(51) International Patent Classification:
A61K 9/00 (2006.01) A61K 31/785 (2006.01)

(21) International Application Number:
PCT/US2018/046494

(22) International Filing Date:
13 August 2018 (13.08.2018)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:

(71) Applicant: PROGENITY INC. [US/US]; 4330 La Jolla Village Drive, Suite 200, San Diego, California 92122 (US).

(72) Inventors: JONES, Mitchell Lawrence; 520 Sea Lane, La Jolla, California 92037 (US). SINGH, Sharat; 8171 Top of the Morning Way, Rancho Santa Fe, California 92067 (US). WAHL, Christopher Loren; 3145 6th Avenue #600, San Diego, California 92103 (US). STYLLI, Harry; 9046 La Jolla Shores Lane, La Jolla, California 92037 (US).

(54) Title: TREATMENT OF A DISEASE OF THE GASTROINTESTINAL TRACT WITH GLATIRAMER OR A PHARMACEUTICALLY ACCEPTABLE SALT THEREOF

FIG. 2

(57) Abstract: This disclosure features methods and compositions for treating diseases of the gastrointestinal tract with glatiramer or a pharmaceutically acceptable salt thereof, such as glatiramer acetate).
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))
TREATMENT OF A DISEASE OF THE GASTROINTESTINAL TRACT WITH GLATIRAMER OR A PHARMACEUTICALLY ACCEPTABLE SALT THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Serial Numbers 62/545,330 filed on August 14, 2017, 62/583,898 filed on November 9, 2017, 62/598,972 filed on December 14, 2017, and 62/650,883 filed on March 30, 2018, the contents of each of which are hereby incorporated by reference in their entirety into this application.

TECHNICAL FIELD

This disclosure features methods and compositions for treating diseases of the gastrointestinal tract with glatiramer or a pharmaceutically acceptable salt thereof, for example, glatiramer acetate.

BACKGROUND

The gastrointestinal (GI) tract generally provides a therapeutic medium for an individual's body. At times, therapeutic drugs may need to be dispensed to specified locations within the small intestine or large intestine, which is more effective than oral administration of the therapeutic drugs to cure or alleviate the symptoms of some medical conditions. For example, therapeutic drugs dispensed directly within the small intestine would not be contaminated, digested or otherwise compromised in the stomach, and thus allow a higher dose to be delivered at a specific location within the small intestine. However, dispensing therapeutic drugs directly within the small intestine inside a human body (e.g., the cecum, the ascending colon) can be difficult, because a device or mechanism (e.g., special formulation) would be needed to transport a therapeutically effective dose of drug to a desired location within the small intestine and then automatically deliver the therapeutic drug at the desired location. Dispensing therapeutic drugs directly within other locations in the GI tract of the human body can be similarly difficult. Such a device or mechanism also would need to be operated in a safe manner, in that the device or mechanism needs to physically enter the human body.

One means of accessing the therapeutic medium of the GI tract is via oral administration; however, the convenience of oral delivery is countered by well-established
challenges. For instance, traditional oral delivery of a drug may lend itself to systemic exposure associated with undesirable or potentially harmful side effects. Another challenge associated with oral administration relates to potential instability of the drug upon exposure to the harsh chemical and/or enzymatic degradation conditions of the GI tract.

Yet at times, therapeutic drugs may need to be dispensed to specified locations within the small intestine or large intestine, which is more effective than traditional oral administration of the therapeutic drugs to cure or alleviate the symptoms of some medical conditions. For example, therapeutic drugs dispensed directly within the small intestine would not be contaminated, digested or otherwise compromised in the stomach, and thus allow a higher dose to be delivered at a specific location within the small intestine.

An effective way to provide topical/local delivery to the GI tract (and/or to a particular portion or section of the GI tract) of a therapeutic drug to treat the diseased tissue in the GI tract would be desirable, given the following advantages over systemic administration:
- Reduced systemic exposure;
- Increased bioavailability at disease site;
- Potential to reduce the therapeutic dose relative to that required when delivered systemically;
- Supply drug to the biophase only when required;
- Maintain drug in intact form as close as possible to the target site; and
- Provide high residence time of the drug in an environment with low digestive enzymatic activity, particularly for delivery to the colon. [Van den Mooter & Kinget, Drug Delivery, 2, pp. 81-93 (1995).

In practice, however, there are several challenges to such an approach. To begin with, identifying a "go / no-go" trigger for delivery to a specific site is generally difficult (e.g., see Rubenstein A., "Approaches and Opportunities in Colon-Specific Drug Delivery," Critical Reviews in Therapeutic Drug Carrier Systems, 12(2&3), pp. 101-149 (1995), at p. 106: 'A successful delivery of a drug molecule to the colon means that most of it has been transported intact through the stomach and the small intestine. Practically, one cannot find a physiologic feature that may serve as a "go no-go" trigger for delivery of colonic-specific drugs. '). For example, dispensing therapeutic drugs directly within the small intestine inside a human body (e.g., the cecum, the ascending colon) can be difficult, because a device or mechanism or a particular formulation would be needed to transport a therapeutically effective dose of drug to a desired location within the small intestine and then automatically deliver the therapeutic drug...
at the desired location. Such a device or mechanism also would need to be operated in a safe manner in that the device or mechanism needs to physically enter the human body. Dispensing therapeutic drugs directly within other locations in the GI tract of the human body can be similarly difficult. For diseased tissue in the colon an added challenge lies in the difficulty in reaching the site of disease due to its location.

Methods typically employed to deliver drugs locally all have their own drawbacks. For example, the usefulness of formulations relying on pH-mediated release (including but not limited to enteric coated formulations) may be limited by the high inter- and intra-patient variability of pH and microflora. The utility may be further limited in patient populations having highly variable motility (e.g., patients with ulcerative colitis), contributing to unpredictable transit times (times for transitioning from one portion of the GI tract to an adjacent portion). For example, budesonide formulated using Multi Matrix (MMX®) colonic delivery technology (budesonide MMX®) is a once-daily oral tablet designed for controlled release of budesonide throughout the colon for the treatment of ulcerative colitis. The tablet relies on pH-mediated release. When ¹⁵⁵Sm-labelled budesonide MMX® tablets were administered to 12 healthy subjects and evaluated for initial tablet disintegration (ITD) within the GI tract via pharmaco-scintigraphy, high variability in the location and time of ITD were observed, ranging from release in the ileum or small intestine/ileum after 6 to 12 hours (4 subjects) to release in the sigmoid colon after greater than 24 h (1 subject) [Brunner M. et al., "Gastrointestinal transit, release and plasma pharmacokinetics of a new oral budesonide formulation," Br. J. Clin. Pharmacol. (2006) 61(1), pp. 31-38]. Moreover, pH is dysregulated in ulcerative colitis patients, making MMX technology and other pH-dependent drug delivery technologies less predictable. Not only are release and emulsification of drug unpredictable, but such technologies also have poor compatibility with some preferred formulation systems, including emulsifying systems. Rectal delivery forms (suppositories and enemas) have varying effectiveness since here too high variability has been observed in the distribution of these forms. Suppositories are only effective in the rectum because of their confined spread, and enemas may offer effective topical treatment only to the sigmoid colon and descending colon [Van den Mooter et al., "Oral colon-specific drug delivery: a review," Drug Delivery (1995) 2(2), pp. 81-93].

