 40 45
 40 Ser Ser Tyr Gly Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
 50 55 60
 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Asn Asp Ile Thr Tyr Thr
 65 70 75 80
 45 Gln Lys Phe Lys Gly Lys Ala Lys Leu Thr Ala Val Thr Ser Ala Ser
 85 90 95
 Thr Thr Tyr Met Glu Leu Ser Ser Leu Thr Asn Glu Asp Ser Ala Val
 100 105 110
 Tyr Tyr Cys Ser Thr Leu Met Phe Ala Tyr Trp Gly Gln Gly Thr Leu
 115 120 125
 50 Val Thr Val Thr Ala
 130

<210> 7

<211> 19

55 <212> PRT

<213> Mus musculus

<400> 7

EP 1 945 820 B1

Met Glu Cys Asn Trp Ile Leu Pro Phe Ile Leu Ser Val Ile Ser Gly
1 5 10 15
Val Tyr Ser

5
<210> 8
<211> 25
<212> PRT
<213> Mus musculus
10
<400> 8

15 Glu Val Gln Leu Gln Gln Ser Gly Thr Val Leu Ala Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Ala Ser
20 25

20 <210> 9
<211> 10
<212> PRT
<213> Mus musculus
25
<400> 9

25 Gly Tyr Arg Phe Ser Ser Tyr Gly Met His
1 5 10

30 <210> 10
<211> 14
<212> PRT
<213> Mus musculus
35
<400> 10

35 Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
1 5 10
<210> 11
<211> 17
40 <212> PRT
<213> Mus musculus
<400> 11

45 Ala Ile Tyr Pro Gly Asn Asn Asp Ile Thr Tyr Thr Gln Lys Phe Lys
1 5 10 15
Gly

50 <210> 12
<211> 32
<212> PRT
<213> Mus musculus
55 <400> 12

EP 1 945 820 B1

Lys Ala Lys Leu Thr Ala Val Thr Ser Ala Ser Thr Thr Tyr Met Glu
1 5 10 15
Leu Ser Ser Leu Thr Asn Glu Asp Ser Ala Val Tyr Tyr Cys Ser Thr
20 25 30

5

<210> 13

<211> 5

<212> PRT

<213> Mus musculus

10

<400> 13

Leu Met Phe Ala Tyr
1 5

15

<210> 14

<211> 11

<212> PRT

<213> Mus musculus

20

<400> 14

Trp Gly Gln Gly Thr Leu Val Thr Val Thr Ala
1 5 10

25

<210> 15

<211> 387

<212> DNA

<213> Mus musculus

30

<400> 15

atggacatga gggttcctgc tcacgttttt ggcttcttgt tgctctggtt tccaggtacc 60
agatgtgaca tccagatgac ccagtctcca tcttccttat ctgcctctct gggagaaaga 120
gtcagtctca ctgtcgggc aagtcaaggaa attagtgatc acttaagttg gcttcagcag 180
aaatcggtg gaactattaa acgcctggtc tatgccgcat ccactttaga ttctgggtgc 240
ccaaaaaggt tcagtggcag taggtctggg tcagactttt ctctcaccat cagcagcctt 300
gagtctgaag atttgcaga ctattactgt ctacgatatg ataattatcc gtggacgttc 360
ggtgaggca ccaggctgga aatcaga 387

40

<210> 16

<211> 129

<212> PRT

<213> Mus musculus

45

<400> 16

Met Asp Met Arg Val Pro Ala His Val Phe Gly Phe Leu Leu Leu Trp
1 5 10 15

50

55

EP 1 945 820 B1

Phe Pro Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30
Leu Ser Ala Ser Leu Gly Glu Arg Val Ser Leu Thr Cys Arg Ala Ser
35 40 45
5 Gln Glu Ile Ser Asp His Leu Ser Trp Leu Gln Gln Lys Ser Gly Gly
50 55 60
Thr Ile Lys Arg Leu Val Tyr Ala Ala Ser Thr Leu Asp Ser Gly Val
65 70 75 80
10 Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Phe Ser Leu Thr
85 90 95
Ile Ser Ser Leu Glu Ser Glu Asp Phe Ala Asp Tyr Tyr Cys Leu Arg
100 105 110
Tyr Asp Asn Tyr Pro Trp Thr Phe Gly Ala Gly Thr Arg Leu Glu Ile
115 120 125
15 Arg

