(12) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
国際事務局
(43) 国際公開 日
2016年1月14日(14.01.2016)

WO 2016/006584 A1

(51) 国際特許分類:
C09C/18 (2006.01) C09D 5/16 (2006.01)
C07F 7/18 (2006.01) C09D 7/12 (2006.01)
C08G 65/336 (2008.01) C09D 17/00 (2006.01)

(21) 国際出願番号:
JP

(71) 出願人:
大日本工業株式会社 (DAIKIN INDUSTRIES LTD.) [JP]
〒530-8523 大阪府大阪市北区
中崎西2丁目4番1号 梅田センタービル

(72) 発明者:
茂原 健介 (MOHARA, Kensuke)
三橋 慎(hitsuhashi, Motoki)

(74) 代理人:
蚊島 孝志 (IBE, Masaharu)
五十嵐和浩 (GOTARUKA, Noboru)
〒530-0001 大阪府大阪市北区
角田町8番1号 梅田急行ビルオフィスタワー

(54) Title: COMPOSITION INCLUDING PERFLUORO(POLY)ETHER-MODIFIED AMIDE SILANE COMPOUND
(55) 発明の名称: パーフュロオーロ (ポリ) エーテル変性アミドシラン化合物を含む組成物

(56) 摘要: 本発明は、下記式(1)で表される少なくとも1種のパフュロオーロ (ポリ) エーテル変性アミドシラン化合物を含む組成物を提供する。本発明の表面処理剤は、保存安定性に優れ、かつ基材との強固な密着性を有する層を形成することができる。

Rf-PFPE-X₁-C-NR₁⁺R₂⁻p

(w)

(1)

δα⁻q

(2)

(3)
明 細 書

発明の名称：
パーカロ (ポリ) エーテル変性アミドシラン化合物を含む組成物

技術分野

[0001] 本発明は、パーカロ (ポリ) エーテル変性アミドシラン化合物と、アミン化合物を含んで成る表面処理剤に関する。

背景技術

[0002] ある種の含フッ素シラン化合物は、基材の表面処理に用いると、優れた撥水性、撥油性、防汚性などを提供し得ることが知られている。含フッ素シラン化合物を含む表面処理剤から得られる層（以下、「表面処理層」とも言う）は、いわゆる機能性薄膜として、例えばガラス、プラスチック、繊維、建築資材など種々多様な基材に施されている。

[0003] そのような含フッ素シラン化合物として、パーカロ (ポリ) エーテル基を分子主鎖に有し、アミド結合を含む有機基を介して、含フッ素シラン化合物の末端または末端部に加水分解可能な基を有するSi原子に結合した、パーカロ (ポリ) エーテル変性アミドシラン化合物が知られている（特許文献1〜3を参照のこと）。このパーカロ (ポリ) エーテル変性アミドシラン化合物を含む表面処理剤を基材に適用すると、Si原子に結合した加水分解可能な基が基材との間および化合物間で反応することにより結合して、表面処理層を形成し得る。

先行技術文献

特許文献

[0004] 特許文献1 : 特開平11−295855号公報
特許文献2 : 特開2000−14399号公報
特許文献3 : 特開2000−327772号公報

発明の概要

発明が解決しようとする課題
しかしながら、従来のパフルオロ（ポリ）エーテル変性アミドシラン化合物を含む表面処理剤で、当該化合物の末端がメトキシ基からなるものは、アミド構造を含まないパフルオロ（ポリ）エーテル変性シラン化合物と比較し、保存安定性に優れないことがわかった。一方、パフルオロ（ポリ）エーテル変性アミドシラン化合物の末端がエトキシ基のものでは、保存安定性に優れているが、反応性が低く、基材との反応が進みにくいため、基材との強固な密着性が得られにくいという問題が存在することがわかった。

本発明は、保存安定性に優れ、かつ基材との強固な密着性を有する層を形成することのできる、新規な表面処理剤を提供することを目的とする。

課題を解決するための手段

本発明者らは、鋭意検討した結果、パフルオロ（ポリ）エーテル変性アミドシラン化合物と、アミン化合物とを含む組成物を表面処理剤として用いることによって、保存安定性に優れ、基材との密着性がより強固な表面処理層を形成することができるを見出し、本発明を完成するに至った。

すなわち、本発明の第１の要旨によれば、下記式（1）で表される少なくとも１種のパフルオロ（ポリ）エーテル変性アミドシラン化合物:

[式 1]

\[R_f - \text{FPE} - X^1 - C - \text{基} \quad \text{表}\frac{1}{2} \quad \text{式} \]

[式中]:

\(R_f \) は、それぞれ独立して、１個またはそれ以上のフッ素原子により置換されていてもよい炭素数１〜１６のアルキル基を表し;

\(\text{FPE} \) は、それぞれ独立して、－（\(\text{OC}_4 \text{F}_8 \)）\(_a \)－（\(\text{OC}_3 \text{F}_6 \)）\(_b \)－（\(\text{OC}_2 \text{F}_4 \)）\(_c \)－（\(\text{OC}_2 \text{F}_2 \)）\(_d \)を表し、ここに、\(a, b, c \)および\(d \)は、それぞれ独立して０以上２００以下の整数であって、\(a, b, c \)および\(d \)の和は少なくとも１であり、\(a, b, c \)または\(d \)を付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり；
X₁は、単結合または2価の有機基を表し；
R₁は、水素原子、低級アルキル基またはフニリル基を表し；
R₂は、-X²-SiQ₁kY₁₃ₖを表し；
X²は、2値の有機基を表し；
Y₁は、-OR₅（式中、R₅はC₂₋₁₀のアルキル基を表す）を表し；
Q₁は、水素原子、低級アルキル基またはフニリル基を表し；
pは、0または1であり；
kは、0〜2の整数である。]

および
下記式（2）で表される少なくとも1種のアミン化合物：

[式中：
R₃は、水素原子または有機基を表し；
R₄は、-X³-SiQ₂k,Y₂₃ₖを表し；
X³は、2値の有機基を表し；
Y²は、水酸基、加水分解可能な基または炭化水素基を表し；
Q²は、水素原子、低級アルキル基またはフニリル基を表し；
k'は、0〜3の整数であり；
qは、0〜3の整数である。]

を含んでなる、表面処理剤が提供される。

[0009] 本発明の第2の要旨によれば、基材と、該基材の表面に、上記本発明の表面処理剤より形成された層とを含む物品が提供される。

発明の効果

[0010] 本発明のバーフォロ（ポリ）エーテル変性アミドシラン化合物と、アミン化合物とを含む表面処理剤によれば、保存安定性に優れ、かつ基材との強固な密着性を有する表面処理層を形成することができる。
発明を実施するための形態

[001 1] 以下、本発明の表面処理剤について説明する。

[001 2] 本明細書において用いられる場合、「1価の有機基」または「2価の有機基」とは、それぞれ炭素を含有する1価または2価の基を意味する。かかる1価の有機基としては、特に限定されるものではないが、炭化水素基が挙げられる。2価の有機基としては、特に限定されるものではないが、炭化水素基からさらに1個の水素原子を脱離させた2価の基が挙げられる。

[001 3] 本明細書において、アルキル基およびフニル基は、特記しない限り、非置換であっても、置換していてもよい。かかる基の置換基としては、特に限定されないが、例えば、ヘロゲン原子、C 1-6 アルキル基、C 2-6 アルケニル基およびC 2-6 アルキニル基から選択される1個またはそれ以上の基が挙げられる。

[001 4] 本発明は、下記式（1）で表される少なくとも1種のパーオロ電気变形アミドシラン化合物を含むものと1種のアミン化合物を含んでいる、表面処理剤を提供する（以下、発明の表面処理剤と呼ぶ）。

\[
\begin{align*}
0 & \quad \text{(1)} \\
R - \text{PFPE} - X^1 - C - \text{殻} & \quad \text{i-c}_{p} R_{2-p}^2 \\
\end{align*}
\]

および

下記式（2）で表される少なくとも1種のアミン化合物を含んでいる、表面処理剤を提供する（以下、発明の表面処理剤と呼ぶ）。

\[
\begin{align*}
\text{酸} & \quad \text{(2)} \\
\text{酸} - \text{ぎ} & \quad \text{3- } \\
\end{align*}
\]

を含んでなる、表面処理剤を提供する（以下、発明の表面処理剤」と呼ぶ）。

[001 5] 上記式（1）中、Rf は、それぞれ独立して、1個またはそれ以上のフッ素原子により置換されていてもよいC 1-6 のアルキル基を表す。

[001 6] 上記1個またはそれ以上のフッ素原子により置換されていてもよいC 1-6
のアルキル基における「〇い16のアルキル基」は、直鎖であっても、分枝鎖であってもよく、好ましくは、直鎖または分枝鎖の〇～6のアルキル基、特に〇～3のアルキル基であり、より好ましくは直鎖のC～3のアルキル基である。

[0017] 上記Rfは、好ましくは、1個またはそれ以上のフッ素原子により置換されているC1～16のアルキル基であり、より好ましくは〇F2～〇1～15フッ素アルキレン基であり、さらに好ましくはC～6のパーフュロアルキル基である。

