Special Convention based on which it is published
International Patent

(19) 国立科学技術庁

(43) 国際公開日
2014年10月2日(02.10.2014)

(51) 国際特許分類:
F21 V 29/00 (2006.01)
F21Y 101/02 (2006.01)

(21) 国際出願番号:
PCT/JP2014/021059

(22) 国際出願日:
2014年3月27日 (27.03.2014)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2013-073265 2013年3月29日 (29.03.2013) JP
特願2013-073267 2013年3月29日 (29.03.2013) JP

(71) 出願人: 株式会社神戸製鋼所 (KABUSHIKI KAisha KOBE SEIKO SHO (KOBE STEEL, LTD.)) [JP/JP]

(72) 発明者: 服部 伸郎 (HATTORI Nobuo), 小西 映之 (KONISHI Haruyuki), 小林 一徳 (KOBAYASHI Kazunori), 金田 大輔 (KANEDA Daisuke)

(74) 代理人: 澤田 百合子, 外 (HAMADA Yuriko et al.);
〒105003 東京都港区西新橋一丁目7番13号
虎ノ門イーストビルディング1階 樂光特許事務所 (Tokyo OP).

(54) 題名: PRE-COATED ALUMINUM PLATE, ALUMINUM PLATE, AND HEAT SINK FOR ONBOARD LED LIGHTING

要約: Provided are a pre-coated aluminum plate that exhibits superior heat radiation, an aluminum plate, and a heat sink for onboard LED lighting. The pre-coated aluminum plate (10) is used in the heat sink (1) for onboard LED lighting, and includes the aluminum plate (20) and a resin coating-film (3A). The aluminum plate (20) exhibits a thermal conductivity of equal to or greater than 150W/m·K, and the resin coating-film (3A) includes a heat-curable resin and a black pigment component. The resin coating-film (3A) is characterized in that the integrated emissivity in the infrared region having a wavelength of 3-30 μm is equal to or greater than 0.80 at 25°C.
放熱性に優れたプレコートアルミニューム板材、アルミニウム板材および車載LED照明用ヒートシンクを提供する。プレコートアルミニューム板材（10）は、車載LED照明用ヒートシンク（1）に用いられるものであり、アルミニウム板材（20）と樹脂系皮膜（3A）を有するプレコートアルミニューム板材（10）である。アルミニウム板材（20）は熱伝導率が150W/m·K以上であり、樹脂系皮膜（3A）は熱硬化性樹脂と黒色顔料成分を含み、樹脂系皮膜（3A）は波長3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であることを特徴とする。
明細書

発明の名称：プレコートアルミニウム板材、アルミニウム板材および車載LED照明用ヒートシンク

技術分野

[0001] 本発明は、発光ダイオード（LED）素子を搭載するための車載LED照明用ヒートシンク用のプレコートアルミニウム板材、アルミニウム板材および車載LED照明用ヒートシンクに関する。

背景技術

[0002] 発光ダイオード（LED）素子を発光源とする照明は、低消費電力であり且つ長寿命であることから徐々に市場に浸透し始めている。その中でも、近年特に注目を集めているのが、自動車のヘッドライントなどの車載LED照明である。

[0003] しかしながら、このLED照明の発光源であるLED素子は熱に非常に弱く、許容温度を超えると発光効率が低下し、更には、その寿命にも影響を及ぼしてしまうという問題がある。この問題を解決するためには、LED素子の発光時の熱を周囲の空気中に放熱する必要があるため、LED照明には大型のヒートシンクが備えられている。

[0004] このLED照明用ヒートシンクには、アルミニウム（アルミニウム合金を含む）を材料としたアルミダイキャスト製のものが多く採用されており、特許文献1〜4には、それらヒートシンクのうち代表的な構成のヒートシンクが開示されている。

先行技術文献

特許文献

[0005] 特許文献1：日本国特開2007-172932号公報
特許文献2：日本国特開2007-193960号公報
特許文献3：日本国特開2009-277535号公報
特許文献4 : 日本国特開2010—278350号公報

発明の概要

発明が解決しようとする課題

[0006] 近年、車載L E D照明は、ハイパワー化が進展しており、車載L E D照明用ヒートシンクに対しては、放熱性のさらなる向上が求められている。
一方、車載L E D照明用ヒートシンクは、生産性向上および低コスト化を図るため、従来のアルミダイキャストではなく、アルミニウム板材を成形加工してなる成形体へと移りつつある。

[0007] そこで、アルミニウム板材の成形体からなるヒートシンクに対して、放熱性の向上を図るために、ヒートシンクを構成するアルミニウム板材自体や板材表面の特性からなる放熱性向上に対するニーズは強いものとなっていった。

[0008] また、アルミニウム板材を曲げ加工等をする際に、成形加工性が劣るために、加工部に肉離れが生じて、形状が局部的に不均一となり、十分な放熱性が得られないという問題点が新たに持ち上がっていた。

[0009] 本発明は、前記課題を解決するためになされたものであり、放熱性に優れたプレコートアルミニウム板材および車載L E D照明用ヒートシンクを提供することを課題とする。さらに、加工部の表面の平滑性に優れたプレコートアルミニウム板材、アルミニウム板材および車載L E D照明用ヒートシンクを提供することを課題とする。

課題を解決するための手段

[0010] 前記課題を解決するため、検討を進めた結果、素材の熱抵抗を下げるために、アルミニウム板材の熱伝導率を一定のレベル以上とすること、アルミニウム板材からなる成形体の表面に黒色の皮膜を形成することによって放射率が高まること、皮膜は比較的薄くして皮膜としての熱抵抗を下げること、皮膜の表面粗さを適切に制御して、放射率を高めることが重要であること等の知見を得て、本発明に到達したものである。

[0011] 本発明は以下のような構成を有するものである。第1の発明に係るプレコ
トアルミニウム板材は、車載 LED照明用ヒートシンクに用いられ、アルミニウム板材と樹脂系皮膜を有しており、前記アルミニウム板材は、熱伝導率が150W/m・K以上であり、前記アルミニウム板材の結晶組織は、ファイバー状であり、前記樹脂系皮膜は、熱硬化性樹脂と、黒色顔料成分とを含み、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.8以上であることを特徴とする。

このような構成によれば、ヒートシンクの色調が黑色となり、樹脂皮膜の耐久性が向上し、表面の肌荒れが少ない成形体を製造することができ、プレコートアルミニウム板材の曲げ加工時に塗膜に亀裂が生じにくい。また、アルミニウム板材のより優れた放熱性が確保される。

第2の発明に係るプレコートアルミニウム板材は、車載LED照明用ヒートシンクに用いられ、アルミニウム板材と樹脂系皮膜を有しており、前記アルミニウム板材は、熱伝導率が150W/m・K以上であり、前記樹脂系皮膜は、熱硬化性樹脂と、黒色顔料成分と、骨材を含み、前記樹脂系皮膜の膜厚は、5〜15μmであり、前記樹脂系皮膜の表面の算術平均粗さRaが、1〜3μmであり、前記樹脂系皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.8以上であることを特徴とする。

このような構成によれば、プレコートアルミニウム板材は、アルミニウム板材の熱伝導率に優れ、皮膜が比較的薄いものであるが、皮膜としての放射性に優れ、ヒートシンクとされたときに優れた放熱性を有したものとなる。