Additional proposed solutions to colonic delivery, and some associated disadvantages, are described in Van den Mooter et al., Drug Delivery (1995). For example, attempts have been made to modify the release profile of drugs using pH-sensitive polymers or bacterial-
degradable polymers as coatings. The use of pH-sensitive polymers, however, is characterized by the "unsteadiness" of the site where the polymer disintegration commences - so that polymer dissolution can be completed at the end of the ileum or deep in the colon, depending on the intensity of GI motility. Colonic pH reduction (e.g., to as low as about pH 6, due to the presence of short-chain fatty acids, bile acid residues, CO2 or other fermentation products) can reduce the reliability of triggering drug release based on the colon pH. An additional disadvantage is the difficulty to formulate certain drugs in enteric coated delivery capsules. As for bacterial-degradable polymers, they suffer from variability in absorption rates, which may be attributed to intra- and inter-subject differences in microbial degradation of the coating. The same drawbacks apply to delivery of drugs through bacterial-degradable matrices.

Another approach involves the preparation of prodrugs of the therapeutic agent. This approach relies on selective cleavage of the prodrug to release the active form in the colon as a result of metabolic activity of the gut microflora. This approach also relies on factors, such as the enzymatic activity in GI tract, that may be highly variable between and within subjects.

The use of non-autonomous devices and/or procedures could be seen as offering a potential solution to the foregoing problems, but in practice this approach too faces several challenges, such as:

- Focal CT, scintigraphy, and magnetic marker monitoring used to identify the anatomical location of the device each require external equipment and/or clinician monitoring.

- Capsule-based devices that require external triggering (there is no autonomous system in current practice) are not practical from a clinical/commercial point of view.

- Devices relying on the pH in the GI tract or a portion thereof suffer from the drawbacks discussed above, including poor accuracy and high variability, compounded in certain disease populations.

- Devices that rely on electrical or chemical principles or on pressure difference may be of conceptual interest but are mainly at the research stage at this time.

- Capsule endoscopy requires an expert read and is characterized by its high complexity and cost. According to *Journal of Micro-Bio Robotics* 11.1-4 (2016): 1-18, endoscopic capsules with enhanced diagnostic capabilities are available as a result of progress in micro-electromechanical systems (MEMS). Endoscopic capsules, however, do not have the capability of accurately locating a disease site for...
autonomously. They require doctor oversight over a period of hours in order to manually determine the location.

- The use of catheters, for example coupled to an endoscopic device, to place drug at or near the site of disease is highly invasive, requiring patients to be sedated, and regular dosing (e.g., daily, weekly) via spray catheter is not practical. Spray catheters also cannot readily access certain sections of the GI tract such as the ascending colon, cecum and all portions of the small intestine.

In sum, there remains a significant unmet medical need for improved treatment regimens for gastrointestinal diseases, such as inflammatory bowel disease (IBD), including a need for regimens which can dispense therapeutics to specific locations within the GI tract, thereby reducing or avoiding the drawbacks of oral or other forms of systemic administration.

SUMMARY

The present disclosure provides devices and methods for the topical administration of glatiramer or a pharmaceutically acceptable salt thereof to the GI tract, and more particularly, to a section or subsection of the GI tract at or proximate to one or more disease sites.

The present disclosure provides one or more advantages:

• autonomous topical delivery of glatiramer or a pharmaceutically acceptable salt thereof to specific locations in the GI tract using a self-localizing device that does not require external triggering to release the drug;

• localization based on anatomy, not variable physiological conditions (not pH- or bacteria-dependent);

• reduced systemic absorption/exposure;

• possibility to deliver a higher local dose;

• possibility to employ novel combinations of active agents that otherwise may have a dangerous side effect profile if administered in combination;

• flexible dosing schedules, e.g., single (e.g., bolus) dosing, multiple dosing, continuous dosing; optimized local pharmacokinetic profiles at the site of disease through regular dosing;

• stability of the drug independent of the GI environment, since the drug remains in the device or in a reservoir until its site-specific release is triggered;

• patient convenience.
The present disclosure provides novel treatment paradigms for inflammatory conditions of the gastrointestinal tract. The methods and compositions described herein allow for the regio-specific release of therapeutic drugs at or near the site of disease in the gastrointestinal tract. By releasing a therapeutic drug locally instead of systemically, the bioavailability of the drug can be increased at the site of injury and/or decreased in the systemic circulation, thereby resulting in improved overall safety and/or efficacy and fewer adverse side effects. Advantages may include one or more of increased drug engagement at the target, leading to new and more efficacious treatment regimens, and/or lower systemic drug levels, which can translate to reduced toxicity and reduced immunogenicity, e.g., in the case of biologies. In some instances, releasing a therapeutic drug locally also provides for new modes of action that may be unique to local delivery in the GI tract as opposed to systemic administration. For patients, clinicians and payors, this can mean an easier or simpler route of administration, fewer co-medicaments (e.g., immunomodulators), fewer side effects, and/or better outcomes.

For example, a patient may present to a physician with one or more symptoms of a disorder of the GI tract (e.g., inflammatory bowel disease), and the physician can determine the specific discrete location(s) of diseased tissue (e.g., inflamed tissue or a lesion) in the patient's GI tract, and then use any of the devices described herein to administer a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to, proximal to, or directly onto the specific discrete location(s) of diseased tissue in the patient.

In other examples, a patient may present to a physician with one or more symptoms of a disorder of the GI tract (e.g., inflammatory bowel disease) and the physician can use any of the devices provided herein to identify the specific discrete location(s) of diseased tissue (e.g., inflamed tissue or a lesion) in the patient's GI tract, and then use the same device or a different device (e.g., any of the devices described herein) to administer a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to, proximal to, or directly onto the specific discrete location(s) of diseased tissue in the patient.

In some embodiments, these methods are performed periodically on a patient at periodic intervals, e.g., approximately twice a month, approximately once a month, approximately every two months, approximately every three months, approximately every four months, approximately every five months, or approximately every six months. In some
examples, these methods can provide for increased efficacy of treatment (e.g., reduced negative side effects and/or increased reduction in the severity, frequency, or number of symptoms) as compared to a patient that is administered an oral dosage form of the same glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the dosage of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered using any of the devices described herein can differ between the different clinical visits. In some embodiments, the dosage administered can differ between different clinical visits based on an observation or measurement of the severity of disease at the specific discrete location(s) of diseased tissue (e.g., inflamed tissue or a lesion) in the patient's GI tract at the time of each clinical visit. In some embodiments, the dosage administered can differ between different clinical visits based on one or more observations or measurements of systemic disease markers (e.g., inflammatory markers in the blood) or markers in stool (e.g., calprotectin and lactoferrin). In some examples, over time, new specific discrete location(s) of diseased tissue may be detected or observed in the patient, and any of the devices described herein can be used to administer a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) onto or proximal to the new specific discrete location(s) of diseased tissue in the patient's GI tract.

In some examples, the identification of the specific discrete location(s) of diseased tissue (e.g., inflamed tissue or a lesion) in the patient's GI tract and the administration of a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein can be performed in a single clinical visit.

In some examples, the diagnosis of a disorder of the GI tract (e.g., irritable bowel syndrome), the identification of the specific discrete location(s) of diseased tissue (e.g., inflamed tissue or a lesion) in the patient's GI tract, and the administration of a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to, proximal to or directly onto the specific discrete location(s) of diseased tissue in the patient using any of the devices described herein can be performed in a single clinical visit.

Accordingly, described herein are methods for treating disorders of the gastrointestinal (GI) tract. The methods can include one or more of:

- diagnosing a GI disease in a subject; and/or
mapping, sampling, and/or assessing the site, severity, pathology, and extent of a GI disease in the GI tract of a subject and/or mapping, sampling, and/or assessing a patient response to a therapeutic agent, e.g., in the patient's GI tract; and/or

- identifying, quantifying, and/or monitoring one or more markers of a GI disease in the GI tract of the subject and/or one or more markers of patient response to a therapeutic agent, e.g., in the patient's GI tract; and/or

- releasing a therapeutic agent, e.g., proximate to the site of a GI disease.