[0018] 上記C1～16のパーフュロアルキル基は、直鎖であっても、分枝鎖であってもよく、好ましくは、直鎖または分枝鎖の〇～6のパーフュロアルキル基、特に〇～3のパーフュロアルキル基であり、より好ましくは直鎖の〇い3のパーフュロアルキル基、具体的にはC～3、C～3C2F2C2F3、またはC～3F2とF2C3F3である。

び一（〇C F ₂ C F（C ₂ F ₅））—のいずれであってもよいが、好ましくは一
（〇C F ₂ C F ₂ C F ₂ C F ₂）—である。—（〇C F ₃ F ₆）—は、—（〇C F ₂
C F ₂ C F ₂）—および—（〇C F ₂ C F（C F ₃））—のいずれであってもよいが、好ましくは—（〇C F ₂ C F ₂ C F ₂）
—である。また、—（〇C F ₄）—は、—（〇C F ₂ C F ₂）—および—（〇
C F（C F ₃））—のいずれであってもよいが、好ましくは—（〇C F ₂ C F ₂
）—である。

【0020】—の態様において、P F P E は、—（〇C F ₃ F ₆） b—（式中、b は 1 以上 2
0 0 以下、好ましくは 10 以上 100 以下の整数である）であり、—（〇C
F ₂ C F ₂ C F ₂） b、—（〇C F ₂ C F（C F ₃）） b—および—（〇C F（C
F ₃） C F ₂） b—のいずれであってもよく、好ましくは—（〇C F ₂ C F ₂ C F
₂） b—または—（〇C F ₂ C F（C F ₃）） b—（式中、b は上記と同意義であ
る）である。

【0021】別の態様において、P F P E は、—（〇C F ₄ F ₈） a—（〇C F ₃ F ₆） b—（〇
C F ₄ F ₄） c—（〇C F ₂） d—（式中、a および b は、それぞれ独立して 0 以上
または 1 以上 30 以下、好ましくは 0 以上 10 以下の整数であり、c および
d は、それぞれ独立して 1 以上 200 以下、好ましくは 10 以上 100 以下の
整数である。a、b、c および d の和は、10 以上、好ましくは 20 以上
であり、200 以下、好ましくは 100 以下である。添字 a、b または
d を付して括弧でくくられた各繰り返し単位の存在順序は、式中において任
意である）であり、好ましくは—（〇C F ₂ C F ₂ C F ₂ C F ₂） a—（〇C F ₂
C F ₂ C F ₂） b—（〇C F ₂ C F ₂） c—（〇C F ₂） d—（式中、a、b、d お
および d は上記と同意義である）である。例えば、P F P E は、—（〇C F ₂ C
F ₂） c—（〇C F ₂） d—（式中、c および d は上記と同意義である）であっ
てもよい。

【0022】さらに別の態様において、P F P E は、—（〇C F ₄ F ₄ R a） n、—で表され
る基である。式中、R は、〇C F ₄ F ₄、〇C F ₃ F ₆および〇C F ₄ F ₅から選択され
る基であるか、あるいは、これらの基から独立して選択される 2 または 3
つの基の組み合わせである。〇C₂F₄、〇C₃F₆および〇C₄F₈から独立して選択される2または3つの基の組み合わせとしては、特に限定されないが、例えば
〇C₂F₄〇C₃F₆、〇C₃F₆〇C₄F₈および〇C₄F₈〇C₆F₉に独立して選択される2または3つの基の組み合わせとして、特に限定されないが、例えば
〇C₂F₄〇C₃F₆〇C₄F₈、〇C₂F₄〇C₃F₆〇C₄F₈で
式中、R₆は、水素原子、フエニル基またはC₆アルキル基を表し；
sは、それぞれ独立して、1〜2の整数であり；
tは、それぞれ独立して、1〜20の整数である。]
で表される基が挙げられる。

[0025] より好ましくは、上記X 1は、単結合またはC 1−6アルキレン基が挙げられる。

[0026] 上記式 (1) 中、R 1は、水素原子、低級アルキル基またはフェニル基を表す。低級アルキル基は、好ましくはO −−6の炭化水素基を表す。

[0027] 上記式 (1) 中、R 2は、_ X 2_ S i G 1_k Y i 3_kを表す。

[0028] 上記X 2は、2 倍の有機基を表す。

[0029] 上記X 2の2 倍の有機基の例としては、特に限定するものではないが、例えば、〇い20アルキレン基、− (C H) _−6 0 − (C H) _1−_ 0 − (C H) _n−_ N R _6_ (C H) _t−_

[式中、R 6は、水素原子、フェニル基またはC _−6アルキル基を表し；]

sは、それぞれ独立して、1−20の整数であり；

tは、それぞれ独立して、1−20の整数である。]

で表される基が挙げられ、より好ましくは、C 1−6アルキレン基が挙げられる。
また、X 2は、1つまたはそれ以上の上記基が混在したものであってもよい。

[0030] 上記Y 1は、_ ○ R 5を表す。

[0031] 上記R 5は、〇2_ のアルキル基であり、好ましくはC 2−4のアルキル基であり、より好ましくはC 2−3のアルキル基、さらに好ましくはエチル基である。

[0032] 上記Q iは、水素原子、低級アルキル基またはフェニル基を表す。低級アルキル基は、好ましくはC 1−6の炭化水素基を表す。

[0033] 上記kは、0 〜 2から選択される整数である。好ましくは0 または1であり、より好ましくは0である。R 2中のS iに結合する水酸基および加水分解性基が多いほど、基材との密着力が高くなるためである。

[0034] 上記式 (1) 中、pは、0 または1であり、好ましくは1である。pを1とすることにより、分子間での縮合が起こりにくくなり、保存安定性がより向上する。
上記式で表されるパフルオロ（ポリ）エーテル変性アミドシラン化合物において、R_f PPE部分の平均分子量は、特に限定されるものではないが、500〜30,000、好ましくは1,000〜20,000、より好ましくは2,000〜15,000である。

上記式で表されるパフルオロ（ポリ）エーテル変性アミドシラン化合物は、特に限定されるものではないが、5×10^2〜1×10^5の平均分子量を有し得る。かかる範囲のなかでも、500〜30,000、好ましくは1,500〜20,000、より好ましくは2,500〜15,000の平均分子量を有することが、摩擦耐久性的観点から好ましい。なお、本発明において「平均分子量」は数平均分子量を言い、「平均分子量」は、^19F_NMRにより測定される値とする。

上記式（2）中、R^3は水素原子または1個の有機基を表す。

上記1個の有機基は、好ましくは、低級アルキル基またはフニル基である。低級アルキル基は、好ましくはHのアルキル基である。

上記式（2）中、R_4は、C_3S_i_0_2_x_、Y_2_3_、を表す。

上記×3は、2個の有機基を表す。

上記×3の2個の有機基の具体例として、特に限定するものではないが、例えば、C_0_2_0_アルキレン基、-（C_H_2）_6-0-（C_H_2）_i-、-（C_H_2）_s-N_R_6_（C_H_2）」

[式中、R_6は、水素原子、フニル基またはHのアルキル基を表し；
sは、それぞれ独立して、1〜20の整数であり；
tは、それぞれ独立して、1〜20の整数である。]

で表される基が挙げられ、より好ましくは、C_{1-6}アルキレン基が挙げられる。

上記Y^2は、水酸基または加水分解可能な基を表す。加水分解可能な基としては、加水分解反応により、化合物の主格格から脱離し得る基を意味する。加水分解可能な基の例としては、-O_R、-OC_O_R、-O-N=C（R）=2、-N（R）_2、-NHR、ハロゲン（これら式中、Rは、置換または非置換
の炭素数1〜10、好ましくは1〜4のアルキル基を示す）などが挙げられ、好ましくは、-OR5（アルコキシ基）である。式中、R5はC2〜10アルキル基を表し、R5の例には、エチル基、ブロピル基、イソブロピル基、n-ブチル基、イソブチル基などの非置換アルキル基 ; クロロメチル基などの置換アルキル基が含まれる。それらの中でも、特に非置換アルキル基が好ましく、エチル基がより好ましい。水酸基は、特に限定されないが、加水分解可能な基が加水分解して生じたものであってよい。

[0043] 上記Q2は、水素原子、低級アルキル基またはフェニル基を表す。低級アルキル基は、好ましくはC1〜6のアルキル基である。

[0044] 上記nは、0〜3から選択される整数である。好ましくは0〜2から選択される整数であり、より好ましくは0または1であり、さらに好ましくは0である。

[0045] 上記式（2）で表されるアミン化合物において、qは、0〜3の整数である。好ましくは、qは1または2であり、さらに好ましくは、qは2である。

[0046] 上記式（2）で表されるアミン化合物の好ましい構造は、k’が0〜2の整数であり、qが1または2であり、少なくとも1つのR3が水素原子である。

[0047] 上記式（2）のアミン化合物は、上記式（1）で表される少なくとも1種のパーウォロ（ポリ）エーテル変性アミドシラン化合物を合成する際の原料アミン化合物の未反応物であってもよいし、別途添加したアミン化合物であってもよい。別途添加するアミン化合物は、合成に用いたアミン化合物と同じ化合物であってもよいし、異なるアミン化合物であってもよい。