また、第2の発明に係るプレコートアルミニウム板材は、アルミニウム板材の結晶組織が、ファイバー状であることが好ましい。

このような構成によれば、成形加工を行った際に、表面の肌荒れが少ない成形体を製造することができる。

さらに、第2の発明に係るアルミニウム板材は、車載LED照明用ヒートシンクに用いられ、熱伝導率は、150W/m・K以上であり、結晶組織は、ファイバー状であることを特徴とする。

このような構成によれば、成形加工を行った際に、表面の荒れが少ない成
形体を製造することができ、アルミニウム板材の優れた放熱性が確保される。

第1の発明に係る車載LED照明用ヒートシンク(以下、適宜、ヒートシンクという)は、アルミニウム展伸材が成形されてなる形状から構成される車載LED照明用ヒートシンクであって、前記アルミニウム展伸材の熱伝導率は、150 W/m・K以上であり、前記成形体の加工部の表面の算術平均粗さR_aが、1.5 μm以下であることを特徴とする。

このような構成によれば、ヒートシンクは、加工部の表面の平滑性に優れたものであり、アルミニウム展伸材の熱伝導率が150 W/m・K以上であることによって、優れた放熱性が確保される。

また、第1の発明に係る車載LED照明用ヒートシンクを構成するアルミニウム展伸材の結晶組織が、ファイバー状であることが好ましい。

このような構成によれば、成形加工を行った際に、表面の荒れが少ない成形体を製造することができる。

また、第1の発明に係る車載LED照明用ヒートシンクの成形体の表面は、黑色の皮膜を備えており、前記皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であることが好ましい。

このような構成によれば、ヒートシンクの色調が黒色となり、ヒートシンクとしての放熱性がより優れたものとなる。

また、第1の発明に係る車載LED照明用ヒートシンクの成形体の表面の皮膜は、熱硬化性樹脂と、黒色顔料成分を含む樹脂系皮膜であることが好ましい。このような構成によれば、樹脂皮膜の耐久性が向上する。

第2の発明に係る車載LED照明用ヒートシンクは、アルミニウム展伸材が成形されてなるヒートシンク成形体と、前記ヒートシンク成形体の表面に形成された黒色の皮膜とを備える車載LED照明用ヒートシンクであって、前記アルミニウム展伸材の熱伝導率は、150 W/m・K以上であり、前記皮膜の膜厚は、5〜15μmであり、前記皮膜の表面の算術平均粗さR_aが0.5〜3μmであり、前記皮膜は、波長が3〜30μmの赤外線領域
における積分放射率が 25 °C において 0.80 以上であることを特徴とする。

0023 このような構成によれば、ヒートシンクは、アルミニウム展伸材の熱伝導率に優れ、皮膜が比較的薄いものであるが、皮膜としての放射性に優れ、ヒートシンクとして優れた放射性が確保される。

0024 また、第 2 の発明に係るヒートシンクの皮膜は、熱硬化性樹脂、黒色顔料成分と、骨材を含む樹脂系皮膜であり、前記皮膜の表面の算術平均粗さ R_a が、1～3 μm であることが好ましい。

0025 このような構成によれば、樹脂皮膜の耐久性が向上し、皮膜としての放射性はさらに優れたものとなる。

発明の効果

0025 本発明のアルミニウム板材およびプレコードアルミニウム板材は、成形加工性に優れており、加工部の表面が平滑で放熱性に優れた車載 LED 照明用ヒートシンクを得ることができる。また、第 2 の発明のプレコードアルミニウム板材は、放熱性に優れた車載 LED 照明用ヒートシンクを得ることができる。また、第 1 の発明の車載 LED 照明用ヒートシンクは、加工部の表面の平滑性に優れ、放熱性に優れている。また、第 2 の発明の車載 LED 照明用ヒートシンクは、放熱性に優れている。

図面の簡単な説明

0026 [図 1A] 本発明に係る車載 LED 照明用ヒートシンクの構成を模式的に示す断面図である。
[図 1B] 本発明に係るプレコードアルミニウム板材の構成を模式的に示す断面図である。

発明を実施するための形態

0027 以下、本発明の実施形態について図面を参照して説明する。尚、第 1 の発明または第 2 の発明と特に断らずに、本発明として説明している内容は、第 1 の発明と第 2 の発明に共通する内容である。

0028 《ヒートシンク》
図1Aに示すように、本発明に係るヒートシンク1は、車載LED照明100に用いられるものであり、アルミニウム展伸材が成形されてなるヒートシンク成形体2から構成されている。発明の実施状態によっては、ヒートシンク成形体2の表面に形成される皮膜3を備えている。そして、ヒートシンク1は、LED素子4から発生する熱を放散させるために用いられる。

以下、各構成について説明する。

[0029] < ヒートシンク成形体 >

ヒートシンク成形体2は、アルミニウム展伸材が成形されてなるアルミニウム製のものである。「アルミニウム展伸材」としたのは、展伸材に限定することとしで、現行のアルミダイキャストや押し出し材、樹脂製、鉄その他の金属製のものと差別化する趣旨である。アルミニウム展伸材のなかでも、生産性やプレコート処理性等に優れたアルミニウム板材が好ましい。以下、アルミニウム板材について説明する。

[0030] < アルミニウム板材の素材 >

本発明の車載LED照明用ヒートシンク1に用いられるアルミニウム板材は、アルミニウムまたはアルミニウム合金からなるものであり、本発明で用いられるアルミニウム板材（アルミニウム板材またはアルミニウム合金板材）としては、特に制限されるものではなく、製品形状や成形方法、使用時に求められる強度等に基づいて選択することができる。一般的には、プレス成形用のアルミニウム板材としては、非熱処理型のアルミニウム板、すなわち、1000系の工業用純アルミニウム板、3000系のAl-Mn系合金板、5000系のAl-Mg系合金板、もしくは熱処理型のアルミニウム板である。一部の6000系のAl-Mg-Si系合金板が使用される。しかしながら、ヒートシンク成形体2は、後記するように熱伝導率を150W/mK以上とするため、アルミニウム板材は、1000系、一部の3000系、一部の6000系にほぼ限定される。

[0031] 本発明の車載LED照明用ヒートシンク1に用いられるアルミニウム板材は、好ましくは1000系であり、特に好ましい組成は以下のものである。
(Si含有量の好ましい範囲 0.03〜1.00質量％)

Siは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Si含有量増加に伴いその効果が向上する。Si含有量が0.03質量％以上であればその効果がより十分となり、1.00質量％以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。

[0032]（Fe含有量の好ましい範囲 0.10〜0.80質量％）

Feは、母相内に固溶してアルミニウム合金板の強度を高める効果があり、Fe含有量増加に伴いその効果が向上する。Fe含有量が0.10質量％以上であればその効果がより十分となり、0.80質量％以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。

[0033]（Cu含有量の好ましい範囲 0.30質量％以下）

Cuは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Cu含有量増加に伴いその効果が向上する。Cu含有量が0.30質量％以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。

[0034]（Mn含有量の好ましい範囲 0.20質量％以下）

Mnは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mn含有量増加に伴いその効果が向上する。Mn含有量が0.20質量％以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。