In some embodiments, the present disclosure provides patients and physicians more personalized treatment options for GI disorders by facilitating regimens which can release a therapeutic agent according to desired (e.g., customized or optimized) dosage, timing, and/or location parameters. In some cases, the treatment methods can employ one or more ingestible devices to achieve the benefits disclosed herein.

In some embodiments, provided herein is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

administering to the subject a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

wherein the pharmaceutical formulation is released at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In some embodiments, provided herein the pharmaceutical formulation is administered in an ingestible device. In some embodiments, the pharmaceutical formulation is released from an ingestible device. In some embodiments, the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device,

wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing.

In some embodiments, provided herein is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device,

wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing;
wherein the pharmaceutical formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and

the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In some embodiments, the housing is non-biodegradable in the GI tract. In some embodiments, the release of the formulation is triggered autonomously. In some embodiments, the device is programmed to release the formulation with one or more release profiles that may be the same or different at one or more locations. In some embodiments, the device is programmed to release the formulation at a location proximate to one or more sites of disease. In some embodiments, the location of one or more sites of disease is predetermined.

In some embodiments, the reservoir is made of a material that allows the formulation to leave the reservoir, such as a biodegradable material.

In some embodiments, the release of the formulation is triggered by a pre-programmed algorithm. In some embodiments, the release of the formulation is triggered by data from a sensor or detector to identify the location of the device. In some more particular embodiments, the data is not based solely on a physiological parameter (such as pH, temperature, and/or transit time).

In some embodiments, the device comprises a detector configured to detect light reflectance from an environment external to the housing. In some more particular embodiments, the release is triggered autonomously or based on the detected reflectance.

In some embodiments, the device releases the formulation at substantially the same time as one or more sites of disease are detected. In some embodiments, the one or more sites of disease are detected by the device (e.g., by imaging the GI tract).

In some embodiments, the release mechanism is an actuation system. In some embodiments, the release mechanism is a chemical actuation system. In some embodiments, the release mechanism is a mechanical actuation system. In some embodiments, the release mechanism is an electrical actuation system. In some embodiments, the actuation system comprises a pump and releasing the formulation comprises pumping the formulation out of the reservoir. In some embodiments, the actuation system comprises a gas generating cell. In some embodiments, the device further comprises an anchoring mechanism. In some embodiments, the formulation comprises a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some

SUBSTITUTE SHEET (RULE 26)
embodiments, the formulation comprises a human equivalent dose (HED) of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the device is a device capable of releasing a solid formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the device is a device capable of releasing a liquid formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). Accordingly, in some embodiments of the methods herein, the pharmaceutical formulation release from the device is a solid formulation. Accordingly, in some embodiments of the methods herein, the pharmaceutical formulation release from the device is a liquid formulation.

The devices disclosed herein are capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) irrespective of the particular type of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, provided herein is a method of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:

administering to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) housed in an ingestible device, wherein the ingestible device comprises

a detector configured to detect the presence of the one or more sites of disease, and

a controller or processor configured to trigger the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to the one or more sites of disease in response to the detector detecting the presence of the one or more sites of disease.

In some embodiments, provided herein is a method of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) into the gastrointestinal tract of a subject for treating one or more pre-determined sites of disease within the gastrointestinal tract, the method comprising:
administering to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) contained in an ingestible device, wherein the ingestible device comprises
a detector configured to detect the location of the device within the gastrointestinal
tract, and
a controller or processor configured to trigger the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to the one or more predetermined sites of disease in response to the detector detecting a location of the device that corresponds to the location of the one or more pre-determined sites of disease.

In some embodiments, provided herein is a method of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:
administering to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) contained in an ingestible device;
receiving at an external receiver from the device a signal transmitting environmental data;
assessing the environmental data to confirm the presence of the one or more sites of disease; and
when the presence of the one or more sites of disease is confirmed, sending from an external transmitter to the device a signal triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to the one or more sites of disease.

In some embodiments, provided herein is a method of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:
administering to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) contained in an ingestible device;
receiving at an external receiver from the device a signal transmitting environmental or optical data;
assessing the environmental or optical data to confirm the location of the device within the gastrointestinal tract; and

when the location of the device is confirmed, sending from an external transmitter to the device a signal triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximate to the one or more sites of disease.

Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject,

wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Provided herein in one embodiment is a method of treating a disease of the large intestine in a subject, comprising:

delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the proximal portion of the large intestine of the subject,

wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,
wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

Provided herein in one embodiment is a method of treating a disease of the gastrointestinal tract in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 μg/mL.

Provided herein in one embodiment is a method of treating a disease of the large intestine in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease,

wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In another aspect of the present invention, there is provided glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In another aspect, the present invention provides a composition comprising or consisting of an ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), for use in a
method of treatment, wherein the method comprises orally administering the composition to the subject, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In another aspect, the present invention provides an ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the device is controllable to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease. The device may be for use in a method of treatment of the human or animal body, for example, any method as described herein.

In still another aspect, the present invention provides an ingestible device for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject the ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

An ingestible device as used in the present invention may comprise one or more mechanical and/or electrical mechanisms which actively control release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). For example, in any of the above aspects and embodiments, the ingestible device as used in the present invention may comprise a release mechanism for release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) (e.g., from a reservoir comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate)) and an actuator controlling the release mechanism.

In one embodiment, the ingestible device comprises:

- an ingestible housing comprising a reservoir having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;
- a release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.
acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device; and
an actuator which changes the state of the release mechanism from the closed to the open state.

In one embodiment, the ingestible device comprises:
a housing defined by a first end, a second end substantially opposite from the first end;
a reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) wherein a first end of the reservoir is attached to the first end of the housing;
a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir; and
an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to be released out of the housing from the reservoir.

Here, the exit valve can be considered as the release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device, and the mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir can be considered as the actuator.

In some embodiments of methods of treatment as described herein, the one or more disease sites may have been pre-determined (e.g., determined in a step preceding the administration of the composition of the present invention). The disease site(s) may have been determined by imaging the gastrointestinal tract. For example, the disease site(s) may have been pre-determined by endoscopy (e.g., a step of colonoscopy, enteroscopy, or using a capsule endoscope). Determination that the device is proximate to the disease site may therefore comprise a determining that the device is in a location corresponding to this previously-determined disease site.

In some embodiments, the location of the device in the gut may be detected by tracking the device. For example, the device may comprise a localization mechanism which may be a communication system for transmitting localization data, e.g., by radiofrequency transmission. The device may additionally or alternatively comprise a communication system
for receiving a signal remotely triggering the actuator and thus causing release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). The signal may be sent when it is determined that the device is in the correct location in the gut.

Thus, the ingestible device may comprise:

an ingestible housing comprising a reservoir having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device;

a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; and

an actuator which changes the state of the release mechanism from the closed to the open state and which can be triggered by the signal.

In other embodiments, the ingestible device as used in the present invention may comprise an environmental sensor for detecting the location of the device in the gut and/or for detecting the presence of disease in the GI tract. For example, the environment sensor may be an image sensor for obtaining images in vivo.

Detecting the presence of disease may comprise, for example, detecting the presence of inflamed tissue, and/or lesions such as ulceration e.g., aphthoid ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.

Detecting the presence of disease may also comprise molecular sensing, such as detecting the amount of an inflammatory cytokine or other marker of inflammation. Such a marker can be measured locally from a biopsy or systemically in the serum.

Where the ingestible device comprises an environmental sensor, actuation of the release mechanism may be triggered by a processor or controller communicably coupled to the environmental sensor. Thus, in some embodiments, the device may not require any external signal or control in order to release the drug.

In one embodiment, the ingestible device may comprise:
an ingestible housing comprising a reservoir having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device;

an actuator which controls the transition of the release mechanism from the closed to the open state;

a detector for detecting the location of the device in the gut and/or the presence of diseased tissue; and

a processor or controller which is coupled to the detector and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of diseased tissue and/or in a location in the gut that has been predetermined to be proximal to diseased tissue.