<210> 17

<211> 22

<212> PRT

20 <213> Mus musculus

<400> 17

25 Met Asp Met Arg Val Pro Ala His Val Phe Gly Phe Leu Leu Leu Trp
1 5 10 15
Phe Pro Gly Thr Arg Cys
20

<210> 18

30 <211> 23

<212> PRT

<213> Mus musculus

<400> 18

35 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Glu Arg Val Ser Leu Thr Cys
20

40 <210> 19

<211> 11

<212> PRT

45 <213> Mus musculus

<400> 19

50 Arg Ala Ser Gln Glu Ile Ser Asp His Leu Ser
1 5 10

<210> 20

<211> 15

<212> PRT

55 <213> Mus musculus

<400> 20

Trp Leu Gln Gln Lys Ser Gly Gly Thr Ile Lys Arg Leu Val Tyr
 1 5 10 15

5 <210> 21
 <211> 7
 <212> PRT
 <213> Mus musculus

10 <400> 21

Ala Ala Ser Thr Leu Asp Ser
 1 5

15 <210> 22
 <211> 32
 <212> PRT
 <213> Mus musculus

20 <400> 22

Gly Val Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Phe Ser
 1 . 5 10 15
 Leu Thr Ile Ser Ser Leu Glu Ser Glu Asp Phe Ala Asp Tyr Tyr Cys
 20 25 30

25 <210> 23
 <211> 9
 <212> PRT
 <213> Mus musculus

30 <400> 23

Leu Arg Tyr Asp Asn Tyr Pro Trp Thr
 1 5

35 <210> 24
 <211> 10
 <212> PRT
 <213> Mus musculus

40 <400> 24

Phe Gly Ala Gly Thr Arg Leu Glu Ile Arg
 1 5 10

Claims

50 1. An isolated antibody reactive with hTLR3:

comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOs: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOs: 19, 21 and 23; or

55 comprising a heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6 and a light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

2. A hybridoma cell line that produces the antibody of claim 1.

3. An isolated polynucleotide encoding:

5 an antibody heavy chain comprising the CDR amino acid sequences shown in SEQ ID NOs: 9, 11 and 13;
 an antibody light chain comprising the CDR amino acid sequences shown in SEQ ID NOs: 19, 21 and 23;
 an antibody heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6. or
 an antibody light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

4. The polynucleotide of claim 3 comprising the sequence shown in SEQ ID NO: 5.

10 5. The polynucleotide of claim 3 comprising the sequence shown in SEQ ID NO: 15.

6. A vector comprising at least one polynucleotide of any one of claims 3, 4 or 5.

15 7. A host cell comprising the polynucleotide of any one of claims 3, 4 or 5.

15 8. A method of making an antibody reactive with hTLR3 comprising culturing the host cell of claim 7 and recovering
 the antibody produced by the host cell.20 **Patentansprüche**

1. Isolierter Antikörper, der mit hTLR3 reagiert,
 25 umfassend die Aminosäuresequenzen der komplementaritätsbestimmenden Regionen (CDRs) der schweren Kette
 gemäß SEQ ID NOs: 9, 11 und 13 und die Aminosäuresequenzen der CDRs der leichten Kette gemäß SEQ ID
 NOs: 19, 21 und 23; oder
 umfassend eine schwere Kette, umfassend die Aminosäuresequenz gemäß SEQ ID NO: 6 und eine leichte Kette,
 umfassend die Aminosäuresequenz gemäß SEQ ID NO: 16.

30 2. Hybridomzelllinie, die den Antikörper nach Anspruch 1 produziert.