[0048] 上記式（1）で表されるパーウォロ（ポリ）エーテル変性アミドシラン化合物は、パーウォロカルボン酸誘導体と加水分解基を有するアミノシランとの縮合反応によって製造することができる（特許文献1および2参照）。

[0049] 以上の構造において、本発明の表面処理剤中、式（2）で表されるアミン化
合物は0.001〜10質量%、好ましくは0.01〜8質量%、さらに好ましくは0.05〜5質量%含まれる。かかる範囲とすることで、パーカロ（ポリ）エーテル変性アミドシラン化合物と基材との反応を効率よく触媒することができる。

0050 本発明の表面処理剤は、溶媒で希釈されていてもよい。このような溶媒としては、特に限定するものではないが、例えば：パーカロヘキサン、C₃F₇C₂H₂CH₂I₂、C₅F₃C₆H₁₁C₅F₄、C₆F₅C₆H₁₁C₆F₄、1、1、1、1、1、1、2、2、3、3、4、5、5、6、6—トリテフルオロオロクタン、1、1、2、2、3、3、4—ヘプタフルオロシクロペンタン（ゼオローラH（商品名等）、C₄F₉OC₆H₃、C₄F₉OC₆H₂OC₆F₄H₂OC₆F₅H₂、C₆F₃C₆H₁₅C₆H₂、キシレンヘキサフルオリド、パーカロペンゼン、ペンタフルオロプロパノール、ヘキサフルオロイソプロパノール、HC₂F₆C₂H₂OC₆H₂、メチルトリフルオロメタンスルホネート、トリフルオロ酢酸およびC₃F₃〇（C₂F₆C₂F₆〇）₃m（C₂F₆〇）ₙC₂F₆C₃F₃[式中、mおよびnは、それぞれ独立して0以上1000以下の整数であり、mまたはnを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、但しmおよびnの和は1以上である。]、1、1—ジクロロ_2、3、3、3—テトラフルオロ_1—ブロペン、1、2—ジクロロ_1、3、3、3—テトラフルオロ_1—ブロペン、1、2—ジクロロ_3、3、3—トリフルオロ_1—ブロペン、1、1—ジクロロ_3、3、3—トリフルオロ_1—ブロペン、1、1、2—トリクロロ_3、3、3—トリフルオロ_1—ブロペン、1、1、1、4、4、4—ヘキサフルオロー2_ブテンからなる群から選択されるフッ素原子含有溶媒等が挙げられる。

0051 本発明の表面処理剤は、パーカロ（ポリ）エーテル変性アミドシラン化合物（1）およびアミン化合物（2）に加え、他の成分を含んでいてもよい。かかる他の成分としては、特に限定されるものではないが、例えば、他
の表面処理化合物、含フッ素オイルとして理解され得る（非反応性の）フルオロポリエーテル化合物、好ましくはパーグリオロ（ポリ）エーテル化合物（以下、含フッ素オイル」と言う）、シリコンオイルとして理解され得る（非反応性の）シリコン化合物（以下、「シリコンオイル」と言う）、触媒などが挙げられる。

[0052] 他の表面処理化合物としては、特に限定されないが、例えば、下記式（A1）、（A2）、（B1）、（B2）、（C1）および（C2）

化5]

\[
\begin{align*}
R^{14}_{\text{Rf}^+} - & \text{PFPE}' - \text{OCF(CF}_2)\gamma-(\text{CH}_2\text{C})_\alpha - R^{13}_{\text{Rf}} - \text{(Al)} \\
R^{12}_{\text{Rf}} - & (\text{CH}_2)\zeta - \text{SiR}_{11}^{11} R^{12}_{3-m} \\
R^{14}_{\text{Rf}} - & (\text{CCH}_2)\gamma-(\text{CF}_2)\chi CF-\text{PFPE'}-\text{OCF(CF}_2)\gamma-(\text{CH}_2\text{C})\chi - R^{13}_{\text{Rf}} \\
R^{15}_{\text{Rf}} - & \text{SiR}_{11}^{11} R^{12}_{3-m} \\
R^{16}_{\text{Rf}} - & (\text{CH}_2)\zeta - \text{SiR}_{11}^{11} R^{12}_{3-m}
\end{align*}
\]

\[
\begin{align*}
R^{14}_{\text{Rf}^+} - & \text{PFPE}' - X - (\text{SiR}''_{m}) R^{12}_{3-m} \\
R^{13}_{\text{Rf}} - & \text{PFPE'} - X - (\text{SiQ}_{n} Y_{3-m}) R^{12}_{3-m} \\
(R^{13}_{\text{Rf}} - & \text{PFPE'} - X - (\text{SiQ}_{n} Y_{3-m}) R^{12}_{3-m} \\
Y_{3-n} O - & \text{PFPE'} - X - (\text{SiQ}_{n} Y_{3-m}) R^{12}_{3-m}
\end{align*}
\]

[式中：

\(R^{14}_{\text{Rf}^+} \) は、それぞれ独立して、1個またはそれ以上のフッ素原子により置換されていてもよい炭素数 1 ～ 16 のアルキル基を表し。

\(\text{PFPE}' \) は、それぞれ独立して、\((\text{OC}_4 F_8)_{a} - (\text{OC}_3 F_6)_{b} - (\text{OC}_2 F_4)_{c} - (\text{OC}_2 F_2)_{d} \) を表し、ここに、\(a, b, c, d \) の和はそれぞれ独立して 0 以上 200 以下の整数であって、\(a, b, c, d \) の和は
少なくとも1であり、a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり；

R_1は、各出現において、それぞれ独立して、水素原子または炭素数1～22のアルキル基を表し；

R_2は、各出現において、それぞれ独立して、水酸基または加水分解可能な基を表し；

R_3は、それぞれ独立して、水素原子またはハロゲン原子を表し；

R_4は、各出現において、それぞれ独立して、水素原子または低級アルキル基を表し；

R_5は、それぞれ独立して、フッ素原子または低級フルオロアルキル基を表し；

Xは、それぞれ独立して、2〜7価の有機基を表し；

Yは、各出現において、それぞれ独立して、水素原子、水酸基、加水分解可能な基、または炭化水素基を表し；

Qは、各出現において、それぞれ独立して、_ Z _ S i R_6 p, R_7 3 _ p _ . を表し；

Zは、各出現において、それぞれ独立して、2価の有機基を表し；

R_8は、各出現において、それぞれ独立して、水酸基または加水分解可能な基を表し；

R_9は、各出現において、それぞれ独立して、炭素数1～22のアルキル基、またはQ'を表し；

Q'は、Qと同意義であり；

P'は、各QおよびQ'において、それぞれ独立して、0～3の整数であって、p'の総和は1以上であり；

Q中、Z基を介して直鎖状に連結されるSiは最大で5個であり；

xは、それぞれ独立して、1～10の整数であり；

yは、それぞれ独立して、0または1であり；

zは、それぞれ独立して、0～2の整数であり；
m は、α を付して括弧でくくられた単位毎に独立して、0 〜 2 の整数であり；
η は、α を付して括弧でくくられた単位毎に独立して、1 〜 3 の整数であり；
α は、それぞれ独立して、1 〜 6 の整数である。]
のいずれかで表される少なくとも 1 種のバーフルオロ（ポリ）エーテル基含有シラン化合物が挙げられる。

[0053] 上記含フッ素オイルとしては、特に限定されるものではないが、例えば、以下の一般式 (3) で表される化合物（バーフルオロ（ポリ）エーテル化合物）が挙げられる。

\[R^8 \quad (OC_4F_8)_{a'} \quad (OC_3F_6)_{b'} \quad (OC_2F_4)_{c'} \quad (OCF_2)_{d'} \]

式中、\(R^8 \) は、1 個またはそれ以上のフッ素原子により置換されていてもよい
\(C_{1-18} \) のアルキル基（好ましくは、C ト 6 のバーフルオロアルキル基）を
表し、\(R^9 \) は、1 個またはそれ以上のフッ素原子により置換されていてもよい
\(C_{1-18} \) のアルキル基（好ましくは、C ト 3 のバーフルオロアルキル基）、フッ素原子または水素原子を表し、\(R^8 \) および \(R^9 \) は、より好ましくは、それぞれ独立して、C ト 3 のバーフルオロアルキル基である。

\(a' \) 、 \(b' \) 、 \(c' \) および \(d' \) は、ポリマーの主骨格を構成するバーフルオロ（ポリ）エーテルの 4 種の繰り返し単位数をそれぞれ表し、互いに独立して 0 以上 300 以下の整数であって、\(a' \) 、 \(b' \) 、 \(c' \) および \(d' \) の和は少なくとも 1、好ましくは 1 〜 300、より好ましくは 20 〜 300 である。