In another embodiment, there is provided:

an ingestible housing comprising a reservoir having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease;

a valve system in fluid communication with the reservoir system; and

a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective disease site so as to release the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the respective disease site.

As above, detection that the ingestible housing is proximate to the respective disease site may be based on environmental data indicating the location of the device in the GI tract (and reference to a pre-determined disease site) or on environmental data directly indicating the presence of diseased tissue.
Additionally or alternatively, the device may further comprise a communication system adapted to transmit the environment data to an external receiver (e.g., outside of the body). This data may be used, for example, for diagnostic purposes. The external receiver may comprise means for displaying the data.

In some embodiments, this data may be analyzed externally to the device and used to determine when the drug should be released: an external signal may then be sent to the device to trigger release of the drug. Thus, the communication system may further be adapted to receive a signal remotely triggering the actuator and thus causing release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). The signal may be sent from an external transmitter in response to receipt/analysis and/or assessment of the environmental data, e.g., data indicating that the device has reached the desired location of the gut (where the location of the diseased tissue has been pre-determined) and/or data indicating the presence of diseased tissue. "External" may be "outside of the body".

Thus, in another embodiment, the ingestible device may comprise:

an ingestible housing comprising a reservoir having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device;

an environmental detector for detecting environmental data indicating the location of the device in the gut and/or the presence of diseased tissue;

a communication system for transmitting the environmental data to an external receiver and for receiving a signal from an external transmitter; and

an actuator which controls the transition of the release mechanism from the closed to the open state in response to the signal.

It will be understood from the above that when the device comprises one or more environmental detectors, e.g., comprises an image detector, the compositions may be used both for disease detection and for disease treatment.

Accordingly, in a further embodiment, there is provided glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject, wherein the
method comprises orally administering to the subject an ingestible device loaded with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the ingestible device comprises an environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor. The device may be according to any of the embodiments described herein.

In another embodiment, there is provided a composition for use in a method of detecting and treating a disease of the gastrointestinal tract in a subject, wherein the composition comprises or consists of an ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the ingestible device comprises an environmental sensor for determining the presence of diseased tissue in the GI tract, and wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, as detected by the environmental sensor. Again, the device may be according to any of the embodiments described herein.

In some embodiments, where the ingestible device as used in the present invention comprises an environmental sensor for detecting the presence of disease in the GI tract and a communication system as described above, the method of treatment may comprise:

i) receiving at an external receiver from the ingestible device a signal transmitting the environmental data;

ii) assessing the environmental data to confirm the presence of the disease; and

iii) when the presence of the disease is confirmed, sending from an external transmitter to the ingestible device a signal triggering release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

For example, the presence of disease may be confirmed based on the presence of inflamed tissue and/or lesions associated with any of the disease states referred to herein. For example, the presence of disease may be confirmed based on the presence of inflammation, ulceration e.g., aphthoid ulcerations, "punched-out ulcers" and/or superficial ulcers of the mucosa, cobblestoning, stenosis, granulomas, crypt abscesses, fissures, e.g., extensive linear fissures, villous atrophy, fibrosis, and/or bleeding.
In some embodiments, the present invention may relate to a system comprising:
an ingestible device loaded with a therapeutically effective amount of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate), a release
mechanism for release of glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) (e.g., from a reservoir comprising glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate)), an actuator
controlling the release mechanism, an environmental sensor for determining the location of
the device in the gut and/or for detecting the presence of diseased tissue and a communication
system adapted to transmit the environment data and receive a signal triggering the actuator;
a receiver and display module for receiving and displaying outside of the body the
environment data from the ingestible device;
a transmitter for sending to the ingestible device a signal triggering the actuator.

In any of the above embodiments, the ingestible device may further comprise an
anchoring system for anchoring the device or a portion thereof in a location and an actuator
for the anchoring system. This may be triggered in response to a determination that the
device is at a location in the gastrointestinal tract of the subject proximate to one or more
sites of disease. For instance, this may be detected by the environmental sensor. The
triggering may be controlled by a processor in the device, that is, autonomously. A device
where the triggering is controlled by a processor in the device is said to be an autonomous
device. Alternatively, it may be controlled by a signal sent from outside of the body, as

described above.

In any of the above aspects and embodiments, disease of the GI tract may be an
inflammatory bowel disease.

In some embodiments, the disease of the GI tract is ulcerative colitis.

In some embodiments, the disease of the GI tract is Crohn's disease.

In general, apparatuses, compositions, and methods disclosed herein are useful in the
treatment of diseases of the gastrointestinal tract. Exemplary gastrointestinal tract diseases
that can be treated include, without limitation, inflammatory bowel disease (IBD), Crohn's
disease (e.g., active Crohn's disease, refractory Crohn's disease, or fistulizing Crohn's
disease), ulcerative colitis, indeterminate colitis, microscopic colitis, infectious colitis, drug
or chemical-induced colitis, diverticulitis, and ischemic colitis, gastritis, peptic ulcers, stress
ulcers, bleeding ulcers, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison
syndrome, gastroesophageal reflux disease, short-bowel (anastomosis) syndrome, a
hypersecretory state associated with systemic mastocytosis or basophilic leukemia or hyperhistaminemia, Celiac disease (e.g., nontropical Sprue), enteropathy associated with seronegative arthropathies, microscopic colitis, collagenous colitis, eosinophilic gastroenteritis, colitis associated with radiotherapy or chemotherapy, colitis associated with disorders of innate immunity as in leukocyte adhesion deficiency-1, chronic granulomatous disease, food allergies, gastritis, infectious gastritis or enterocolitis (e.g., Helicobacter pylori-infected chronic active gastritis), other forms of gastrointestinal inflammation caused by an infectious agent, pseudomembranous colitis, hemorrhagic colitis, hemolytic-uremic syndrome colitis, diversion colitis, irritable bowel syndrome, irritable colon syndrome, and pouchitis.

In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat one gastrointestinal disease. In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat more than one gastrointestinal disease. In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in the same area of the gastrointestinal tract (e.g., each disease can occur in the small intestine, large intestine, colon, or any sub-region thereof). In some embodiments, apparatuses, compositions, and methods disclosed herein are used to treat multiple gastrointestinal diseases that occur in different areas of the gastrointestinal tract. In some embodiments, administration (e.g., local administration to the gastrointestinal tract) of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is useful in the treatment of gastrointestinal diseases including, but not limited to, inflammatory bowel disease (IBD), ulcerative colitis, Crohn's disease, or any of the other gastrointestinal diseases described herein.

Aspects and embodiments as described herein are intended to be freely combinable. For example, any details or embodiments described herein for methods of treatment apply equally to glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), composition or ingestible device for use in said treatment. Any details or embodiments described for a device apply equally to methods of treatment using the device, or to glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or composition for use in a method of treatment involving the device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of an example embodiment of an ingestible device, in accordance with some embodiments of the disclosure.
FIG. 2 is an exploded view of the ingestible device of FIG. 1, in accordance with some embodiments of the disclosure.

FIG. 3 is a diagram of an ingestible device during an example transit through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 4 is a diagram of an ingestible device during an example transit through a jejunum, in accordance with some embodiments of the disclosure.

FIG. 5 is a flowchart of illustrative steps for determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 6 is a flowchart of illustrative steps for detecting transitions from a stomach to a duodenum and from a duodenum back to a stomach, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 7 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 8 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 9 is a flowchart of illustrative steps for detecting a transition from a duodenum to a jejunum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 10 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when detecting a transition from a duodenum to a jejunum, in accordance with some embodiments of the disclosure.