30 3. Isoliertes Polynukleotid, das für Folgendes codiert:

35 eine schwere Antikörperkette, umfassend die CDR-Aminosäuresequenzen gemäß SEQ ID NOs: 9, 11 und 13;
 eine leichte Antikörperkette, umfassend die CDR-Aminosäuresequenzen gemäß SEQ ID NO: 19, 21 und 23;
 eine schwere Antikörperkette, umfassend die Aminosäuresequenz gemäß SEQ ID NO: 6 oder
 eine leichte Antikörperkette, umfassend die Aminosäuresequenz gemäß SEQ ID NO: 16.

40 4. Polynukleotid nach Anspruch 3, umfassend die Sequenz gemäß SEQ ID NO: 5.

40 5. Polynukleotid nach Anspruch 3, umfassend die Sequenz gemäß SEQ ID NO: 15.

45 6. Vektor, umfassend mindestens ein Polynukleotid nach einem der Ansprüche 3, 4 oder 5.

7. Wirtszelle, umfassend das Polynukleotid nach einem der Ansprüche 3, 4 oder 5.

45 8. Verfahren zur Herstellung eines Antikörpers, der mit hTLR3 reagiert, bei dem die Wirtszelle nach Anspruch 7 kultiviert
 wird und der von der Wirtszelle produzierte Antikörper gewonnen wird.50 **Revendications**

1. Anticorps isolé réactif avec hTLR3 :

55 comprenant les séquences d'acides aminés des régions déterminant la complémentarité (CDR) de chaîne
 lourde telles que décrites dans SEQ ID NO: 9, 11 et 13 et les séquences d'acides aminés des CDR de chaîne
 légère telles que décrites dans SEQ ID NO: 19, 21 et 23 ; ou
 comprenant une chaîne lourde comprenant la séquence d'acides aminés décrite dans SEQ ID NO: 6 et une
 chaîne légère comprenant la séquence d'acides aminés décrite dans SEQ ID NO: 16.

2. Lignée cellulaire d'hybridome qui produit l'anticorps de revendication 1.

3. Polynucléotide isolé codant pour :

5 une chaîne lourde d'anticorps comprenant les séquences d'acides aminés de CDR décrites dans SEQ ID NO: 9, 11 et 13 ;

une chaîne légère d'anticorps comprenant les séquences d'acides aminés de CDR décrites dans SEQ ID NO: 19, 21 et 23 ;

une chaîne lourde d'anticorps comprenant la séquence d'acides aminés décrite dans SEQ ID NO: 6 ; ou

10 une chaîne légère d'anticorps comprenant la séquence d'acides aminés décrite dans SEQ ID NO: 16.

4. Polynucléotide de la revendication 3 comprenant la séquence décrite dans SEQ ID NO: 5.

5. Polynucléotide de la revendication 3 comprenant la séquence décrite dans SEQ ID NO: 15.

15 6. Vecteur comprenant au moins un polynucléotide de l'une quelconque des revendications 3, 4 ou 5.

7. Cellule hôte comprenant le polynucléotide de l'une quelconque des revendications 3, 4 ou 5.

20 8. Procédé de fabrication d'un anticorps réactif avec hTLR3 comprenant la culture de la cellule hôte de la revendication 7 et la récupération de l'anticorps produit par la cellule hôte.

25

30

35

40

45

50

55

Figure 1

Nucleotide sequence for C1130 heavy chain variable region

ATGGAATGTAACGGATACTCCTTTATTCTGTCGGAATTCAGGGGTCTACTCAGAGGTTCAAGGC
AGCTCCAGCAGTCTGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAAGATGTCCTGCAAGGC
TTCTGGCTACAGGTTTCCAGCTACGGGATGCACTGGTAAAACAGAGGCCTGGACAGGGTCTA
GAATGGATTGGTCTATTATCCTGAAACAATGATATTACTTATACTCAGAAGTTCAAGGGCA
AGGCCAAACTGACTGCAGTCACATCCGCCAGCACTACCTACATGGAACTCAGCAGCCTGACAAA
TGAAGACTCTGCGGTCTATTACTGTTCAACTCTAATGTTGCTTATTGGGGCCAAGGGACTCTG
GTCACTGTCACTGCA (SEQ ID NO: 5)