[0035]（Mg含有量の好ましい範囲 0.20質量％以下）

Mgは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mg含有量増加に伴いその効果が向上する。Mg含有量が0.20質量％以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。

[0036]（Cr含有量の好ましい範囲 0.10質量％以下）

Crは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Cr含有量増加に伴いその効果が向上する。Cr含有量が0.10質量％以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。
%以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。

[0037]（Zn含有量の好ましい範囲0.20質量%以下）

Znは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Zn含有量増加に伴いその効果が向上する。Zn含有量が0.20質量%以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。

[0038]（Ti含有量の好ましい範囲0.10質量%以下）

Tiは、アルミニウム合金錆造組織を微細化、均質化（安定化）する効果があり、圧延用スラブの造塊時の錆造割れを防止する効果を有する。Ti含有量が0.10質量%を超えるとその効果が飽和する。また、0.10質量%以下であれば、熱伝導性が向上する。そのため、0.10質量%を超える量を含有することは不要である。

[0039]【熱伝導率】

ヒートシンク成形体2は、その用途がヒートシンク1であるため、放熱性が要求される。本発明における所望の放熱性を確保するためには、ヒートシンク成形体2を構成するアルミニウム板材の熱伝導率は、150W/m・K以上であることが必要である。好ましくは200W/m・K以上である。なお、上限値については特に規定されるものではないが、経済的な観点から好ましくは240W/m・K以下である。このような特性を有したアルミニウム合金としては、前記したような特定の品種や組成の合金を挙げることができる。

熱伝導率は、例えば、レーザーフラッシュ法によって測定することができる。

なお、ヒートシンク成形体2に用いるアルミニウム板材は、無処理でもよいし、プレコート材でもよいし、アフターコート材であってもよい。また成形体2に加工後に陽極酸化処理を行なってもよいが、経済的な観点からプレコート材が好ましい。
ビートシンク成形体2は、アルミニウム板材を成形加工することによって製造される。アルミニウム板材の成形加工の方法としては、曲げ加工、プレス加工、絞り加工、しきこ加工等があるが、板材をベースに車載ビートシンクを製作する場合、主たる加工法は曲げ加工となる。このような成形加工を施すことによって、当初のフラットな平面状のアルミニウム板材が立体制的に変形される。このとき、特に曲げ加工において変形された加工部の表面の肌が荒れて、凹凸が生じたり、亀裂が生じたりすることがある。そのような現象が生じると、局部的な板厚の減少が生じて、板材の断面積が減少し、熱伝導が妨げられて、放熱性が低下する。

また、後記する表面に皮膜を形成しているときは、皮膜が割れて、下地が露出し、外観上の商品性が低下する。

このような放熱性的低下を引き起こすような成形体の加工部の表面粗さについて検討したところ、放熱性の低下を抑制し、外観上も許容し得るレベルにするためには、加工部に発生した肌荒れの表面の算術平均粗さRaを、1.5μm以下にすることが必要であることが判明した。算術平均粗さRaは、好ましくは1.0μm以下であり、よろしもしくは0.8μm以下であり、さらに好ましくは0.7μm以下である。加工部の表面の算術平均粗さRaの下限は、実用上は0.3μm以上であればよい。

算術平均粗さRaの測定は、市販されている表面粗さ測定器を使用して測定する。例えば、サーフコーダーなどを使用することができる。

成形体の加工部から試験片を切り出し、表面粗さ測定器の探針を試験片に対し圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ（Rα）として測定される。

＜結晶組織＞
アルミニウム板材は、結晶組織がファイバー状であることが好ましい。「ファイバー状」とは、結晶組織の長軸方向と短軸方向のアスペクト比が10倍以上の伸長組織を有する状態をいう。アルミニウム板材の結晶組織がファ
イバー状であれば、上記の成形体の加工部の表面が平滑となり、加工部の表面の算術平均粗さが小さくなるため、好ましい。ファイバー状組織の中でも、結晶組織の短軸方向の長さが5〜50μmであるものが、加工部の肌荒れがより小さくなり、好ましい。粗大な粒状の結晶組織を有するアルミニウム板材は、通常、加工部の表面の算術平均粗さが大きくなり、好ましくない。

アルミニウム板材の結晶組織の判別は、顕微鏡によって行うことができる。顕微鏡で結晶組織を判別する場合、圧延によってアルミニウムが延ばされる方向（圧延方向）に平行となるアルミニウムの断面を観察する。次に、ファイバー状の組織を実現するための好ましい焼鈍条件について説明する。

ファイバー状の組織を実現し、良好な曲げ加工性を備えるための焼鈍条件は、130〜280℃、1〜10時間であることが好ましい。焼鈍温度が130℃未満では焼鈍するアルミコイル内で特性がばらつく。一方、焼鈍温度が280℃を超えると復・再結晶が進行し、耐力が下がり、かつ結晶粒が粗大化する。また、焼鈍時間が1時間未満では温度が低い場合と同様にアルミコイル内の特性がばらつく。一方、10時間を超えると工場生産性が低下する。

<皮膜>

本発明のヒートシンク成形体2を構成するアルミニウム板材は、その表面に皮膜3が形成されている。ヒートシンク成形体2の表面に皮膜3が形成されていることによって、ヒートシンク成形体2の耐久性を向上させることができる。ここで、表面とは、ヒートシンク成形体2の表面の少なくとも一面を意味し、いわゆる表面、裏面が含まれる。

皮膜3の種類としては、特に限定されないが、プレコート、アフターコート、陽極酸化等の樹脂系皮膜や無機系皮膜がある。

皮膜3は、熱硬化性樹脂であることが好ましい。熱硬化性樹脂は、例えば、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂から選ばれる2種類以上を含み、両方の樹脂が有する水
酸基、カルボキシル基、グリシジル基、アミノ基、イソシアネート基などが互いに化学結合する組み合わせとすることで得ることができる。このような組み合わせの樹脂同士を2種類以上含む場合、一方の樹脂と他方の樹脂が互いに主剤と硬化剤として熱硬化反応するため、熱硬化性樹脂となる。組み合わせによって熱硬化反応が十分進まない場合には、別にイソシアネート化合物などの硬化剤と組み合わせても良い。

これらの樹脂を単独でしか含まない場合（例えばポリエステル樹脂単独の場合）は、ヒートシング1の使用時に、皮膜3が溶融してしまう場合がある。この場合には、ヒートシング1とLED素子4との接着力が低下してしまうため、ヒートシング1の耐久性が低下することがある。しかし、樹脂が単独の場合であっても、別にイソシアネート化合物などの硬化剤と組み合わせることによって、十分な耐熱性と密着性を有した熱硬化性樹脂とすることができる。

[0047] 2種類以上の樹脂成分を組み合わせた皮膜の組み合わせの中でも、たとえば、アミノ硬化ポリエステル系樹脂、イソシアネート硬化ポリエステル系樹脂、メラミン硬化ポリエステル系樹脂、フエノール硬化エポキシ系樹脂、ウレア（尿素）硬化エポキシ系樹脂等を利用して耐熱性と密着性が向上するのではさらに好ましい。またアクリル変性エポキシ樹脂やウレタン変性ポリエステル樹脂等の変性樹脂も好適に使用できる。

