Abstract

Stamping lubricant compositions which exhibit improved lubricity and methods for reducing friction and wear utilizing said stamping lubricant compositions.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Cote d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
STAMPING LUBRICANTS

Field of the Invention

The invention relates to stamping lubricants having decreased volatile organics content (VOC) values and improved lubricity.

Background of the Invention

Stamping lubricants are currently used in many aspects of the manufacturing industry such as, for example, in cooling fin dies and punches. The primary function of these stamping lubricants is to reduce friction and wear which in turn leads to extended die and punch lifetime and reduced remachining costs. Unfortunately, many of the currently available stamping lubricants do not provide sufficient lubricity and premature die and punch wear continues to be a major problem which costs the manufacturing industry hundreds of thousands of dollars annually. Additionally, many of the currently available stamping lubricants contain ingredients which impart high VOC values to the compositions and such compositions are coming under increasing scrutiny and restriction by the federal and state regulatory agencies. Thus, a need exists for the development of stamping lubricants which have decreased VOC
values and improved lubricity in order to meet both the needs of the manufacturing industry and the regulatory requirements of the various federal and state regulatory agencies.

5

Summary of the Invention

The invention relates to a stamping lubricant composition comprising:
I) (a) up to about 69% by weight of mineral spirits;
 (b) up to about 8% by weight of a (POP)_n(POE)_mC_9-C_18 alkylalcohol wherein n and m are independently a number from about 3 to about 8;
 (c) up to about 12% by weight of an alkali metal salt of a phosphate ester of a (POE)_(n')C_8-C_18 alkylalcohol wherein n' is a number from about 3 to about 8; and
 (d) up to about 25% by weight of a polyester of a dimer acid; or
II) (a) up to about 95% by weight of water;
 (b) optionally up to about 3% by weight of a (POP)_n(POE)_mC_9-C_18 alkylalcohol wherein n and m are independently a number from about 3 to about 8;
 (c) up to about 4% by weight of an alkali metal salt of a phosphate ester of a (POE)_(n')C_8-C_18 alkylalcohol wherein n' is a number from about 3 to about 8;
 (d) up to about 8% by weight of a polyester of a dimer acid; or up to about 12% by weight of a polyester derivative; and
 (e) up to about 6% by weight of a trialkanolamine.

Preferred compositions of the invention are those which comprise:
I) (a) from about 60% to about 69% by weight of mineral spirits;
 (b) from about 3% to about 8% by weight of a (POP)_n(POE)_mC_9-C_18 alkylalcohol wherein n and m are independently a number from about 3 to about 8;
 (c) from about 3% to about 12% by weight of an alkali metal salt of a phosphate ester of a (POE)_(n')C_8-C_18
alkylalcohol wherein n' is a number from about 3 to about 8; and

(d) from about 20% to about 25% by weight of a polyester of a dimer acid; or

II) (a) from about 70% to about 95% by weight of water;
(b) optionally from about 0.5% to about 3% by weight of a \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein n and m are independently a number from about 3 to about 8;
(c) from about 0.1% to about 4% by weight of an alkali metal salt of a phosphate ester of a \((\text{POE})_n',\text{C}_8-\text{C}_{18}\) alkylalcohol wherein n' is a number from about 3 to about 8;
(d) from about 2% to about 8% by weight of a polyester of a dimer acid; or from about 3% to about 12% by weight of a polyester derivative; and
(e) from about 1% to about 6% by weight of a trialkanolamine.

Particularly preferred compositions of the invention are those which comprise:

I) (a) from about 63% to about 66% by weight of mineral spirits;
(b) from about 4% to about 6% by weight of a \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein n and m are independently a number from about 3 to about 8;
(c) from about 6% to about 10% by weight of an alkali metal salt of a phosphate ester of a \((\text{POE})_n',\text{C}_8-\text{C}_{18}\) alkylalcohol wherein n' is a number from about 3 to about 8;
(d) from about 21% to about 23% by weight of a polyester of a dimer acid; and
(e) from about 0.15% to about 0.20% of a copper corrosion inhibitor; or

II) (a) from about 80% to about 95% by weight of water;
(b) optionally from about 1% to about 2% by weight of a \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein n and m are independently a number from about 3 to about 8;
(c) from about 0.3% to about 3% by weight of an alkali
metal salt of a phosphate ester of a \((\text{POE})_{n'}\text{C}_{n'-\text{C}}\text{alkylalcohol}\) wherein \(n'\) is a number from about 3 to about 8;

(d) from about 3% to about 7% by weight of a polyester of a dimer acid; or from about 5% to about 11% by weight of a polyester derivative;

(e) from about 1% to about 3% by weight of a trialkanolamine; and

(f) from about 0.15% to about 0.20% of a copper corrosion inhibitor.

