PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(S1) International Patent Classification © : (11) International Publication Number: WO 96/15505
GO6K A2 _

(43) International Publication Date: 23 May 1996 (23.05.96)

(21) International Application Number: PCT/US95/14701 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,

DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 8 November 1995 (08.11.95)

Published

(30) Priority Data: Without international search report and to be republished

08/336,300 8 November 1994 (08.11.94) uUS upon receipt of that report.

(71) Applicant: VERMEER TECHNOLOGIES, INC. [US/US]; 725
Concord Avenue, Cambridge, MA 02138 (US).

(72) Inventors: FERGUSON, Charles, H.; 21B Lee Street, Cam-
bridge, MA 02139 (US). FORGAARD, Randy, I.; 22 Fot-
tler Avenue, Lexington, MA 02173 (US).

(74) Agent: GORDON, Peter, J.; Wolf, Greenfield & Sacks, P.C.,
600 Atlantic Avenue, Boston, MA 02210 (US).

(54) Title: AN ONLINE SERVICE DEVELOPMENT TOOL WITH FEE SETTING CAPABILITIES

ONLINE DESIGNER
DEVELOPMENT SYSTEM
™
HYPER-
HYPERLINK DOCUMENT ree METERNG
MEOIA EDTOR MARVESTER SETTER ToOoL m’u;cn
EOITOR 2] ™ ™ ™
kall
WYPER-
PORTABLE POSITO! HELP
DOGUMENT MeDA et REPLICATOR il gl
oR DOCUMENT E£0ITOR T34 il
ey CONVERTER 720 ™
e

(57) Abstract

A visual editing system for creating commercial online computer services. The visual editing system creates online services that
consist of a number of subservices. Each subservice is a program that provides a particular type of functionality to the online service.
Different subservices exist for displaying hypermedia documents, searching directories and databases, displaying classified advertisements,
providing a bulletin board system, etc. Each subservice has an associated database of information and a collection of scripts that handle
events such as input from a user. The visual editing system of the present invention features a fee setting tool that allows the developer to
develop a fee structure for an online service. The fee structure can handle both fees levied against users and third party content providers.
For example, users can be levied fees for logging onto an online service, performing searches, or downloading information. Third party
content providers can be levied fees for submitting advertisements or for executing a transaction with a user. Similarly, the fee setting tool
also allows the developer to assign a payment system whereby users or content providers can be paid for certain actions. A user may be
paid when that user that fills out a marketing questionnaire or wins a contest. A third party content provider can be paid when that third
party content provider supplies valuable information desired by the users of the online service.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing interational
applications under the PCT.

AT Austria GB United Kingdom MR Mauritania

AU Australia GE Georgia MW Malawi

BB Barbados GN Guinea NE Niger

BE Belgium GR Greece NL Netherlands

BF Burkina Faso HU Hungary NO Norway

BG Bulgaria IE Ireland Nz New Zealand

BJ Benin IT Italy PL Poland

BR Brazil JP Japan PT Portugal

BY Belarus KE Kenya RO Romania

CA Canada KG Kyrgystan RU Russian Federation
CF Central African Republic KP Democratic People’s Republic SD Sudan

CG Congo of Korea SE Sweden

CH Switzerland KR Republic of Korea SI Slovenia

Cl Cote d'Ivoire Kz Kazakhstan SK Slovakia

CM Cameroon LI Liechtenstein SN Sencgal

CN China LK Sri Lanka D Chad

cs Czechoslovakia LU Luxembourg TG Togo

cz Czech Republic LV Latvia T) Tajikistan

DE Germany MC Monaco T Trinidad and Tobago
DK Denmark MD Republic of Moldova UA Ukraine

ES Spain MG Madagascar Us United States of America
F1 Finland ML Mali vz Uzbekistan

FR France MN Mongolia VN Viet Nam

GA Gabon

10

15

20

WO 96/15505 PCT/US95/14701

An Online Service Developmeni Tool with Fee Setting Capabilities

FIELD OF THE INVENTION

The present invention relates to the field of online computer
services. In particular, the present invention discloses a software tool for
setting fees in an online service, as part of a visually oriented tool for creating

online services.

BACKGROUND OF THE INVENTION

With the increasing popularity of computer communications,
many companies are becoming interested in advertising and supporting their
products using an online computer service that can be accessed by customers.
However, creating a large online computer service is an extensive task. To
develop a sophisticated online service, such as America Online®,
CompuServe®, Genie®, or Prodigy®, a company must have 2 large
mainframe computer and customized software. Developing the customized
software requires a competent programming staff and a good deal of time.
Most companies do not have the resources required to develop such systems,

and thus cannot easily develop and maintain an online presence.

One way a company can contact millions of potential customers
is to use the global Internet. The global Internet is a network of computer
networks that links together millions of computer systems using the well

defined TCP/IP protocol.

A new method of distributing and viewing information known

as the World-Wide Web has recently become very popular on the global

—-1 -

10

20

(R
Ut

WO 96/15505 PCT/US95/14701

Internet. The World-Wide Web is a collection of servers connected to the
Internet that provide multi-media information to users that request the
information. The users access the information using client programs called

"browsers” to display the multi-media information.

World-Wide Web servers store multi-media information in a
document format known as HyperText Markup Language (HTML). The
World-Wide Web servers distribute the HTML formatted documents using a
specific communication protocol known as the HyperText Transfer Protocol

(HTTP).

To access the multi-media information available on World-
Wide Web servers, a user runs a client browser program that accesses the
HTML formatted documents stored on the HTTP servers connected to the
global Internet. The client browser program retrieves the formatted
information and provides the information in an appropriate manner to the
user. For example, the client browser program displays graphical image
information as images on the user's graphical display screen; plavs video
information as video animation on the user's graphical display screen;
displays text information as text on the user's screen; and plays sound
samples using the speakers on the user's computer system. "Mosaic”, one

popular client browser program, is widely available to the users of the global

Internet.

For a company that wishes to develop an online presence,
creating a World-Wide Web Server would provide a feature rich online
service available to customers and clients. A World-Wide Web Server can

store images, text, animation, and sounds that provide information about the

10

15

WO 96/15505 PCT/US95/14701

company. Furthermore, World-Wide Web Servers can be implemented on

relatively simple computer systems, including personal computers.

Most World-Wide Web Servers are coupled to the global
Internet. By deploying a World-Wide Web Server on the global Internet a
company would create online service that is accessible to the millions of

global Internet users.

Alternatively, a company can deploy a HTTP server that is
available to customers through dial-up phone service. A dial-up HTTP
server would be accessible to customers and clients that do not have Internet
access. Thus, by creating a simple HTTP server, any organization or

corporation can create an online presence.

However, quickly creating the HTML formatted documents
required for a World-Wide Web Server is not a trivial task. Moreover, the
standard HTTP server software, without any additional programming, is very
limited. For example, without custom extensions, an HTTP server cannot
accommodate complex transactions between a user and the HTTPD server or
integrate a database system into an online service. Although it is possible to
write custom extensions to the HTTP server software using a conventional
programming language, such custom extensions are difficult to write except
by experienced programmers. Thus, to be able to quickly deploy full-featured
HTTP servers, it would be desirable to have a development tool usable by
non-programmers that allows a developer to quickly and easily create a full-

featured online service based upon the HTTP and HTML standards.

Many programming development tools are known in the art.

These programming development tools range from tools which are

—-3 -

10

15

20

25

WO 96/15505 PCT/US95/14701

developed and marketed as general purpose programming development
tools to sophisticated special purpose development tools for developing

specific types of applications.

For example, the Information Exchange Facility (IEF) general
development tool, which is available from Texas Instruments, is used by
professional programmers to develop application programs. Essentially, IEF
provides a facility that allows a programmer to write “pseudo code” and IEF
generates an intermediate source code program in a high level programming
language (such as COBOL or C code) based on the "pseudo code". IEF is an
example of what will be referred to herein as a "general purpose development
tool” because it allows development of programs for essentially any purpose

or application dependent on the input provided by the programmer.

In contrast to general purpose software development tools,
many application programs themselves provide special purpose
"development tool" capability. An example is the Paradox™ database
program available from Borland International of Scotts Valley, California.
The Paradox™ database allows end users to develop sophisticated database
applications which would have been developed by professional programmers
a few years ago. The Paradox™ database is but one example of a special

purpose development tool.

Another example of a special purpose development tool,
perhaps more pertinent to the present invention, is the Application
Development Environment of Lotus Notes™ which is available from Lotus
Development Corporation of Cambridge, Massachusetts. The Application

Development Environment of Lotus Notes provides features which are said

—-q -

10

25

WO 96/15505 PCT/US95/14701

to allow for rapid development of workgroup applications such as sharing of
documents between users over a network. Generally, Lotus Notes and, thus,
its Application Development Environment, is directed at sharing of
documents among persons in an authorized work group. For example, a
Lotus Notes application can be envisioned which would allow for sharing of
key patent applications among patent examiners in a particular art group at

the United States Patent Office.

The Lotus Notes Application Development Environment
provides for such features as (i) application design templates which are said to
allow sophisticated applications to be built by customizing pre-built
applications such as document libraries, form-based approval systems, project
tracking applications and status reporting systems; (ii) security; (iii) database
access; and (iv) discussion groups. However, while these features are useful,
the Lotus Notes Application Development Environment, as well as Lotus
Notes itself, has its shortcomings as admitted to by even Lotus Development
Corporation itself:

Lotus Notes was not intended to be used as a transaction-

processing front-end to an operational database system.

Operational systems are those which support transactions that

are essential to the operation of an organization. Examples of
these systems would be traditional order entry. ...

s Notes: An Qverview, October, 1993, pg. 11

It has been recognized by the present invention that many of
these functions neglected by Lotus Notes are very important when
developing publicly accessible online systems. Specifically, the ability to
perform commercial transactions that involve order entry systems would
allow an online system to sell goods and services to computer users. It is now

recognized by the present invention that many functions such as traditional

10

15

25

WO 96/15508 PCT/US95/14701

order entry systems and the like will someday be carried out over computer
networks by allowing a customer to ‘place orders for goods and services
directly with an online service. By way of example, even today, food orders
can be placed with restaurants over computer networks; videos can be
reserved at the local video store; and banking transactions can be carried out

simply by logging onto a computer network.

Four different types of commercial transactions might
commonly occur in a commercial online service. First, a user may be charged
for the right to access all or parts of a useful publicly accessible online system.
Second, the online service may pay the user for performing some type of
action such as winning a contest or completing a marketing survey. Third, an
online service may charge a content provider for placing certain information
on the online service. For example, a content provider can be charged for
placing an advertisement on the online service. Finally, a content provider
can be paid by the online service for providiné information that users may
wish to access. can be can be provided on a for-fee basis. Conversely, an
online service provider may wish to pay third party content providers for

placing useful material on the online service.

Thus, when creating a publicly accessible online system, it is
desirable to include the ability to define fee structures for accessing parts of the
online system and/or ordering other goods or services. However, creating a
sophisticated commercial online service with such features usually requires

specialized programming.

The ability to set fees to be paid by the user for an amount of data

accessed, the time spent "logged on" to the online service, or the purchase of

-6 -

10

15

WO 96/15505 PCT/US95/14701

particular merchandise is one example of distinction from Lotus Notes.
Lotus Notes is not only admitted (by even Lotus Development Corporation)
as lacking transaction oriented capability as may be required by such
applications, but it also does not provide the metering functions to keep track
of the information necessary to assign such fees as is required by these
applications. As such, the video store, restaurant or bank (by way of example)
is left with the need to employ professional programmers for their individual

applications.

Thus, it has been discovered that there exists a need to create
online system development tools that include features, functions and
capabilities to support commercial online services such as the

aforementioned fee setting function.

These and other aspects of the present invention will be
described in greater detail with reference to the below detailed description and

the accompanying figures.

-7 -

10

15

20

25

30

WO 96/15505 PCT/US95/14701

SUMMARY AND OBJECTS OF THE INVENTION

It is an object of the invention to provide a fee setting tool that
allows a developer to assign easily a system of fees, or a fee structure, for an
online service. This object is achieved by providing an editor for editing fee
specifications associated with portions of an online service, such as documents
and scripts, herein called document objects. The fee setting tool preferably uses
a well-defined scripting language that allows for the definition of complex fee
arrangements. The fee structure can be used to levy fees against both users and
providers on an online service by use of a fee specification that associates a fee
with an entity and a document object, and an event occurring in connection with
the document object. For example, a user can be levied fees for logging on to an
online service, performing a search, or downloading information. The fee is
calculated, using a search as an example, using the fee defined for the searched
document, in view of the user searching and the fact that a search is the action
performed. Third party content providers can be levied fees for submitting
advertisements, or executing a transaction with a user, or maintaining
information content on a computer for a given period of time. The fee is
calculated, using advertisement submission as an example, using the fee defined
for a new document, in view of the provider of the advertisement and the fact
that document uploading is the action performed. Similarly, the fee setting tool
also allows the online service developer to assign a payment system whereby
users or providers can be paid for certain actions using the same fee
specifications and by allowing both negative and positive values for fee
computations and by assigning one type as payment and the other type as debit.
For example, a user may be paid when filling out a marketing questionnaire or
when winning a contest. A provider may be paid when that content provider
supplies information to a user of the online service. The fee setting tool
preferably provides a visual editing interface that uses a template to define the

fee specification and a list to maintain fee specifications.

-8--

10

15

20

25

30

WO 96/15505 PCT/US95/14701

Accordingly, one aspect of the invention is an editor for allowing
editing of fee specifications for an online service. The editor allows a developer
to define a triggering event, an object of the online service and a fee computation
associated with the triggering action and the object. Preferably the fee
specification is edited using a visual user interface using a template for a fee
specification. The fee specification also may identify an individual against whom
the fee may be levied to allow for fees to be applied and defined generally for all

individuals, including providers and users.

Another object of the invention is to provide a structure that easily
and simply defines a fee structure for an online service. To achieve this object, a
record called a fee specification is used which identifies a document object, a
triggering event for that object which invokes a fee, an individual against whom
the fee is levied and a fee computation. The fee computation, as described

above, is preferably defined using a well-defined scripting language.

Accordingly, one aspect of the invention is a mechanism for
specifying fees for an online service, including 1) means, associated with a
document object of the online service, for defining a triggering event for a fee
and 2) means, associated with the triggering event, for defining a formula for
computation of the fee. An indication of an individual against whom the fee is to
be levied is also preferably provided. An editor is provided for editing a plurality

of such fee specifications.

Additionally, it is an object of the invention to provide a fee
calculation mechanism which processes fee specifications in response to actions
on document objects to determine the fee associated with the action. Since fee
specifications are maintained in a list for each online service, the fee specification
list is searched upon occurrence of a triggering event to identify the fee

associated with the triggering event, the individual against whom the fee is levied

-9--

10

15

20

25

30

WO 96/15505 PCT/US95/14701

and the document object in relation to which the event occurred. The result of
this search is a fee formula which is then computed to define the fee, either a
payment or a debit. The fee calculation mechanism is part of the server which

makes the online service available.

Accordingly, another aspect of the invention is a mechanism for
determining a fee for an online service. This mechanism detects an event
associated with an object of the online service. In response to detection of the
event, a fee specification for the event and the associated object is then
identified. The fee specification is then used to define the fee. This aspect of
the invention is used in combination with a fee specification. This fee
specification associates an object of the online service with a triggering event and
a fee computation which defines the fee for the object and event. An editor

allows for editing a plurality of such fee specifications.