Amino Acid sequence for C1130 Heavy Chain variable region

MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVKMSCKASGYRFSSYGMHWVKQRPGQQGL
EWIGAIYPGNNDITYTQKFKGKAKLTAVTSASTTYMELSSLTNEDSAVYYCSTLMFAYWGQGTL
VTVTA (SEQ ID NO: 6)

Signal Sequence

MECNWILPFILSVISGVY (SEQ ID NO: 7)

FR1

EVQLQQSGTVLARPGASVKMSCKAS (SEQ ID NO: 8)

CDR1

GYRFSSYGMH (SEQ ID NO: 9)

FR2

WVKQRPGQGLEWIG (SEQ ID NO: 10)

CDR2

AIYPGNNDITYTQKFKG (SEQ ID NO: 11)

FR3

KAKLTAVTSASTTYMELSSLTNEDSAVYYCST (SEQ ID NO: 12)

CDR3

LMFAY (SEQ ID NO: 13)

Mouse J HC

WGQGTLVTVTA (SEQ ID NO: 14)

Figure 2

Nucleotide sequence for C1130 Light Chain variable region

ATGGACATGAGGGTTCTGCTCACGTTGGCTTCTGGTGTCTGGTTCCAGGTACAGAT
GTGACATCCAGATGACCCAGTCTCCATCTCCTATCTGCCTCTGGGAGAAAGAGTCAGTCT
CACTTGTGCGGCAAGTCAGGAAATTAGTGATCACTTAAGTTGGCTTCAGCAGAAATCGGGTGG
ACTATTAAACGCCTGGTCTATGCCGATCCACTTAGATTCTGGTGTCCAAAAGGTTCAGTG
GCAGTAGGTCTGGGTCAAGACTTTCTCACCATCAGCAGCCTGAGTCTGAAGATTTCAGA
CTATTACTGTCTACGATATGATAATTATCGTGGACGTCGGTGCAGGCACCAGGCTGGAAATC
AGA (SEQ ID NO: 15)

Amino Acid sequence for C1130 Light Chain variable region

MDMRVPAHVFGFLLLWFPGRCDIQMTQSPSSLSASLGERVSLTCRASQEISDHLSWLQQKS
TIKRLVYAASTLDSGVPKRFSGSRSGSDFSLTISSEDFADYYCLRYDNYPWTFGAGTRLEI
R (SEQ ID NO: 16)

Signal sequence

MDMRVPAHVFGFLLLWFPGRTRC (SEQ ID NO: 17)

FR1

DIQMTQSPSSLSASLGERVSLTC (SEQ ID NO: 18)

CDR1

RASQEISDHLS (SEQ ID NO: 19)

FR2

WLQQKSGGTIKRLVY (SEQ ID NO: 20)

CDR2

AASTLDS (SEQ ID NO: 21)

FR3

GVPKRFSGSRSGSDFSLTISSEDFADYYC (SEQ ID NO: 22)

CDR3

LRYDNYPWT (SEQ ID NO: 23)

Mouse J KAPPA

FGAGTRLEIR (SEQ ID NO: 24)