[0048] 皮膜3は、黒色であることが好ましい。皮膜3の色調が黑色であると、放熱性が高くなり、ヒートシング1としての放熱性がより向上するからである。皮膜3を黒色とするためには、皮膜3を樹脂系皮膜とし、黒色顔料成分を含有させることが好ましい。黒色顔料成分の具体例としては、カーボンブラックやグラファイトなどの炭素系のもののが、鋼・マンガン・鉄などの金属酸化物系、などを挙げることができる。黒色顔料成分は、皮膜を形成する樹脂材料に対して3〜50質量%添加することが好ましい。皮膜3が無機系皮膜であるときは、黒色陽極酸化とすることが好ましい。

[0049] 第1の発明に係るプレコートアルミニウム板材においては、皮膜3の膜厚
は、15〜200μmであることが好ましい。膜厚が15〜200μm未満では、皮膜3のクッション性が低下する。一方、膜厚が200μmを超えると、塗膜の熱抵抗が大きくなりすぎるため、ヒートシンク1の放熱性が低下する。ただし、膜厚が50〜200μmの範囲では、クッション性や積分放射率の向上効果が飽和しているため、経済的な観点からは膜厚は、15〜50μmであることが好ましい。

皮膜3の膜厚の測定は、例えば、渦電流膜厚計イソスコーブ（ISSOCSOPPE:登録商標）によって測定することができる。

第2の発明に係るプレコートアルミニウム板材においては、皮膜3が形成されていることによって、伝熱の際の熱抵抗が大きくなることから、皮膜3の膜厚は比較的小さいことが好ましい。皮膜3の膜厚は、5μm未満であると良好な放射率を確保できない。一方、皮膜3の膜厚が15μmを超えても、もはや放射率は向上せず、逆に皮膜3の熱抵抗が大きくなる。よって、皮膜3の膜厚は、5〜15μmとする。皮膜3の膜厚は、より好ましくは、7〜12μmである。

[算術平均粗さ（Ra）]

第2の発明に係るプレコートアルミニウム板材においては、上記したように皮膜3の膜厚を薄めに設定することによって、放射率を維持しつつ、できるだけ熱抵抗を下げている。しかし、皮膜3の膜厚を薄くすると、一般に放射率が下がる。そこで、放射率の低下を補うため、後記するように、皮膜3の表面粗さを大きめに設定する。皮膜3の表面がある程度荒れていることによって、表面積が増大し、放射率を高めることができる。

皮膜3の表面の算術平均粗さRaが0.5μm未満であると、良好な放射率の確保が困難となる。一方、皮膜3の表面の算術平均粗さRaが3μmを超えると粗面になりすぎて、LED素子4との間に細かい空隙ができやすくなり、LED素子4とヒートシンク1との間の熱伝導が損なわれる。よって、皮膜3の表面の算術平均粗さRaは、1〜3μmとする。皮膜3の表面の算術平均粗さRaは、より好ましくは1〜3μmであり、さらに好ましくは1
第2の発明に係るプレコードルミニウム被覆においては、皮膜3の表面の算術平均粗さRaを調整する方法としては、皮膜を形成する前のアルミニウム被覆の表面研磨の方法・程度を変えたり、ショットブラストで荒らしたり、後記のように皮膜に骨材を添加したりして行うことができるが、皮膜に骨材を添加する方法が好ましい。

算術平均粗さ（Ra）の測定は、市販されている表面粗さ測定器を使用して測定する。例えば、サーフコーチなどを使用することができる。

表面粗さ測定器の採針を試験片に対し圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ（Ra）として測定される。

皮膜3は、熱硬化性樹脂であることが好ましい。熱硬化性樹脂としては、例えば、ポリエチレン樹脂、エポキシ樹脂、フエノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂から選ばれる2種類以上を含み、双方の樹脂が有する水酸基、カルボキシル基、グリシジル基、アミノ基、イソシアネート基などが互いに化学結合する組み合わせとすることで得ることができる。このような組み合わせの樹脂同士を2種類以上含む場合、一方の樹脂と他方の樹脂が互いに主剤と硬化剤として熱硬化反応するため、熱硬化性樹脂となる。組み合わせによって熱硬化反応が十分進まない場合には、別にイソシアネート化合物などの硬化剤と組み合わせても良い。

これらの樹脂を単独でしか含まない場合（例えばポリエチレン樹脂単独の場合）は、ヒートシンク1の使用時に、皮膜3が溶融してしまう場合がある。この場合には、ヒートシンク1とLED素子4との接着力が低下してしまうため、ヒートシンク1の耐久性が低下することがある。しかし、樹脂が単独の場合であっても、別にイソシアネート化合物などの硬化剤と組み合わせることによって、十分な耐熱性と密着性を有した熱硬化性樹脂とすることができる。

2種類以上の樹脂成分を組み合わせた皮膜の組み合わせの中でも、たとえば、アミノ硬化ポリエチレン系樹脂、イソシアネート硬化ポリエチレン系樹
月旨、メラミン硬化ポリエステル系樹脂、フェノール硬化エポキシ系樹脂、ウリア（尿素）硬化エポキシ系樹脂等を利用すると、耐熱性と密着性が向上するのでさらに好ましい。またアクリル変性エポキシ樹脂やウレタン変性ポリエステル樹脂等の変性樹脂も好適に使用できる。

黑色顔料成分は、前記したように、樹脂系皮膜を黒色にして、放射率を高めるために用いられる。黑色顔料成分の具体例としては、カーボンブラックやグラファイトなどの炭素系のものほか、銅・マンガン・鉄などの金属酸化物系、などを挙げることができる。黑色顔料成分は、皮膜を形成する樹脂材料に対して3〜50質量%程度添加される。

骨材は、皮膜3の表面の算術平均粗さRaを上記の所定の範囲に制御するために用いられる。骨材の具体例としては、架橋アクリルビーズ、架橋ウレタンビーズなどに代表される有機系骨材、ガラスビーズなどに代表される無機系骨材などを挙げることができる。骨材の平均粒子径は、3〜50μm程度のものが好ましく用いられる。骨材は、皮膜を形成する樹脂材料に対して、必要に応じて、3〜30質量%程度添加される。

[積分放射率]
本発明において、皮膜3は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上である。放射率は、物体表面からの赤外線放射能を黑体表面からの赤外線放射能で割った比例係数であり、特定の温度における特定波長の光に対して定義される。取り得る数値は0（白体）から1（黒体）の範囲であり、数字が大きいほど赤外線放射能が大きい。これはある範囲の波長領域で積分したのが積分放射率である。プランクの放射式によれば、本発明の実施温度領域である室温付近より具体的には0〜100℃の実用温度領域で発生しうる赤外線の波長は、波長領域が3〜30μmの範囲に集中している。言い換えると、この波長領域の範囲から外れる波長領域の赤外線は無視してよい。この様な理由により、本発明においては、25℃における3〜30μmの波長領域の赤外線に限定している。

皮膜3に対する、波長が3〜30μmにおける赤外線の積分放射率が25
℃において0.80未満であると、皮膜3の表面から赤外線として熱を放出する能力が低下し、製品を冷却する能力が不足する。よって、ヒートシンク1の放熱性が低下する。なお、前記した波長が3〜30μmの赤外線領域における積分放射率は0.85以上であることがより好ましく、0.90以上であることがさらに好ましい。また、上限値については特に規定されるものではないが、経済的な観点から好ましくは0.99以下である。波長が3〜30μmにおける赤外線の積分放射率は、皮膜の色、膜厚、表面状態、皮膜の種類等を組み合わせることによって制御することができる。