It is another object of the present invention to provide a fast, user-
friendly method of designing and deploying a distributed online service. In
particular, it is an object of the present invention to allow a developer to create
customized HTTP server software, such as scripts, and accompanying HTML
documents for deployment on a World-Wide Web server. This object is achieved
by providing a visual editor that allows a developer to easily create the
subservices that constitute the online service. These subservices generally
include scripts and documents which are designed to meet a specific need. A
variety of templates of suitable scripts and documents are provided for a variety
of typical kinds of online services. For example, such subservices may include a
Hyperdocument/Commerce subservice for displaying hyperdocuments and
performing electronic transactions, a Classified Advertisement subservice for
implementing electronic classified advertisements, a Reference subservice for
implementing online reference works, a Director Lookup subservice for

implementing online searchable directories of information, a Bulletin Board

~-9/1-

10

15

20

25

WO 96/15505

PCT/US95/14701

subservice for providing a means for allowing users to post and view messages, a

Document Retrieval subservice to provide a means for retrieving documents, an

Electronic Publishing subservice that provides electronic editions of newspapers

or magazines that may be downloaded, and Meta-Service subservice that

provides access to other external online services.

Accordingly, another aspect of the present invention is a computer

system for designing online services. The system includes an editing module for

manipulating a collection of documents as a service. This editing module

preferably contains a number of sets of templates of scripts and documents

which can be used to generate an online service quickly. A viewing module

allows for display of summary views of the service.

Another aspect of the invention is a computer system for editing an

online service that includes a first editing module that has editing functions for

visually editing relationships between document objects of a service. For

example, a hyperlink editor with a link view, which is a graphical display of

document objects and hypertext links between them, may be provided. A second

editing module is used to allow editing of particular document objects. Such a

system may be provided with the fee setting tool of this invention and the

associated fee specifications.

In any of the foregoing aspects of the invention fees may be

triggered by a defined user action, such as access by said user to one of said

visual objects on said online system, or submittal of an object for inclusion in said

data store of said online service, or a traverse of a hyperlink, or connection to an

online service. Fees may also be triggered by passage of a defined amount of

time.

—-9/2--

10

15

WO 96/15505 PCT/US95/14701

Additionally, in any of the foregoing aspects of the invention, a fee
specification particularly may have a first field specifying a fee action that
triggers said fee. Another field defines the fee computation. An optional field is
a field specifying an entity to whom the fee is directed. A field specifying an
object associated with said fee event allows different objects within an online
service to have different fees. A script may be used to specify the fee
computation. The script preferably has at least one fee setting script primitive,
but may have more. By allowing both negative and positive fee values and credit
and debit system can be implemented. For example, if a fee is positive, a fee is
charged to the entity, and if a fee is negative, a payment is made to the entity.

A script editor is preferably used to edit scripts specifying fee computations.
The foregoing aspects of the invention are particularly useful in the

World-Wide Web of the global Internet for use in generating HTML documents

and scripts.

~-9/3--

WO 96/15505 PCT/US95/14701

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present invention
will be apparent from the following detailed description of the preferred

5 embodiment of the invention with references to the following drawings.

Figure 1 illustrates a block diagram overview of an online

service that is implemented with the Molisa platform.

Figure 2 lists the general steps for an electronic commerce

transaction with an online service.

10 Figure 3a illustrates how the Online Designer is used to create an

online service.

Figure 3b illustrates how a hyperdocument is edited using the

Online Designer.
Figure 4 lists the available subservice design programs.

15 Figure 5 illustrates a hyperlink from a Reference subservice to an

order form in a Hyperdocument/Commerce subservice.

Figure 6 illustrates a hyperlink from a Directory Lookup

subservice to an rental form in a Hyperdocument/Commerce subservice.

Figure 7 illustrates the set of Utility Subtools in the Online

20 Designer development tool.

Figure 8 illustrates a block diagram example of an online service.

--10 --

WO 96/15505 PCT/US95/14701

10

15

20

Figure 9 illustrates a service gallery containing online services

that may be edited.

Figure 10 illustrates a Connectivity View of the online service of

Figure 8.

Figure 11 illustrates a WYSIWYG view of a hypermedia

document.

Figure 12 illustrates a screen display of the Hyperdocument

Designer Script View.
Figure 13 illustrates a hyperlink view of a hyperdocument.

Figure 14 illustrates a block diagram of the views supported by

the Hyperdocument Designer.
Figure 15 illustrates a screen display of a hypermedia document.

Figure 16 illustrates a screen display of a hvpermedia document

used to order a product.

Figure 17 lists the different views provided by the Lookup

Designer subtool.

Figure 18 illustrates a submit form in the Form View of the

Lookup Designer subtool.

Figure 19 illustrates a view form in the Form View of the

Lookup Designer subtool.

-11 --

WO 96/15505 PCT/US95/14701

Figure 20 illustrates a query form in the Form View of the

Lookup Designer subtool.
Figure 21a illustrates a first screen display of the Script Editor.
Figure 21b illustrates a second screen display of the Script Editor.

Figure 22 illustrates an SQL query between an online subservice

and an SQL database.
Figure 23 illustrates a screen display of the Fee Setting subtool.

Figure 24 illustrates a screen display of the Fee Specifier editor

subtool.

—-12 -

10

15

20

WO 96/15508 PCT/US95/14701

NOTATION AND NOMENCLATURE

The detailed descriptions which follow are presented largely in
terms of algorithms and symbolic representations of operations within a
computer system. These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to convey the

substance of their work most effectively to others skilled in the art.

Generally, and within the context of this application, an
algorithm is conceived to be a self-consistent sequence of steps leading to a
desired result. These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these quantities take the
form of electrical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It proves convenient at
times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like. It
should be borne in mind, however, that all of these and similar terms are to
be associated with the appropriate physical quantities and are merely

convenient labels applied to these quantities.

Further, the manipulations performed are often referred to in
terms, such as adding or comparing, which are commonly associated with
mental operations performed by a human operator. No such capability of a
human operator is necessary, or desirable in most cases, in any of the
operations described herein which form part of the present invention; the
operations are machine operations. Useful machines for performing the
operations of the present invention include general purpose digital

computers or other similar devices. In all cases, a distinction is maintained

-13--

10

15

WO 96/15505 PCT/US95/14701

between the method of operations in operating a computer and the method
of computation itself. The present invention relates to method steps for
operating a computer in processing electrical or other physical signals (e.g.,

mechanical, chemical) to generate other desired physical signals.

The present invention also relates to apparatus for performing
these operations. This apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer as selectively
activated or reconfigured by a computer program stored in the computer. The
algorithms presented herein are not inherently related to a particular
computer or other apparatus. In particular, various general purpose
machines may be used with programs written in accordance with the
teachings herein, or it may prove more convenient to construct more
specialized apparatus to perform the required method steps. The required
structure for a variety of these machines will appear from the following

description.

- 14 --

10

20

25

WO 96/15505 PCT/US95/14701

DESC F
1 TOE RESENT INVENTION

Methods and apparatus for implementing a development tool
for creating online services are disclosed. In the following description, for
purposes of explanation, specific nomenclature is set forth to provide a
thorough understanding of the present invention. However, it will be
apparent to one skilled in the art that these specific details are not required to
practice the present invention. For example, the present invention is
disclosed with specific reference to the HyperText Markup Language (HTML)
and the HyperText Transfer Protocol (HTTP). However, the teachings of the
present invention can easily be used with other hypertext document formats

and other transport protocols.

Overview

The present invention provides a visually oriented software
development tool for the design, construction and modification of online
computer services. The development tool of the present invention allows a
user to create online services using existing information sources such as
databases, files, and applications that are external to the online service itself.
An online computer service created with the development tool can offer the

following options:

* Search, view and edit information

* Download, print or file information
e Enable the information for commerce
e Control access to the information

Examples of types of online services that can be built with

development tool of the present invention include document viewing

-15--

WO 96/15505 PCT/US95/14701

services, electronic commerce services, directory lookup services, classified
advertisement services, reference services, electronic bulletin board systems,
document retrieval services, electronic publishing services, an electronic
service store for purchasing online services, and a global service-of-services
that is used to locate and connect to other online services. To create
commercial online services, the development tool of the present invention
includes a sophisticated fee setting tool that levies of pays fees to users and

content providers under defined conditions.

The online service development tool of the present invention is
one part of a comprehensive architected platform for deploying distributed
online services. The online services created with the development tool of the
present invention utilize standardized Application Program Interfaces (API’s)
for communication between the various components. The overall platform
architecture is referred to as the Modular Online Information Services
Architecture, or Molisa. Molisa includes client software, server software,
administrative software for recording and analyzing online service usage, and
the online service development tool described in this document. The
software components of the Molisa platform are hardware independent, and
thus can be implemented on several different computer architectures.
Additional information about the Molisa platform can be found within the

copending patent applications entitled " ", filed , Serial No.

The invention’s design characteristics are described here in the
context of its preferred embodiment, a development tool for the Molisa
online services platform. The Molisa platform leverages existing HyperText

Transfer Protocol (HTTP) based World-Wide Web servers, and Mosaic and

-16 -

10

15

20

WO 96/15505 PCT/US95/14701

other HTTP client browsers (with software extensions), on the global Internet.
However, the design principles of the present invention are largely applicable
to online services in other settings, including non-architected centralized

online services, other decentralized online services, and services in which the
client and server software reside on a single machine (such as CD-ROM based

information services).

The Application Program Interfaces that define communication
between the client software and server software are largely independent of the
underlying transport protocol. For example, the development tool of the
present invention does not require that the client and server computers
communicate using HITTP or the underlying TCP/IP protocol. Any suitable
transport protocol, across Local Area Networks (LAN's), Wide Area Networks
(WAN's), dial-up or leased telephone lines, etc., may be used between the

client hardware and the server hardware.

Figure 1 illustrates a block diagram overview of an online
service being used by three users that is implemented with the Molisa
platform. A server hardware platform 100 comprises a general purpose
computer system coupled to a communications network 150. The HTTP
server software 101 and HTTP extension software 103 run on the server
hardware platform 100. The HTTP server software 101 drives the online
service using information stored within the service repository 107. The
HTTP extension software 103 provides additional functionality for the online
service that is not available in standard HTTP server software. For example,

the HTTP extension software 103 might access a back end database.

=17 -

10

15

20

25

WO 96/15505 PCT/US95/14701

An online service development tool 109 is used to create the
data structures, documents, and scripts that are stored in the server service
repository 107 and supply the HTTP extension software 103. The HTTP server
software 101 accesses the data structures, documents, and scripts stored in the
service repository 107 to implement an online service. Software for the
development tool 109 is usually located on a development computer system
that is coupled to the server system across a communications network 150 as
illustrated in Figure 1. Alternatively, software for the development tool 109

may run on the actual server computer system.

Each user accesses an online service created with the
development tool 109 using compatible client software. In Figure 1, three
client hardware platforms: Windows® platform 160, Macintosh® platform
170, and UNIX®/X-Windows platform 180 are illustrated. Each different
client hardware platform must have a copy of client browser software that is
compatible with the HTTP server software 101 and the information stored
within the service repository 107. Each client hardware platform may also
have a local service repository. The local service repository at each client
hardware platform contains information that is available locally to the user of
the specific client hardware platform. The local service repository can also act
as a cache to store information retrieved from the main service repository

107.

The communications network 150 couples the users running
client software with the online service server software running on the server
hardware. In the present embodiment, the communications network 150 is a

packet switched network implemented using TCP/IP protocol. However, the

- 18 --

WO 96/15505 PCT/US95/14701

communications network 150 could simply be the existing telephone

network.

Using the Molisa platform as illustrated in Figure 1, small and
large service providers can run an online service using existing
heterogeneous computer equipment and existing data in its original native
form and location. Since the Molisa platform uses standardized well-defined
Application Program Interfaces (API's), third parties can develop
enhancements, extensions, or replacements for the client software, the server
software, the metering software, or the online service development tool

software.

Furthermore, the online service development tool software of
the present invention is divided into several different subtools that each
have well defined subtool Application Program Interfaces (API's). By having
well defined subtool API's, third parties may create improved subtools to
replace the original subtools. Alternatively, new subtools can be added to the

development tool software to handle unforeseen development.
Electroni mmerc

The Molisa platform places a particular emphasis on commerce-
enabling any information source that is electronically accessible. The Molisa
platform uses the general steps illustrated in Figure 2 for electronic commerce
in an online service. Initially, the service user views general online
information about goods or services that are external to the service, as stated
in step 210. This is usually done using a hypermedia document that contains
images and text describirig the goods and services. Next, the user initiates an

electronic transaction to download, price, purchase, rent, reserve, etc. the

-19 --

10

15

20

25

WO 96/15505 PCT/US95/14701

online hyperdocument itself or the goods/services that the hypermedia
document information describes, as stated in step 220. In response to the
user's action, the online service processes the electronic transaction initiated
by the user, as stated in step 230. Using a Fee Computation defined in the
Computation Language of the present invention, the online service may
charge or pay a user or content provider as stated in step 240. Finally, the user
views the results of the electronic transaction, by viewing the downloaded
information, or by viewing a confirmation of the electronic transaction

involving goods or services, as stated in step 250.

In the transaction model of Figure 2, the notion of "transaction”
can take several forms, and the development tool invention supports each of

the following:

* Real-time electronic transaction: A transaction can debit a user’s

account, check and subtract from inventory, mark an item as
reserved, reference up-to-date online information, etc., all by
immediately accessing the electronic databases that contain the
relevant data. The invention supports such real-time transactions
with a Script Language that provides direct access to any electronic

databases that are accessible from the server.

e Real-time manual transaction: For manual systems (e.g., a clerk

checks inventory by looking in the back room, and then responds to
the user in real-time), or electronic systems that are not accessible
from the server computer, human intervention might be required
to complete a transaction. The invention supports these

transactions with Script Language primitives that allow for real-

—-20-

10

20

19
w

WO 96/15505 PCT/US95/14701

time cooperative activity between users and a representative of the

online service provider.

Delayed electronic transaction: In certain cases, an online service

may wish to queue a series of transactions for later batch processing.
For example, an online service could queue all the transactions for a
particular day and transmit all the transactions for that day during
the night to save on long-distance telephone charges when dialing-
up a remote computer. Alternatively, an online service may wish
to issue a transaction against a computer that provides only
electronic mail access. To support these delayed electronic
transactions, the invention includes Script Language primitives
that: (1) perform file input/output (to queue transaction requests),
and (2) send/receive electronic mail to automatic agents on other

computers.

Delayed manual transaction: Some online services can require

manual transactions that do not occur in real-time. For example, an
online service run by an antique dealer can allow users to submit
bids for items advertised on the service, and the antique dealer can
consider all received bids at the end of the business day. To support
these transactions, the invention’s Script Language includes
primitives that can submit and receive electronic mail between the

user and a representative of the service provider.

The use of examples will best illustrate how the development

tool can be used to commerce-enable existing sources of electronic

information. For example, the development tool can convert the digital

-21 --

10

15

20

25

WO 96/15505 PCT/US95/14701

source information used to create a printed catalog into a commerce enabled
online service. The created online service displays the contents of the catalog
on a user's display screen. A user can check the available stock and place an
order for any item in the catalog. Also, for example, the development tool
can convert a list of classified advertisements into an online service where
advertised goods may be electronically reserved with a deposit or purchased
outright. To update the electronic list of classified advertisements, users may

electronically submit new advertisements to the online service for a set fee.

Another type of online service the development tool can create
is a service that selects specific items from a collection of newsfeeds, based on
a user’s previously registered interests, and assembles a customized electronic
newspaper for which the user is charged a fee. Payment for any transaction
with any online service can be handled using secure, authenticated electronic
transaction techniques as is well known in the art. Alternatively, other
methods of payment such as credit card paymént, electronic funds transfer, or

external payment mechanisms (e.g., mailing a check) can be used.