FIG. 11 is a plot illustrating muscle contractions detected by an ingestible device over time, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 12 is a flowchart of illustrative steps for detecting a transition from a jejunum to an ileum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.
FIG. 13 is a flowchart of illustrative steps for detecting a transition from a jejunum to an ileum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 14 is a flowchart of illustrative steps for detecting a transition from an ileum to a cecum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 15 is a flowchart of illustrative steps for detecting a transition from a cecum to a colon, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.

FIG. 16 illustrates an ingestible device for delivering a substance in the GI tract.

FIG. 17 illustrates aspects of a mechanism for an ingestible device with a gas generating cell configured to generate a gas to dispense a substance.

FIG. 18 illustrates an ingestible device having a piston to push for drug delivery.

FIG. 19 illustrates an ingestible device having a bellow structure for a storage reservoir of dispensable substances.

FIG. 20 illustrates an ingestible device having a flexible diaphragm to deform for drug delivery.

FIG. 21 shows an illustrative embodiment of an ingestible device with multiple openings in the housing.

FIG. 22 shows a cross-section of an ingestible device including a valve system and a sampling system.

FIG. 23 illustrates a valve system of an ingestible device.

FIGS. 24A and 24B illustrate a portion of a two-stage valve system in its first and second stages, respectively.

FIGS. 25A and 25B illustrate a portion of a two-stage valve system in its first and second stages, respectively.

FIGS. 26A and 26B illustrate a portion of a two-stage valve system in its first and second stages, respectively.

FIG. 27 illustrates a detailed view of an ingestible device including a valve system and a sampling system.

FIG. 28 illustrates a portion of an ingestible device including a sampling system and a two-stage valve system in its second stage.

FIG. 29 is a schematic illustration of an ingestible device.
FIG. 3 is a graph showing the percentage (%) change in body weight at day 14 (± SEM) for DSS mice treated with anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) every third day (Q3D) or intra-ecally (10 mg/kg or 1 mg/kg) daily (QD), when compared to mice treated with anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) every third day (Q3D) and vehicle control (Vehicle). Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 31 is a graph showing the concentration of anti-IL-12 p40 rat IgG2A ^g/mL in plasma of anti-IL-12 p40 intraperitoneally (10 mg/kg) and intra-ecally (10 mg/kg and 1 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D) when compared to vehicle control (Vehicle) and when IP is compared to IC. ELISA analysis was used to determine the concentration of anti-IL-12 p40 (IgG2A). Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 32 is a graph showing the concentration of anti-IL-12 p40 antibody (IgG2A) ^g/mL in the cecum and colon content of anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) and intra-ecally (10 mg/kg and 1 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. ELISA analysis was used to determine the concentration of rat IgG2A. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 33 is a graph showing the mean overall tissue immunolabel scores (intensity and extent) in acute DSS colitis mouse colon of anti-IL-12 p40 antibody intra-ecally-treated versus vehicle control-treated DSS mice. Data presented as mean ± SEM.

FIG. 34 is a graph showing the mean location-specific immunolabel scores in acute DSS colitis mouse colon of anti-IL-12 p40 intra-ecally-treated versus vehicle control-treated DSS mice. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 35 is a graph showing the ratio of anti-IL-12 p40 antibody in the colon tissue to the plasma concentration of the anti-IL-12 p40 antibody in mice treated with the anti-IL-12.
p40 antibody on day 0 (Q0) or day 3 (Q3D) of the study, when measured at the same time point after the initial dosing. An outlier animal was removed from Group 5.

FIG. 36 is a graph showing the concentration of II-1β ng/mL in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intra-cecally (10 mg/kg or 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 37 is a graph showing the concentration of II-6 ng/mL in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intra-cecally (10 mg/kg or 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 38 is a graph showing the concentration of II-17A ng/mL in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intra-cecally (10 mg/kg and 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 39 is a graph showing the percentage (%) change in body weight at day 14 (± SEM) for DSS mice treated with DATK32 (anti-a4p7) antibody intraperitoneally (25 mg/kg) every third day (Q3D) or intra-cecally (25 mg/kg or 5 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle) and when IC is compared to IP. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 40 is a graph showing the plasma concentration of DATK32 rat IgG2A ng/mL of intraperitoneally (25 mg/kg) and intra-cecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean ± SEM. Mann-Whitney’s U test and Student’s t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).
FIG. 41 is a graph showing the concentration of DATK32 rat IgG2A antibody (g/mL) in cecum and colon content of intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 42 is a graph showing the concentration of DATK32 rat IgG2A (g/mL) in the colon content of intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD), and concentration over time (1, 2, 4, 24, and 48 hours), where IP is compared to IC. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 43 is a graph showing the concentration of DATK32 rat IgG2A (g/g) in colon tissue of intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 44 is a graph showing the concentration of DATK32 rat IgG2A (g/g) in the colon tissue of intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD), and the concentration over time (1, 2, 4, 24, and 48 hours) was determined, where IP is compared to IC. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 45 is a graph showing the mean overall tissue immunolabel scores (intensity and extent) in acute DSS colitis mouse colon of DATK32 (anti-a4p7) antibody treated versus vehicle control (Vehicle) treated DSS mice. The data are presented as mean ± SEM.

FIG. 46 is a graph showing the mean location-specific immunolabel scores in acute DSS colitis mouse colon of DATK32 (anti-a4p7) antibody-treated versus vehicle control (Vehicle)-treated DSS mice. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).
FIG. 47 is a graph showing the ratio of the DATK-32 antibody in the colon tissue to the plasma concentration of the DATK-32 antibody in mice treated with the DATK-32 antibody on day 0 (Q0) or day 3 (Q3D) of the study (Groups 9-12), when measured after initial dosing.

FIG. 48 is a graph showing the mean percentage of Th memory cells (mean ± SEM) in blood for DATK32 (anti-α4β7) antibody intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean percentage Th memory cells were measured using FACS analysis. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 49 is an exemplary image of a histological section of a distal transverse colon of Animal 1501 showing no significant lesions (i.e., normal colon).

FIG. 50 is an exemplary image of a histological section of a distal transverse colon of Animal 2501 (treated with TNBS) showing areas of necrosis and inflammation.

FIG. 51 is a representative graph of plasma adalimumab concentrations over time following a single subcutaneous (SQ) or topical administration of adalimumab. The plasma concentrations of adalimumab were determined 6, 12, 24, and 48 hours after administration of adalimumab. N/D = not detectable.

FIG. 52 is a representative table of the plasma adalimumab concentrations (μg/mL) as shown in FIG. 51.

FIG. 53 is a graph showing the concentration of TNFα (pg/mL per mg of total protein) in non-inflamed and inflamed colon tissue after intra-cecal administration of adalimumab, as measured 6, 12, 24, and 24 hours after the initial dosing.

FIG. 54 is a graph showing the concentration of TNFα (pg/mL per mg of total protein) in colon tissue after subcutaneous or intra-cecal (topical) administration of adalimumab, as measured 48 hours after the initial dosing.

FIG. 55 is a graph showing the percentage (%) change in body weight at day 14 (± SEM) in acute DSS colitis mice treated with cyclosporine A orally (10 mg/kg) every third day (Q3D) or intra-cecally (10 mg/kg or 3 mg/kg) daily (QD), when compared to vehicle control (Vehicle). Data presented as mean ± SEM. Mann-Whitney’s U test and Student’s t-test were
used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of $p <$ 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 56 is a graph showing the plasma cyclosporine A (CsA) (ng/mL) concentration over time (1 h, 2 h, 4 h, and 24 h) in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean ± SEM.

FIG. 57 is a graph showing the colon tissue cyclosporine A (CsA) (ng/g) concentration over time (1 h, 2 h, 4 h and 24 h) in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean ± SEM.

FIG. 58 is a graph showing the peak colon tissue cyclosporine A (CsA) (ng/g) concentration in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean ± SEM.