皮膜3に対する、波長が3〜30μmにおける赤外線の積分放射率は、市販されている簡易放射率計を使用して測定することができるほか、フーリエ変換赤外分光光度計（FTIR）などを用いて測定することが出来る。例えば、京都電子工業社製放射率系D&S AERD装置を用いて測定することができる。

[その他]

皮膜3には、本発明の所望する効果を奏する範囲で、少量の着色剤や、様々な機能を付与する添加剤を含有させることが出来る。例えば、成形性を更に向上させるため、例えば、ポリエチレンワックス、カルナバワックス、マイクロクリスタリンワックス、ラノリン、テフロン（登録商標）ワックス、シリコーン系ワックス、グラファイト系潤滑剤、モリブデン系潤滑剤等の潤滑剤を、1種または2種以上含有させることができる。また、電子機器等で要求されるアース確保を目的とした導電性を付与するための導電性微粒子として、例えば、ニッケル微粒子をはじめとする金属微粒子、金属酸化物微粒子、導電性カーボン、グラファイト等を、1種または2種以上含有させることができる。さらには、防汚性が要求される場合には、フッ素系化合物やシリコーン系化合物を含有させてもよい。それ以外に抗菌剤、防カビ剤、脱臭剤、酸化防止剤、紫外線吸収剤、防錆顔料、体質顔料などを、本発明の所望する効果を奏する限り、含有させることができる。

《アルミニウム板材》
本発明の車載 LED 照明用ヒートシンクに用いられるアルミニウム板材 20 は、熱伝導率が 150 W/m·K 以上であり、結晶組織がファイバー状である。熱伝導率およびファイバー状の結晶組織については、前記に説明したとおりである。

[0065] アルミニウム板材 20 の結晶組織がファイバー状であれば、曲げ加工時の肌荒れが小さくなる。ここで、アフターコート材の場合は、肌荒れしても板材の上から塗膜を覆いかぶせる様に塗装すればよいため、この様な限定は不要であるが、プレコート材の場合は、曲げ加工部の素材の肌荒れが大きいと塗膜に亀裂が入ってしまう場合がある。よって、アルミニウム板材 20 は、結晶組織がファイバー状であることが好ましい。

[0066] 《プレコートアルミニウム板材》

図 1B に示すように、第 1 の発明に係るプレコートアルミニウム板材 10 は、車載 LED 照明用ヒートシンクに用いられるものであり、アルミニウム板材 20 と、アルミニウム板材 20 の表面に形成される樹脂系皮膜 3A とを備えている。そして、アルミニウム板材 20 は、熱伝導率が 150 W/m·K 以上であり、アルミニウム板材 20 の結晶組織は、ファイバー状である。樹脂系皮膜 3A は、熱硬化性樹脂と黑色顔料成分を含み、樹脂系皮膜 3A は、波長が 3 〜 30 μm の赤外線領域における積分放射率が 25°C において 0.80 以上であることを特徴とするものである。

[0067] また、第 2 の発明に係るプレコートアルミニウム板材 10 は、車載 LED 照明用ヒートシンクに用いられるものであり、アルミニウム板材 20 と、アルミニウム板材 20 の表面に形成される樹脂系皮膜 3A とを備えている。そして、アルミニウム板材 20 は、熱伝導率が 150 W/m·K 以上であり、樹脂系皮膜 3A は、熱硬化性樹脂と黑色顔料成分と骨材を含み、樹脂系皮膜 3A の膜厚は、5 〜 15 μm であり、樹脂系皮膜 3A の表面の算術平均粗さ Ra が、1 〜 3 μm であり、樹脂系皮膜 3A は、波長が 3 〜 30 μm の赤外線領域における積分放射率が 25°C において 0.80 以上であることを特徴とするものである。
第2の発明に係るプレコートアルミニウム板材10を構成するアルミニウム板材20の結晶組織は、ファイバー状であることが好ましい。前記したように、アルミニウム板材20の結晶組織がファイバー状であれば、成形体を製造するために成形加工を行った際に、成形体の加工部の表面の肌荒れが小さくなり、プレコートされた皮膜に亀裂を生じさせることを防止することができる。

アルミニウム板材20の熱伝導率、ファイバー状の結晶組織、樹脂系皮膜3Aの成分、積分放射率については前記に説明したとおりである。

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で変更することができる。

例えば、アルミニウム板材20の表面に、下地処理により、下地処理皮膜（図示省略）を設けてもよい。

＜下地処理＞

アルミニウム板材20の表面は、樹脂系皮膜3Aとの密着性を高めるため、下地処理を施すことが好ましい。好ましい下地処理としては、Cr、ZrまたはTiを含有する従来公知の反応型下地処理皮膜および塗布型下地処理皮膜を利用してすることができる。即ち、リン酸クロメート皮膜、クロム酸クロメート皮膜、リン酸ジルコンニウム皮膜、酸化ジルコンニウム皮膜、リン酸チタン皮膜、塗布型クロメート皮膜、塗布型ジルコンニウム皮膜等を適宜使用することができる。これらの皮膜に有機成分を組み合わせた有機無機ハイブリッド型の下地処理皮膜でもよい。なお、近年、環境対応の流れから六価クロムを嫌う傾向があり、六価クロムを含まないリン酸クロメート皮膜や、リン酸ジルコンニウム皮膜、酸化ジルコンニウム皮膜、リン酸チタン皮膜、塗布型ジルコンニウム皮膜等を使用するのが好ましい。

なお、本発明では下地処理皮膜の膜厚として、下地処理皮膜成分中に含まれるCr、ZrまたはTiのアルミニウム板材20への付着量（金属Cr、金属Zrまたは金属Ti換算値）を、例えば、従来公知の蛍光X線法を用い
て、比較的、簡便かつ定量的に測定することができる。そのため、生産性を
阻害することなくプレコーテアルミニウム板材10の品質管理を行うことで
できる。なお、下地処理皮膜の付着量としては、金属Cr、金属Zrまたは金
属Ti換算値で10〜50 mg/㎡であることが好ましい。付着量が10m
g/㎡以上であれば、アルミニウム板材20の全面を均一に被覆することが
でき、耐食性が向上する。また、50 mg/㎡以下であれば、プレコーテアル
ミニウム板材10を成形した際に、下地処理の皮膜自体に割れが生じにく
くなる。

[0073] また、生産性を考慮しない場合には、アルミニウム板材20の表面に陽極
酸化処理や電解エッチング処理等の従来公知の処理を行うこともできる。こ
れらの処理を行うと、アルミニウム板材20の表面に微細な凹凸が形成され
るため、樹脂系皮膜3Aの密着性が大きく向上する。