To create online systems that are prepared for commerce, the
online system development tool includes a Fee Setter for assigning fees and a
sophisticated Script Language for creating scripts that control commerce
transactions. The online system development tool of the invention
embodiment is referred to as the Online Designer. The Online Designer is a
visual editing system that allows a developer to create online services using
graphical screen displays and cursor control device such as a mouse. The
Online Designer is composed of several distinct, cooperating, visually
compatible subtools. Alfhough some of the Online Designer subtools are

implemented as separate programs, all of the Online Designer subtools appear

=22 -

WO 96/15505 PCT/US95/14701

to the user as an integral part of the Online Designer, and are described here

as such.

The Online Designer online system development tool can be
used to create sophisticated, yet easy-to-use online services. Some of the
features of an online service designed using the Online Designer

development tool include:

* Display of "hypermedia” ments: Hypermedia documents
present text, images, video, and/or sound to a user of the online
service. Hypermedia documents may function as on-screen input
forms by including visual objects for user input: text fields,
checkboxes, option buttons, command buttons, and drop-down list
boxes. In the present‘embodiment, the hypermedia document
format supported by Online Designer is the HyperText Markup
Language (HTML). HTML is the HyperText format supported by
HTTP servers comprising the World-Wide Web (WWW) on the

global Internet.

» Display of portable documents: Portable documents preserve the

exact printed appearance of a document (fonts, illustrations, etc.),
and can be viewed on different hardware and software platforms. A
portable document can be generated by any software application that
supports printing. A specially designed print driver converts the
printer commands into the portable document format. Examples of
portable document formats include Acrobat® by Adobe of
Mountain View, California and WordPerfect® Envoy by

WordPerfect Corporation of Orem, Utah. The portable document

—-23 -

10

15

20

WO 96/15505

PCT/US95/14701

may be viewed on a workstation display screen as part of an online
service. Collectively, hypermedia documents and portable

documents are referred to in this document as "hyperdocuments.”

r "h inks": Hyperlinks are visual buttons, images, or
highlighted text that are assbciated with other documents, images,
sound clips, video clips, or other online services. To move to the
associated object, a user selects a "hotspot” with a cursor control
device or chooses the hyperlink with the computer keyboard.

Hyperlinks appear within hyperdocuments.

Support for full-text index/search/retrieval: Allows for quick search

through large collections of online documents. The user can specify
the search criteria using an appropriately designed hypermedia

input form.

Attribute-based searching: A user méy search through documents by

specifying various document attributes such as the date of the last
update, the size of the document, the size of the fee for

downloading the document, etc.

Downloading data or programs: Allows data or programs to be

downloaded from the online service to the local client computer
system. Downloaded data or programs can later be executed,

viewed, printed, or filed at the local client system.

ipport for communication between different online servi
Service-to-Service Protocol is a communication protocol whereby

different online services can communicate information. Using the

—-24 --

10

15

20

25

WO 96/15505

PCT/US95/14701

Service-to-Service protocol of the present invention, an online
service can: (1) transfer control to another online service; (2) act on
behalf of the user to query or update another online service; (3)
automatically update another online service without user
initiation; (4) appear to be seamlessly part of another online service;
(5) keep a record of how many times users traverse to another
online service; (6) pass along automatic user registration data to
another online service; (7) automatically register a new online
service with a service-of-services or “yellow pages” service; (8) check
whether another server is running a particular online service or
type of service; and (9) exchange usage and metering information,

for aggregation and later analysis.

Support for an Online Designer Script Language: The Online

Designer supports two different types of scripts: Event Scripts and
Function Scripts. An Event Script is associated with a particular
event for a particular visual object in the online service. For
example, there could be an Event Script associated with a “Mouse
Down” event for a “Search” button on a “ListingQueryForm”
hypermedia document in an electronic “white pages” service. The
event script associated with the mouse-down event would specify
how to convert the user input fields on the "ListingQueryForm"
form into a query for the text search/retrieval engine on the server.
In general, there can be several Event Scripts associated with a
single visual object, potentially one script for each type of event that

is defined for that visual object. A Function Script contains a single

- 25 --

w

10

15

20

25

WO 96/15505 PCT/US95/14701

named function (subroutine) that can be shared and invoked by

multiple other scripts in the same service.

Launching and control of other software applications: These

capabilities are achieved using inter-application communication
techniques such as Windows DDE, Windows OLE, OpenDoc,
keystroke stuffing, terminal emulation, command-line invocation,
batch file invocation, and the like. For example, an online service
can compute the quantity discount for a catalog item by
automatically launching a spreadsheet program, plugging the item
number and quantity into certain prearranged spreadsheet cells,
invoking a spreadsheet macro to compute the discount, and
obtaining the item price from a prearranged result cell. Other
examples include launching and controlling applications for
payroll, inventory, purchasing, and Manufacturing Resources

Planning (MRP).

Directly and transparently accessing real-time data sources:

Structured Query Language (SQL), Open Database Connectivity
(ODBC), and other published and proprietary data access methods
can be used to access real time data sources. For example, a catalog
shopping online service can check the available stock on a certain
merchandise item by issuing an appropriate SQL query to the
inventory database. The inventory database would return the
information to the online service software such that the online

service could provide the information to the user or perform an

electronic transaction.

- 26 --

10

15

20

WO 96/15505

PCT/US95/14701

Accessing and manipulating control equipment: Equipment such as

heating /ventilation/air-conditioning systems, security systems, and

lighting can be accessed and controlled.

Replication of online service content: The service's content and

structure can be replicated to other online services on-demand or

on an automatic, regularly scheduled basis.

Metering of user usage patterns for the online service: This can

include the number of users who access the service, the duration of
each user's connection time, the number of times that a certain part
of the service is accessed, the number of times that a user was
“referred” to this service by hyperlinking from another service, etc.
This data can be used to levy fees for users, advertisers, or

information providers, or to tune the service itself.

Controlling access to information: The available information on an

online service can be controlled utilizing passwords, encryption,

and assigning specific access rights to specific users.

Real-time cooperative activity: Support of real-time cooperative

activity between two or more users, or between users and a
representative of the online service provider. For example, a multi-
person game between users, or a user entering an online query and

receiving a real-time response from a service representative.

Capturing and Editing Images: Allowing a user or service operator

to capture an image to be displayed as part of an online service (for

example, a logo for a “yellow pages” directory listing, or a

=27 -

10

15

20

WO 96/15505

PCT/US95/14701

photograph to accompany an online classified advertisement), by
faxing an image directly to the server, sending an image to the
server using electronic mail, or scanning an image at the client
workstation and electronically transmitting the image to the server.
If a user does not have access to facsimile or scanning equipment,
the user may physically send or deliver the photograph or graphic
to a service operator, who will electronically capture the image on
behalf of the user and transmit the image to the online service

server.

Building an electronic service store: Allows a user to download

entire online services (the structure and/or content), usually for a
fee. The user can then deploy those services on the user’s own

computer equipment.

earching and connecting t her ine services: Allows a user to
access a service-of-services which will search and connect to other

online services.

The Online Designer Subservices

Using the Online Designer, a user (referred to here as the online

service "developer") can develop one or more online services using a

graphical

editor. Each online service consists of one or more types of

"subservices." Each subservice is a server program for handling a particular

type of online service user interaction. Each subservice program has an

associated database that stores the information that can be provided to the

user and a set of scripts for handling events.

-- 28 --

10

15

20

WO 96/15505 PCT/US95/14701

Figures 3a and 3b illustrate how the Online Designer is used to
create a set of subservices that comprise an online service. First, at step 310
user decides if another subservice should be created or edited, if not, then the
online service is complete. When creating a new subservice, the developer
may retrieve an existing sample subservice to start from as stated at step 315.
At steps 320 and 325, the developer loads in an existing subservice document.
If no document (database) exists for the new subservice, the developer can
import an existing document. If the developer wants to preserve the printed
appearance of the existing document, the Portable Document Converter is
used as stated at step 335, otherwise the Hypermedia Document Converter is
used at step 337. The developer then edits the subservice by editing the

associated document (database) at step 340.

Figure 3b illustrates, in detail, how a document can be edited
using the Online Designer. The Hypermedia Editor is used to modify the
appearance of the document at step 342. The Hypermedia Editor cannot be
used if the document is a portable document. Any inline images can be
edited using third party image design tools such as paint programs at step 344.
The interactive elements of a subservice are edited by creating input forms
with the Hypermedia Editor at step 346, and creating event scripts that process

the input using the script editor at step 347.

Referring back to Figure 3a, the hyperlinks within a document
and to other online services or subservices can be created and edited using the
Hyperlink Editor at step 351. Finally, the developer can save the created

subservice for the online service at step 362.

=29 -.

10

15

20

25

WO 96/15505 PCT/US95/14701

The Online Designer includes specific Designer Subtools for
designing each different type of subservice. In general, an online service may
include more than one subservice of the same type or of different types. The
following nine types of subservices are examples of subservices supported by
the Online Designer: Hyperdocument/Commerce, Directory Lookup,
Classified Advertisement, Reference, Bulletin Board, Document Retrieval,
Electronic Publishing, and Meta-Service. Additional types of subservices can

be added later.

Figure 4 illustrates a block diagram of all the subservice designer
tools of the Online Designer. More subservice design tools can be added in
the future. As illustrated in Figure 4, the Lookup Designer 414 is used to
design Directory Lookup subservices, Classified Advertisement subservices,
and Reference subservices since these three types of subservices share many

similarities.

Hyperdocument/Commerce Subservice

Referring to Figure 4, the Hyperdocument Designer 412 is used
to design Hyperdocument/Commerce subservices. A
Hyperdocument/Commerce subservice displays hypermedia information to a
user of an online service. A Hyperdocument/Commerce subservice can
optionally allow a user to purchase goods or services described by the
displayed hypermedia information. Hyperlinks and full-text searches allow

the user to move through the different hyperdocuments that comprise a

Hyperdocument/Commerce subservice.

An example of a Hyperdocument/Commerce subservice is an

electronic shopping system, where the user views an online catalog of goods

-30--

10

20

25

WO 96/15505 PCT/US95/14701

or services and potentially submits an electronic order for goods. The user's
electronic order is processed by an event script associated with the
Hyperdocument/Commerce subservice. The Hyperdocument/Commerce

subservice can also be used to display online documentation or help.

Directory Lookup Subservice

Referring to Figure 4, the Lookup Designer 414 is used to design
Directory Lookup subservices. A Directory Lookup subservice provides an
online, searchable directory of information. For example, a Directory Lookup
subservice can store a directory of persons, companies, or other entities. Each
entry in the directory can list a name, an address, and any other related
information; essentially, an online implementation of telephone “white
pages” listings. Alternatively, the entries in a directory can be
hyperdocuments that include company descriptions and advertisements, and
can be arranged in categories, much like conventional telephone book
“yellow pages” listings. In either case, entries are searchable by name, by

category, or using full-text search techniques with user-specified keywords.

Each directory entry can optionally provide hyperlinks to other
entries. Furthermore, each entry can contain a hyperlink to a dedicated
online service that provides additional information about the entry. Using
the directory subservice, qualified users can submit new entries, which
immediately become available for retrieval in subsequent searches of the

directory subservice by other users.

lassified Advertisemen Ivi
Referring to Figure 4, the Lookup Designer 414 is also used to

design Classified Advertisement subservices. A Classified Advertisement

31 --

10

15

20

25

WO 96/15505 PCT/US95/14701

subservice implements an online version of classified advertisements. Users
can search existing classified advertisement listings. Classified advertisement
submissions are searchable by category, geographical area, the name of the
submitter, or using full-text search techniques with user-specified keywords.
Furthermore, end users can submit new classified advertisement listings of
their own. The online service can charge a fee for submitting a new classified

advertisement.

feren rvice

Referring to Figure 4, the Lookup Designer 414 is also used to
design Reference subservices. A Reference subservice implements an online
reference work, such as a dictionary, thesaurus, or encyclopedia. A user can
search the contents of a Reference subservice by the name of the entry, or
using full-text search techniques with user-specified keywords. The online
service provider controls the content of a Reference subservice. However, the
online service allows the user to submit additional personal entries that are
seamlessly integrated into the subservice, but are only seen by that user.

These personal entries can be stored within the service repository of the client
hardware system.
lletin Ivi

Referring to Figure 4, the Bulletin Board Designer 416 is used to
design Bulletin Board subservices. A Bulletin Board subservice provides a
means for allowing users to post and view messages about a particular topic.
Users may read and search through the existing messages. A user may reply
to an existing message, or reply to a reply, thus creating a “conversation

thread” from an original message.

—-32--

10

15

20

WO 96/15505 PCT/US95/14701

The messages are divided into different sections. Messages
within a given section conform to a submission form designed for that
section by the online service developer. The submission form can contain
various data fields that are specific to that message section, in addition to a
text input area on the form for typing the message to be posted. The
developer also specifies which message data fields should appear in the
summary view for each bulletin board section. The summary view lists the

relevant header information for the messages in that section.

D nt Retrieval rvi

Referring to Figure 4, the Retrieval Designer 418 is used to
design Document Retrieval subservices. A document Retrieval subservice
provides a means for users to retrieve documents and other files such as
word processing documents, spreadsheets, text files, databases, images, sound
files, video files, executables, etc. Users can find such documents using full-
text search techniques with user-specified key{vords, for those document types
that can be viewed as text. Users can also find documents by category and
subcategory, when hierarchical browsing is supported by the online service.
A document Retrieval service can be used to provide searchable access to a
large corpus of text, to make files on a file server available to geographically
remote offices within a company, or to provide software updates to

customers.

lectronic Publishing Subservi
Referring to Figure 4, the Publishing Designer 420 is used to
design electronic Publishing subservices. An Electronic Publishing subservice
provides a user with an electronic edition of a newspaper or magazine that

the user may download to the user’s local client hardware. An Electronic

-33--

10

15

20

25

WO 96/15505 PCT/US95/14701

Publishing subservice can create a customized daily newspaper, that provides
only news stories that match certain criteria provided previously by the user.
Downloaded material may take the form of static documents, or hypermedia
documents with images, sound, video, and hyperlinks to move through the

hypermedia document.

ta-Servi rvi

Referring to Figure 4, the Meta-Service Designer 422 is used to
design Meta-Service subservices. A Meta-Service subservice provides a
service-of-services that is designed specifically to help a user find another
online service. Using the Meta-Service subservice, a user can look for
another online service, using keyword searches, categories, alphabetic listings,
etc. An online service listing can include a description of the online service,
the categories to which the online service belongs, and a visual icon for the
online service. Once the user finds a desired online service, the meta-service
provides a direct connection to the online service. A Meta-Service subservice
can itself lead to other meta-service subservices, in a hierarchical or network

fashion.

Hyperdocument/Commerce Subservice

In a common use for the invention, a Hyperdocument/
Commerce subservice will be combined with other subservices to commerce-

enable those other subservices.

For example, an online service that includes a Reference
subservice that allows the user to peruse the current Books In Print can also
include a Hyperdocumeht /Commerce subservice to enable books to be

reserved or purchased. This is illustrated in Figure 5, in which a Reference

34 -

10

15

20

WO 96/15505 PCT/US95/14701

subservice containing book descriptions has a particular book reference with a
hyperlink. When viewing a particuiar book entry in the Reference
subservice, the user clicks a button on that book entry to transfer directly to
the Hyperdocument/Commerce subservice. The Hyperdocument/
Commerce subservice will be invoked to display an on-screen order form so
the end user can buy the book. The user types the necessary ordering
information into the order form and transmits the informatio'n. The
Hyperdocument/ Commerce subservice contains a script for processing the

information entered on the on-screen order form.

A second electronic commerce example is provided with
reference to Figure 6. Figure 6 illustrates an automobile rental agent's use of
the Online Designer to create and deploy an online service that includes a
Directory Lookup subservice that displays information about the available
cars to rent. If a user selects a particular car from the Directory Lookup
subservice, then the online service transfers control to a
Hyperdocument/Commerce subservice that displays an automobile rental
form to the user. To rent the car, the user fills in the on-screen form. The
information entered into the on-screen form is processed by a script in the

subservice electronically transmitted to the automobile rental agency.