Figure 3

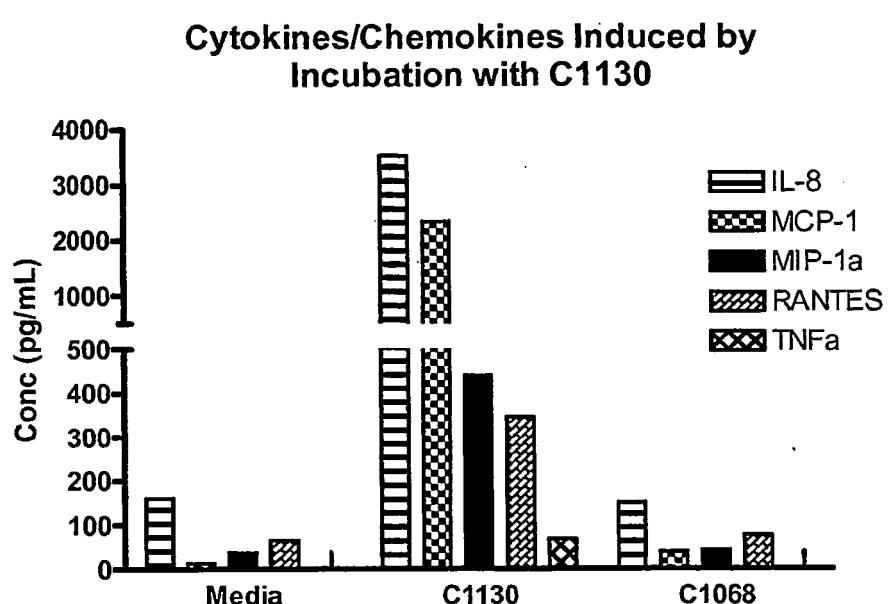


Figure 4

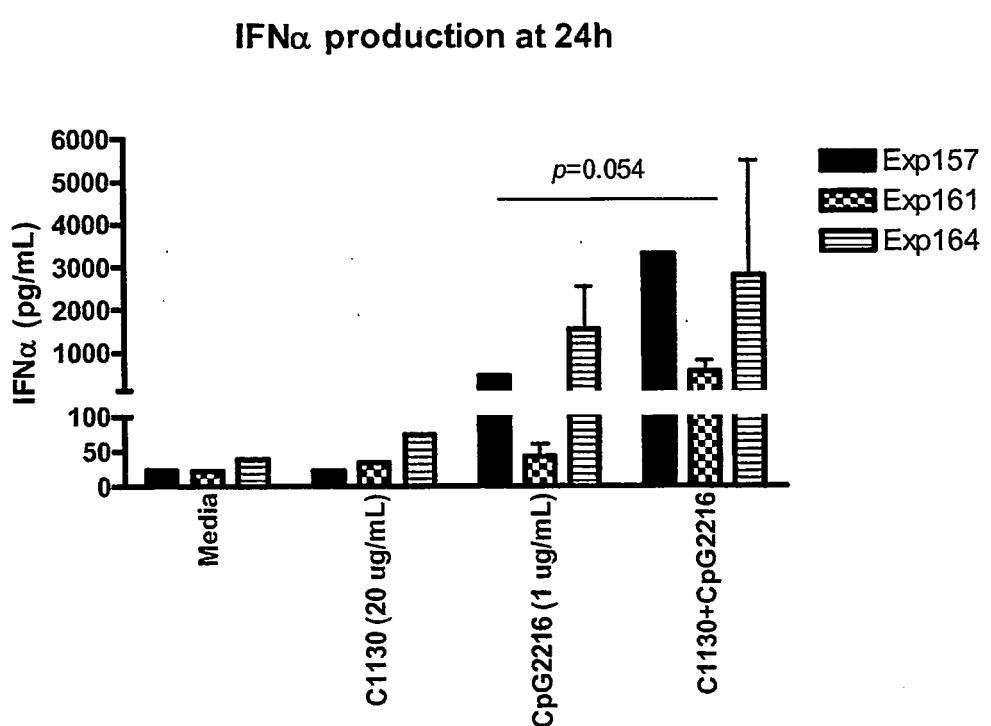


Figure 5

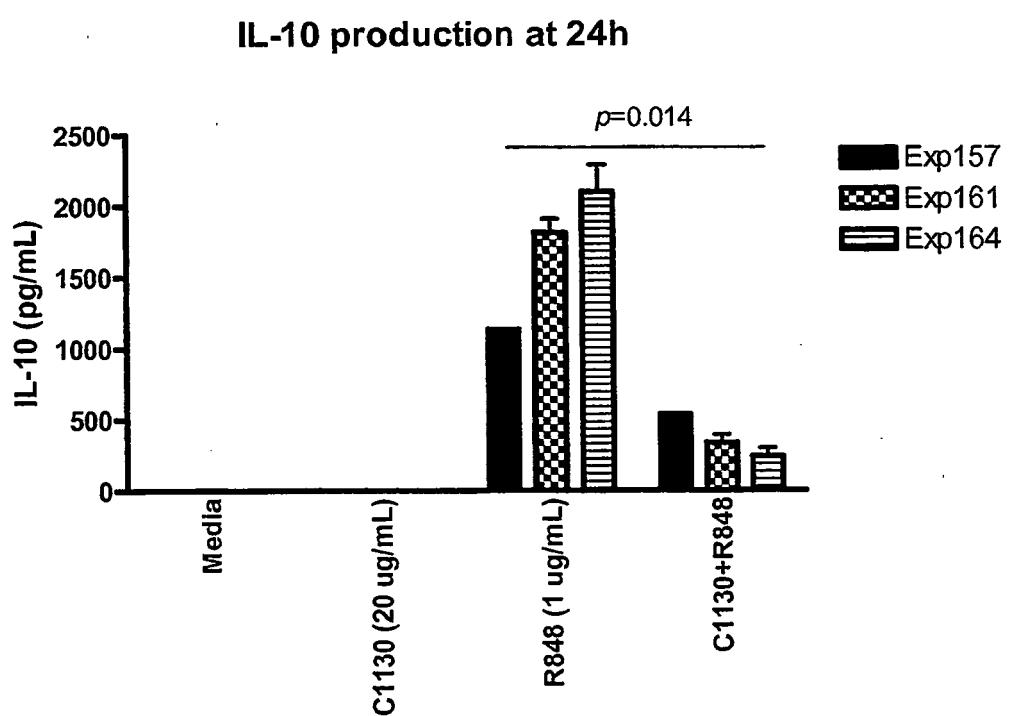