[0074] さらに、耐食性をそれほど求めず簡易な方法で済ませたい場合には、アル
ミニウム板材20の表面を不動処理のみする手法でもかまわない。不動の手
法としては、有機系薬剤による脱脂、界面活性剤系薬剤による脱脂、アルカ
リ系薬剤での脱脂、酸系薬剤による脱脂等、従来公知の方法を用いることが
できる。ただし、有機系薬剤や界面活性剤系薬剤の場合には、脱脂能力がや
や劣るため、アルカリ系薬剤や酸系薬剤による脱脂の方が生産性はよくなる
。アルカリ系薬剤の脱脂能力は、使用するアルカリの主成分、濃度、処理温
度によってコントロールできるが、脱脂能力を強くした場合には、多くのス
マットが発生するため、その後の水洗を十分に行わないと、かえって樹脂系
皮膜3Aの密着性が低下する場合もある。また、アルミニウム板材20に、
添加元素としてマグネシウムを多く含む品種を使用する場合には、アルカリ
系薬剤では、マグネシウムが表面に残って樹脂系皮膜3Aの密着性が低下す
る場合がある。そのため、この場合には、酸系薬剤を使用または併用するこ
とが好ましい。

[0075] 《プレコーテアルミニウム板材の製造方法》

次に、プレコーテアルミニウム板材の製造方法の一例について、適宜、図
プレーデートアルミニウム板材10を参照して説明する。
　プレーデートアルミニウム板材10の製造方法については、特に制限されるものではなく、ベース樹脂の元となる樹脂および硬化剤を含む塗料を、従来公知の方法にてアルミニウム板の上に塗布した後、加熱により架橋反応させることによって得ることができる。なお、塗料を焼き付ける際の焼付温度は、150〜285℃程度とするのが好ましい。

ここで塗料の塗布は、はけ、ロールコーテ、カーテンフローコーテ、ローラーカーテンコーテ、静電塗装機、ブレードコーテ、ダイコーテ等、いずれの手段で行ってもよいが、特に、塗布量が均一となると共に、作業が簡単にロールコーテを使用するのが好ましい。ロールコーテで塗布する場合、樹脂系皮膜3Aの膜厚の制御は、アルミニウム板材20の搬送速度、ロールの回転方向と回転速度、ロール間の押し付け圧（ニップ圧）等を適宜調整することによって行うことができる。

プレーデートアルミニウム板材10を用いてヒートシンク1を製造する場合、プレーデートアルミニウム板材10を従来公知の方法により曲げ加工等の成形加工を行い、ヒートシンク1の形状とすればよい。実施例

次に、本発明について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例とを対比させて具体的に説明する。

本実施例では、熱伝導率と板厚および結晶組織の異なるアルミニウム合金板を折り曲げ加工して作成した模擬車載LED照明用ヒートシンクを製作し、放熱性能を確認するための「連続点灯試験」を実施した。

まず、第1の発明の実施例、比較例について説明する。

（試験N.o.1〜14）

表1に示す組成のアルミニウム合金を、溶解、鍛造して錠塊とし、この錠塊に面削を施した後に、480℃で均質化熱処理を施した。この均質化した錠塊に、熱間圧延、さらに冷間圧延、焼錬処理を施して、板厚1.0mmの圧延板とした。以下に説明するように、この圧延板の表面に塗膜を形成し、
供試材とした。具体的には以下のとおりである。
ここでNo. 7と8を除くファイバー組織状のものは、中間焼鍊後の冷間加工率を80%施した後、240℃で4トの仕上焼鍊を施したものであり、No. 7と8は中間焼鍊を行なわず冷間加工を施した後、360℃で4トの仕上焼鍊を施した。

[0081] [表1]

<table>
<thead>
<tr>
<th>熱伝導率 230W/m•K の合金</th>
<th>組成(質量%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Fe</td>
</tr>
<tr>
<td>0.10</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>熱伝導率 160W/m•K の合金</th>
<th>組成(質量%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Fe</td>
</tr>
<tr>
<td>0.25</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>熱伝導率 120W/m•K の合金</th>
<th>組成(質量%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Fe</td>
</tr>
<tr>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

[0082] まず、市販されている10WのLED照明ユニットを購入して解体し、ダイキャスト製ヒートシンクを取り出し、ベンチマーク用ヒートシンクとした。次に、このベンチマーク用ヒートシンクの形状を模擬し、アルミニウム合金板から製作した実施例および比較例となるヒートシンクを製作した。形状を模擬するに当たり、特に注意したのはLED素子取り付け部と、LED照明ユニットに組み立てなおす際に必要となる接合部の形状だけは忠実に再現することである。その理由は、解体する前の照明ユニットに組み込めない形状では実用性に欠けるためである。また生産性を考慮し、一枚の板から製作できる形状とした。

[0083] 実施例および比較例となるヒートシンクは、以下のようにして作成した。まず、各種板厚、熱伝導率および結晶組織を有するアルミニウム合金からなる圧延板の表面を、弱アルカリ脱脂後にリン酸クロメート処理を施した。次に、まず片側の面に、加熱後に実施例の表に記載された成分となる塗料を、狙いの厚みとなるようにバーレーターで塗布した。その後、架橋反応が促進
しない程度の100℃で60秒間仮乾燥を行った。次に、反対面に最初の面と同一成分の塗料を同一のバーコーターで塗布した。その後、焼付温度を素材到達温度230℃、炉中保持時間60秒にて加熱することによって、プレコートアルミニウム板を作製した。そして、このプレコートアルミニウム板は寸法30cm×30cmとし、これを折り曲げ加工して、上記ダイキャスト製のヒートシンクとほぼ同等の形状になるようにしたものを試験材のヒートシンクとして用いた（試験No.1-14）。LED素子の基板とヒートシンクとの取付付けに際しては、M3のボルト、ナットを用いて結合した。また、LED素子の基板とヒートシンクの接合面には、接触度合を高めるために、市販のシリコングリースを塗布した。

[0084] [熱伝導率]
アルミニウム板材の熱伝導率は、レーザーフラッシュ法によって測定した。

[0085] [結晶組織]
アルミニウム板材の結晶組織（ファイバー状、等軸）は、以下のようにして判定した。
ここで、等軸組織とは、長軸と短軸のアスペクト比が3倍以内のような組織のことを示している。5%のテトラフルオロホウ酸液中にて電解エッティングを行なったのち、偏光顕微鏡観察により得られた結晶組織画像から判定した。観察面は板の表面である。

[0086] [算術平均粗さRa]
表面の算術平均粗さ（Ra）の測定は、表面粗さ測定器（小坂研究所社製サーフコーダSE_30D）を使用して行った。探針を供試材に対し、圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ（Ra）を測定することにより行なった。

[0087] [皮膜の膜厚]
皮膜の膜厚は、渦電流膜厚計イソスコープ（ISO SCOPE：登録商標）を用いて測定した。
積分放射率

波長が3〜30μmの赤外線領域における積分放射率の放射率は、京都電子工業社製放射率系D&SARD装置を使用して25℃の温度条件下で測定した。なお、この簡易放射率計の測定波長領域は3〜30μmとなっていって、表示される値が本発明で定義している積分放射率となる。

波長が3〜30μmの赤外線領域における積分放射率が25℃の温度において0.80以上であるものを良好、0.80未満であるものを不良と判定した。

放熱性：連続点灯試験

車載LED照明は世界中の多様な環境での使用が想定されるが、実際に照明が用いられるのは夜間限られる。この様な条件では熱帯地方での夜間が一番過酷な放熱性を求められと考えられる。そこでこのような環境を想定し、35℃環境下にて連続点灯試験を行なった。