FIG. 59 is a graph showing the trough tissue concentration of cyclosporine (CsA) (ng/g) in colon of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of $p <$ 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 60 is a graph showing the interleukin-2 (11-2) concentration ^g/mL in colon tissue of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA, where PO is compared to IC. Data presented as mean ± SEM. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of $p <$ 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 61 is a graph showing the interleukin-6 (11-6) concentration ^g/mL in colon tissue of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intra-cecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean ± SEM.

FIG. 62 illustrates a nonlimiting example of a system for collecting, communicating and/or analyzing data about a subject, using an ingestible device.

FIGS. 63A-63F are graphs showing rat IgG2A concentration as measured in colon homogenate (FIG. 63A), mLN homogenate (FIG. 63B), small intestine homogenate (FIG. 63C), cecum contents (FIG. 63D), colon contents (FIG. 63E), and plasma (FIG. 63F) by ELISA. Standards were prepared with plasma matrix. Samples were diluted 1:50 before analysis. Sample 20 was removed from cecum contents analysis graph (outlier). *$p <$ 0.05; **$p <$ 0.01; ****$p <$ 0.001 were determined using the unpaired t test.
FIG. 64 illustrates a tapered silicon bellows.
FIG. 65 illustrates a tapered silicone bellows in the simulated device jig.
FIG. 66 illustrates a smooth PVC bellows.
FIG. 67 illustrates a smooth PVC bellows in the simulated device jig.
FIG. 68 demonstrates a principle of a competition assay performed in an experiment.
FIG. 69 shows AlphaLISA data.
FIG. 70 shows AlphaLISA data.
FIG. 71 shows AlphaLISA data.
FIG. 72 is a flowchart of illustrative steps of a clinical protocol, in accordance with some embodiments of the disclosure.
FIG. 73 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the cecum tissue of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.
FIG. 74 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the colon tissue of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.
FIG. 75 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the cecum contents of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.
FIG. 76 is a graph showing the mean concentration of tacrolimus in the cecum tissue and the proximal colon tissue 12 hours after intra-cecal or oral administration of tacrolimus to swine as described in Example 10.
FIG. 77 is a graph showing the mean concentration of tacrolimus in the blood 1 hour, 2 hours, 3 hours, 4 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.
FIG. 78 is a graph showing the AUco-12 hours of tacrolimus in the blood after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13.
FIG. 79 is a graph showing the mean concentration of tacrolimus in the cecum tissue, the proximal colon tissue, the spiral colon tissue, the transverse colon tissue, and the distal colon tissue after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13. **** pO.0001, *** pO.001.
FIG. 80 is a graph showing the mean concentration of tacrolimus in the cecum lumen, the proximal lumen, the spiral colon lumen, the transverse colon lumen, and the distal colon lumen...
lumen in swine after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13. **** pO.0001, *** pO.001

FIG. 81 is a bar graph showing the mean concentration of tacrolimus in the rectal content 1 hour, 3 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.

FIG. 82 is a line graph showing the mean concentration of tacrolimus in the rectal content 1 hour, 3 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.

FIG. 83 is a graph showing the mean concentration of a SMAD7 antisense molecule (SMAD7-AS-FAM) in the cecum tissue in untreated swine or in swine after intra-cecal (IC) or oral administration (PO) of SMAD7-AS-FAM as described in Example 9.

FIG. 84 is a graph showing the mean concentration of SMAD7-AS-FAM in the colon tissue in untreated swine or in swine after intra-cecal (IC) or oral administration (PO) of SMAD7-AS-FAM as described in Example 9.

FIG. 85 is a graph showing the mean concentration of SMAD7-AS-FAM in the colon contents in untreated swine or in swine after intra-cecal (IC) or oral administration (PO) of SMAD7-AS-FAM as described in Example 9.

FIG. 86 is a graph showing the mean concentration of SMAD7-AS-FAM in the cecum contents in untreated swine or in swine after intra-cecal (IC) or oral administration (PO) of SMAD7-AS-FAM as described in Example 9.

FIG. 87 is a graph showing the mean concentration of tacrolimus in the blood of swine 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.

FIG. 88 is a graph showing the AUC0-12_hours of tacrolimus in the blood of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.

FIG. 89 is a representative table showing the T_max, C_max, trough (at 12 hours post-administration), and AUC0-12_hours of tacrolimus in swine after intra-cecal (IC) or oral administration (PO) as described in Example 10.

FIG. 90 is a graph showing the mean concentration of tacrolimus in the cecum, the proximal colon, the spiral colon, the transverse colon, and the distal colon of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.

FIG. 91 is a graph showing the mean concentration of tacrolimus in the cecum lumen, the proximal colon lumen, the spiral colon lumen, the transverse colon lumen, and the distal
colon lumen of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.

FIG. 92 is a graph showing the mean concentration of tacrolimus in the rectal content of swine at 1 hour, 3 hours, 6 hours, and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.

FIG. 93 is a representative table showing the quantitative histological grading of colitis as described in Example 11.

FIG. 94 is a graph showing the histopathological scores of two slides for animal 1502 (healthy control swine treated with placebo), animal 2501 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), animal 2503 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), and animal 2504 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) at the placebo or adalimumab administration site prior to administration of placebo or adalimumab, respectively. Absence of a bar for a particular parameter indicates that the value for this parameter was 0.

FIG. 95 is a representative hematoxylin- and eosin-stained image of the transverse colon of animal 1501 (healthy control swine). M, mucosa; SM, submucosa; TM, tunica muscularis. Numerous intestinal crypts (asterisks) are present and the surface epithelium (top two arrows) is intact. Mononuclear inflammatory cells are prominent in the lamina propria (light arrows) of the mucosa and extend a short distance into the submucosa (bottom two arrows). This amount of inflammatory cell infiltrate was expected background change and considered unrelated to the experimental protocol.

FIG. 96 is a representative hematoxylin- and eosin-stained image of the transverse colon of animal 2504 (8.5% DSS-induced colitis swine administered 1.86 mg/kg adalimumab) prior to administration of adalimumab. M, mucosa; SM, submucosa; TM, tunica muscularis. Extensive loss (light asterisks) of intestinal crypts is present in the mucosa. Scattered crypts remain (dark asterisks) and are often dilated and filled with inflammatory cell debris and mucus. The luminal epithelium persists in some areas (upper left arrow), but is absent in others (erosion; top middle and top right arrows). Inflammatory cells in the mucosa (light arrow) are abundant and extend into the submucosa (bottom left and bottom middle arrows).

FIG. 97 is a representative immunohistochemistry micrograph of the transverse colon of animal 1501 (healthy control swine) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. Serosal surface (arrows) and loose connective mesentery tissue
(asterisks) are indicated. Faint 3,3-diaminobenzidine (DAB) staining in this tissue was considered a background effect and not indicative of human IgG.

FIG. 98 is a representative immunohistochemistry micrograph of the transverse colon of animal 2504 (8.5% DSS-induced colitis swine treated with 1.86 mg/kg dose of adalimumab) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. DAB staining demonstrates the presence of human IgG at the surface of luminal epithelium (two top right arrows) and at the luminal surface of an area of inflammation and erosion (top two left arrows). Intense staining is also present in the loose connective mesentery tissue (asterisks) and extends a short distance into the outer edge of the tunica muscularis (bottom left two arrows). This type of staining was considered strong (grade 4) or very strong (grade 5).

FIG. 99 is a representative immunohistochemistry micrograph of the large intestine of animal 2504 (8.5% DSS-induced colitis swine treated with 1.86 mg/kg adalimumab) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. Lesions of DSS-induced colitis are present in this section. The luminal epithelium is absent (erosion) and diffuse loss of crypts (glands) is seen (top two asterisks). Very strong (grade 5) DAB (brown) staining demonstrates the presence of human IgG in the loose mesentery connective tissue (bottom two asterisks) and extending a short distance into the outer edge of the tunica muscularis (bottom two arrows). Strong (grade 4) staining for human IgG is seen at the eroded luminal surface (top two arrows pointing down) and within the inflammatory exudate. Weak (grade 2) staining for human IgG extends into the lamina propria (top two arrows pointing up) near the luminal surface.