添字 \(a' \) 、 \(b' \) 、 \(c' \) または \(d' \) を付して括弧でくくられた各繰り返し単位の存在順序は、式中において任意である。これら繰り返し単位のうち、ー (OC 4 F 8) ー は、ー (OC F 2 C F 2 C F 2 C F 2) ー 、ー (OC F (CF 3) C F 2 C F 2) ー 、ー (OC F 2 C F (CF 3) C F 2) ー 、ー (OC F 2 C (CF 3) 2 C F 2) ー 、ー (OC F 2 C (CF 3) 2) ー 、ー (OC F (CF 3) C F (CF 3)) ー 、ー (OC F (C 2 F 5) C
F_2) —および— (〇C F_2 C F (C_2 F_5)) —のいずれであってもよいが、好ましくは— (〇C F_2 C F_2 C F_2) —である。— (〇C_3 F_6) —は、— (〇C F_2 C F_2) — のいずれであってもよく、好ましくは— (〇C F_2 C F_2 C F_2) —である。— (〇C_2 F_4) —は、— (〇C F_2 C F_2) —および— (〇C F (C F_3)) —のいずれであってもよいが、好ましくは— (〇C F_2 C F_2) —である。

[0054] 上記一般式 (3) で表されるパーソルオロ (ポリ) エーテル化合物の例として、以下の一般式 (3 a) および (3 b) のいずれかで示される化合物（1種または2種以上の混合物であってよい）が挙げられる。

R^8- (〇C F_2 C F_2 C F_2) b' - R^9
R^8- (〇C F_2 C F_2 C F_2) a' - (〇C F_2 C F_2 C F_2) b' - (〇C F_2 C F_2) c' - (〇C F_2) d' - R^9

これら式中、R^8およびR^9は上記の通りであり；式 (3 a) において、b' - b は1以上100以下の整数であり；式 (3 b) において、a' - a および b' - c' は、それぞれ独立して1以上30以下の整数であり、c' - および d' - はそれぞれ独立して1以上300以下の整数である。添字 a'、b'、c'、d' を付して括弧でくくられた各繰り返し単位の存在順序は、式中において任意である。

[0055] 上記含フス素オイルは、1,000〜30,000の平均分子量を有していてよい。これにより、高い表面滑り性を得ることができる。

[0056] 本発明の発面処理剤中、含フス素オイルは、上記式 (1) で表されるパーソルオロ (ポリ) エーテル変性アミドシラン化合物および式 (2) で表されるアミン化合物の合計100質量部（それぞれ、2種以上の場合にはこれら合計、以下も同様）に対して、例えば0〜500質量部、好ましくは0〜400質量部、より好ましくは5〜300質量部で含まれ得る。

[0057] 一般式 (3 a) で示される化合物および一般式 (3 b) で示される化合物は、それぞれ単独で用いても、組み合わせて用いてもよい。一般式 (3 a)
で示される化合物よりも、一般式 \((3\ b)\) で示される化合物を用いるほうが、より高い表面滑り性が得られるので好ましい。これらを組み合わせて用いる場合、一般式 \((3\ a)\) で表される化合物と、一般式 \((3\ b)\) で表される化合物との質量比は、\(1 : 1 \sim 1 : 3\) が好ましく、
\(1 : 1 \sim 1 : 1\) がより好ましい。かかる質量比によれば、表面滑り性と摩擦耐久性のバランスに優れた表面処理層を得ることができる。

[0058] 一の態様において、含フッ素オイルは、一般式 \((3\ b)\) で表される 1 種またはそれ以上の化合物を含む。かかる態様において、表面処理剤中の式 \((1)\) で表されるパルブルオロ \((ポリ)\) エーテル変性アミドシラン化合物および式 \((2)\) で表されるアミン化合物の合計と、式 \((3\ b)\) で表される化合物との質量比は、\(4 : 1 \sim 1 : 4\) であることが好ましい。

[0059] 好ましい態様において、真空蒸着法により表面処理層を形成する場合には、式 \((1)\) で表されるパルブルオロ \((ポリ)\) エーテル変性アミドシラン化合物および式 \((2)\) で表されるアミン化合物の平均分子量よりも、含フッ素オイルの平均分子量を大きくしてもよい。このような平均分子量とすることにより、より優れた摩擦耐久性と表面滑り性を得ることができる。

[0060] また、別の観点から、含フッ素オイルは、一般式 \(R_{f}'-F\) （式中、\(R_{f}\) は \(0.5\sim 0.6\) パルブルオロアルキル基である）で表される化合物であってもよい。また、クロロトリフルオロエチレンオリゴマーであってもよい。\(R_{f}'-F\) で表される化合物およびクロロトリフルオロエチレンオリゴマーは、\(R_{f}\) が \(C_{1}-16\) パルブルオロアルキル基である上記式パルブルオロ \((ポリ)\) エーテル変性アミドシラン化合物 \((1)\) で表される化合物と高い親和性が得られる点で好ましい。

[0061] 含フッ素オイルは、表面処理層の表面滑り性を向上させるのに寄与する。

[0062] 上記シリコーンオイルとしては、例えばシロキサン結合が 2, 0, 0, 0 以下の直鎖状または環状のシリコーンオイルを用い得る。直鎖状のシリコーンオイルは、いわゆるストレートシリコーンオイルおよび変性シリコーンオイルであってよい。ストレートシリコーンオイルとしては、ジメチルシリコーン
オイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルが挙げられる。変性シリコーンオイルとしては、ストレートシリコーンオイルを、アルキル、アラルキル、ポリエーテル、高級脂肪酸エステル、フルオロアルキル、アミノ、エポキシ、カルボキシル、アルコールなどによる変性したものが挙げられる。環状のシリコーンオイルは、例えば環状ジメチルシロキサンオイルなどが挙げられる。

[0063] 本発明の表面処理剤中、かかるシリコーンオイルは、上記式 (1) で表されるパーウルフオロ (ポリ) エーテル変性アミドシラン化合物および上記式 (2) で表されるアミン化合物の合計 100 質量部（2 種以上の場合はこれらの合計、以下も同様）に対して、例えば 0 ～ 300 質量部、好ましくは 0 ～ 200 質量部で含まれ得る。

[0064] シリコーンオイルは、表面処理層の表面滑り性を向上させるのに寄与する。

[0065] 上記触媒としては、酸（例えば酢酸、トリフルオロ酢酸等）、塩基（例えばアンモニア、トリエチルアミン、ジェチルアミン等）、遷移金属（例えば Ti, Ni, Sn 等）等が挙げられる。

[0066] 触媒は、式 (1) で表されるパーウルフオロ (ポリ) エーテル変性アミドシラン化合物の加水分解および脱水縮合を促進し、表面処理層の形成を促進する。

[0067] 本発明の表面処理剤は、1つの溶液（または懸濁液もしくは分散液）の形態であってもよく、あるいは、別個の上記式 (1) で表されるパーウルフオロ (ポリ) エーテル変性アミドシラン化合物と上記式 (2) で表されるアミン化合物の溶液とを使用直前に混合する形態であってもよい。

[0068] 本発明の表面処理剤は、多孔質物質、例えば多孔質のセラミック材料、金属繊維、例えばスチールウールを綿状に固めたものに含浸させて、ペレットとすることができる。当該ペレットは、例えば、真空蒸着に用いることができる。

[0069] 次に、本発明の物品について説明する。
本発明の物品は、基材と、該基材の表面に本発明の表面処理剤より形成された層（表面処理層）とを含む。この物品は、例えば以下のようにして製造できる。

まず、基材を準備する。本発明に使用可能な基材は、例えばガラス、樹脂（天然または合成樹脂、例えば一般的なプラスチック材料であってよく、板状、フィルム、その他の形態であってよい）、金属（アルミニウム、鋼、鉄等の金属単体または合金等の複合体であってよい）、セラミックス、半導体（シリコン、ゲルマニウム等）、繊維（繊物、不織布等）、毛皮、皮革、木材、陶磁器、石材等、建築部材等、任意の適切な材料で構成され得る。

上記ガラスとしては、サファイアガラス、ソーダライムガラス、アルカリアルミノケイ酸塩ガラス、ホウ珪酸ガラス、無アルカリガラス、クリスタルガラス、石英ガラスが好ましく、化学強化したソーダライムガラス、化学強化したアルカリアルミノケイ酸塩ガラス、および化学結合したホウ珪酸ガラスが特に好ましい。

樹脂としては、アクリル樹脂、ポリカーボネートが好ましい。

例えば、製造すべき物品が光学部材である場合、基材の表面を構成する材料は、光学部材用材料、例えばガラスまたは透明プラスチックなどであってよい。また、製造すべき物品が光学部材である場合、基材の表面（最外層）に何らかの層（または膜）、例えばハードコート層や反射防止層などが形成されていてもよい。反射防止層には、単層反射防止層および多層反射防止層のいずれを使用してもよい。反射防止層に使用可能な無機物の例としては、SiO2、SiO、ZrO2、TiO2、TiO、Ti2O3、Ti2O5、Al2O3、Ta2O5、CeO2、MgO、Y2O3、SnO2、MgF2、WO3などが挙げられる。これらの無機物は、単独で、またはこれらの2種以上を組み合わせて（例えば混合物として）使用してもよい。多層反射防止層とする場合、その最外層にはSiO2および/またはSiOを用いることが好ましい。