Especially particularly preferred compositions of the invention are those which comprise:

I) (a) from about 63% to about 66% by weight of mineral spirits;

(b) from about 4% to about 6% by weight of a \((\text{POP})_6(\text{POE})_6\text{C}_{10}\) alkylalcohol;

(c) from about 6% to about 10% by weight of the alkali metal salt of a phosphate ester of a \((\text{POE})_6\text{C}_{10}\) alkylalcohol;

(d) from about 21% to about 23% by weight of a polyester of a dimer acid which comprises the derivative produced by the reaction of a \(\text{C}_{n}\) dimer acid with a polyethylene glycol having an average molecular weight of from about 200 to about 500, and with a \(\text{C}_5-\text{C}_8\) linear or branched alcohol; and

(e) from about 0.15% to about 0.20% of a copper corrosion inhibitor; or

II) (a) from about 80% to about 95% by weight of water;

(b) optionally from about 1% to about 2% by weight of a \((\text{POP})_6(\text{POE})_6\text{C}_{10}\) alkylalcohol;

(c) from about 0.3% to about 3% by weight of the alkali metal salt of a phosphate ester of a \((\text{POE})_6\text{C}_{10}\) alkylalcohol;

(d) from about 3% to about 7% by weight of a polyester of a dimer acid which comprises the derivative produced by the reaction of a \(\text{C}_{n}\) dimer acid with a polyethylene glycol having an average molecular weight of from about 200 to about 500, and with a \(\text{C}_5-\text{C}_8\) linear or branched alcohol; or
from about 5% to about 11% by weight of a polyester derivative which comprises the derivative produced by the condensation reaction of a polyethylene glycol having an average molecular weight of about 200 to about 600, with a C_{12}-C_{36} dimer acid and with a short-chain dibasic acid containing from about 6 to about 10 carbon atoms;

(e) from about 1% to about 3% by weight of a trialkanolamine; and

(f) from about 0.15% to about 0.20% of a copper corrosion inhibitor.

The most preferred compositions of the invention comprise:

I) (a) 65% by weight of mineral spirits;
(b) 5% by weight of (POP)_{6}(POE)_{6}isodecanol;
(c) 8% by weight of the potassium salt of the phosphate ester of (POE)_{6}isodecanol;
(d) 22% by weight of the polyester of a dimer acid which comprises the derivative produced by the reaction of a C_{36} dimer acid with a polyethylene glycol having an average molecular weight of about 400, and with 2-ethyl-1-hexanol; and
(e) 0.15% by weight of a copper corrosion inhibitor; or

II)
(a) 88.5% by weight of water;
(b) 1.35% by weight of (POP)_{6}(POE)_{6}isodecanol;
(c) 2.2% by weight of the potassium salt of the phosphate ester of (POE)_{6}isodecanol;
(d) 5.95% by weight of the polyester of a dimer acid which comprises the derivative produced by the reaction of a C_{36} dimer acid with a polyethylene glycol having an average molecular weight of about 400, and with 2-ethyl-1-hexanol;
(e) 2.0% by weight of triethanolamine; and
(f) 0.15% by weight of a copper corrosion inhibitor; or

III)
(a) 90% by weight of water;
(b) 0.6% by weight of the potassium salt of the
phosphate ester of (POE),isodecanol;
(c) 9.4% by weight of a polyester derivative which comprises the derivative produced by the condensation reaction of a polyethylene glycol having an average molecular weight of about 400, with a C₃₆ dimer acid and with azelaic acid;
(d) 1.5% by weight of triethanolamine; and
(e) 0.15% by weight of a copper corrosion inhibitor.

The invention also relates to a method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a stamping lubricant composition of the invention.