The Online Designer makes a distinction between the
"framework”, the "structure”, and the "content” of an online service. The
"framework” is the architected online services platform Molisa for which
Online Designer develops online services. The Molisa framework provides
the domain independent infrastructure and includes the Online Designer, the

subservice programs created with the Online Designer, the documents created

- 35--

10

15

20

WO 96/15505 PCT/US95/14701

with the Online Designer for use by the subservices, and the client software

used to access the online service created with the Online Designer.

The "structure” of an online service is composed of those
portions of the service that define its behavior. Classified advertisement
classifications, a bulletin board submission form, and hyperlink attributes are
examples of the components that comprise the structure of an online service.
The structure includes the selected subservices and how the selected

subservices are connected together.

The "content” of an online service is the information that the
each of the subservices delivers to users. Some of the content of an online
service can be static, provided by the developer when the online service is
designed; and some of the content can be dynamic, provided by the developer
or other users at run-time without requiring further online service design
work. Examples of static content includes the screen displays for different
regions of an online service. Examples of dynamic content includes bulletin

board messages written by users and classified advertisements submitted by

users.

Hyperdocuments are sometimes part of the structure of an
online service, and sometimes part of the content. For the purposes of
Online Designer, a hyperdocument is considered part of the service’s
structure if it is in a Hyperdocument/Commerce subservice, or if it is a form.

Otherwise, the hyperdocument is considered a part of the service’s content if

the hyperdocument is displayed in any other type of subservice.

Using the Online Designer, a developer can create "templates”

for the structure and/or content of an online service, in addition to

- 36 --

10

15

20

WO 96/15505 PCT/US95/14701

developing entire online services. A "structure template” is a partially
developed online service structure, whose development can be easily
completed by developers who provide the missing details to create a fully
functional and customized online service. Similarly, a "content template” is
a partially developed content module for an online service. Templates can be
separately packaged and provided to other developers to expedite the

development of online services using Online Designer.

The structure and content of an online service are stored in the
Service Repository. The Service Repository is a database system that is
potentially distributed between the client workstation and one or more
servers, depending on the design of the particular online service. When the
data is distributed, it still appears to the developer and user as a seamless
whole. Each Online Designer subtool stores the data for its subservice in the
Service Repository, and the various Utility Subtools access data from the

repository for a single subservice or multiple subservices.

The Online Designer includes replication support for the Service
Repository itself. This is useful in cases where the developer’s workstation
does not have full-time direct access to the Service Repository for a certain
online service. For example, this can occur if the service was originally
developed by another person. In such cases, Online Designer can replicate the
components of the online service from the server where the service resides
down to the developer’s workstation, and then replicate the components back

to the server when the modifications are complete.

There can also be more than one developer who regularly

maintains an online service. In such cases, it becomes important to prevent

37—

10

15

20

25

WO 96/15505 PCT/US95/14701

multiple developers from modifying the same part of the service
simultaneously, because one developer’s work will overwrite another when
the changes are replicated back to the server. To address this issue, Online
Designer supports version control techniques, as known in the art, allowing a
developer to “check out” a service component for modification. When
checked-out, the component may be viewed but not modified by any other
developer until the component is later “checked-in” by the developer who

checked it out.

The Online Designer tool provides the organizational structure
for developing online services. It also provides access to the various subtools
that allow the developer to design the details of online services. Online
Designer includes specific Designer Subtools for each type of subservice. The
various Utility Subtools are accessible directly from the Online Designer tool,

as well as from those Designer Subtools that a;;ply.

Figure 7 illustrates a block diagram of the Utility Subtools. The
list of Utility Subtools that support Online Designer and the Designer
Subtools include a Hypermedia Editor 711, a Portable Document Editor 712, a
Hyperlink Editor 714, a Hypermedia Document Converter 716, a Documerit
Harvester 718, a Script Editor 720, a Fee Setter 722, a Replicator 724, a Metering
Tool 726, a Repository Browser 728, a Debugger 730, and a Help Editor 732. A

description of each utility subtool is hereby provided.

rmedi

The Hypermedia Editor 711 is a What-You-See-Is-What-You-Get

(WYSIWYG) visual editor for creating and editing hypermedia documents.

--38 --

10

15

20

25

WO 96/15505 PCT/US95/14701

The Hypermedia Editor 711 can edit text, visual elements, sound elements,
user-input objects, and hotspots for hyperlinks within hypermedia
documents. Figure 3b illustrates how the Hypermedia Editor 711 can be used
to lay out user input forms for the various types of subservices that require
user input. In the described embodiment, the Hypermedia Editor is used to
create and modify documents in the HyperText Markup Language (HTML)

format. However, any other hypermedia format can also be supported.

P le Document Editor

The Portable Document Editor 712 is a visual editor for adding
hyperlink button hotspots to portable documents. Since portable documents
preserve the exact printed appearance of a page, the portable document format
is inherently less flexible for on-screen viewing than the format of a
hypermedia documents. Thus, only hyperlink buttons can be added to
portable documents. For situations where video, sound, or user input are
required, the online service developer should use a hypermedia document

instead of a portable document.

Hyperlink Editor
The Hyperlink Editor 714 is a tool that displays and manipulates

hyperlinks within an online service. The Hyperlink Editor is described in

greater detail in a dedicated subsection, below.

rmedia D n nverter
The Hypermedia Document Converter 716 is a Conversion tool
that translates documents from various document file formats into a
hypermedia document format supported by the Online Designer. For

example, the Hypermedia Document Converter can convert various word

-39 --

10

15

20

WO 96/15505 PCT/US95/14701

processor files into HTML files. Once a document is in a hypermedia
document format such as HTML, the hypermedia document format can be

edited with the Hypermedia Editor 711.

Portable Document Converter

The Portable Document Converter is a conversion tool that
translates documents from various document file formats into the portable
document format supported by the Online Designer. For example, the
Portable Document Converter may translate a Postscript® file into a portable

document format supported by the Online Designer.

Document Harvester

The Document Harvester 718 is a visual tool for specifying
which files, directories, and volumes should be indexed for full-text search
and retrieval. The Document Harvester displays the file/directory /volume
entities in a graphical tree structure such that a developer can specify
particular entities for indexing using a cursor control device. In a similar
fashion, the developer can specify which specific users or groups of users

have the right to access which entities.

Script Editor

The Script Editor 720 is a visual editor for creating and editing
the Event Scripts and Function Scripts of an online service. The Script Editor
is described in greater detail a dedicated subsection, below. To facilitate quick
development of an online system, many sample scripts for many application

domains are provided with the Online Designer.

—40 -

10

20

25

WO 96/15505 PCT/US95/14701

E er

The Fee Setter 722 is a subtool that specifies how usage fees (if
any) should be levied and paid to content providers and users, based on usage
of the online service. For example, users can be charged to access information
and advertisers can be charged to place advertisements on an online service.
The Fee Setter 722 sets fees based upon the usage of the online service. The
Fee Setter 722 is the principal subject of this document, and is described in

greater detail in a dedicated subsection, below.

Replicator
The Replicator 724 is a subtool that specifies the replication

behavior of the content and structure of various subservices. A given
subservice may be replicated on multiple servers. Using the Replicator 724,
the online service developer can specify: (1) the other servers that participate
in replication, (2) which server is the “tie-breaker” when changes on multiple
servers conflict, (3) how often a subservice rep;iﬂicates, and (4) whether the

subservice content, structure, or both are included in the replication.

Metering Tool

The Metering Tool 726 is a subtool that allows the developer to
specify the particular online service usage data that the server should gather.
The Metering Tool 726 is described in more detail in its own subsection,

below.

Repository Browser
The Repository Browser 728 is a subtool that lists all of the

services, subservices, documents, scripts, and other stored resources in the

Service Repository, the database associated with the Online Designer. The

41 --

10

15

20

25

WO 96/15505 PCT/US95/14701

developer can see the computer disk storage locations for each of these
elements, and the amount of disk space occupied. The Repository Browser
728 provides support for moving, copying, and deleting elements within the

Service Repository.

Debugger

The Debugger 730 is a subtool that allows the developer to run
and debug an online service while the online service is still under
development. The Debugger 730 is described in greater detail in its own

subsection, below.

Help Editor

The Help Editor 732 is a tool for the developer to author online
help for an online service, to be accessed by users. The help information may
be context-sensitive such that when the user presses a specific help key or
clicks on a specific help icon, the online service will display appropriate help
information for the specific task that the user is attempting to perform. In
addition, a general help table of contents and a keyword lookup facility is

available for users to search the available help documentation.

In the preferred embodiment, the Online Designer and the
related subtools all use similar user interface paradigms, including menus,
toolbars, keystroke shortcuts, and mouse techniques such as double-clicking
and drag-and-drop. All the design tools also support standard cut, copy, paste,
and delete techniques as are well known in the art. For purposes of
illustration in what follows, one particular user interface embodiment will be
disclosed for demonstrating certain features of the invention. However, it

should be understood that the same features can be made accessible using

- 42 --

10

WO 96/15505 PCT/US95/14701

other user interface embodiments. For example, a certain feature can be

available both from a pull-down menu and from a toolbar.

Example Online Service

Figure 8 illustrates a block diagram example of an online service
that can be created with the Online Designer. The online service illustrated
in Figure 8 will be used as the basis for a series of examples throughout this

document.

The online service structure of Figure 8 initially shows the user
an introductory page for the company. From the introductory page, a user can
go to a company personnel directory, a catalog of products made by the
company, a list of tips and tricks for using the company's products, a company
newsletter, and a listing of corporate information. The example online
service illustrated in Figure 8 can be used as a template for any company that

wants to quickly create an online service for its customers.

When the Online Designer is initially invoked, it displays the
Service Gallery, which shows all existing online services that are available for
modification. Figure 9 illustrates how the Service Gallery appears to a
developer. Each online service is represented by an icon, with the name of
the online service displayed beneath. From this screen display, the developer

can cut, copy, paste, and delete entire online services.

To “open” an existing online service, the developer double-
clicks with the mouse on the icon for the desired online service. This action
opens a Service Window, which displays the components of that service.

There are four “views” for a Service Window: Connectivity View, Script

=43 -

10

15

20

2
wm

WO 96/15505 PCT/US95/14701

View, Link View, and Fee View. The initial view for a Service Window 1s
the Connectivity View. To switch between the views, the developer chooses
the appropriate pull-down menu item or clicks on the appropriate button on

a Service Window toolbar.

The Connectivity View of the Service Window for an online
service displays all of the subservices, data sources, and content corpuses that
comprise the online service. The Connectivity View also illustrates
hyperlinks to other external online services to which this online service
connects. For example, Figure 10 illustrates a Connectivity View for the
online service of Figure 8. As illustrated in Figure 10, each subservice is

displayed with the name of the element subservice beneath.

From the Connectivity View, the developer can cut, copy, paste,
and delete entire subservices. The developer can change the data sources
(SQL databases, ODBC databases, CD ROM databases, server-based files, data
on the local client workstation, etc.) for each subservice; change which
content corpuses the service uses within those data sources; and change the
hyperlink connections to other online services, including access to all features
of the invention’s Service-to-Service Protocol. For data sources, the
developer can specify and modify the necessary logon information and other

parameters necessary for accessing the data.

From the Connectivity View, the developer can double-click on
a subservice icon to edit that subservice. Double-clicking on a subservice icon
invokes the design tool for that particular type of subservice. For example,
double-clicking on the Hyperdocument/Commerce subservice icon for the

Company Introduction Page invokes the Hyperdocument Designer tool.

- 44 --

10

20

WO 96/15505 PCT/US95/14701

Figure 13 illustrates how the internal structure of the hyperdocument for the
Company Introduction Page may appear. As illustrated in Figure 13, the
Hyperdocument Designer tool provides access to the hypermedia documents

that comprise the Company Introduction Page Hyperdocument subservice.

Double-clicking on a hyiaermedia document (shown in Figure
13) invokes the Hypermedia Editor. Figure 11 illustrates a Hypermedia Editor
view of the Company Introduction Page. The Hypermedia Editor is a What-
You-See-Is-What-You-Get (WYSIWYG) editor that displays a hypermedia
document as the hypermedia document will appears to an end user. The
developer can edit the hypermedia document until the developer is satisfied

with its appearance.

The Script View of an online service displays a list of all the
scripts in that service. Figure 12 illustrates a Script View for the online
catalog. Each script has a descriptor. The descriptor for an Event Script
consists of the name of the event, the name of the visual object to which it
applies, the name of the document containing that visual object, and the
name of the subservice containing that document. The descriptor for a

Function Script is simply the name of the function.

The developer can invoke the Script Editor to view and modify a
script by double-clicking on that script’s descriptor in the Script View.
Alternatively, the developer can access an Event Script by double clicking on
the visual object associated with the script from within the appropriate
Designer Subtool. Function Scripts, on the other hand, can only be accessed

from the Script View.

=45 -

10

15

20

WO 96/15505 PCT/US95/14701

When the developer chooses the Link View of an online
service, the Hyperlink Editor is invoked to view and modify the hyperlinks
between the subservices of the online service. For hyperlinks between
individual documents and files, see the Link View of the Hyperdocument
Designer, below. For hyperlinks between whole services, see the Connectivity

View of the Online Designer, above.

The Fee View of an online service provides access to the Fee
Setter subtool. When invoked from the Connectivity View, the Fee Setter
subtool allows the developer to specify the cost (if any) of accessing the service
as a whole. To specify fees for individual documents or parts of a service, the
developer invokes the Fee Setter subtool from the individual Designer

Subtools such as the Hyperdocument Designer Subtool.

At any time while running the Online Designer, the developer
may access the Replicator tool to specify replication behavior among services
and subservices. The Metering Tool can be accessed to specify service and
subservice metering characteristics, and the Repository Browser can be used to
view and manipulate the contents of the Service Repository. In addition, the
developer may invoke the Debugger to run and debug an online service or a
single subservice.

Design 1

Each of the Designer Subtools is used to develop a particular type
of subservice within an online service. The most important and original
Designer Subtools are: (1) the Hyperdocument Designer, for subservices that

consist of linked hypermedia and portable documents; and (2) the Lookup

- 46 --

10

15

20

WO 96/15505 PCT/US95/14701

Designer, for Directory Lookup, Classified Advertisement, and Reference

subservices. This section describes these two Designer subtools in detail.

The Hyperdocument Designer Su 1

The Hyperdocument Designer 412 subtool is used to design
Hyperdocument/Commerce subservices. Specifically, any subservice that
displays hyperdocuments and supports hyperlinks between hyperdocuments
is designed using the Hyperdocument Designer subtool. A typical online
service will require these features to some degree, so most online services

include at least one Hyperdocument/Commerce subservice.

When the developer double-clicks on a Hyperdocument/
Commerce subservice icon from the Connectivity View of the Service
Window for an online service, the Hyperdocument Designer is automatically
invoked. Hyperdocument Designer supports four different views: Document
View, Script View, Link View, and Fee View. Figure 14 illustrates a block
diagram of the different views supported Hyperdocument Designer. To
switch between views, the developer chooses the appropriate menu item or

clicks on the appropriate button on the Hyperdocument Designer toolbar.

Initially, Hyperdocument Designer displays the Document View,
which shows one icon for each of the hyperdocuments that comprise the
subservice. An example of a hyperdocument being viewed with the
document view is illustrated in Figure 13. Beneath each icon is the name of
the document. The document icons are visually shown in the arrangement
laid out by the developer. The developer may rearrange the document icons
in the Document View using drag-and-drop mouse techniques, and the icon

arrangement is preserved between sessions with Online Designer. The icon

47 -

10

20

25

WO 96/15505 PCT/US95/14701

arrangement in the Document View is for developer convenience only, and
has no bearing on the behavior of the hyperlinks that define the order in
which the user sees documents. Double-clicking on a hypermedia document
icon or portable document icon invokes the Hypermedia Editor or Portable

Document Editor, respectively, to view and modify that document.