製造すべき物品が、タツチパネル用の光学ガラス部品である場合、透明電極、例えば酸化インジウムズズ（ITO）や酸化インジウム亜鉛などを用いた
薄膜を、基材（ガラス）の表面の一部に有していてもよい。また、基材は、その具体的仕様等に応じて、絶縁層、粘着層、保護層、装飾枠層（I – C O N）、霧化膜層、ハードコーティング膜層、偏光フィルム、相位差フィルム、および液晶表示モジュールなどを有していてもよい。

基材の形状は特に限定されない。また、表面処理層を形成すべき基材の表面領域は、基材表面の少なくとも一部であればよく、製造すべき物品の用途および具体的仕様等に応じて適宜決定され得る。

かかる基材としては、少なくともその表面部分が、水酸基を元々有する材料から成るものであってもよい。かかる材料としては、ガラスが挙げられ、また、表面に自然酸化膜または熱酸化膜が形成される金属（特に鉄金属）、セラミックス、半導体等が挙げられる。あるいは、樹脂等のように、水酸基を有していても十分でない場合や、水酸基を元々有していない場合には、基材に何らかの前処理を施すことにより、基材の表面に水酸基を導入したり、増加させたりすることができる。かかる前処理の例としては、プラズマ処理（例えばコロナ放電）や、イオンビーム照射が挙げられる。プラズマ処理は、基材表面に水酸基を導入または増加させ得ると共に、基材表面を清浄化する（異物等を除去する）ためにも好適に利用され得る。また、かかる前処理の別の例としては、炭素一炭素不飽和結合基を有する界面吸着剤をLB法（ラングミュアーブロジェット法）や化学吸着法等によって、基材表面に予め単分子膜の形態で形成し、その後、酸素や窒素等を含む雰囲気下にて不飽和結合を開裂する方法が挙げられる。

またある時は、かかる基材としては、少なくともその表面部分が、別の反応性基、例えばSi – H基を１つ以上有するシリコーン化合物や、アルゴキシシランを含む材料から成るものであってもよい。

次に、かかる基材の表面に、上記の本発明の表面処理剤の膜を形成し、この膜を必要に応じて後処理し、これにより、本発明の表面処理剤から表面処理層を形成する。

本発明の表面処理剤の膜形成は、上記の表面処理剤を基材の表面に対して
、該表面を被覆するように適用することによって実施できる。被覆方法は、特に限定されない。例えば、湿潤被覆法および乾燥被覆法を使用できる。

[0079] 湿潤被覆法の例としては、浸漬コーティング、スピンコーティング、フローコーティング、スプレーコーティング、ロールコーティング、グラビアコーティングおよび類似の方法が挙げられる。

[0080] 乾燥被覆法の例としては、蒸着（通常、真空蒸着）、スパッタリング、CVDおよび類似の方法が挙げられる。蒸着法（通常、真空蒸着法）の具体例としては、抵抗加熱、電子ビーム、マイクロ波等を用いた高周波加熱、イオンビームおよび類似の方法が挙げられる。CVD方法の具体例としては、プラズマCVD、光学CVD、熱CVDおよび類似の方法が挙げられる。

[0081] 更に、常圧プラズマ法による被覆も可能である。

[0082] 湿潤被覆法を使用する場合、本発明の表面処理剤は、溶媒で希釈されてから基材表面に適用され得る。本発明の表面処理剤の安定性および溶媒の揮発性の観点から、次の溶媒が好ましく使用される：〇₅₇₂のバーフルオロ脂肪族炭化水素（例えば、バーフルオロヘキサン、バーフルオロメチルシクロヘキサンおよびバーフルオロー1、3—ジメチルシクロヘキサン）；ポリフルオロ芳香族炭化水素（例えば、ビス（トリフルオロメチル）ベンゼン）；ポリフルオロ脂肪族炭化水素（例えば、C₆F₁₃C₂H₆（例えば、旭硝子株式会社製のアサヒクリン（登録商標）AC₆000）、1、1、2、2、3、3、4—ヘプタフルオロシクロペンタン（例えば、日本ゼオン株式会社製のゼオローラ（登録商標）H）；ハイドロフルオロカーボン（HFC）（例えば、1、1、1、3、3—ペンタフルオロブタン（HFC—365mfc））；ハイドロクロロフルオロカーボン（例えば、HCFC—225（アサヒクリン（登録商標）AK225））；ハイドロフルオロエーテル（HFE）（例えば、バーフルオロブロピカルメチルエーテル（C₃F₉OC₃）（例えば、住友スリーエム株式会社製のNovoc（商標名）7000）、バーフルオロブチルメチルエーテル（C₄F₉OC₃）（例えば、住友スリーエム株式会社製のNovoc（商標名）7010）、バーフルオロブチルエチルエ
テル（C₄F₉OC₂H₅）（例えば、住友スリーエム株式会社製のNovéc（商標名）7200）、パーグロロヘキシルメチルエーテル（C₂F₅CFO（CH₃）C₃F₇）（例えば、住友スリーエム株式会社製のNovéc（商標名）7300）などのアルキルパーグロロアルキルエーテル（パーグロロアルキル基およびアルキル基は直鎖または分枝状であってよい）、あるいはCF₃CH₂OC₂F₂CHF₂（例えば、旭硝子株式会社製のアサヒクリン（登録商標）A E_3 0 0 0）、1,2—ジクロロ_1,3,3,3—テトラフロロオレート_1_ブロペン（例えば、三井・デュポンフロロケミカル社製のパートレル（登録商標）サイオン）など。これらの溶媒は、単独で、または、２種以上を組み合わせて混合物として用いることができる。さらに、例えば、式（1）で表されるパーグロロ（ポリ）エーテル変性アミドシラン化合物および式（2）で表されるアミン化合物の溶解性を調整する等のために、別の溶媒と混合することもできる。

乾燥被覆法を使用する場合、本発明の表面処理剤は、そのまま乾燥被覆法に付してもよく、または、上記した溶媒で希釈してから乾燥被覆法に付してもよい。

膜形成は、膜中で本発明の表面処理剤が、加水分解および脱水縮合のための触媒と共に存在するように実施することが好ましい。簡便には、湿潤被覆法による場合、本発明の表面処理剤を溶媒で希釈した後、基材表面に適用する直前に、本発明の表面処理剤の希釈液に触媒を添加してよい。乾燥被覆法による場合には、触媒添加した本発明の表面処理剤をそのまま蒸着（通常、真空蒸着）処理するか、あるいは鉄や銅などの金属多孔体に、触媒添加した本発明の表面処理剤を含浸させたペレット状物質を用いて蒸着（通常、真空蒸着）処理をしてもよい。

触媒には、任意の適切な酸または塩基を使用できる。酸触媒としては、例えば、酢酸、ギ酸、トリフルオロ酢酸などを使用できる。また、塩基触媒としては、例えばアンモニア、有機アミン類などを使用できる。

次に、必要に応じて、膜を後処理する。この後処理は、特に限定されない
が、例えば、水分供給および乾燥加熱を逐次的に実施するものであってよく、より詳細には、以下のようにして実施してよい。

上記のようにして基材表面に本発明の表面処理剤を膜形成した後、この膜(以下、「前駆体膜」とも言う)に水分を供給する。水分の供給方法は、特別限定されず、例えば、前駆体膜(および基材)と周囲雰囲気との温度差による結露や、水蒸気(スチーム)の吹付けなどの方法を使用してよい。

前駆体膜に水分が供給されると、本発明の表面処理剤中の式(1)で表されるパルフロロ(ポリ)エーテル変性アミドジシラン化合物のSIに結合した加水分解可能な基に水が作用し、当該化合物を速やかに加水分解させることができると考えられる。

水分の供給は、例えば0〜250℃、好ましくは60℃以上、さらに好ましくは100℃以上とし、好ましくは180℃以下、さらに好ましくは150℃以下の雰囲気下にて実施し得る。このような温度範囲において水分を供給することにより、加水分解を進行させることが可能である。このときの圧力は特に限定されないが、簡便には常圧とすることができる。

次に、該前駆体膜を該基材の表面で、60℃を超える乾燥雰囲気下にて加熱する。乾燥加熱方法は、特に限定されず、前駆体膜を基材と共に、60℃を超え、好ましくは100℃を超える温度であって、例えば250℃以下、好ましくは180℃以下の温度で、かつ不飽和水蒸気圧の雰囲気下に配置すればよい。このときの圧力は特に限定されないが、簡便には常圧とし得る。

このような雰囲気下では、本発明のポリエーテル変性アミドジシラン化合物と基材との間に加水分解後のSIに結合した基同士が速やかに脱水縮合する。また、かかる化合物と基材との間では、当該化合物の加水分解後のSIに結合した基と、基材表面に存在する反応性基との間で速やかに反応し、基材表面に存在する反応性基が水酸基である場合には脱水縮合する。その結果、式(1)で表されるパルフロロ(ポリ)エーテル変性アミドジシラン化合物と基材との間で結合が形成される。