Detailed Description Inclusive of the Preferred Embodiments

The term C₄-C₁₈ alkylalcohol as used herein means C₄-C₁₈ linear or branched alkylalcohols such as octanol, 2,4,4-trimethyl-1-pentanol, nonanol, 2,6-dimethyl-4-heptanol, decanol, isodecanol, undecanol, dodecanol, tridecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, and the like. The alkylalcohol is preferably a C₆-C₁₄ alkylalcohol, especially a C₁₀ alkylalcohol and in particular isodecanol.

The abbreviation POP as used herein refers to the average number of polyoxypropylene units which are attached to the C₆-C₁₈ alkylalcohol. The average number of polyoxypropylene units is typically from about 3 to about 8, preferably from about 5 to about 7 and especially about 6.

The abbreviation POE as used herein refers to the average number of polyoxyethylene units which are attached to the C₆-C₁₈ alkylalcohol. The average number of polyoxyethylene units is typically from about 3 to about 8, preferably from about 5 to about 7 and especially about 6.

The term alkali metal salt as used herein refers to lithium, sodium, or potassium salts, preferably the
potassium salts.

The term polyester of a dimer acid refers to the derivative produced by reacting from about 3 moles to about 4 moles, preferably about 3.56 moles, of a C_{32}-C_{32} dimer acid with about 1 mole of a polyalkylene glycol having an average molecular weight in the range of from about 100 to about 600 and with about 2 moles to about 3 moles, preferably about 2.4 moles of a C_6-C_18 linear or branched alcohol. The C_{32}-C_{32} dimer acid is the reaction product of the dimerization of two moles of an unsaturated C_{16}-C_{24} monocarboxylic acid. For example, a typical dimer acid which can be used in practicing the instant invention is a C_{36} dimer acid, e.g. EMPOL^* 1016, obtained by the dimerization of two moles of a C_{18} unsaturated monocarboxylic acid, such as oleic acid or linoleic acid, or mixtures thereof, e.g. tall oil fatty acids. Other examples of such dimer acids include, but are not limited thereto, WESTVACO^* H240, EMPOL^* 1004, EMPOL^* 1007, EMPOL^* 1008, EMPOL^* 1018 and EMPOL^* 1016. The dimer acid is preferably a C_{32}-C_{36} dimer acid, especially a C_{36} dimer acid and in particular the C_{36} dimer acid EMPOL^* 1016 which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249. The polyalkylene glycol is preferably a polyethylene glycol having an average molecular weight in the range of from about 100 to about 600, more preferably a polyethylene glycol having an average molecular weight in the range of from about 200 to about 500 and especially a polyethylene glycol having an average molecular weight of about 400. The C_6-C_18 linear or branched alcohol can be such alcohols as butanol, sec-butanol, isobutanol, 3-methyl-1-butanol, pentanol, 2-pentanol, hexanol, 2-hexanol, 2-methyl-2-pentanol, 1-heptanol, 2-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 2,4,4-trimethyl-1-pentanol, nonanol, 2,6-dimethyl-4-heptanol, decanol, isodecanol, undecanol, dodecanol, tridecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, and the like. The C_6-C_{18} linear or branched
alcohol is preferably a C₄-C₁₀ linear or branched alcohol, more preferably a C₅-C₈ linear or branched alcohol, especially a C₆ linear or branched alcohol and in particular 2-ethyl-1-hexanol.

The term polyester derivative as used herein refers to the derivative produced by the condensation reaction of a polyoxyalkylene glycol having an average molecular weight of from about 200 to about 600, with a C₃₂-C₅₂ dimer acid and with a short-chain dibasic acid containing from about 2 to about 12 carbon atoms. These polyester derivatives are described in, for example, U.S. patent 3,769,215, issued October 30, 1973, the entire contents of which is incorporated herein by reference. The polyester derivative is preferably produced by the condensation reaction of from about 1.5-2.1 moles of a polyethylene glycol having an average molecular weight of from about 200 to about 600, with about 0.5 moles of a C₃₂-C₅₂ dimer acid and with about 0.5 moles of a short-chain dibasic acid containing from about 6 to about 10 carbon atoms. The polyester derivative is more preferably produced by the condensation reaction of from about 1.75-2.0 moles of a polyethylene glycol having an average molecular weight of about 400, with about 0.5 moles of a C₁₆ dimer acid, for example EMPOL® 1016 or EMPOL® 1018, especially EMPOL® 1016, and with about 0.5 moles of a C₁₀ dibasic acid, especially azelaic acid (commercially available from Henkel Corporation, Emery Group, Cincinnati, Ohio 45249).