FIG. 100 is a graph showing the presence of human IgG (adalimumab) at the specified locations (lumen/superficial mucosa, lamina propria, and tunica muscularis-outer/serosa) (scored level) in two slides from each of animal 1502 (placebo-treated healthy control swine), animal 2501 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), animal 2503 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) and animal 2504 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) at the placebo or adalimumab administration site. Absence of a bar for a particular location indicates that the value for this location was 0. Scoring: 0 = not present; 1 = minimal; 2 = weak; 3 = moderate; 4 = strong; and 5=very strong immunolabel.

FIG. 101 is a graph showing the mean of Th memory cells (mean ± SEM) in Peyer's Patches (PP) for DATK32 antibody (anti-a4p7 integrin antibody) intraperitoneally (25
mg/kg) or intra-cecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean Th memory cells were measured using FACS analysis. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 102 is a graph showing the mean of Th memory cells (mean ± SEM) in mesenteric lymph nodes (mLN) for DATK32 antibody (anti-a4p7 integrin antibody) intraperitoneally (25 mg/kg) or intra-cecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean Th memory cells were measured using FACS analysis. Mann-Whitney's U test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data, respectively. A value of p < 0.05 was considered significant (Graph Pad Software, Inc.).

FIG. 103 is a graph showing the Disease Activity Index (DAI) of naive mice (Group 1), mice administered vehicle only both intraperitoneally (IP) and intra-cecally (IC) (Group 2), mice administered an anti-TNFα antibody IP and vehicle IC (Group 7), and mice administered an anti-TNFα antibody IC and vehicle IP (Group 8) at Day 28 and Day 42 of the study described in Example 16.

FIG. 104 is a set of graphs showing the colonic tissue concentration of TNFα, IL-17A, IL-4, and IL-22 in mice administered vehicle only both IP and IC (Group 2), mice administered IgG control antibody IP and vehicle IC (Group 3), mice administered IgG control IC and vehicle IP (Group 4), mice administered anti-TNFα antibody IP and vehicle IC (Group 7), and mice administered anti-TNFα antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 16.

FIG. 105 is a graph showing the Disease Activity Index (DAI) of naive mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered an anti-IL12 p40 antibody IP and vehicle IC (Group 5), and mice an anti-IL12 p40 antibody IC and vehicle IP (Group 6) at Day 28 and Day 42 of the study described in Example 16.

FIG. 106 is a set of graphs showing the colonic tissue concentration of IFN-gamma, IL-6, IL-17A, TNFα, IL-22, and IL-1b in naive mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered anti-IL12 p40 antibody IP and vehicle IC
(Group 5), and mice administered anti-IL12 p40 antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 16.

DETAILED DESCRIPTION

The present disclosure is directed to various methods and formulations for treating diseases of the gastrointestinal tract with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). For example, in an embodiment, a method of treating a disease of the gastrointestinal tract in a subject comprises administering to the subject a pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) wherein the pharmaceutical formulation is released in the subject's gastrointestinal tract proximate to one or more sites of disease. For example, in an embodiment, the pharmaceutical formulation comprises a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the formulation is contained in an ingestible device, and the device releases the formulation at a location proximate to the site of disease. The location of the site of disease may be predetermined. For example, an ingestible device, the location of which within the GI tract can be accurately determined as disclosed herein, may be used to sample one or more locations in the GI tract and to detect one or more analytes, including markers of the disease, in the GI tract of the subject. A pharmaceutical formulation may be then administered via an ingestible device and released at a location proximate to the predetermined site of disease. The release of the formulation may be triggered autonomously, as further described herein.

The following disclosure illustrates aspects of the formulations and methods embodied in the claims.

Formulations, including Pharmaceutical Formulations

As used herein, a "formulation" of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may refer to either glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in pure form, such as, for example, a lyophilized glatiramer or a pharmaceutically acceptable salt thereof (for example, lyophilized glatiramer acetate), or a mixture of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with one or more physiologically acceptable carriers,
excipients or stabilizers. Thus, therapeutic formulations or medicaments can be prepared by mixing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) antibody; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn- protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Exemplary pharmaceutically acceptable carriers herein further include interstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX®, Baxter International, Inc.). Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases. Exemplary lyophilized formulations are described in US Patent No. 6,267,958. Aqueous formulations include those described in US Patent No. 6,171,586 and WO2006/044908, the latter formulations including a histidine-acetate buffer.

A formulation of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) as disclosed herein, e.g., sustained-release formulations, can further include a mucoadhesive agent, e.g., one or more of polyvinyl pyrrolidone, methyl cellulose, sodium carboxyl methyl cellulose, hydroxypropyl cellulose, carbopol, a polyacrylate, chitosan, a eudragit analogue, a polymer, and a thiomer. Additional examples

In some embodiments, components of a formulation may include any one of the following components, or any combination thereof:

 Acacia, Alginate, Alginic Acid, Aluminum Acetate, an antiseptic, Benzyl Alcohol,
 Butyl Paraben, Butylated Hydroxy Toluene, an antioxidant. Citric acid, Calcium carbonate,
 Candelilla wax, a binder, Croscarmellose sodium, Confectioner sugar, Colloidal silicone
 dioxide, Cellulose, Carnuba wax, Corn starch, Carboxymethylcellulose calcium, Calcium
 stearate, Calcium disodium EDTA, Chelation agents, Copolyvidone, Castor oil hydrogenated,
 Calcium hydrogen phosphate dehydrate, Cetlypyridine chloride, Cysteine HCl,
 Crosspovidone, Dibasic Calcium Phosphate, Disodium hydrogen phosphate, Dimethicone,
 Erythrosine Sodium, Ethyl Cellulose, Gelatin, Glyceryl monooleate, Glycerin, Glycine,
 Glycerly monostearate, Glycerly behenate, Hydroxy propyl cellulose, Hydroxyethyl propyl
 methyl cellulose, Hypermellose, HPMC Phthalate, Iron oxides or ferric oxide, Iron oxide
 yellow, Iron oxide red or ferric oxide, Lactose (hydrous or anhydrous or monohydrate or
 spray dried), Magnesium stearate, Microcrystalline cellulose, Mannitol, Methyl cellulose,
 Magnesium carbonate, Mineral oil, Methacrylic acid copolymer, Magnesium oxide, Methyl
 paraben, PEG, Polysorbate 80, Propylene glycol, Polyethylene oxide, Propylene paraben,
 Poloxamer 407 or 188 or plain, Potassium bicarbonate, Potassium sorbate, Potato starch,
 Phosphoric acid, Polyoxyl40 stearate, Sodium starch glycolate, Starch pregelatinized,
 Sodium crossmellose, Sodium lauryl sulfate, Starch, Silicon dioxide, Sodium benzoate,
 Stearic acid, Sucrose base for medicated confectionery, a granulating agent, Sorbic acid,
 Sodium carbonate, Saccharin sodium, Sodium alginate, Silica gel, Sorbiton monooleate,
 Sodium stearly fumarate, Sodium chloride, Sodium metabi sulfite, Sodium citrate dehydrate,
 Sodium starch, Sodium carboxy methyl cellulose, Succinic acid, Sodium propionate,
 Titanium dioxide, Talc, Triacetin, Triethyl citrate.