上記の水分供給および乾燥加熱は、過熱水蒸気を用いることにより連続的
に実施してもよい。

過熱水蒸気は、飽和水蒸気を沸点より高い温度に加熱して得られるガスであって、常圧下では、100℃を超え、一般的には500℃以下、例えば300℃以下の温度で、かつ、沸点を超える温度への加熱により不飽和水蒸気圧となったガスである。本発明では、パーフルオロ（ポリ）エーテル変性アミドオリ化合物の分解を抑制する観点から、好ましくは、250℃以下、好ましくは180℃以下の過熱水蒸気が水分供給および乾燥加熱に用いられる。前駆体膜を形成した基材を過熱水蒸気に曝すと、まず、過熱水蒸気と、比較的低温の前駆体膜との間の温度差により、前駆体膜表面にて結露が生じ、これによって前駆体膜に水分が供給される。やがて、過熱水蒸気と前駆体膜との間の温度差が小さくなるにつれて、前駆体膜表面の水分は過熱水蒸気による乾燥雰囲気中で気化し、前駆体膜表面の水分量が次第に低下する。前駆体膜表面の水分量が低下している間、即ち、前駆体膜が乾燥雰囲気下にある間、基材の表面の前駆体膜は過熱水蒸気と接触することによって、この過熱水蒸気の温度（常圧下では100℃を超える温度）に加熱されることになる。従って、過熱水蒸気を用いれば、前駆体膜を形成した基材を過熱水蒸気に曝すだけで、水分供給と乾燥加熱とを連続的に実施することができる。

以上のようにして後処理が実施される。かかる後処理は、摩擦耐久性を一層向上させるために実施され得るが、本発明の物品を製造するのに必須ではないことに留意されたい。例えば、本発明の表面処理剤を基材表面に適用した後、そのまま静置しておくだけでもよい。

上記のようにして、基材の表面に、本発明の表面処理剤の膜に由来する表面処理層が形成され、本発明の物品が製造される。これにより得られる表面処理層は、高い表面滑り性と高い摩擦耐久性の双方を有する。また、この表面処理層は、高い摩擦耐久性に加えて、使用する表面処理剤の組成にもよるが、撥水性、撥油性、防汚性（例えば指紋等の汚れの付着を防止する）、表面滑り性（または潤滑性、例えば指紋等の汚れの拭き取り性や、指に対する優れた触感）などを有し得、機能性薄膜として好適に利用され得る。
すなわち本発明はさらに、前記硬化物を最外層に有する光学材料にも関する。
光学材料としては、後記に例示するようなディスプレイ等に関する光学材料のほか、
多種多様な光学材料が好ましく挙げられる：例えば、陰極線管（C R T ；例、T V 、パソコンモニター）、
液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機膜ELドットマトリックスディスプレイ、
背面投写型ディスプレイ、蛍光表示管（V F D）、電界放出ディスプレイ（F E D ; F i e l d E m i s s i o n D i s p l a y ）などのディスプレイまたはそれらのディスプレイの保護板、またはそれらの表面に反射防止膜処理を施したもの。
本発明によって得られる表面処理層を有する物品は、特に限定されるものではないが、光学部材であり得る。光学部材の例には、次のものが挙げられる：眼鏡などのレンズ；P D P、LCDなどのディスプレイの前面保護板、
反射防止板、偏光板、アンチグレア板；携帯電話、携帯情報端末などの機器のタッチパネルシート；ブルーレイ（B l u _ r a y （登録商標））ディスク、D V Dディスク、C D _ R、M Oなどの光ディスクのディスク面；光ファイバーなど。
また、本発明によって得られる表面処理層を有する物品は、医療機器または医療材料であってもよい。
表面処理層の厚さは、特に限定されない。光学部材の場合、表面処理層の厚さは、1 〜 3 0 n m、好ましくは1 〜 1 5 n mの範囲であることが、光学性能、表面滑り性、摩擦耐久性および防汚性の点から好ましい。
以上、本発明の表面処理剤を使用して得られる物品について詳述した。なお、本発明の表面処理剤の用途、使用方法ないし物品の製造方法などは、上記で例示したものに限定されない。
実施例
本発明の表面処理剤について、以下の実施例を通じてより具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、本実施例に
おいて、パフルオロポリエーテルを構成する2種の繰り返し単位（C F（C F₃）C F₂〇）、（C F₂C F₂C F₂〇）の存在順序は任意である。また、以下に示される化学式はすべて平均組成を示す。

[01 03] パフルオロポリエーテル変性アミドシラン化合物の合成

合成例1

還流冷却器、滴下ロート、温度計および攪拌機を取り付けた2 Lの4つロフラスコに、エタノール240 g、トリエチルアミン19.6 gを仕込み、窒素気流下、5℃で平均組成C F₃C F₂C F₂〇（C F₂C F₂C F₂〇）2₂C F₂C F₂〇Fで表されるパフルオロポリエーテル変性カルボン酸フールオライド化合物500 gを滴下し、その後、室温まで昇温させて、3時間攪拌した。続いて、パフルオロヘキサン300 gを加えて10分攪拌した後、静置後、下層のパフルオロヘキサン層を分取した。続いて、3規定塩酸水溶液による洗浄操作を行った。続いて、減圧下で揮発分を留去することにより、末端にエチルエステル基を有する下記のパフルオロポリエーテル基含

有エチルエステル化合物（A）475 gを得た。

- パフルオロポリエーテル基含有エチルエステル化合物（A）：

しF₃しF₂しF₂〇（C F₂C F₂C F₂〇）₂₂C F₂C F₂C F₂〇C H₂しH₃

[01 04] 合成例2

還流冷却器、滴下ロート、温度計および攪拌機を取り付けた2 Lの4つロフラスコに、合成例1にて合成した末端にエチルエステルを有するパフルオロポリエーテル基含有エチルエステル化合物（A）450 gを仕込み、窒素気流下、室温でアミノプロピルトリエトキシシランNH₂C H₂C H₂C H₂Si（〇C₂H₅）₃を25.84 g滴下した後、65℃まで昇温させ1時間攪拌した。続いて、減圧下で揮発分を留去することにより、末端にトリエトキシシリン基を有する下記のパフルオロポリエーテル変性アミドシラン化合物（B）472 gを得た。

- パフルオロポリエーテル変性アミドシラン化合物（B）：

C F₃C F₂C F₂〇（C F₂C F₂C F₂〇）₂₂C F₂C F₂C F₂C〇N H C H₂C H
合成例 3

還流冷却器、滴下ロート、温度計および撹拌機を取り付けた2Lの4つ口フラスコに、エタノール240g、トリエチルアミン19.6gを仕込み、窒素気流下、5°Cで平均組成C F _3 C F _2 C F _2 O [C F (C F _3) C F _2 O] _2 2 C F (C F _3) C O Fで示されるパーカールオロポリエーテル変性カーボン酸フタルオライド化合物500gを滴下し、その後、室温まで昇温させて3時間撹拌した。続いて、パーカールオロヘキサン300gを加えて10分撹拌した後、静置後、下層のパーカールオロヘキサン層を分取した。続いて、3規定塩酸水溶液による洗浄操作を行った。続いて、減圧下で揮発分を留去することにより、末端にエチルエステル基を有する下記のパーカールオロポリエーテル基含有エチルエステル化合物（C）480gを得た。

-パーカールオロポリエーテル基含有エチルエステル化合物（C）:
C F _3 C F _2 C F _2 O [C F (C F _3) C F _2 O] _2 2 C F (C F _3) C O _2 C H _2 C H _3

合成例 4

還流冷却器、滴下ロート、温度計および撹拌機を取り付けた3Lの4つ口フラスコに、合成例3にて合成した末端にエチルエステルを有するパーカールオロポリエーテル基含有エチルエステル化合物（C）450gを仕込み、窒素気流下、室温でアミノプロピルトリエトキシシランNH _2 C H _2 C H _2 C H _2 O S i (O C _2 H _5) _3を2.5.84g滴下した後、65°Cまで昇温させ1時間撹拌した。続いて、減圧下で揮発分を留去することにより、末端にトリエトキシジリニル基を有する下記のパーカールオロポリエーテル変性アミドシラン化合物（D）473gを得た。

-パーカールオロポリエーテル変性アミドシラン化合物（D）:
C F _3 C F _2 C F _2 O [C F (C F _3) C F _2 O] _2 2 C F (C F _3) C O N H C H _2 C H _2 O S i (O C _2 H _5) _3

（実施例1）
上記合成例 2 で得たパーカル オロ ポリエーテル 变性 アミドシラン化合物 (B) および アミノプロピル トリエトキシシラン N\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}S (\textsubscript{5}C\textsubscript{2}H\textsubscript{5}) \textsubscript{3} (E) を、m o l 比 1 0 0 : 5 で、ノベック7200（スリーエム社製）に溶解させて、濃度 2 0 w t % になるように、表面処理剤 1 を調製した。