The term trialkanolamine as used herein refers to those amines to which are bonded three C₁-C₄ alkyl alcohol groups and thus includes trimethanolamine, triethanolamine, tripropanolamine, tributanolamine and the like, preferably triethanolamine.

The term copper corrosion inhibitor as used herein refers to the known class of triazole derivative containing copper deactivators, such as, for example, REOMAT® 39 (pour point=<20°C; viscosity at 40°C=83 cst) which is commercially available from Ciba-Giegy, Additives Division,
Ardsley, New York 10502; and COBRATECHa 911 (Chemical Abstracts Service Registry No. 114502) which is commercially available from PMC Specialties Group Inc., Cincinnati, Ohio 45217.

Examples

The following examples are meant to further illustrate the instant invention without, however, limiting it thereto.

The following general procedure was used to prepare examples 1 and 2: Odorless mineral spirits or water was added to a container, e.g. an 8 oz. bottle or a large mixing vessel, and then each of the remaining ingredients was added and the mixture was stirred until the solution became clear.

Example 1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percent by weight</th>
<th>Weight in grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>odorless mineral spirits</td>
<td>65</td>
<td>97.5</td>
</tr>
<tr>
<td>EMERYa 6720(1)</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>EMERYa 5553(2)</td>
<td>8</td>
<td>12.0</td>
</tr>
<tr>
<td>EMERYa 2902(3)</td>
<td>22</td>
<td>33.0</td>
</tr>
<tr>
<td>REOMATa 39(4)</td>
<td>0.15(*)</td>
<td>0.225</td>
</tr>
</tbody>
</table>

(*) Based on a total solution weight of 150 grams.

(1) A (POP)\textsubscript{6}(POE)\textsubscript{6} isodecanol which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(2) The potassium salt of the phosphate ester of (POE)\textsubscript{6} isodecanol which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(3) The polyester of a dimer acid which is produced from the reaction of the C\textsubscript{36} dimer acid EMPOLa 1016 (which is commercially available from Henkel Corporation, Emery
Group) with a polyethylene glycol having an average molecular weight of 400 and with 2-ethyl-1-hexanol. The product is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(4) A triazole derivative containing copper deactivator (commercially available from Ciba-Giegy, Additives Division, Ardsley, New York, 10502).

Example 2

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percent by weight</th>
<th>Weight in grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>88.5</td>
<td>132.75</td>
</tr>
<tr>
<td>EMERY® 6720 (1)</td>
<td>1.35</td>
<td>2.02</td>
</tr>
<tr>
<td>EMERY® 5553 (2)</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>EMERY® 2902 (3)</td>
<td>5.95</td>
<td>8.93</td>
</tr>
<tr>
<td>triethanolamine</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>RECOMAT® 39 (4)</td>
<td>0.15<sup>*</sup></td>
<td>0.225</td>
</tr>
</tbody>
</table>

(*) Based on a total solution weight of 150 grams.

(1) A (POP)$_6$ (POE)$_6$ isodecanol which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(2) The potassium salt of the phosphate ester of (POE)$_6$ isodecanol which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(3) The polyester of a dimer acid which is produced from the reaction of the C$_{36}$ dimer acid EMPOL® 1016 (which is commercially available from Henkel Corporation, Emery Group) with a polyethylene glycol having an average molecular weight of 400 and with 2-ethyl-1-hexanol. The product is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(4) A triazole derivative containing copper deactivator (commercially available from Ciba-Giegy, Additives Division, Ardsley, New York, 10502).
Example 3

A mixture of EMERY* 2908, EMERY* 5553 and REOMAT* 39 was mixed thoroughly and then water, followed by triethanolamine were added and the mixture was thoroughly mixed.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percent by weight</th>
<th>Weight in grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>EMERY* 5553(1)</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>EMERY* 2908(2)</td>
<td>9.4</td>
<td>18.8</td>
</tr>
<tr>
<td>triethanolamine</td>
<td>1.5\textsuperscript(*)</td>
<td>3.0</td>
</tr>
<tr>
<td>REOMAT* 39(3)</td>
<td>0.15</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\textsuperscript(*) Based on a total solution weight of 200.3 grams.