Figure 6.

293-TLR3

Figure 7

A549-TLR3.2

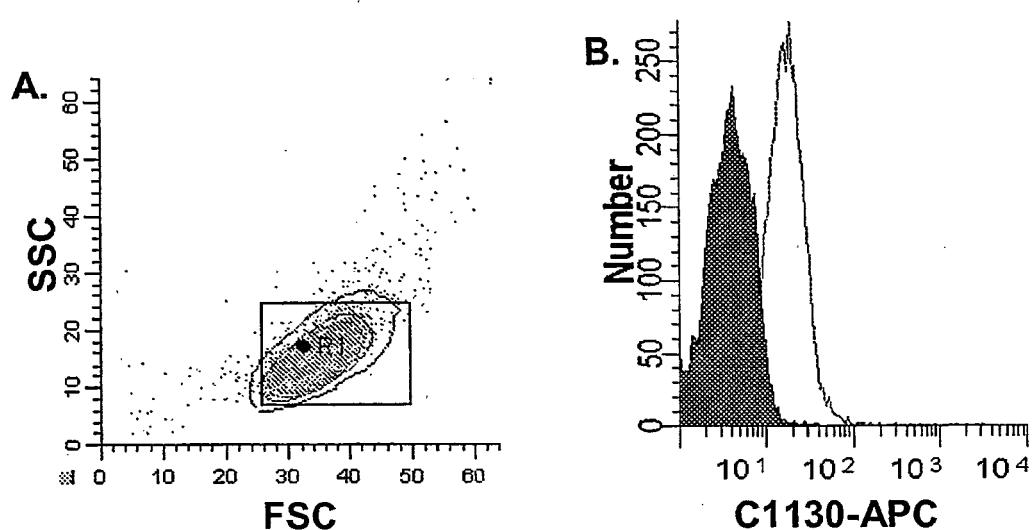
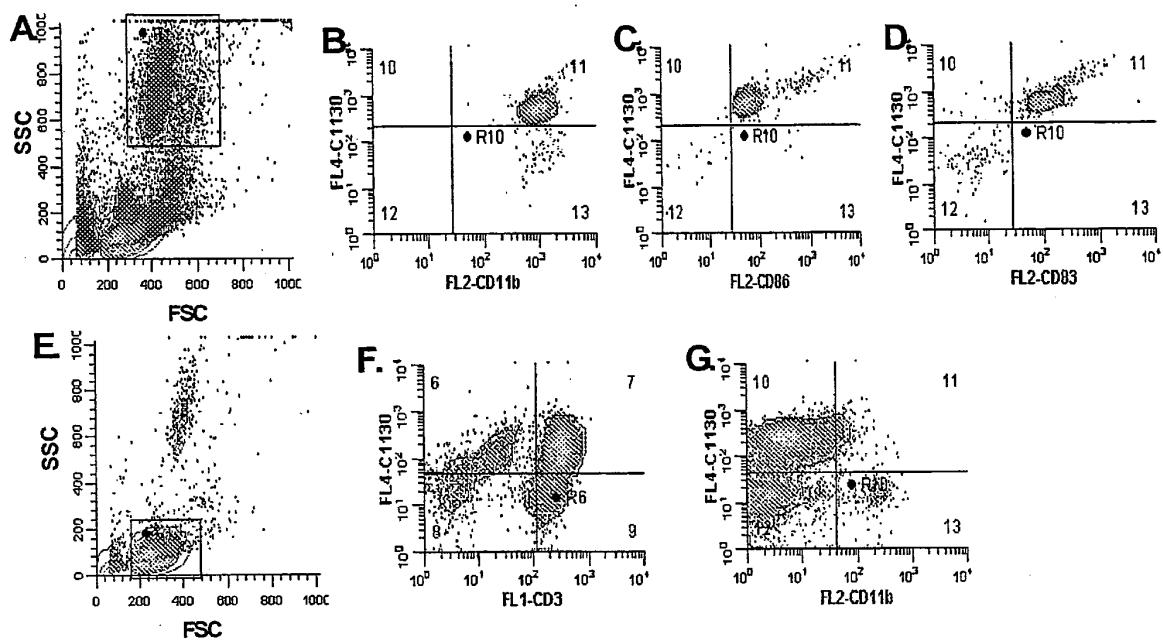