[01 08] 上記で調製した表面処理剤 1 を化学強化ガラス（コーニング社製、「ゴリア」ガラス、厚さ 0.7 mm）上に真空蒸着した。真空蒸着の処理条件は、圧力 3.0 \times 10^{-3} Pa とし、まず、前処理として、電子線蒸着方式によりニ酸化ケイ素を 7 nm の厚さで、この化学強化ガラスの表面に蒸着させてニ酸化ケイ素膜を形成し、続いて、化学強化ガラス 1 枚（5.5 mm X 100 mm）あたり、表面処理剤 2 mg を蒸着させた。その後、蒸着膜付け化学強化ガラスを、温度 200℃ および湿度 65% の雰囲気下で 24 時間静置した。これにより、蒸着膜が硬化して、表面処理層が形成された。

[01 09] （実施例 2）

化合物 (B) に代えて、上記合成例 4 で得た化合物 (D) を用いたこと以外は、実施例 1 と同様にして、表面処理剤を調製し、表面処理層を形成した。

[01 10] （比較例 1～2）

アミノプロピル トリエトキシシラン N\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}S (\textsubscript{5}C\textsubscript{2}H\textsubscript{5}) \textsubscript{3} (E) を用いずに、アミノ基含有パーカル オロ エーテル 变性 アミドシラン化合物 (B) を単独で用いる以外は、実施例 1 と同様にして、比較例 1 の表面処理層を形成した。また、アミノプロピル トリエトキシシラン N\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}S (\textsubscript{5}C\textsubscript{2}H\textsubscript{5}) \textsubscript{3} (E) を用いずに、化合物 (B) に代えて化合物 (D) を用いる以外は、実施例 1 と同様にして、表面処理剤を調製し、比較例 2 の表面処理層を形成した。

[01 11] 上記の実施例 1 および 2、比較例 1 および 2 にて基材表面に形成された表面処理層について、消しゴム摩擦耐久試験により、摩擦耐久性を評価した。具体的には、表面処理層を形成したサンプル物品を水平配置し、消しゴム (}
コクヨ株式会社製、KESHІ _ 70、平面寸法 1 cm X 1. 6 cm）を表面処理層の表面に接触させ、その上に 500 g f の荷重を付与し、その後、荷重を加えた状態で消しゴムを 20 mm／秒の速度で往復させた。往復回数 500 回毎に水の静的接触角（度）を測定した。接触角の測定値が 100 度未満となった時点で評価を中止した。最後に接触角が 100 度を超えた時の往復回数を、表 1 に示す。

<table>
<thead>
<tr>
<th>実施例番号</th>
<th>消しゴム耐久（回）</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例 1</td>
<td>3, 000</td>
</tr>
<tr>
<td>実施例 2</td>
<td>1, 000</td>
</tr>
<tr>
<td>比較例 1</td>
<td>1, 000</td>
</tr>
<tr>
<td>比較例 2</td>
<td>500</td>
</tr>
</tbody>
</table>

実施例 1 および 2 では、パールオロポリエーテル変性アミドシラン化合物（B）または（D）単独の比較例 1 および 2 よりも、高い消しゴム耐久となっており、アミノプロピルトリエトキシシランNH₂C₂H₃C₂H₂C₂H₃Si（ΟC₂H₅）₃（E）を組み合わせることにより、耐久性が向上することが確認された。

本発明はいがなる理論によっても拘束されないので、これは、アミノプロピルトリエトキシシランのアミノ基が、塩基性の触媒として作用し、パーソロポリエーテル変性アミドシラン化合物と基材表面との反応性を向上させ、その結果、優れた消しゴム耐久性が得られたと考えられる。

産業上の利用可能性

本発明は、種々多様な基材、特に透過性が求められる光学部材の表面に、表面処理層を形成するために好適に利用され得る。
請求の範囲

[請求項1] 下記式 (1) で表される少なくとも1種のパフルオロ（ポリ）エーテル変性アミドシラン化合物：

\[R_f\text{PFPE} - X^1 - C - NR^1_pR^2_{2-p} \]

[式中: R_f は、それぞれ独立して、1個またはそれ以上のフッ素原子に り置換されていてもよい炭素数 1〜16 のアルキル基を表し；
PFPE は、それぞれ独立して、(O C_4 F_8) a - (0 C_3 F_6) b - (0 C_2 F_4) c - (0 C F_2) d を表し、ここに、a、b、c および d は、それぞれ独立して 0 以上 200 以下の整数であって、a、b、c および d の和は少なくとも 1 であり、a、b、c または d を付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり；

X^1 は、単結合または 2 個の有機基を表し；
R^1 は、水素原子、低級アルキル基またはフエニル基を表し；
R^2 は、-X^2-SiQ^1_kY^1_{3-k} を表し；
X^2 は、2 個の有機基を表し；
Y^1 は、-O R^5 （式中、R^5 は C_{2-10} のアルキル基を表す）を表し；
Q^1 は、水素原子、低級アルキル基またはフエニル基を表し；
p は、0 または 1 であり；
k は、0〜2 の整数である。]

および

下記式 (2) で表される少なくとも1種のアミン化合物：
(2)

化2)

$NR_3^qR_4^3$

[式中:

R^3 は、水素原子または有機基を表し；

R^4 は、$-X^3-\text{SiO}_2$、$Y^2-\text{SiO}_2$ を表し；

X^3 は、2価の有機基を表し；

Y^2 は、水酸根、加水分解可能な基または炭化水素を表し；

Q^2 は、水素原子、低級アルキル基またはフェニル基を表し；

k' は、$0 \sim 3$ の整数であり；

q は、$0 \sim 3$ の整数である。]

を含んでなる、表面処理剤。

[請求項2] パーフルオロ (ポリ) エーテル変性アミドシラン化合物において、
R が、炭素数 $1 \sim 16$ のパーフルオロアルキル基である、請求項1に記載の表面処理剤。

[請求項3] パーフルオロ (ポリ) エーテル変性アミドシラン化合物において、

P 「？巳が下記式 (a)、(b) または (c)：

(a) - (OC_3 F_6)^b$

(式 (a) 中、b は $1 \sim 2 \sim 0$ 以下の整数である)

(b) - (OC_4 F_8)^a - (OC_3 F_6)^b - (OC_2 F_4)^c - (OC F_2)^d$

(式 (b) 中、a および b は、それぞれ独立して、$0 \sim 30$ 以下の整数であり、c および d は、それぞれ独立して、$1 \sim 2 \sim 0$ 以下の整数であり、$a + b + c + d$ の和は、$10 \sim 20$ 以下の整数であり、添字 a、b、c または d を付して括弧でくくられた各繰り返し単位の存在順序は、式中において任意である）

(c) - (OC_2 F_4 - R)^n$

(式中、R が、OC_2 F_4、OC_3 F_6 および OC_4 F_8 から選択され
る基であり；
η' は、2〜100の整数である。
である、請求項1または2に記載の表面処理剤。

[請求項4] パーフロロ (ポリ) エーテル変性アミドシラン化合物における、
P F P E において：
- (OC4F8) 1 で、- (OCF2CF2CF2CF2) 1 と

- (OC3F6) 1 で、- (OCF2CF2CF2) 1 である、
- (OC2F4) 1 で、- (OCF2CF2) 1 である、

請求項1〜3のいずれかに記載の表面処理剤。

[請求項5] パーフロロ (ポリ) エーテル変性アミドシラン化合物における、
P F P E が、
- (OCF2CF2CF2) 1 と、または
- (OCF2CF2CFCF3) 1

[式中、b は1以上200以下の整数である。]
である、請求項1〜3のいずれかに記載の表面処理剤。

[請求項6] パーフロロ (ポリ) エーテル変性アミドシラン化合物において、
R5がC2〜4アルキル基である、請求項1〜5のいずれかに記載の表面処理剤。

[請求項7] パーフロロ (ポリ) エーテル変性アミドシラン化合物において、
γ1が OC0〜2OC2〜3である、請求項1〜6のいずれかに記載の表面処理剤。

[請求項8] パーフロロ (ポリ) エーテル変性アミドシラン化合物において、
X1における2個の有機基が、C2〜0アルキレン基、- (CH2) s で

O- (CH2) 1 で、- (CH2) s N R6- (CH2) t で

[式中、R6は、水素原子、フェニル基またはC1〜6アルキル基を表
し；
s は、それぞれ独立して、1〜20の整数であり；]
tは、それぞれ独立して、1〜20の整数である。]
である、請求項1〜7のいずれかに記載の表面処理剤。

[請求項9] パフルオロ（ポリ）エーテル変性アミドシラン化合物において、
X^2における2価の有機基が、C_{20}アルキレン基、-(CH_{2})_s-
〇-(CH_{2})_t-、-(CH_{2})_s-NR_{6}-(CH_{2})_t-
[式中、R_{6}は、水素原子、フェニル基またはC_{6}アルキル基を表
し；
sは、それぞれ独立して、1〜20の整数であり；
tは、それぞれ独立して、1〜20の整数である。]
である、請求項1〜8のいずれかに記載の表面処理剤。

[請求項10] パフルオロ（ポリ）エーテル変性アミドシラン化合物において、
X^1が単結合またはC_{6}アルキレン基であり、X^2がC_{6}アルキレン基である、請求項1〜9のいずれかに記載の表面処理剤。

[請求項11] パフルオロ（ポリ）エーテル変性アミドシラン化合物において、
pが1である、請求項1〜10のいずれかに記載の表面処理剤。

[請求項12] アミン化合物において、k'が0〜2の整数であり、qが1または
2であり、少なくとも1つのR^3が水素原子である、請求項1〜11
のいずれかに記載の表面処理剤。