From the Document View, the developer may invoke the
Hypermedia Document Converter or Portable Document Converter from the
Hyperdocument Designer menus or toolbar. These two Converter tools
translate preexisting documents from various file formats into the Online
Designer’s standard hypermedia document format or portable document
format. After translating a document, the developer assigns a name and icon
to the new hyperdocument, and repositions the new icon within the
Document View as desired. The developer may then edit the hyperdocument
to add visual objects using the Hypermedia Editor. The developer can
connect the new hyperdocument using the hy;')erlink editor to edit

hyperlinks that integrate the document into the subservice.

The Script View, Link View, and Fee View of the
Hyperdocument Designer are analogous to the same views in the Online
Designer tool itself. The Script View provides access to the Event Scripts and
Function Scripts that pertain to the particular Hyperdocument/Commerce
subservice. When the developer chooses the Hyperdocument Designer’s
Link View, the Hyperlink Editor is invoked to view and modify the
hyperlinks between all documents and files associated with the subservice.
The Fee View of the Hyperdocument Designer invokes the Fee Setter subtool

to specify fees for individual documents and files in the subservice.

--48 --

10

15

20

25

WO 96/15505 PCT/US95/14701

In effect, the Hyperdocument Designer is a Designer Subtool that
provides organized access to the Utility Subtools that are most often used in
designing a hypermedia and/or commerce subservice. For example, suppose
that an existing mail-order catalog shopping company wishes to use the
invention to design and deploy and online service that is the electronic
equivalent of an existing mail-order catalog service. The developer could
invoke the Hyperdocument Designer to create a new

Hyperdocument/Commerce subservice.

The developer could use the Portable Document Converter to
convert an electronic version of the company’s catalog into a portable
document. Using the Portable Document Editor, the developer could add
hyperlink buttons to the portable document, which lead the user to the
electronic order form from the catalog. From the Document View, the
developer could invoke the Hypermedia Editor to create an electronic order
form with a button to submit the order. Figuré 15 illustrates a
hyperdocument that displays information about a product. The
hyperdocument of Figure 15 includes a "Place Order” button 1530 that moves

the user to a purchase order screen.

Figure 16 illustrates a purchase order screen that could be
connected to the "Place Order" button with a hyperlink. The purchase order
screen allows an end user to enter information to order the product. After
the user has entered the necessary information, the user selects the
"Purchase” button to buy the product. An event script processes the
information and orders the product. To edit the event script, a developer
double-clicks on the "Purchase” button 1630 from the Hypermedia Editor.

The developer edits the script associated with the "Purchase” button 1630

- 49 --

10

15

20

WO 96/15505 PCT/US95/14701

script such that the script gathers the information from the form and submits
the order as a transaction against the back-end order/inventory database
system. When the design is complete, the deployed service allows users to
view the catalog online, and place orders in real-time, without human

intervention.

The Lookup Designer Subtool

The Lookup Designer tool designs Directory Lookup, Classified
Advertisement, and Reference subservices. In each of these types of
subservices, the user can search through a database of entries, and in some
cases, the user can submit new entries. The differences between the
subservice types include the kinds of visual objects found in the entries, the
browsing and searching techniques supported, and whether or not the user

can submit new entries for public viewing.

When the developer double-clicks on one of the three types of
lookup subservices in the Connectivity View of the Service Window for an
online service, the Lookup Designer is automatically invoked. As illustrated
in Figure 17, the Lookup Designer supports six views: Form View, Category
View, Options View, Script View, Link View, and Fee View. As with the
other Designer Subtools, the developer uses menus or the Lookup Designer

toolbar to switch between the different views.

The initial view for Lookup Designer is the Form View. From
the Form View, the developer uses the Hypermedia Editor to design the

Submit Form, View Form, and Query Form for the subservice.

—-50--

10

—
(S]]

20

WO 96/15505 PCT/US95/14701

The Submit Form allows a user to submit a new entry to be
listed on the subservice. Figure 18 illustrates an example screen display for a

submit form for the Corporate Personnel Directory subservice of Figure 8.

The View Form is the template that displays the contents of an
entry to the user. Figure 19 illustrates an example screen display for a view

form for the Corporate Personnel Directory subservice of Figure 8.

The Query Form allows the user to search for entries based on
various criteria. Figure 20 illustrates an example screen display for a query

form for the Corporate Personnel Directory subservice of Figure 8.

There are certain standard input fields that the various Lookup
Designer forms may provide. A form need not use all of the standard fields.
However, for the standard fields that are used, the form should also use the
standard internal names for those fields so that the fields will be properly
recognized and handled by Molisa. If a given form does not yet exist for a
subservice, Online Designer provides a default form containing all standard

supported fields, which the developer can modify.
The standard Lookup Designer form fields are as follows:

Name For Directory Lookup subservices, this is the person or
entity name for the entry. For Reference subservices,
this is the name of the item for which reference
information is being provided. For Classified
Advertisement subservices, this is the name of the

person submitting the entry.

Address, Phone, Fax, E-mail

=51 --

10

15

o
wm

WO 96/15505

Categories

Keywords

PCT/US95/14701

For Directory Lookup subservices, these fields pertain to
the person or entity listed in the entry. For Classified
Advertisement subservices, they pertain to the person
submitting the entry. These fields are typically not used

for Reference subservices.

The categories under which the entry should be listed.
Typically, this is a pairing of two visual objects: a drop-
down list box showing all of the categories recognized
by the subservice, and a text entry field that displays the
list of categories that the user has chosen so far for this
entry. Note that the user must choose from among the
categories specified by the developer in the Category
View of the Lookup Designer when the subservice was
designed. (The developer can of course change the list
of categories at a later time using Online Designer.)
This field is typically used in Classified Advertisement
and “yellow pages” Directory Lookup subservices. The
categories are used for browsing purposes, in that all
entries that belong to a given category are shown
together under that category name. In Classified
Advertisement subservices, the categories can be used

as part of the search criteria on a Query Form.

Similar to categories, but users can type in any
keywords they deem appropriate, rather than being
constrained to choose from a fixed list. Entries sharing

a common keyword are not listed together in the

10

15

25

WO 96/15505

Slogan

Description

Image

Removal Date

PCT/US95/14701

l
subservice browser, but users can search the keyword

fields of entries using the Query Form.

Advertising slogan. This field is typically only used in

“yellow pages” style Directory Lookup subservices.

The descriptive text for the entry. For Classified
Advertisement subservices, this is the text of the
advertisement itself. For Reference subservices, this is
the information about the named entry. For “yellow
pages” style Directory Lookup subservices, this is the
description of company products and services, hours of
operation, etc. This field is typically not used for “white

pages” style Directory Lookup subservices.

A graphic image to be displayed with the entry. In the
Submit Form, this is a text field for the user to specify a
directory path to the file containing the image. In the
View Form, this is a picture field that displays the
image itself. This field is typically used in “yellow
pages” Directory Lookup subservices for a company
logo or related graphic, or optionally in a Reference

subservice for a picture of the named item.

Date after which an entry should be automatically

removed from the subservice. This is typically used for
Classified Advertisement subservices, but it can also be
used in Directory Lookup subservices to reduce costs for

the submitter. A Classified Advertisement subservice

- 53 --

10

20

WO 96/15505 PCT/US95/14701

can also have a global automatic limit on the number
of days that an entry is listed (see the Options View,

below).

Service Link Used for entries that provide a hyperlink icon leading
to another onliﬁe service. For example, a “yellow
pages” entry can provide a link to an online service
provided by the company listed in the entry. On the
Submit Form, this is a text field for the user to provide
the URL of the other online service. On the View

Form, this is displayed as the hyperlink icon itself.

In addition to the standard Lookup Designer form fields, the
developer may include other input fields that have specific meaning to the
subservice being developed. Such fields make it easier to query the database
of entries. For example, a Classified Advertisement subservice devoted to the
purchase and sale of pre-owned automobiles can include form fields for the
year, make, and model of the car. The end user can type specific information
into those fields on the Query Form to find a matching entry, instead of

performing a less-precise full-text search on the Description field of the entry.

The developer should associate any required scripts with the
visual objects on a form, to specify the behavior of those visual objects. For
example, on a Query Form, the developer should provide a script for the
Search button on the form that specifies how to convert user input in the
various fields of the form into a query against the subservice database of

entries. To invoke the Script Editor to create a script for a visual object, the

--54 --

10

20

WO 96/15505

PCT/US95/14701

developer double-clicks on that visual object while viewing the associated

form in the Hypermedia Editor.

The Category View of the Lookup Designer simply displays a list

of the category names supported by the subservice. The developer can add,

delete, and modify the categories from the category view.

In the Options View of the Lookup Designer, the developer

specifies certain options about the behavior of the subservice. These include:

Updatable

Moderated

Categorized

A checkbox that indicates whether users can submit
new entries to the subservice for other users to view. If
this box is not checked (e.g., for a Reference subservice),
any entries submitted by a user can later be viewed by

that user, but no one else.

A checkbox that indicates whether this subservice is
moderated. If this box is checked, any newly submitted
entries are not directly posted to the subservice.
Instead, they are transparently transmitted by electronic
mail to the moderator for the subservice. The
moderator reviews the entry, and if it is deemed
appropriate, the moderator posts the entry on behalf of
the original submitter. This option is ignored if the

Updatable checkbox is not checked.

A checkbox that indicates whether this subservice
supports browsing by category. If this box is checked, all

entries in a common category are grouped together

--55--

10

15

20

25

WO 96/15505

Sorting

Expiration

PCT/US95/14701

under that category name for browsing by users. If a
single entry is in more than one category, it appears
under each of those categories. Typically, this box is
checked for “yellow pages” Directory Lookup
subservices and Classified Advertisement subservices.
Whether or not this box is checked, the user may still
perform standard queries against the database of entries

using the Query Form for the subservice.

A drop-down list box that indicates how entries are
sorted within a category for user browsing. Entries may
be sorted in forward or reverse order based on the
contents of any of the entry fields, and secondary and
tertiary sort keys are supported with additional drop-
down list boxes in the tool. In addition, the entry’s date
of posting is available as a sort key, even if that date is
not displayed as part the entry itself. Typically, a
“yellow pages” Directory Lookup subservice will sort in
forward order based on the contents of the Name field,
and a Classified Advertisement subservice will typically

sort in reverse order of posting date.

The number of days that each entry remains listed on
the subservice before it is automatically removed. This
option may also be left blank, in which case there is no
automatic expiration date for entries. If an entry has an
individually specified Removal Date that occurs before

automatic expiration, the entry’s Removal Date is

--56 --

10

20

WO 96/15505 PCT/US95/14701

honored. Otherwise, the automatic expiration date is

used.

The Script View and the Link View in the Lookup Designer are
analogous to the Script View and the Link View in the Online Designer tool

itself and in the Hyperdocument Designer.

The Fee View of the Lookup Designer is an optional feature that
invokes the Fee Setter subtool, allowing the developer to specify the formula
for computing the cost of viewing an entry (if any), and submitting an entry
(if any). The Fee Setter subtool is described in greater detail in a separate

section below.

ility Su 1

The Utility Subtools provide capabilities that are useful in the
design of multiple types of subservices. These subtools are accessed from the
Designer Subtools, and from the Online Designer itself. The most significant
and original Utility Subtools are: (1) the Hyperlink Editor, for manipulating
hyperlinks within an online service; (2) the Script Editor, for editing the
various scripts that control the behavior of an online service; (3) the Fee
Setter, which allows the developer to specify any fees that should be charged
to users or advertisers; (4) the Metering Tool, which provides instructions to
the online service server regarding the usage statistics that should be tracked;
and (5) the Debugger, which pfovides interactive running and debugging

capabilities for an online service. This section provides the details on the five

Utility Subtools.

—-57--

10

15

20

"~
w

WO 96/15505 PCT/US95/14701

eH link Editor 1
The Hyperlink Editor Subtool is a Utility Subtool that is used to
display and manipulate hyperlinks within an online service. The hyperlinks
within an online service can be viewed and modified at various levels of
abstraction. For example the Hyperlink Editor Subtool can display and
manipulate the links between different subservices within an online service,
the links between different documents within a subservice, the links within a

single document, or the individual attributes of the links themselves.

With the Hyperlink Editor, the developer can assign attributes to
hyperlinks. Some important examples of hyperlink attributes include: (1)
whether the hyperlink leads to the same document/file or to a different
document/file; (2) whether the hyperlink leads to the same online service or
a different online service; (3) whether the hyperlink leads to a service that the
developer controls or doesn’t; (4) the size of the document/file a link points
to; (5) whether the link leads to a free service or one that has additional
charges; and (6) the semantics of the hyperlink. The latter attribute is a
semantics tag taken from a known list of possibilities, which includes simple
linking, making a purchase, returning to the home page of the service,
initiating a search, linking to a form that requests shipping address
information, etc. The semantics attribute of hyperlinks provides some
additional structure to online services, and encourages a degree of

standardization in hyperlink usage.

The Hyperlink Editor supports both a Graphical View and a List
View of hyperlinks. The Graphical View displays the hyperlinks as a directed
graph, with the source and target of a hyperlink represented by visual icons,

and displays the hyperlink itself as a directed arc connecting them. An arc’s

- 58 --

10

20

8]
w

WO 96/15505 PCT/US95/14701

particular appearance (color, width, arrow design, and other visual cues)
depends on the various attributes (above) associated with that hyperlink. The
List View displays a list of the hyperlinks, showing the names of the linked
entities and visual cues indicating the attributes associated with each
hyperlink. The developer can modify the hyperlinks and attributes from

either view.

A search facility within the Hyperlink Editor allows the
developer to search through the online service for hyperlinks that satisfy a
list of criteria. The search criteria are expressed as a set of attribute values
associated with the hyperlinks, which the developer types into a search query

form.

The Script Editor Su 1 and the Onlin ript Langua

The Script Editor is a Utility Subtool for editing the Event Scripts
and Function Scripts of an online service. The.script editor is accessed from
the Script Views of the various Designer Subtools and the Online Designer
itself. The developer can also invoke the Script Editor to edit the Event
Scripts associated with a visual object by double-clicking on the visual object

itself from within the appropriate Designer Subtool.

For example, Figures 21a and 21b illustrate screen displays for
the Script Editor editing an event script for the for the MouseDown event on
the "Purchase_Button” of the hyperdocument illustrated in Figure 16. The
Purchase event script of Figures 21a and 21b checks the inventory, charges the

customer, and updates the inventory if a sale is completed.

Event Scripts and Function Scripts conform to the invention’s

Script Language, a procedural programming language similar to the language

- 59 -

10

15

20

WO 96/15505 PCT/US95/14701

BASIC (Beginner's All-Purpose Symbolic Instruction Code). The Online
Designer Script Language includes variable declarations, numeric and string
operations, conditional statements (“if...then...else”), control statements for
looping (“for” and “while”), and functions (subroutines) with parameter
passing. The Script Language includes a number of programming constructs
and built-in functions. The programming constructs and built-in functions
are collectively referred to as the Script Language "primitives”. The
primitives included in the Script Language have been chosen and optimized

for implementing common features supported by online services.

Using the Script Editor, a developer can directly type and edit an
event or function script. In addition, the script editor provides a menu-
driven facility to paste script statement and function invocation archetypes
into a script, which the developer can then modify appropriately. For
example, the developer can use the menus to insert a “for” statement
archetype that has placeholders for the conditional expression and statement
body. Similarly, archetypes for all of the built-in functions and programming
constructs can be inserted, with placeholders for the various function

arguments.

Many of the key features of the present invention are accessed
primarily through the primitives of the Script Language. In addition to
normal programming language primitives for arithmetic, file input/output,
etc., specific primitives are included to support for online services. The

following sets of script primitives exist to support online services.