(1) The potassium salt of the phosphate ester of (POE)$_6$ isodecanol which is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(2) A polyester derivative which is produced by the condensation reaction of a polyethylene glycol having an average molecular weight of about 400, with the C$_{16}$ dimer acid EMPOL* 1016 (which is commercially available from Henkel Corporation, Emery Group) and with azelaic acid. The product is commercially available from Henkel Corporation, Emery Group, Cincinnati, OH 45249.

(3) A triazole derivative containing copper deactivator (commercially available from Ciba-Giegy, Additives Division, Ardsley, New York, 10502).

Test Procedures

The stamping lubricant compositions of the instant invention were tested for (a) lubricity utilizing the Falex test ASTM method D-2670-88, (b) Volatile Organics Content (VOC) utilizing the test method described in ASTM D-2369-81, part B, and (c) polystyrene compatibility by placing a block of low impact polystyrene in a container half-filled with neat sample (samples which contain all of the ingredients of the instant invention except for the
odorless mineral spirits or water), capping the container and then placing the container in an oven at 65-70°C for 12 hours. The compositions are polystyrene compatible if they do not dissolve the polystyrene and they are polystyrene incompatible if they dissolve the polystyrene. The test results are illustrated in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Test procedure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Falex test (steel pin)</td>
<td>1600</td>
<td>3800</td>
<td>4000</td>
<td>400</td>
</tr>
<tr>
<td>Falex test (seizure load in ft/lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falex test (aluminum pin and V-blocks)</td>
<td>1400</td>
<td>--</td>
<td>2700</td>
<td>--</td>
</tr>
<tr>
<td>Falex test (seizure load in ft/lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC (in %)</td>
<td>65</td>
<td>2</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>low impact Polystyrene compatibility (65-70°C)<sup>(*)</sup></td>
<td>comp.</td>
<td>comp.</td>
<td>incomp.<sup>(2)</sup></td>
<td>incomp.</td>
</tr>
</tbody>
</table>

⁽¹⁾ Chem Arrow product 8191-FR (Chemical Abstracts Service Registry No. 64741-65-7) which is a commercially available stamping lubricant which consists of 90% mineral spirits and 10% of a mixture of dioctyl adipate and POE(5) nonylphenol (available from Chem Arrow, Irwindale, California, 91706).

⁽²⁾ Dissolved by 50% after 12 hours.

^(*) The abbreviation comp. stands for compatible and the abbreviation incomp. stands for incompatible.
These test results show that examples 1 to 3, which are representative stamping lubricant compositions of the instant invention, exhibited improved lubricity at significantly lower VOC values than comparative example 4. Additionally, the stamping lubricant compositions of examples 1 and 2 were found to be compatible with polystyrene whereas comparative example 3 was found to be incompatible.

While the present stamping lubricant compositions of the invention have been described and illustrated by reference to certain representative examples and embodiments thereof, such is not to be interpreted as in any way limiting the scope of the instantly claimed invention.
What is claimed is:

1. A stamping lubricant composition comprising:

I) (a) up to about 69% by weight of mineral spirits;
 (b) up to about 8% by weight of a (POP)$_n$(POE)$_m$C$_8$-C$_{18}$
 alkylalcohol wherein n and m are independently a number
 from about 3 to about 8;
 (c) up to about 12% by weight of an alkali metal salt
 of a phosphate ester of a (POE)$_n$C$_8$-C$_{18}$ alkylalcohol wherein
 n' is a number from about 3 to about 8; and
 (d) up to about 25% by weight of a polyester of a
dimer acid; or

II) (a) up to about 95% by weight of water;
 (b) optionally up to about 3% by weight of a
 (POP)$_n$(POE)$_m$C$_8$-C$_{18}$ alkylalcohol wherein n and m are
 independently a number from about 3 to about 8;
 (c) up to about 4% by weight of an alkali metal salt
 of a phosphate ester of a (POE)$_n$C$_8$-C$_{18}$ alkylalcohol wherein
 n' is a number from about 3 to about 8;
 (d) up to about 8% by weight of a polyester of a dimer
 acid; or up to about 12% by weight of a polyester
 derivative; and
 (e) up to about 6% by weight of a trialkanolamine.