[請求項13] アミン化合物において、Y^2ーOR^5（式中、R^5はC_{6}アルキ
ル基を表す）である、請求項1〜12のいずれかに記載の表面処理剤。

[請求項14] アミン化合物において、Y^2ーOC_2_CH_3である、請求項1〜13のいずれかに記載の表面処理剤。

[請求項15] アミン化合物において、R^3が、水素原子、低級アルキル基または
フェニル基である、請求項1〜14のいずれかに記載の表面処理剤。

[請求項16] アミン化合物において、X^3がC_{6}アルキレン基である、請求項
1〜15のいずれかに記載の表面処理剤。

[請求項17] アミン化合物において、qが2である、請求項1〜16のいずれか
に記載の表面処理剤。

【請求項18】 式（1）で表されるパフルオロ（ポリ）エーテル変性アミドシラン化合物および式（2）で表されるアミン化合物を含む表面処理剤において、アミン化合物の含有量が0.001質量％〜10質量％である、請求項1〜17のいずれかに記載の表面処理剤。

【請求項19】 含フッ素オイル、シリコンオイル、および触媒から選択される1種またはそれ以上の化合物である、請求項1〜9に記載の表面処理剤。

【請求項20】 含フッ素オイルが、式（3）:

\[R^8 - (\text{C}_4 \text{F}_8)_{a} \cdot (\text{C}_3 \text{F}_6)_{b} \cdot (\text{C}_2 \text{F}_4)_{c} \cdot (\text{C}_3 \text{F}_8)_{d} \cdot R^9 \]

\[\ldots \ (3) \]

【式中】:

\(R^8 \) は、1個またはそれ以上のフッ素原子により置換されていてもよい炭素数1〜16のアルキル基を表し；

\(R^9 \) は、1個またはそれ以上のフッ素原子により置換されていてもよい炭素数1〜16のアルキル基、フッ素原子または水素原子を表し；

\(a' \)、\(b' \)、\(c' \)および\(d' \)は、ポリマーの主骨格を構成するパフルオロ（ポリ）エーテルの4種の繰り返し単位数をそれぞれ表し、互いに独立して0以上300以下の整数であって、\(a' \)、\(b' \)、\(c' \)および\(d' \)の和は少なくとも1であり、添字\(a' \)、\(b' \)、\(c' \)または\(d' \)を付して括弧でまとめられた各繰り返し単位の存在順序は、式中ににおいて任意である。] で表される1種またはそれ以上の化合物である、請求項19に記載の表面処理剤。

【請求項21】 含フッ素オイルが、式（3a）または（3b）:

\[R^8 - (\text{C}_4 \text{F}_8)_{a} \cdot (\text{C}_3 \text{F}_6)_{b} \cdot (\text{C}_2 \text{F}_4)_{c} \cdot (\text{C}_3 \text{F}_8)_{d} \cdot R^9 \]

\[\ldots \ (3) \]
請求項25 請求項1〜24のいずれかに記載の表面処理剤を含有するペレット

請求項26 基材と、該基材の表面に、請求項1〜24のいずれかに記載の表面
処理剤より形成された層とを含む物品。

[請求項27]　前記基材がガラスである、請求項26に記載の物品。

[請求項28]　前記基材がサファイアガラス、ソーダライムガラス、アルカリアルミノケイ酸塩ガラス、ホウ珪酸ガラス、無アルカリガラス、クリスタルガラスおよび石英ガラスから成る群から選択されるガラスである、請求項27に記載の物品。

[請求項29]　前記物品が光学部材である、請求項26〜28のいずれかに記載の物品。

[請求項30]　前記物品がディスプレイである、請求項26〜29のいずれかに記載の物品。
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2015/069461

A. CLASSIFICATION OF SUBJECT MATTER
C09K3/1 8 (2006.01) i, CO7F7 /18 (2006.01) i, C08G65 /336 (2006.01) i, C09D5/1 6 (2006.01) i, C09D 7/12 (2006.01) i, C09D1 71/00 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09K3 /18, C07F7 /18, C08G65 /336, C09D5 /16, C09D7 /12, C09D1 71/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)
CAplus / REGI STRY (STN), JST Plus / JMEDPlus / JST 7580 / JSTChina (JDreamI 11)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>claims; paragraphs [0029], [0031], [0058]; (Family: none)</td>
<td>1-11.13-16, 12-17</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. See patent family annex.

"A" Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"Q" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 30 July 2015 (30.07.15)

Date of mailing of the international search report 11 August 2015 (11.08.15)

Name and mailing address of the ISA/Authorized officer
Japan Patent Office, 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Telephone No.
INTERNATIONAL SEARCH REPORT

International application No.

PCT / JP2 015/069461

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2014-5353 A (Ni综合利用 Chemical Co., Ltd.),</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>A</td>
<td>16 January 2014 (16.01.2014), claims ; paragraphs [0041], [0072]</td>
<td>12, 17</td>
</tr>
<tr>
<td></td>
<td>(Family : none)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>06 February 2014 (06.02.2014), claims ; paragraph [0039]; example s</td>
<td>12, 17</td>
</tr>
<tr>
<td></td>
<td>(Family : none)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2013/061747 Al (Asahi Glass Co., Ltd.),</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>A</td>
<td>02 May 2013 (02.05.2013), claims ; paragraphs [0031], [0095]; example s</td>
<td>12, 17</td>
</tr>
<tr>
<td>X</td>
<td>WO 2009/008380 Al (Asahi Glass Co., Ltd.),</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>A</td>
<td>15 January 2009 (15.01.2009), claims ; paragraphs [0031], [0108]; example s</td>
<td>12, 17</td>
</tr>
<tr>
<td></td>
<td>& TW 200922969 A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>30 January 2014 (30.01.2014), claims ; paragraphs [0062] to [0063], [0093], [0110]; example s</td>
<td>12, 17</td>
</tr>
<tr>
<td></td>
<td>& CN 103201331 A & CN 103221497 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& EP 2638107 Al & EP 2638116 Al</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>04 July 2013 (04.07.2013), claims ; paragraph [0051]; example s</td>
<td>12, 17</td>
</tr>
<tr>
<td></td>
<td>(Family : none)</td>
<td></td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C09K3/18 (2006. 01), C08F7/18 (2006. 01), C08G65/336 (2006. 01), C09D5/16 (2006. 01), C09D7/12 (2006. 01), C09D17/00 (2006. 01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C09K3/18, C07F7/18, C08G65/336, C09D5/16, C09D7/12, C09D17/00

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922—1996年
日本国公開実用新案公報 1971—2015年
日本国実用新案登録公報 1996—2015年
日本国登録実用新案公報 1994—2015年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
CAplus/REGISTRY (STN), JSTPlus/JIEDPlus/JST7580/JSTChinE (JDream II)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2003-321251 A（株式会社日立製作所）2003. 11. 11, 特許請求の範囲 [0029], [0031], [0058] 等</td>
<td>1-11, 13-16, 18-30, ---</td>
</tr>
<tr>
<td>---</td>
<td>(ファミリーなし)</td>
<td>12, 17</td>
</tr>
</tbody>
</table>

☑ c欄の続きにも文献が列挙されている。

・引用文献のカテゴリー
A 特に関連のある文献ではなく、一般的な技術水準を示すもの
E 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの
C 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
D 口頭による開示使用、展示等に言及する文献
P 国際出願 日前で、かつ優先権の主張の基礎となる出願の日後に公表された文献

・調査を完了した日
国際調査報告の発送日
30. 07. 2015
11. 08. 2015

国際調査報告書の名称及びあて先
日本国特許庁（ISA ／JP）
郵便番号100—8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
小久保 敦規
電話番号 03—3581—1101 内線 3480

様式 PCT／ISA／210（第2ページ）（2009年7月）
関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは，その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>特許請求の範囲，[0080]，実施例2,6,9,10,12等</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>特許請求の範囲，[0041]，[0072]等</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>(ファミリーなし)</td>
<td>12, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2014-24288 A（旭硝子株式会社）2014. 02. 06.</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>-</td>
<td>特許請求の範囲，[0039]，実施例等</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>(ファミリーなし)</td>
<td>12, 17</td>
</tr>
<tr>
<td>X</td>
<td>Wo 2013/061747 A1（旭硝子株式会社）2013. 05. 02.</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>-</td>
<td>請求の範囲，[0031]，[0095]，実施例等</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>Wo 2009/008380 Al（旭硝子株式会社）2009. 01. 15.</td>
<td>1-11, 13-16, 18-30</td>
</tr>
<tr>
<td>-</td>
<td>請求の範囲，[0031]，[0108]，実施例等</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>& TW 200922969 A</td>
<td>12, 17</td>
</tr>
<tr>
<td>-</td>
<td>特許請求の範囲，[0062]，[0063]，[0093]，[0110]，実施例等</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>特許請求の範囲，[0051]，実施例等</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>(ファミリーなし)</td>
<td>12, 17</td>
</tr>
</tbody>
</table>