ベンチマーク、実施例および比較例の各ヒートシンクに、10WのLED素子を取り付けて発光させ、温度が定常状態に到達した際のLED素子直下のヒートシンク温度を測定した。この際ベンチマークと同等以下の温度であった場合を放熱性が良好（〇）、ベンチマークより高温に到達した場合を放熱性が不良（×）と判定した。

外観

加工部の外観は、目視で判定した。外観が平滑で良好なものを〇、外観が凹凸が多く不良なものを×とした。

軽量化

今回、ベンチマークとなるダイキャストヒートシンクを板化するにあたり、性能とは別に軽量化目標をベンチマークの50%とした。そこで試作した実施例または比較例のヒートシンクの重量がベンチマークの50%以下の場合は軽量である（〇）、50%を超える場合には特に軽量というものではないが使用に際しては問題ない（△）とした。

評価結果を表2に示す。なお、表2中における下線部は、第1の発明の要
件または効果を有していないことを示す。

[表2]

<table>
<thead>
<tr>
<th>試験No.</th>
<th>密材の熱伝導率 (W/mK)</th>
<th>塩基の厚さ (mm)</th>
<th>加工箇所の平均表面粗さ Ra (μm)</th>
<th>現象の部分</th>
<th>数量化</th>
<th>加工箇所の外観</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>2</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>2</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>230</td>
<td>2</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>3</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>3</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>230</td>
<td>3</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>160</td>
<td>4</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>230</td>
<td>4</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>5</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>5</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>230</td>
<td>5</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>160</td>
<td>6</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>230</td>
<td>6</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>160</td>
<td>6</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

詳細については以下に記載。
表２に示すように、試験Ｎｏ．２、３、５、６、９～１４は、第１の発明の構成を満たすため、良好な結果が得られた。一方、試験Ｎｏ．１、４、７、８は、第１の発明の構成を満たさないため、以下の結果となった。

試験Ｎｏ．１は、熱伝導率が下限値を満たすため、放熱性が劣った。

試験Ｎｏ．４は、熱伝導率が下限値を満たすため、放熱性が劣った。

試験Ｎｏ．７は、結晶組織が等軸であるため、加工部の外観および表面粗さに劣り、放熱性にも劣るものであった。

試験Ｎｏ．８は、結晶組織が等軸であるため、加工部の外観および表面粗さにおいて劣るものであった。

次に、第２の発明の実施例、比較例について説明する。多くの内容は、前記した第１の発明の実施例、比較例の説明と共通する。そのため、第１の発明の実施例、比較例と異なる部分についてのみ以下に説明する。

（試験Ｎｏ．１５～３９）

表１に示す組成のアルミニウム合金を、溶解、鍛造して錠塊とし、この錠塊に面削を施した後に、４８０℃で均質化熱処理を施した。この均質化した錠塊に、熱間圧延、さらに冷間圧延、焼純処理を施して、板厚１．０ｍｍの圧延板とした。冷間圧延での圧延率はⅻ％、焼純処理は２４０℃、４時間とした。但し、表３に示すＮｏ．３９の実施例だけは、焼純処理を３６０℃、４時間とした。この圧延板の表面に塗膜を形成し、供試材とした。その後の操作や評価手法は、第１の発明の場合と同様である。

第２の発明における、表面粗さの調整は、粒径の異なる骨材を添加量を調整しながら添加する方法にて実施した。骨材については架橋アクリルビーズを用いたが、他の樹脂や無機質のものでも良い。また、実施例および比較例のうち、陽極酸化処理したものについては、何も表面処理していないアルミニウム板をまず研磨あるいはショットブラストにて表面粗さ調整した後、所定の形状に折り曲げ加工した後、硫酸酸陽極酸化処理を施した。硫酸は１５％、電圧と電流密度、通電時間は所定の皮膜厚さが得られる条件に適宜設定した。特に黑色陽極酸化については黒色染料にて染色した後、封孔処理を行な
ついている。

第2の発明における放熱性：連続点灯試験において、評価方法は以下のように行った。

ベンチマーク、実施例および比較例の各ヒートシンクに、10WのLED素子を取り付けて発光させ、温度が定常状態に到達した際のLED素子直下のヒートシンク温度を測定した。この際ベンチマークの温度と同等以下の温度であった場合を放熱性が良好とし、ベンチマークの温度より高温に到達した場合を放熱性が不良（X）と判定した。放熱性が良好なものの中、ベンチマークの温度より1℃以上低下したものを〇とし、ベンチマークの温度より1℃未満で低下したものを△とした。そして第2の発明では放熱性が〇のものを実施例、△またはXのものは比較例に相当すると認定した。

また、第2の発明における外観の評価において、評価方法は以下のとおりである。

折り曲げ加工した加工部の外観について評価した。加工部の外観は、目視で判定した。外観が平滑で良好なものを〇、外観が凹凸が多いものを△とした。

第2の発明の実施例、比較例の内容とその評価結果を表3に示した。なお、表3中における下線部は、第2の発明の要件または効果を有していないことを示す。
表3に示すように、試験No. 16、17、19、20、24、28、30～34、39は、第2の発明の構成を満たすものであり、放熱性において良好性を示すものであった。但し、試験No.39は、板材の結晶組織が等軸状であり、加工部の外観において、ファイバー状の結晶組織の板材に

<table>
<thead>
<tr>
<th>試験No.</th>
<th>板厚(mm)</th>
<th>加工部の厚さ</th>
<th>加工部の面積</th>
<th>放熱性</th>
<th>里地の面積</th>
<th>里地の密度</th>
<th>里地の構成</th>
<th>里地の材質</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>200</td>
<td>15</td>
<td>15</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
比べて、やや劣っていた。一方、試験 N o. 1 5、1 8、2 1〜2 3、2 5〜2 7、2 9、3 5〜3 8は、第2の発明の構成を満たさないものであり、以下のような結果となった。

試験 N o. 1 5は、熱伝導率が下限値未満であるため、放熱性が劣っていた。

試験 N o. 1 8は、熱伝導率が下限値未満であるため、放熱性が劣っていた。

試験 N o. 2 1と2 3は、皮膜が白色であるため、皮膜の赤外線領域における積分放射率が0. 8 0未満となり、放熱性に劣るものであった。

試験 N o. 2 2と3 5は、皮膜の膜厚が1 5 μmを超えるものであり、放熱性にやや劣るものであった。

試験 N o. 2 5は、皮膜の表面の算術平均粗さが0. 5 斗m未満のものであり、放熱性にやや劣るものであった。

試験 N o. 2 6は、皮膜の表面の算術平均粗さが3 斗mを超えるものであり、放熱性にやや劣るものであった。

試験 N o. 2 7は、皮膜の赤外線領域における積分放射率が0. 8 0未満のものであり、放熱性に劣るものであった。

試験 N o. 2 9は、試験 N o. 2 6と同様に、皮膜の表面の算術平均粗さが3 斗mを超えるものであり、放熱性にやや劣るものであった。

試験 N o. 3 6は、皮膜の膜厚が1 5 μmを超えるものであり、放熱性に劣るものであった。

試験 N o. 3 7は、皮膜が無色であるため、皮膜の赤外線領域における積分放射率が0. 8 0未満となり、放熱性に劣るものであった。

試験 N o. 3 8は、皮膜が白色であるため、皮膜の赤外線領域における積分放射率が0. 8 0未満となり、また皮膜がポリエステル樹脂単独からなるものであり、皮膜の耐熱性に劣り、放熱性の試験中に皮膜が溶融してしまった。