- 60 --

10

15

WO 96/15505 PCT/US95/14701

Pr m_control primitiv

A set of primitives are provided for transferring program control
to another document, subservice, or service. This is the dynamic form of a
hyperlink. By using these primitives in a script, the developer can choose the
destination of a hyperlink at “run-time,” in response to previous input from
the user, or depending on the context in which the particular hyperdocument

is displayed.

Telecommunication primitives

A set of primitives exist for performing various
telecommunication tasks such as downloading files to a client system. For
example, in electronic publishing, the user can click on a button to download
the electronic version of a magazine. The Event Script associated with the
“Mouse Down” event on that button would invoke the primitive to
download the document. As another example, a script can invoke the
primitive to download software for viewing]'PEG compressed images if it

does not find that external viewer already resident on the client workstation.

Text search and retrieval primitives

Primitives are provided to specify the various types of text search
criteria: natural language, Boolean, and conceptual. Other primitives are
provided to initiate the search, using the previously specified criteria, against
specified data sources. For example, to perform a search based on the contents
of a query form, a script should construct an appropriate Boolean text query
from the keywords typed into the user input fields on the form, and submit
that query using the Boolean criteria language primitives. Then, the script

should invoke the built-in function that initiates the search, passing an

- 61 -

10

WO 96/15505 PCT/US95/14701

argument to that function that specifies the ID of the target database for the

search.

xternal databa rimitiv

Direct access to external databases and real-time data is provided
using specific script primitives. The éxternal database primitives provide the
most common and standardized constructs supported by Structured Query
Language (SQL), to access relational database systems. In addition, the Script
Language includes a general SQL primitive'that can accept any sequence of
native SQL statements, either as an argument to the function or contained in
a specified file, and pass those SQL statements directly to the relevant database
system as illustrated in Figure 22. Any results from the database query are
returned to the subservice that made the query. For non-SQL databases (and
certain SQL databases), there are primitives for Open Database Connectivity

(ODBC).

External communication primitives

A set of primitives exist that allow an online service to
communicate with other programs and users. For example, the primitives
are provided with allow a script to send an electronic mail message, a
facsimile transmission, a voice mail message (using text-to-voice techniques),

or a message to an electronic wireless pager.

lication program control primiti
The Script Language provides various primitives for launching
other application programs, sending data to those programs, and receiving

data from those programs. The names and semantics of the external program

—-62 --

10

15

25

WO 96/15505 PCT/US95/14701

control primitives differ according to the server platform that will run the

online service.

For example, under a Microsoft Windows NT Server Version of
the Online Designer, there are Script Language primitives for Dynamic Data
Exchange (DDE), launching another application with optional keystroke
stuffing, and batch invocation. To support an online service acting as a DDE
client, there are primitives for standard DDE Connect, Disconnect, Execute,
Poke, Request, Advise, and Unadvise actions. In addition, the developer may

write Event Scripts that trigger on DDE Advise events from other programs.

For launching and keystroke stuffing, the Script Language
provides primitives that launch a named software application, optionally
wait for the application to finish or let it run concurrently, and optionally
“stuff” specified keystrokes into the launched application with suitable pauses
at specified points in the keystroke stream. The batch primitives simply
launch a batch file or batch-style application with a given command line, and
the Script Language file I/O primitives can then be used to read and parse the
output of the batch process (if any). For other server platforms (OS/2, UNIX,
etc.), other application control primitives are provided that are appropriate on
those platforms. For example, terminal emulation primitives are one

mechanism provided under UNIX.

xternal control primitiv

Script Language primitives are provided that send commands to,
and receive data from, electronically controlled equipment such as heating
systems, ventilation systems, air-conditioning systems, security systems, and

lighting.

-—-63--

10

15

20

WO 96/15505 PCT/US95/14701

ntr imitiv
Using the access control primitives of the Script Language, a
script can request a password from the user, encrypt and decrypt files to be
downloaded or sent to another service, and dynamically determine whether a
given user should be given access (read only, write only, read/write, or none)
to a particular document or part of a service. These run-time language
primitives augment the static access control mechanisms that the developer

can specify at design time using the invention.

rvice-to-servi m ication primitiv

The Script Language provides service-to-service communication
primitives that allow one online service to: (1) act on behalf of the user to
query or update another online service; (2) automatically update another
online service without user initiation; (3) appear to be seamlessly part of
another online service; (4) keep a record of how many times users traverse to
another online service; (5) pass along automatic user registration data to
another online service; (6) automatically register a new online service with a
service-of-services or “yellow pages” service; (7) check whether another
server is running a particular online service or type of service; and (8)
exchange usage and metering information, for aggregation and later analysis.
Each of these primitives opens a virtual connection to the target service,

using the service-to-service protocol.

r munication primitiv
User communication primitives exist that allow users to engage
in real-time cooperative activity. These user communication Script Language
primitives provide a Named Pipes style communications interface between

two or more users, or between users and a representative of the online

—64 --

wn

10

20

WO 96/15505 PCT/US95/14701

service provider. For example, such primitives can support a multi-person
game between users, or a user entering an online query and receiving a real-
time response from a representative of the service provider. The primitives
to establish a connection include the ability to specify a specific user with
whom to communicate, or a “broadcast” facility to find any current user on a

given server who wishes to establish a given class of cooperative connection.

Image capture primitives

Primitives are provided that: (1) command the server software
to accept a facsimile that is sent to the server’s fax modem from a user's fax
modem or fax machine having a given identification, (2) command the
server software to accept an image transmitted by electronic mail to the
server, or (3) command the client software to accept a scanned image (using
the TWAIN scanning standard) and transmit that image to the server. Once
captured, other Script Language primitives allow the image data to be
incorporated into other documents. For exam;ﬁle, a logo for a “yellow pages”

listing or a photograph for an online classified advertisement.

The Script Editor works cooperativelv with the Debugger, to
allow single-stepping through scripts, displaying script variables, etc. In debug
mode, the Script Editor allows certain limited changes to a script. More major

script changes require that the developer stop the simulation first.

The F etter Subtool

E r In ion

The Fee Setter subtool allows the developer of an online service

to specify the fees that will be levied on or paid to users, as users use the

- 65 --

10

15

20

(A
ul

WO 96/15505 PCT/US95/14701

service and access the information it contains. The Fee Setter subtool of the
Online Designer can also be used to define fees levied on or paid to
information content providers. The online service framework automatically
levies and pays the fees according to the Fee Setter instructions, on behalf of

the organization that operates the online service.

The actual transfer of monetary funds specified by the Fee Setter
can be effected on an immediate or periodic basis using mechanisms external
to the Fee Setter itself. For example, the Fee Setter can use credit card charges
or electronic funds transfer to charge users of an online service. Similarly,
the Fee Setter can use electronic funds transfer or traditional paper-based
billing and payment mechanisms to bill content providers, or other similar
means. The Fee Setter specifies the fees to be levied and the payments to
make, and the external mechanisms arrange the funds transfer to actually

cover those fees and payments.

The Fee Setter is used for all of the various chargeable entities in
an online service. As such, the Fee Setter is accessible from the Fee Views of
the Online Designer itself and from the Fee Views of each of the Designer
Subtools. For exafnple, the Fee Setter can be accessed from the Fee View of
the Hyperdocument Designer to charge fees for documents and for following
hyperlinks to other subservices. Similarly, the Fee Setter can be accessed from

the Lookup Designer to charge fees to users who view/download entries and

those who submit new entries.

Many fees are simply constant monetary amounts; e.g., a $2.00
fee to download a particular document. Other fees are more complex. The

fees can depend on the size of a document, the time of day, the load on the

- 66 -

10

15

20

25

WO 96/15505 PCT/US95/14701

server, the identity of the user, the number of previous documents
downloaded or submitted by this user, etc., depending on the information
provider’s policies and intentions. For classified advertisement submissions,
the fee for submitting the advertisement can include the size of any graphic
image in the advertisement, the number of categories under which the

advertisement is listed, and the number of days that it is listed.

The Fee Computation in a Fee Specifier supports simple and
complex fee structures. The formula itself is specified using a subset of the
online service Script Language. When writing the Fee Formula, the
developer writes a sequence of script statements, possibly including variable
declarations, such that the appropriate fee is assigned to the reserved global

variable "Fee@" some point before the end of the script.

xample F

To illustrate some of the types of .fee structures that can be
created using the Fee Setter, several examples of fees that can be defined with
the Fee Setter are listed below. It should be understood that these are
examples only, and that many other types of fee structures can be created

using the Fee Setter of the present invention:

vyving F
Levying a fixed fee on users whenever certain textual or graphic

information is viewed or downloaded from the online service.

Levying a variable fee on a user for accessing information,
depending on the amount of information that particular user has
accessed in the past. Thus, a quantity discount can be offered to
users that frequently access a particular online service.

Levying a variable fee on users for accessing information, wherein
the fee charged depends on the time of day that the information is

—-67 --

10

15

20

30

WO 96/15505 PCT/US95/14701

accessed or on the current load on the online service server. Thus,
the amount of the fee would discourage access during peak periods
by assigning a premium during peak hours.

Levying variable fees on users depending on the size of the
information accessed, or on the amount of time required to access,
view, or download the information.

Levying different fees on different classes of users. For example,
users that have paid for an annual membership will receive a
discount.

Levying a fee on users for simply connecting to a given online
service. For example, an online service that provides investment
advice could charge for access.

Levying a fee on users who access certain parts of an otherwise free
online service. For example, in an online service provided by a free
newspaper publisher, a fee could be charged for users who wish to
access the full-text search capabilities on back issues.

In a classified advertising online service, levying a variable fee on
users who electronically submit new listings to the service,
depending on the size of the listing.

Paving Fees t I

Paying a fixed fee to a user in exchange for that user filling out a
market survey questionnaire.

Paying a fixed monetary prize to a user as winnings from a contest
run by the online service operator.

Paying a variable fee to a user as proceeds from (legal) gambling
conducted on the online service. Thus, users could engage in
gambling from home.

F nt Pr

Levying a fixed fee on a content provider whenever a user views or
downloads that provider’s textual or graphic information from the
online service. For example, when a user views or downloads a
content provider’s advertising brochure or investment prospectus, 2
small fee would be levied on the content provider.

- 68 --

10

20

30

35

WO 96/15505

Paying Fe

PCT/US95/14701

Levying a variable fee on a content provider when a user accesses
the provider’s information, depending on the amount of
information that all users have accessed from that provider in the
past. Thus, an advertising quantity discount to the content
provider.

Levying variable fees on content providers depending on the
amount or size of information carried on the online service, and on
how many days that information is carried on the service.

Levying different fees on different classes of content providers. For
example, an online service provider could give a discount to non-
profit organizations that advertise on the online service.

Levying a fee on another online service provider whenever a user
clicks on a hyperlink from the current online service that leads to
the content provider’s own online service. This would in effect be a
referral fee.

In a “yellow pages” style online service, levying a variable fee on a
content provider depending on the number of categories under
which the provider’s listing (and advertisement) is carried. Thus
the easier it is to find the content provider's advertisement, the
more the online service provider would charge.

n Provider

Paying a fixed fee to a content provider whenever a user views or
downloads a particular document or program posted by that content
provider. Thus content providers can supply informative reports,
software programs, images, sounds, etc. that would be available to
users of the online service. When a user requests the content
provider's material, the users would be a charged for the material
and the fees charged to the user would be divided between the
content provider and the online service operator.

Paying a variable fee to a content provider depending on the size of
the provider's textual or graphic information that is downloaded by

all users.

Paying a variable fee to a content provider when users perform full-
text searches across the provider’s database of documents. The fee
paid to the content provider depends on how much time was spent
performing searches (even if no documents were ultimately viewed
or downloaded).

—- 69 --

10

15

20

25

WO 96/15505 PCT/US95/14701

Paying a variable fee to a content provider of (say) stock photo
images when an end-user downloads an image, where the fee
depends on the total number of images downloaded by all end-users
in the past; in effect, a quantity discount to the online service
operator on paying for content.

Fee Specifiers

The Fee Setter allows the developer to use the mouse, toolbar,
and menus to create, modify, and delete individual Fee Specifiers. A Fee
Specifier is a tuple that consists of four different parts: (1) An action that
triggers the fee. This can be a traverse of a hyperlink, the downloading of a
document, the uploading of an advertisement, etc.; (2) The argument values
(if any) that are required by the specified action; (3) The entity to whom the fee
should be charged or to whom the payment should be made. This can be a
user of the ornline system or a content provider; (4) A Fee Computation that

specifies exactly how a fee or payment is computed.

The Fee Setter displays the Fee Specifiers in a list. For example,
Figure 23 illustrates a list of Fee Specifiers that can be used to assign fees in
one particular online service. Each Fee Specifier describes one particular type
of fee for using the online service. The Fee Computation is not displayed
directly in the Fee Setter list. Instead, in each Fee Specifier, an on-screen
button is displayed that can be clicked by the developer to access the Script
Editor to view and edit that Fee Computation. Figure 24 illustrates a

Computation Script Editor view of a Fee Specifier.

The detailed descriptions of each element in the Fee Specifier

tuple are given below:

-~ 70 --

10

15

20

WO 96/15505

Action:

Argument:

PCT/US95/14701

This is the type of action that triggers the fee to be charged or the

payment to be made. The allowable Action values are:

Access

Submit

Traverse

Connect

Daily

Weekly

Monthly

Annually

The action of a user accessing (viewing,
downloading, “running”) an object. The supported
objects are: document, image, video clip, sound clip,
and script.

The action of a user submitting (uploading) an
object. The supported objects are: document, image,
video clip, and sound clip.

The action of a user clicking on (traversing) a
hyperlink in a particular document.

The action of connecting to the online service.
Indicates that the fee or payment is recomputed and
reassessed once each day.

Indicates that the fee or payment is recomputed and
reassessed once each week.

Indicates that the fee or payment is recomputed and
reassessed once each month.

Indicates that the fee or payment is recomputed and

reassessed once each year.

This is the argument value (if any) required by the action

element of the Fee Specifier. The Argument values required by

each of the various types of Action are as follows:

Access

The file system path of the affected object. For

example, “/pub/www/clothing/order.html.”

71 --

10

15

20

WO 96/15505

Entity:

Submit

Traverse

Connect

Daily

Weekly

Monthly

Annually

PCT/US95/14701

The file system path of the document form that was
used to submit the object. For example,
“/pub/www / classifieds /newlisting.html.”

The hyperlink being traversed. It is specified as the
path of the document containing the hyperlink,
followed by three slashes (“///"), followed by the
URL of the hyperlink itself as contained in that
document. For example,

“/pub/www /yellow /acme.html// /http:/ /www.ac
me.com.”

Requires no argument. The argument field should
be left blank.

Requires no argument. The argument field should
be left blank.

Requires no argument. The argument field should
be left blank.

Requires no argument. The argument field should
be left blank.

Requires no argument. The argument field should

be left blank.

This is the entity to whom a fee should be levied or paid from

the online service operator. The allowable Entity values are:

Provider

User

The fee should be levied or a payment should be
made to the content provider.

The fee should be levied or a payment should be

made to the user.

—-72--

WO 96/15505 PCT/US95/14701

Note that if the action element of the Fee Specifier is "Daily"” the
entity element is "Provider”, the Fee Specifier is recomputed and reassessed
for every content provider in the online service each day. Similarly, if the
action is "Daily” and the entity is "User”, then the Fee Specifier is recomputed

5 for every user of the online service each day. The same principle holds for

fees that have the action triggers of "Weekly", "Monthly", and "Annually."

Fee Computation. This is a script, written in the Computation
Language, that specifies how the fee to be levied or paid is to be
computed. Details of the Fee Computation are provided in a

10 separate section below.