2. A composition according to claim 1 which comprises:

I) (a) from about 60% to about 69% by weight of said
 mineral spirits;
 (b) from about 3% to about 8% by weight of said
 (POP)$_n$(POE)$_m$C$_8$-C$_{18}$ alkylalcohol wherein n and m are
 independently a number from about 3 to about 8;
 (c) from about 3% to about 12% by weight of said
 alkali metal salt of a phosphate ester of a (POE)$_n$C$_8$-C$_{18}$
 alkylalcohol wherein n' is a number from about 3 to about
 8; and
 (d) from about 20% to about 25% by weight of said
 polyester of a dimer acid; or

II) (a) from about 70% to about 95% by weight of said
water;
(b) optionally from about 0.5% to about 3% by weight of said \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein \(n\) and \(m\) are independently a number from about 3 to about 8;
(c) from about 0.1% to about 4% by weight of said alkali metal salt of a phosphate ester of a \((\text{POE})_{n'}\text{C}_8-\text{C}_{18}\) alkylalcohol wherein \(n'\) is a number from about 3 to about 8;
(d) from about 2% to about 8% by weight of said polyester of a dimer acid; or from about 3% to about 12% by weight of said polyester derivative; and
(e) from about 1% to about 6% by weight of said trialkanolamine.

3. A composition according to claim 2 which further comprises up to about 0.25% by weight of a copper corrosion inhibitor.

4. A composition according to claim 2 which comprises:
I) (a) from about 63% to about 66% by weight of said mineral spirits;
(b) from about 4% to about 6% by weight of said \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein \(n\) and \(m\) are independently a number from about 3 to about 8;
(c) from about 6% to about 10% by weight of said alkali metal salt of a phosphate ester of a \((\text{POE})_{n'}\text{C}_8-\text{C}_{18}\) alkylalcohol wherein \(n'\) is a number from about 3 to about 8; and
(d) from about 21% to about 23% by weight of said polyester of a dimer acid; or

II) (a) from about 80% to about 95% by weight of said water;
(b) optionally from about 1% to about 2% by weight of said \((\text{POP})_n(\text{POE})_m\text{C}_8-\text{C}_{18}\) alkylalcohol wherein \(n\) and \(m\) are independently a number from about 3 to about 8;
(c) from about 0.3% to about 3% by weight of said alkali metal salt of a phosphate ester of a \((\text{POE})_{n'}\text{C}_8-\text{C}_{18}\)
alkylalcohol wherein \(n' \) is a number from about 3 to about 8;

(d) from about 3% to about 7% by weight of said polyester of a dimer acid; or from about 5% to about 11% by weight of said polyester derivative; and

(e) from about 1% to about 3% by weight of said trialkanolamine.

5. A composition according to claim 4 which further comprises from about 0.15% to about 0.20% of a copper corrosion inhibitor.

6. A composition according to claim 5 wherein each of \(n, m, \) and \(n' \) is a number from about 5 to about 7; and the alkylalcohol is a \(C_8-C_{14} \) alkylalcohol.

7. A composition according to claim 6 wherein said polyester of a dimer acid comprises the derivative produced by the reaction of a \(C_{32}-C_{36} \) dimer acid with a polyalkylene glycol having an average molecular weight of from about 100 to about 600, and with a \(C_4-C_{18} \) linear or branched alcohol.

8. A composition according to claim 7 wherein each of \(n, m, \) and \(n' \) is 6; and the alkylalcohol is a \(C_{10} \) alkylalcohol.