Figure 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1887014 A [0001]
- US 2005112659 A [0001]
- US 2005158799 A [0001]
- US 2004091491 A [0003]
- US 4816567 A [0033]
- US 60730793 B [0077]

Non-patent literature cited in the description

- **BARTON et al.** *Science*, 2003, vol. 300, 1524-1525 [0001]
- **SAMUEL et al.** *Clin Microbiol Rev*, 2001, vol. 14, 778-809 [0003]
- **BHATTACHARJEE et al.** *Curr. Immunol. Rev*, 2005, 81-90 [0003]
- **MANNS et al.** *Lancet*, 2001, vol. 358, 958-965 [0003]
- **DONELAN et al.** *J Virol*, 2004, vol. 78, 11574-11582 [0004]
- **HARTE et al.** *J Exp Med*, 2003, vol. 197, 343-351 [0004]
- **O'NEILL.** *Curr Opin Pharm*, 2003, vol. 3, 396-403 [0005]
- **SCHETTER et al.** *Curr Opin Drug Discov Devel*, 2004, vol. 7, 204-210 [0005]
- **KRIEG.** *Annu Rev Immunol*, 2002, vol. 20, 709-60 [0005]
- **SAUNDER.** *J Amer Acad Derm*, 2000, vol. 43, S6-S11 [0005]
- **KABAT et al.** Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, 1987 [0028]
- **KOHLER et al.** *Nature*, 1975, vol. 256, 495-497 [0033]
- **QUEEN et al.** *Proc. Natl. Acad. Sci. (USA)*, 1989, vol. 86, 10029-10032 [0033]
- **HODGSON et al.** *Bio/technology*, 1991, vol. 9, 421 [0033]
- **LONBERG et al.** *Nature*, 1994, vol. 368, 856-859 [0035]
- **FISHWILD et al.** *Nature Biotechnology*, 1996, vol. 14, 845-851 [0035]
- **MENDEZ et al.** *Nature Genetics*, 1997, vol. 15, 146-156 [0035]
- **KNAPPIK et al.** *J. Mol. Biol.*, 2000, vol. 296, 57-86 [0035]
- **KREBS et al.** *J. Immunol. Meth.*, 2001, vol. 254, 67-84 [0035]
- Remington's Pharmaceutical Science. Mack Publishing Company [0058]
- **KOHLER et al.** *J Immunol*, 1976, vol. 6, 511-519 [0062]
- **HEIL et al.** *Science*, 2004, vol. 306, 1526 [0068]