Example Fee Specifiers

To best illustrate the use of Fee Specifiers, two examples of Fee

Specifiers are listed below :

Example Fee Specifier #1

15 <
Access,
/pub/www /research/crop-forecast-94.html,
User,
Fee@ = 5.00
20 >

This first Fee Specifier indicates that a fee should be charged
whenever a user accesses (views or downloads) the document identified by
the path “/pub/www /research/crop-forecast-94.html,” since the action is
"Access" and the argument is the "/pub/www /research/crop-forecast-

25 94.html" path name. When a users performs such an access, the online

service should levy a fee of $5.00 on the user.

—-73--

10

15

20

25

WO 96/15505 PCT/US95/14701

Example Fee Specifier #2

Daily,
Provider,
Fee@ = 0.0
For i% = 1 To ProviderFileCount%(Provider%)
Fee@ = Fee@ + (1E-6 * FileLen(ProviderFilePath$(Provider%, i%)))
Next 1%

This second example Fee Specifier indicates that each day, a
particular fee should be charged to each content provider. The daily fee is
calculated by charging $0.000001 for each byte of file data that is owned by that
content provider on the online service. Stated more simply, each content
provider is charged approximately $1.00 for each megabyte of data stored on
the online service per day. Note again that the list of Fee Specifiers shown in
the Fee Setter do not actually contain the entire Fee Computation above.
Instead, an on-screen button in the Fee Specifier tuple can be clicked to launch
the Script Editor, allowing the developer to view and modify the Fee

Computation.

The online service framework automatically executes the
appropriate Fee Specifiers whenever their associated actions occur. Thus,
when the user accesses a document, the "Access” Fee Specifiers (if any) whose
argument element is the path to that document will be executed, resulting in
a fee being levied or paid for each such Fee Specifier. Once a day the "Daily”

Fee Specifiers are executed, and so on.

Note that, in many cases, a Fee Specifier that levies a fee on a
user for accessing information will be accompanied by another Fee Specifier

that pays part of that fee back to the content provider. Conversely, a Fee

—-74 --

10

15

20

25

WO 96/15505 PCT/US95/14701

Specifier that pays a fee to the user (e.g., for filling out a market survey
questionnaire) will often be accompanied by a Fee Specifier that levies a

comparable fee on the content provider.

The Fee Computation in a Fee Specifier supports simple and
complex fee structures. Each Fee Computation is expressed using the
Computation Language, which is a subset of the online system development
tool’s full Script Language. When specifying the Fee Computation, the
developer writes a sequence of script statements such that when the script is
executed by the server, the appropriate fee is assigned to the predefined global
variable "Fee@" at some point before the end of the script. If the final value
of Fee@ is positive, then a fee is levied on the entity by the online service

operator; if it is negative, the fee is paid to the entity by the service operator.

Computation Language Basics

The Computation Language is a subset of the invention’s Script
Language, which is itself similar to the computer programming language
BASIC (Beginner's All-purpose Symbolic Instruction Code). A very brief
overview of the Computation Language is provided below. The reader is
referred to any comprehensive reference on the BASIC programming
language for a description of the detailed semantics of these programming

constructs.

Action Statement Syntax
Expression evaluation Operators (+, -, *, /, etc.) and function calls, in the

usual fashion

- 75—

10

15

20

25

WO 96/15505 PCT/US95/14701

Variable assignment <variable> = <expression>

Conditional execution If <condition> Then
<statements>

[Else
<statements>]

Endif

Repeated execution Do While <condition>
<statements>

Loop

Iterative execution For <variable> = <expression> To <expression>
<statements>
Next <variable>

In the Computation Language of the present invention, explicit
variable declarations are not used or required. Instead, the suffix character

used on a variable name determines the data type of the variable:

Suffix Data Type Range Example Constants
% Integer +/-2,147 483,647 3019, -12

! Floating pnt +/-4.94x10°% to +/-1.79x10°® -2.25,2.879E-35

@ Currency +/-922337203685477.5807 562.91, -0.1822

$ String 0 to 65,500 characters “Hello”, "

Date/Time 01-Jan-0000 0:00 to 31-Dec-9999 23:59 #02-Apr-94 1:45pm#

The Currency data type (variables with the @ suffix) supports up
to 4 digits to the right of the decimal point. It maintains exact decimal
accuracy, making it especially suitable for monetary calculations. In the
Date/Time data type, the base unit is days such that adding or subtracting an

integer adds or subtracts days; adding or subtracting a fraction adds or subtracts

—-76 -

WO 96/15508

PCT/US95/14701

time as a fraction of a day. For example, adding 10 adds 10 days, while

subtracting 1/24 subtracts one hour.

Predefined Global Variables

There are 5 predefined global variables available to a script that

5 comprises a Fee Computation. The 5 predefined global variables are defined

below:
Fee@
10
Arg$
Provider%
15
20

When the Computation Language script that defines the
Fee Computation is complete, the final value of the
Fee@ predefined global variable is the fee that is levied
on the entity (if the value is positive) or paid to the

entity (if the value is negative).

The value of the argument element of the Fee Specifier.

The Arg$ is provided as a notational convenience.

The provider identifier number of the content provider
associated with the action that triggered the Fee Specifier.
This predefined global variable is available when the
entity element of the Fee Specifier is "Provider”. If the
action is "Access”, the value of Provider% is the
identifier number of the content provider that owns the
information that was accessed. If the action is "Daily",
"Weekly", "Monthly”, or "Annually” (and the Fee
Specifier is "Provider"), the Fee Specifier is evaluated
once for each content provider of the online service. In

this case, the Provider% value is the provider identifier

— 77 --

10

15

20

WO 96/15505

User%

AccessTime#

PCT/US95/14701

number of the current content provider being referenced

in this iteration of the Fee Specifier computation.

The user identifier number of the user associated with
the action that triggered the Fee Specifier. This
predefined global variable is available when the entity
element of the Fee Specifier is "User". If the action is
"Access" or "Submit”, the value of User% is the ID
number of the user that accessed or submitted the
information. If the action is "Daily”, "Weekly",
"Monthly", or "Annually” (and the Fee Specifier is
"User"), the Fee Specifier is evaluated once for each user
of the online service. In this case, the User% value is the
user identifier number of the current user being
referenced in this iteration of the Fee Specifier

computation.

The amount of elapsed time that was required to access
the current object. This predefined global variable is

valid only in "Access” or "Submit" Fee Specifiers.

ailabl ilt-In Function

All of the primitives of the Script Language are available in the

Computation Language. These primitives include built-in functions for

general computing purposes (e.g., "Now()" to obtain the current date/time,

"FileLen(<path>)" to determine the length of a file, etc.), as well as built-in

functions that are specific to online services. The online service primitives

78—

10

WO 96/15505 PCT/US95/14701

that are of particular interest for creating Fee Computations are detailed

below:

ProviderFileCount%(<provider_num>)
Returns the total number of files, carried on the online service,
belonging to the content provider whose provider identifier is

<provider_num>.

ProviderFilePath$(<provider_num>, <index>)
Returns the path of the file at index <index> in the list of files
associated with the content provider whose provider identifier is
<provider_num>. The allowable range of <index> is 1 through

ProviderFileCount%(<provider_num>), inclusive.

ProviderTotalAccessCount%(<provider_num>)
Returns the total number of files, belonging to the content provider
whose provider identifier is <provider_:num>, that have ever been
accessed by any users on this online service. The
ProviderTotalAccessCount% function is useful for computing quantity

discounts.

ProviderTotalAccessSize%(<provider_num>)
Returns the total size of the files, belonging to the content provider
whose provider identifier is <provider_num>, that have ever been
accessed by any users on this online service. The
ProviderTotal AccessSize% function is useful for computing quantity

discounts.

-~ 79 --

WO 96/15505 PCT/US95/14701

ProviderTotalContentCount%(<provider_num>)
Returns the total number of files on this online service belonging to

the content provider whose provider identifier is <provider_num>.

ProviderTotalContentSize%(<provider_num>)
5 Returns the total size of all files on this online service belonging to the

content provider whose provider identifier is <provider_num>.

ProviderAttrSet(<provider_num>, <attr_name>, <value>)
Associates, with the content whose provider identifier is
<provider_num>, an attributed name <attr_name> having value
10 <value>. If that attribute already exists for that provider, replaces the
value of the attribute with this new value. One example of using
attributes on content providers might be to record in a “Non-profit”
attribute the value “Yes” or “No,” depending on whether the provider

is a non-profit organization.

15 ProviderAttrGet$(<provider_num>, <attr_name>)
Gets the value of the attribute named <attr_name> for the content
provider whose provider identifier is <provider_num>. The value is
returned as a string, but can be converted to any other appropriate type
using the data type conversion functions provided by the Computation
20 Language and the Script Language. Text to data conversion functions

are well known in the art and are not discussed in this document.

UserTotalAccessCount%(<user_num>)

Returns the total number of files that have ever been accessed by the

user whose user identifier is <user_num>. The

--80--

WO 96/15505 PCT/US95/14701

UserTotalAccessCountFunction% is useful for computing quantity

discounts.

UserTotalAccessSize%(<user__num>)
Returns the total size of the files that have ever been accessed by the
5 user whose user identifier is <ﬁser_num>. The
UserTotal AccessSizeFunction is useful for computing quantity

discounts.

UserAttrSet(<user_nums>, <attr_name>, <value>)
Associates, with the user whose user identifier is <user_num>, an
10 attribute name <attr_name> having value <value>. If that attribute
already exists for that user, replaces the value of the attribute with this
new value. One example of using attributes on users might be to use
an “Age” attribute to record the age of the user. This information
might be used to offer senior citizen discounts on downloading fees, for

15 example.

UserAttrGet$(<user_num>, <attr_name>)
Gets the value of the attribute named <attr_name> for the user whose
user identifier is <user_num>. The value is returned as a string, but
can be converted to any other appropriate type using the data type
20 conversion functions provided by the Computation Language and the

Script Language.

UserSearchTime#(<user_num>, <provider_num>)
Returns the total amount of time that the user whose user identifier is

<user_num> has been searching the content databases of the content

--81--

10

15

20

WO 96/15505 PCT/US95/14701

provider whose provider identifier is <provider_num>, in this

session.

EntryCategoryCount%(<path>)
In a “yellow pages” or classified advertisement style service, returns the
total number of categories undér which the entry, whose file path
name is <path>, has been listed. Entries that are listed under many
categories can be charged a higher fee than entries that are listed in only

a few categories.

ServerLoad!()
Returns the current load on the server as a value between 0.00 and 1.00,
with 0.00 meaning no server load and 1.00 meaning that the server is
fully loaded. The ServerLoad function can be used to set fees
depending on the current load on the server. To discourage access
during peak usage periods, higher prices can be assigned during peak

usage times.

The Metering Subtool

A wide variety of metering capabilities are provided by the
Molisa online service platform. The metering capabilities track the usage
patterns of an onlirie service, and the usage by users and other services. The
metering information can provide invaluable feedback on the volume and
duration of access to documents, subservices, and the online service as a
whole. Furthermore, the metering information is available from the Fee
Computation language using defined functions such that fees can be based on

user usage.

- 82 --

10

15

20

WO 96/15505 PCT/US95/14701

It would be an unnecessary performance burden for the server to
gather all possible statistics on all possible online service entities. With the
Metering Tool, the developer indicates specifically which statistics should be
gathered, and on which parts of the online service. The online service server
tracks service usage in the ways specified in the metering subtool. (The server
also gathers the specific usage data required by the fees indicated in the Fee

Setter subtool.)

The Metering subtool allows the developer to manipulate a list
of Metering Specifiers. Each Metering Specifier is a pair consisting of: (1) an
online service entity (document, hyperlink, subservice, service, etc.), and (2)
the particular property of that entity that should be metered. The properties
that can be metered include: number of users who access the entity, number
of minutes that they use the entity, total number of times that the entity was
accessed, number of times the entity was viewed vs. downloaded, number of
times the entity was requested by another service, times of day that entity is

accessed, etc.

After gathering metering information, the online service
provider can view the metering information in graph, chart, and numeric
form, using separately provided analysis software. The metering information
can be used to tune the performance of a server. For example, a developer
can expand certain service areas that receive heavy use. Similarly, a
developer can discard portions of an online service that are infrequently used,
cost-justify a more powerful server to run the service, assess how often a user

is “referred” to this service from another service, etc.

--83--

10

15

20

WO 96/15505 PCT/US95/14701

The ugeger Subtool

To facilitate the development of an online service, a Debugger
subtool exists. The Debugger subtool provides a means for the developer to
“run” an online service that is being developed. The Debugger subtool
simulates an access to an online service from user client software such that a
developer can test an online service by accessing the online service in the

same manner that a user would,

The Debugger subtool, can be stopped at any point. When the
Debugger is stopped, the developer can use an appropriate Utility Subtool to
modify the currently displayed hyperdocument or subservice infrastructure
(or any other part of the service). After modifying the subservice, the
developer can resume the simulation of the online service from the stopping
place. The Debugger also allows the developer to single-step through scripts,
inspect and change script variables, and even modify the scripts themselves,
like conventional debuggers for interpreted laf\guages in other application

domains.

Although the present invention has been described in terms of
specific exemplary embodiments, it will be appreciated that various
modifications and alterations might be made by those skilled in the art

without departing from the spirit and scope of the invention as set forth in

the following claims.

-84 --

10

15

20

25

30

WO 96/15505 PCT/US95/14701

What is claimed is:

1. A mechanism for specifying fees for an online service, comprising:
means associated with an object of the online service for defining a
triggering action for a fee;
means associated with the triggering action for defining a fee; and

means for editing a plurality of such specifications.

2. A mechanism for determining a fee for an online service, comprising:
means for detecting an action on an object of the online service;
means, operative in response to detection of the action, for identifying a
fee specification for the action and the associated object; and

means for utilizing the fee specification to define the fee.

3. A mechanism for specifying fees for an online service as defined in claim
2, comprising:

means associated with an object of the online service for defining a
triggering action for a fee;

means associated with the triggering action for defining a fee; and

means for editing a plurality of such specifications.

4. The online service development tool as claimed by claim 1 wherein each of

said fees are triggered by a defined user action.

5. The online service development tool as claimed by claim 4 wherein one of
said defined user actions comprises access by said user to one of said visual

objects on said online system

--85--

10

15

20

25

30

WO 96/15505 PCT/US95/14701

6. The mechanism as claimed by claim 4 wherein one of said defined user
actions comprises submittal of an object for inclusion in said data store of said

online service.

7. The mechanism as claimed by claim 4 wherein one of said defined user

actions comprises a traverse of a hyperlink.

8. The mechanism as claimed by ciaim 4 wherein one of said defined user

actions comprises a connection to an online service.

9. The mechanism as claimed by claim 1 wherein each of said fees are

triggered by passage of a defined amount of time.
10. The mechanism as claimed by claim 1 wherein both said means for
defining define a fee specifier, wherein the fee specifier comprises a first field

specifying a triggering action that triggers said fee.

11. The mechanism as claimed by claim 10 wherein said fee specifier further

comprises a second field specifying an entity to who the fee is directed.

12. The mechanism as claimed by claims10 or 11 wherein said fee specifier

further comprises a third field specifying an object associated with said fee event.

13. The mechanism as claimed by claims10, 11 or 12 wherein said fee

specifier further comprises a fourth field defining a fee computation formula.

--86--

WO 96/15505 PCT/US95/14701

14. The mechanism as claimed by claim 13 wherein said fourth field comprises

10

15

20

25

a script specifying said fee computation formula.

15. The mechanism as claimed by claim 14 wherein said script comprises at

least one fee setting script primitive.

16. The mechanism as claimed by claim 1 wherein if said fee is positive, a fee
is charged to said entity, and if said fee is negative, a payment is made to said

entity.