9. A composition according to claim 8 wherein said polyester of a dimer acid comprises the derivative produced by the reaction of a \(C_{32}-C_{36} \) dimer acid with a polyethylene glycol having an average molecular weight of from about 100 to about 600, and with a \(C_4-C_{10} \) linear or branched alcohol; and said polyester derivative comprises the derivative produced by the condensation reaction of a polyethylene glycol having an average molecular weight of from about 200 to about 600, with a \(C_{32}-C_{36} \) dimer acid, and with a short-chain dibasic acid containing from about 6 to about 10 carbon atoms.
10. A composition according to claim 9 wherein said polyester of a dimer acid comprises the derivative produced by the reaction of a C₉₆ dimer acid with a polyethylene glycol having an average molecular weight of from about 200 to about 500, and with a C₄-C₆ linear or branched alcohol.

11. A composition according to claim 10 wherein said polyester of a dimer acid comprises the derivative produced by the reaction of a C₉₆ dimer acid with a polyethylene glycol having an average molecular weight of about 400, and with a C₆ linear or branched alcohol; and said polyester derivative comprises the derivative produced by the condensation reaction of a polyethylene glycol having an average molecular weight of about 400, with a C₉₆ dimer acid and with a C₉ dibasic acid.

12. A composition according to claim 11 wherein said C₆ linear or branched alcohol is 2-ethyl-1-hexanol and said trialkanolamine is triethanolamine; and said C₉ dibasic acid is azelaic acid.

13. A composition according to claim 12 which comprises:
 (a) 65% by weight of said mineral spirits;
 (b) 5% by weight of (POP)₆(POE)₆isodecanol;
 (c) 8% by weight of the potassium salt of the phosphate ester of (POE)₆isodecanol;
 (d) 22% by weight of the polyester of a dimer acid; and
 (e) 0.15% by weight of said copper corrosion inhibitor.

14. A composition according to claim 12 which comprises:
 (a) 88.5% by weight of said water;
 (b) 1.35% by weight of (POP)₆(POE)₆isodecanol;
 (c) 2.2% by weight of the potassium salt of the phosphate ester of (POE)₆isodecanol;
 (d) 5.95% by weight of the polyester of a dimer acid;
(e) 2.0% by weight of triethanolamine; and
(f) 0.15% by weight of said copper corrosion inhibitor.

15. A composition according to claim 12 which comprises:
 (a) 90% by weight of said water;
 (b) 0.6% by weight of the potassium salt of the
 phosphate ester of (POE)_6 isodecanol;
 (c) 9.4% by weight of the polyester derivative;
 (d) 1.5% by weight of triethanolamine; and
 (e) 0.15% by weight of said copper corrosion inhibitor.

16. A method for reducing friction and wear in dies and
 punches which comprises contacting said dies and punches
 with an effective friction and wear reducing amount of a
 composition according to claim 1.

17. A method for reducing friction and wear in dies and
 punches which comprises contacting said dies and punches
 with an effective friction and wear reducing amount of a
 composition according to claim 2.

18. A method for reducing friction and wear in dies and
 punches which comprises contacting said dies and punches
 with an effective friction and wear reducing amount of a
 composition according to claim 4.

19. A method for reducing friction and wear in dies and
 punches which comprises contacting said dies and punches
 with an effective friction and wear reducing amount of a
 composition according to claim 6.

20. A method for reducing friction and wear in dies and
 punches which comprises contacting said dies and punches
 with an effective friction and wear reducing amount of a
 composition according to claim 8.
21. A method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a composition according to claim 10.

22. A method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a composition according to claim 12.

23. A method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a composition according to claim 13.

24. A method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a composition according to claim 14.

25. A method for reducing friction and wear in dies and punches which comprises contacting said dies and punches with an effective friction and wear reducing amount of a composition according to claim 15.
A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : C10M 173/02, 145/26
US CL : 508/429, 431, 496, 562, 579; 72/42
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 508/429, 431, 496, 562, 579; 72/42

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS search terms: emery, isodecanol, phosphate ester, henkel, reomat, mineral spirit, lubricant, stamping lubricant

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 5,259,970 (KANAMORI ET AL) 09 November 1993, col. 4, lines 21-34.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,606,837 (MCENTIRE ET AL) 19 August 1986, see entire document.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 5,286,300 (HNATIN ET AL) 15 February 1994, see entire document.</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 11 JUNE 1996
Date of mailing of the international search report: 18 JUL 1996

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
ELLEN MCAVOY
Telephone No. (703) 308-2510

Form PCT/ISA/210 (second sheet)(July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>