なお、特許文献1〜4に記載の L E Dヒートシンクはいずれもフィンを有
する形状が必須もしくは推奨される発明となっており、これらの形状をアルミニウムで実現させるには、ダイキャスト法で行なうしかなく、本発明でのベンチマークヒートシンクに相当する。ダイキャスト法に使用される錠物用合金は基本的に熱伝導率が低く、軽量化も困難となるため、本発明を満足しない。またいずれのヒートシンクも本発明の特徴である表面については記載されていない。本実施例で示すように、この従来のアルミニウム板材は、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係るアルミニウム板材が従来のアルミニウム板材を比較して、優れていることが客観的に明らかとなった。

以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて変更・変更等をすることができることはいうまでもない。

産業上の利用可能性

本発明は、車載 LED 照明用ヒートシンクに有用である。

符号の説明

1 車載 LED 照明用ヒートシンク
2 ヒートシンク成形体
3 皮膜
3 A 樹脂系皮膜
4 L E D 素子
10 プレーコートアルミニウム板材
20 アルミニウム板材
車載LED照明
請求の範囲

[請求項1]
車載 L E D 照明用ヒートシンクに用いられ、アルミニウム板材と樹脂系皮膜を有するプレコードアルミニウム板材であって、
前記アルミニウム板材は、熱伝導率が 150 W/m·K 以上であり、
前記アルミニウム板材の結晶組織は、ファイバー状であり、
前記樹脂系皮膜は、熱硬化性樹脂と、黒色顔料成分を含み、
前記樹脂系皮膜は、波長が 3 ～ 3 0 μm の赤外線領域における積分放射率が 25℃において 0.80 以上であることを特徴とするプレコードアルミニウム板材。

[請求項2]
車載 L E D 照明用ヒートシンクに用いられ、アルミニウム板材と樹脂系皮膜を有するプレコードアルミニウム板材であって、
前記アルミニウム板材は、熱伝導率が 150 W/m·K 以上であり、
前記樹脂系皮膜は、熱硬化性樹脂と、黒色顔料成分を含み、
前記樹脂系皮膜の厚さは、5 ～ 15 μm であり、
前記樹脂系皮膜の表面の算術平均粗さ Ra が、1 ～ 3 μm であり、
前記樹脂系皮膜は、波長が 3 ～ 3 0 μm の赤外線領域における積分放射率が 25℃において 0.80 以上であることを特徴とするプレコードアルミニウム板材。

[請求項3]
前記アルミニウム板材の結晶組織は、ファイバー状であることを特徴とする請求項2に記載のプレコードアルミニウム板材。

[請求項4]
車載 L E D 照明用ヒートシンクに用いられるアルミニウム板材であって、
熱伝導率は、150 W/m·K 以上であり、
結晶組織は、ファイバー状であることを特徴とするアルミニウム板材。
[請求項5] アルミニウム展伸材が成形されてなる成形体から構成される車載LED照明用ヒートシンクであって、
前記アルミニウム展伸材の熱伝導率は、150W/m・K以上であり、
前記成形体の加工部の表面の算術平均粗さRaが、1.5 μm以下であることを特徴とする車載LED照明用ヒートシンク。

[請求項6] 前記アルミニウム展伸材の結晶組織は、ファイバー状であることを特徴とする請求項5に記載の車載LED照明用ヒートシンク。

[請求項7] 前記成形体の表面は、黒色の皮膜を備えており、
前記皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であることを特徴とする請求項5または請求項6に記載の車載LED照明用ヒートシンク。

[請求項8] 前記皮膜は、熱硬化性樹脂と、黒色顔料成分を含む樹脂系皮膜であることを特徴とする請求項7に記載の車載LED照明用ヒートシンク。

[請求項9] アルミニウム展伸材が成形されてなるヒートシンク成形体と、前記ヒートシンク成形体の表面に形成された黒色の皮膜と、を備える車載LED照明用ヒートシンクであって、
前記アルミニウム展伸材の熱伝導率は、150W/m・K以上であり、
前記皮膜の膜厚は、5〜15μmであり、
前記皮膜の表面の算術平均粗さRaが、0.5〜3μmであり、
前記皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であることを特徴とする車載LED照明用ヒートシンク。

[請求項10] 前記皮膜は、熱硬化性樹脂と、黒色顔料成分と、骨材を含む樹脂系皮膜であり、
前記皮膜の表面の算術平均粗さRaが、1〜3μmであることを特
徴とする請求項9に記載の車載LED照明用ヒートシンク。
INTERNATIONAL SEARCH REPORT

International application No.

PCT / JP2 0 1 4 / 0 5 9 0 4 1

A. CLASSIFICATION OF SUBJECT MATTER

F21V 2 9 / 0 0 , F21S 8 / 1 0 , F21Y 101 / 0 2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F21V 2 9 / 0 0 , F21S 8 / 1 0 , F21Y 101 / 0 2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Kokai Jitsuyo Shinan Koho 1971-2014
Toroku Jitsuyo Shinan Koho 1994-2014

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

D Further documents are listed in the continuation of Box C. See patent family annex.

E Special categories of cited documents:

* Document defining the general state of the art which is not considered to be of particular relevance

"A" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"Y" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Q" document member of the same patent family

Date of the actual completion of the international search

24 June , 2014 (24.06.14)

Date of mailing of the international search report

01 July , 2014 (01.07.14)

Name and mailing address of the ISA/ Japane se Patent Off ice

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
A. 発明の属する分野の分類 (国際特許分類 (I P C))

Int.Cl. F2 1V29/00, F2 1S8/10, F21Y101/02

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (I P C))

Int.Cl. F2 1V29/00, F2 1S8/10, F21Y101/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1
日本国公開実用新案公報 1971-2
日本国登録新案公報 1996-1
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 4年

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-293973 A (株式会社 事業創造研究所) 2005.10.20, 段落 [0 0 7 3] - [0 0 7 4] (ファミリー なし)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

** 特に関連する文献ではなく、一般的な技術水準を示すもの

*** 国際出願 日前に出願または特許であるが、国際出願日後に公表されたもの

† 優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を認めることに用いる文献 (理由を付す）

口頭による開示、使用、展示等に言及する文献

†† 国際出願 日前に、かつ優先権の主張の基礎となる出願の日の後に公表された文献

†‡ 国際出願 日は優先日後に公表された文献あって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

†§ 特に関連する文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるものの

†∥ 特に関連する文献であって、当該文献と他の †§ 以上の文献との、当業者にとって自明である組合せによつて進歩性がないと考えられるもの

§ 同一パテントファミリー文献

国際調査を完了した 日 24.06.2014
国際調査報告の発送 日 01.07.2014

国際調査機関の名称及び住所

日本国特許庁（ISA／JP）
郵便番号 100-8915
東京都渋谷区道明寺台4丁目4番3号

特許庁審査官（権限のある職員）
栗山 卓也
電話番号 03.3581-1101 内線 3371

様式 PCT／ISA／210（第2ページ）（2009年7月）