17. The mechanism as claimed by claim 13 or 14 further comprising:
a script editor, said script editor for editing a script specifying said fee

computation.

18. The mechanism as claimed by claim 1, wherein a document object is

HyperText Markup Language (HTML) document.

19. A computer system for designing an online service, comprising:

a first editing module for displaying and allowing editing of relationships
among document objects of the online service;

a second editing module for editing individual document objects of the
online service; and

a mechanism for invoking the second editing module in response to

selection of a document object in the first editing module.

--87--

10

15

20

25

WO 96/15505 PCT/US95/14701

20. A computer system for designing an online service, comprising:

a viewing module for displaying relationships among and allowing selection

of document objects of the online service;

an editing module for editing individual document objects of the online

service; and

a linking mechanism for invoking the editing module in response to

selection of a document object in the viewing module.

21. A computer system for allowing editing of fee structures of an online
service, comprising:

means for displaying a visual representation of a fee specification having
user-modifiable portions, wherein a user-modifiable portion is provided for entries
for an indication of a document object of the online service, an indication of an
event in connection with the document object, and a fee formuala;

means for receiving user input to edit a fee specification using the visual
representation and to store edited fee specifications; and

means for storing a plurality of fee specifications defined using the means

for displaying and means for receiving.

22. The computer system of claim 21 wherein the visual representation is a

template.

23. The computer system of claim 21 or 22 wherein the fee formula is defined

using a scripting language.

--88--

WO 96/15505 PCT/US95/14701

24. The computer system of claims 21 or 22 or 23 wherein the fee

specifications are stored in a list.

--89--

PCT/US95/14701

WO 96/15505

1/25

43sn
FJIAHI3S INITNO

JHVYMAHVH IN3IT0
SMOANIM-X/XINN

AHOLISOd3H
‘ 22IAH3S T¥201
I 2uns3ig 08}-
181 IND HLIM
JHVML40S IN3ITD
SMOGNIM-X/XINA
WILSAS 00} IHYMAHVH
INAWJOT3A3A HIAHIS
01
AHOLISOd3Y
ADIAHIS HIAHIS
£ot
IHVMI40S
NOISN3LX3 dLiH
601
1001 ™
INIWJO013A3a SHVMLIOS
F0IAU3S HIAHIS dilH
aNIINO

0L}-

H3asn
FOIAHIS INITNO

JHYMAHVH IN3IT0
HSOINIOVW

AHOLISOd3Y
3OIAH3S V201

LLLIND
HLlIM 3HVM140S
AN3ITD HSOLNIOVIN

H3asn

J0IAH3S 3INITNO

SMOANIM

FHVYMAHVYH LN3IND

AHOL1SOd3d
30IAH3S TvIO01

191 IND
091 -

HLlIM 3HYMILH40S
IN3IND SMOANIM

WO 96/15505

2/25

USER VIEWS SYNOPSIS OF
AVAILABLE GOODS OR SERVICES

\ 4

USER INITIATES AN ELECTRONIC
TRANSACTION

A 4

SERVER PROCESSES THE
ELECTRONIC TRANSACTION

SERVER MAY CHARGE OR PAY
THE USER OR CONTENT PROVIDER

h 4

SERVER PROVIDES THE
REQUESTED INFORMATION AND/OR
A CONFIRMATION TO THE USER

Figure 2

-210

- 220

-230

- 240

- 250

PCT/US95/14701

WO 96/15505

PCT/US95/14701

3/25

310

C

- Design™>
Online 1‘ > another No »(Done)

Designer | 4 subservice

-315

Subservice

exist
?

317

Retrieve
existing
or template
subservice
from Service
Respository

]

Document
already exist
2

335
1

Use Preserve Import

D,:?: ﬁ?nb;ﬁ . printed external
Converter appegrance

Use Hypermedia
337-1 Document

Retrieve
document
from
Subservice
Respository

|
325

Converter

v

Modify document
appearance |- 340
(see Figure 3b)
3§2
Save
subservice
to Service
Repository
v
Run Hyperlink 351
Editor i

Figure 3a

WO 96/15505 PCT/US95/14701

L/25

Modify a Document's Appearance

Modify Run
document format Hypermedia|- 342
? Editor

- 343
Modify Yes Run any
document inline desired image| - 344
|ma_)ges tools
Run

Modify input Hypermedia] - 346

forms Editor

?
No
v
Run Script |
Editor | 3V

Done document
editing

Figure 3b

PCT/US95/14701

WO 96/15505

5/25

P oungig

- oty vy
s30Inuasans | | S30MMuasans | | saoiuasans
oNauaay | | ENISiLEIAGY dNN001
Q314ISSV1D AHO123HIa
ey ozp 8ip 91y viv mm’wu_wmmo
HINDIS3A HIANDIS3A H3ANDISIQ HINDIS3Q H3INDIS3a P hreen
I0IAHIS-VLIIW ONIHSENd VA3IHLIY auvos NIL3TINE dNM001 s

Y

(1127

W3LSAS INIWJO13A3Q
HINDISIA INITNO

PCT/US95/14701

WO 96/15505

6/25

aoinsesqns~ buuapipToog

C aungung

1d142S
ONISS3D0Hd
H3ayo

ONIH3AHO
AaNV NOILYWHO4LNI X008

3JIAHISANS IOHINNOD/LNIWNIOAQHIJAH

ddIAlasqng~ Aueiq

aseqejeq Aieiqgn

€ 3008
¢oos8

ANINH3IdAH

1 oo8

30IAH3sans
30N3H343H

PCT/US95/14701

WO 96/15505

7725

?ajal1asqng Buiseaj oiny

1diHOs WHOJ TvIN3H ONV
ONISS3II0Hd HVO 1Nn08AV NOILLVWHOANI
TVAIN3H

JDIAHISEANS FOHIWWOI/LNINNI0AHIdAH

9 aungyy

K10y2211g” Buiseaq oiny

AHO1334I1a 4vD

F Y

ANITHIdAH

v HvD
€ Hvd
¢ Hvd

} HYD

J0IAH3SaNS
dNX00T AHOLD34HIa

PCT/US95/14701

WO 96/15505

8/25

L 24nS1g
912 -
ceL 82L - 0zL H3LHIANOD o
HOLIa3 HISMOHE HOLIa3 IN3IWND0a
d13H AHOLISOd3H HOLVONd3H LdIHOS viaaw IN3WNO0Q
. 31av.1H0d
HIdAH
0EL el ceL 8iL viL
HIHONE3a 7001 H3LL3S HILSIAHVH HoLla3
ONIHILIW 334 INIWND0Q YNIHIdAH

S\

z

oKL

W31SAS INIWHOT3A3A
HINDIS3AA ININO

L
Ho1iia3
via3an
-H3dAH

PCT/US95/14701

WO 96/15505

9/25

8 aungyg

JanvismapN Auedwon

s)ou| pue sdij
abesn jonpoud

'

sonpoud Aued pliy] pue
AWV jo Bojejed auyuQ

.

uojjeunsoju] ajelodion

abed uononponu) Auedwo)

f

juiod Anug

Aioyoaug
|auuosiad Auedwo)

PCT/US95/14701

WO 96/15505

10/25

6 24ns1y

221195~ BuISIUaAPY palIsse|d

&

aJIAIBS BWIY

&

Ai|jeD &21/I8T

Gioe) (Gwa) (eia)

PCT/US95/14701

WO 96/15505

11725

OI 24n31y

uoneuwojuy—ayesodion

aseqejeq uolew.ou|
9ajes0dio) :ejeq

ERTTSELL]
|eAdi}ay Juawnaog

lapajsmaN~Auedwo)n

Gojejen1onpoud

s$)o14] ~pue”sdi] T1onpoid

juawnao(ajqeuoyd
1Pn9|smaN ejeq | |»

ddlAlasqnsg
Buiyslignd a1uos}03|3

!

@mnﬁmo 1onpoud "Samu ——

adIalasqng

adJawwonauawnsopladAy

sabessap aoinpy
jonpoid :eyeqg

aolAlasqns
pieog una|ng

abeq~onu Auedwon

]

_ abed osy| “Em&

adlnlasqns
juswnoopiadAy

Ai10yoalig~ Auedwo)

wmmnﬂmo_mzcoﬂwm
Auedwo) :ejeq

aa1asasqnsg Aiojoang

sjooiqng Hp3 a4

PCT/US95/14701

WO 96/15505

12/25

[T o4n3uy

uonewioju| ajesodio) awoy aag «

Aioydauiq [auuosIad awoy ay) Yyoleas «

19)J3|SMBN dWdY 3Y) peay «

$}0111 %@ sdi] 19npoId awdy asmoig «

Bojejed sjonpoud Aed paiyl pue awoy maip «
:uondo ue 309)ag aseald

sajny abesn
89IAIBS auljuQo
doA188 Ssj1onpoud swoy

B 9y} 0} 8WO0I[3M

(sxu11) (spunos) (sainyo1d) (hxa1) ﬁm?m_>w. O_uuu

PCT/US95/14701

WO 96/15505

13/25

gI 2an31g

Bojeyen auijuo <aUoN> <3UON> <3auoN> | eobessap moys
ojeien auljuQ <AUON> <aUON> <auoN> | abueyd ywqns
Bojeied aujjuo <BUON> <OUON> <OUON> w104 moys
v | Bojeieg auiuo wio4~43pI0 umoQq asnow uonng aseyaind aseyaind
saoiAlasqns Juawinaoq EYE) 192lq0 |ensiA awepn 1duos
MIJAIAIIdS

G

)

!

PCT/US95/14701

WO 96/15505

14725

&I 2unsy

S9Ny abesn"aojniag

Juawnooq s|qepoy

diay~aa1n10g - 1Xa} “abeq onuj o607 Auedwoy
Juswnaoq juawnoo
a
elpawiadA elpawadAy M_mwm_.ﬁ%\mz
sjooiqng M3IA up3 o4

PCT/US95/14701

WO 96/15505

15/25

PI 24an3y

ovvi

(loo1qns 1an8g aa4)
M3\ 994

oevi

921Al3sqns ay)
uiyum syuizadAy sheidsiq «

(101p3 uipadAp)
M3IA YUl

ocvi

a21A1asQNS 3y} YiIm
pajeroosse s3dias }si «

MaIA 1duog

(18 4%

@o1A1aSQNS 3y}

uj JUaWNI0p Yoed
10} SU03| sajesnsn||| «

M3IA JUawnaog

Jaubisaqg juswnoopiadAy

PCT/US95/14701

WO 96/15505

16/25

ST a4ns1y

SMIIADY 835 - 0vS1

19piQ ase|d - 0ESH

owaq peojumoq)- gzs}

66'621§ | ‘90ud

- OISt

:uonjduosaqg
1oayspealdg osdAg

uondiasaq jonpoig

PCT/US95/14701

WO 96/15505

17/25

9I 24n31y

aseyaind |aoue)

pieD Jaisep
e- ocar | SG/LERZL | 062 £VS bEZ 110 vsia | /
ajeq ‘dx3 "ON JUN0JJY | 22In0S jusWiAeg

100y Bupjoayn
ssaidx3 ueopawy

- 0vsi

:uoneuwsojul yuawdAed

o ——— e 3ud wmmm_&
6L°SpL$ |ieloL

08'01$ |xey

00s$ |Buwddiys

66'621$ |91 aseyaund 69822 u“.oz way|

Wio4 J1ap1p aseyoing

PCT/US95/14701

WO 96/15505

18/25

LT 24n31g
wio4 wao4 wuo4
Aianp MBIA nwgng
MBI MIIA MIIA
M3IA MIIA : suond Gore MBI\ Wwiod
594 nui 1duas ndo Aobaje)d

!

!

4

HINDISIA dNAHOO07T

PCT/US95/14701

WO 96/15505

19/25

8T auns1y

,—.——_,—r

]:
i

|:
_n
_"
_n

1abeuepy

rews

xe4
auoyd

dois jlew
juawpedaqg

{ Jisen | "|1s414 :aweN

oA Huugns - Maip wWwio4

(saun) (spunos) (saamog) (xaln)

(smain) (wpa) (end)

PCT/US95/14701

WO 96/15505

20/25

61 24n31

<lJabeue>
<|lew3>
<Xe->
<auoyd
<dois e
<juowedaq

| <iseq>| | <isdi4>|

W0 MIIA - MIIA W04

(swun) (spunos) (sampdid) (Gxer) (smain) (wea) (end)

= —

PCT/US95/14701

WO 96/15505

21 /25

03 24nd1g

23ko|dwig awoy ay) Jo aweu ay) Jajua ased|de

| “Jiseq

{ |¥sdid :aweN

KHe1984)@ (EVUESIEd WY

Wiio4 A5anp - MIIA Wioq

(swun1) ((spunos) (saimdid) (xaL) (smaip) (wpa) (e11)

B ———___——=—"—

WO 96/15505 PCT/US95/14701

22,25

File Edit

** * Purchase Event Script* * * A

item: Purchase_Button, Event: MouseDown

'Define local variabies
Dim db as Data
Dim nCount as integer

'Open the items-in-stock table of the inventory database
db.Connect = *DSN=inventory,UiD=OnlineSales"
db.RecordSource = "itemStock"

db.Refresh

'‘Check whether the item is in stock. if itis

‘out-of-stock, report an error and close the database.
db.Recordset.FindFirst “ltemNum = '" & itemNum.Text & "'“
db.Recordset.Edit

nCount = db.Recordset.Fields(*InStock").Value

if nCount <= 0 then
ShowError("Out of stock on item * & ItemNum.Text)

db.Recordset.Close
return
endif \ 4

Figure 21a

File Edit

* * * Purchase Event Script* * * A

'Attempt to put through the payment. If payment cannot be

‘made (for example, the credit card is over its limit),

‘report an error and close the database.

if not SubmitCharge(Payment.Index, AcctNum.Text,

Expire.Text, Amount.Text) then

ShowError("Payment was not successfully processed")
db.Recordset.Close
return

endif

'We know that the item is In stock, and payment was
‘successfully put through. Decrement the inventory on
‘the requested item.

nCount = nCount - 1

db.Recordset("InStock") = nCount
db.Recordset.Update

‘Close the database, and report that the transaction was

‘'successful.
db.Recordset.Close
ShowMessage("item " & itemNum.Text & " was ordered") 4

Figure 21b

PCT/US95/14701

WO 96/15505

23,25

ianlas aseqeleqg 10OS
Aojuaau) Bunsixg

gg 2anSy

aseqgejeq wou4
uonew.soyu)

-

sisanbay
Aienp 10

Gojeieny auiuo

\

syduiog Bojejen

aseqejeq bojeyen

adlnIBsqng
32Jawwonauswnaopiadiy

PCT/US95/14701

WO 96/15505

24725

£g 24ndy

d9pinoid [lunyoalqoT)jas/sajesAued payymmm/gnd; | ssasoy |Aued payy Aed
18N juny-iasn 1amod/spuswnaop/mmm/qnd; | ssaosay lenuew J1asn
lamod peay
19sn wiy buns)~mau/spaijissejommm/gnd; | pwgns uojssiwqng
PV payisse|n
Japiroid | juny-bunst“mausspe”Aped payymmm/gnd; | jwqns [uojssiwgng py
19sf) 1oauuo) uiboq
Anug sjuawnbuy uondy awepN 904 uopeinduwos
a9 }ip2 O}
v a1ay o110

MIIp 935

Gra) (and)

PCT/US95/14701

WO 96/15505

25/25

Pg 24n31]

<

10°0 » (<$B1y>)%ua73)1d . (<$Bay>)%IunopluiobajedAinul = @aod
>

uonenoe) 994

1esn Anugz
jwiy-Bunsi~mau/spe”paijisselommm/qnd/ uawnbiy
ywansg uonoy

uoISSIWANS JUSWDSIHIAPY PIYISse|D | aweN 934

uonenduio) oo

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