 Accordingly, in some embodiments of the method of treating a disease as disclosed here in, the method comprises administering to the subject a pharmaceutical composition that is a formulation as disclosed herein. In some embodiments the formulation is a dosage form,
which may be, as an example, a solid form such as, for example, a capsule, a tablet, a sachet, or a lozenge; or which may be, as an example, a liquid form such as, for example, a solution, a suspension, an emulsion, or a syrup.

In some embodiments, the formulation is not in an ingestible device. In some embodiments wherein the formulation is not in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments wherein the formulation is not in an ingestible device, the formulation may be suitable for rectal administration. The formulation may be, for example, a dosage form such as a suppository or an enema. In embodiments where the formulation is not in an ingestible device, the formulation releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease. Such localized release may be achieved, for example, with a formulation comprising an enteric coating. Such localized release may be achieved, an another example, with a formulation comprising a core comprising one or more polymers suitable for controlled release of an active substance. A non-limiting list of such polymers includes: poly(2-(diethylamino)ethyl methacrylate), 2-(dimethylamino)ethyl methacrylate, poly(ethylene glycol), poly(2-aminoethyl methacrylate), (2-hydroxypropyl)methacrylamide, poly (P-benzyl-1-aspartate), poly(N-isopropylacrylamide), and cellulose derivatives.

In some embodiments, the formulation is comprised in an ingestible device as disclosed herein. In some embodiments wherein the formulation is comprised in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments the formulation is suitable for introduction and optionally for storage in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in a reservoir comprised in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in a reservoir comprised in the device. Thus, in some embodiments, provided herein is a reservoir comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the reservoir is configured to fit into an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is attachable to an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is attachable to an ingestible device.
effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is capable of anchoring itself to the subject's tissue. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises silicone. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises polyvinyl chloride.

In some embodiments the formulation is suitable for introduction in a spray catheter, as disclosed herein.

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, for example, those with complementary activities that do not adversely affect each other. For instance, the formulation may further comprise a chemotherapeutic agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylnethacrylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), which matrices are in the form of shaped articles, e.g., films, or microcapsule.

Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), poly(lactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate)s remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-di-sulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Pharmaceutical formulations may contain one or more glatiramer or a pharmaceutically acceptable salts thereof (for example, glatiramer acetate). The pharmaceutical formulations may be formulated in any manner known in the art. In some embodiments the formulations include one or more of the following components: a sterile diluent (e.g., sterile water or saline), a fixed oil, polyethylene glycol, glycerin, propylene glycol, or other synthetic solvents, antibacterial or antifungal agents, such as benzyl alcohol or methyl parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like, antioxidants, such as ascorbic acid or sodium bisulfite, chelating agents, such as ethylenediaminetetraacetic acid, buffers, such as acetates, citrates, or phosphates, and isotonic agents, such as sugars (e.g., dextrose), polyalcohols (e.g., mannitol or sorbitol), or salts (e.g., sodium chloride), or any combination thereof. In some embodiments, the pharmaceutical formulation contains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in combination with mannitol, optionally as a solution in water, such as water for injections (WFI) or a pH-adjusted water or aqueous buffer. In some particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), or more particularly, COPAXONE® 20 mg/mL Solution for Injection.

Liposomal suspensions can also be used as pharmaceutically acceptable carriers (see, e.g., U.S. Patent No. 4,522,811, incorporated by reference herein in its entirety). The formulations can be formulated and enclosed in ampules, disposable syringes, or multiple dose vials. Where required, proper fluidity can be maintained by, for example, the use of a coating, such as lecithin, or a surfactant. Controlled release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be achieved by implants and microencapsulated delivery systems, which can include biodegradable, biocompatible polymers (e.g., ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid; Alza Corporation and Nova Pharmaceutical, Inc.).
In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a pharmaceutical formulation within the device. In some embodiments, the formulation contained within the device comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in combination with mannitol, optionally as a solution in water, such as water for injections (WFI) or a pH-adjusted water or aqueous buffer. In some particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), or more particularly, COPAXONE® 20 mg/mL Solution for Injection.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in solution within the device.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a suspension in a liquid medium within the device.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present as a pure, powder (e.g., lyophilized) form of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present as a composition, such as a solution, in a concentration of 20 mg/mL or a concentration of 40 mg/mL within the device. The composition may be, for example, an injectable form such as Mylan's injectable forms approved by the FDA in October 2017. In some embodiments where the composition is present in a concentration of 20 mg/mL, the device is administered once a day. In some embodiments where the composition is present in a concentration of 40 mg/mL, the device is administered once every two days. In some embodiments where the composition is present in a concentration of 40 mg/mL, the device is administered once three times a week.

Definitions:

By "ingestible," it is meant that the device can be swallowed whole.

"Gastrointestinal inflammatory disorders" are a group of chronic disorders that cause inflammation and/or ulceration in the mucous membrane. These disorders include, for example, inflammatory bowel disease (e.g., Crohn's disease, ulcerative colitis, indeterminate colitis and infectious colitis), mucositis (e.g., oral mucositis, gastrointestinal mucositis, nasal mucositis and proctitis), necrotizing enterocolitis and esophagitis.
"Inflammatory Bowel Disease" or "IBD" is a chronic inflammatory autoimmune condition of the gastrointestinal (GI) tract. The GI tract can be divided into four main different sections, the oesophagus, stomach, small intestine and large intestine or colon. The small intestine possesses three main subcompartments: the duodenum, jejunum and ileum.

Similarly, the large intestine consists of six sections: the cecum, ascending colon, transverse colon, ascending colon, sigmoid colon, and the rectum. The small intestine is about 6 m long, its diameter is 2.5 to 3 cm and the transit time through it is typically 3 hours. The duodenum has a C-shape, and is 30 cm long. Due to its direct connection with the stomach, it is physically more stable than the jejunum and ileum, which are sections that can freely move. The jejunum is 2.4 m in length and the ileum is 3.6 m in length and their surface areas are 180 m² and 280 m² respectively. The large intestine is 1.5 m long, its diameter is between 6.3 and 6.5 cm, the transit time though this section is 20 hours and has a reduced surface area of approximately 150 m². The higher surface area of the small intestine enhances its capacity for systemic drug absorption.

The etiology of IBD is complex, and many aspects of the pathogenesis remain unclear. The treatment of moderate to severe IBD poses significant challenges to treating physicians, because conventional therapy with corticosteroids and immunomodulator therapy (e.g., azathioprine, 6 mercaptopurine, and methotrexate administered via traditional routes such as tablet form, oral suspension, or intravenously) is associated with side effects and intolerance and has not shown proven benefit in maintenance therapy (steroids). Monoclonal antibodies targeting tumor necrosis factor alpha (TNF-α), such as infliximab (a chimeric antibody) and adalimumab (a fully human antibody), are currently used in the management of CD. Infliximab has also shown efficacy and has been approved for use in UC. However, approximately 10%-20% of patients with CD are primary nonresponders to anti TNF therapy, and another ~20%-30% of CD patients lose response over time (Schnitzler et al., Gut 58:492-500 (2009)). Other adverse events (AEs) associated with anti TNFs include elevated rates of bacterial infection, including tuberculosis, and, more rarely, lymphoma and demyelination (Chang et al., Nat Clin Pract Gastroenterol Hepatology 3:220 (2006); Hoentjen et al., World J. Gastroenterol. 15(17):2067 (2009)). No currently available therapy achieves sustained remission in more than 20%-30% of IBD patients with chronic disease (Hanauer et al, Lancet 359: 1541-49 (2002); Sandborn et al, N Engl J Med 353: 1912-25 (2005)). In addition, most patients do not achieve sustained steroid-free remission and mucosal healing, clinical outcomes that correlate with true disease modification.
Although the cause of IBD remains unknown, several factors such as genetic, infectious and immunologic susceptibility have been implicated. IBD is much more common in Caucasians, especially those of Jewish descent. The chronic inflammatory nature of the condition has prompted an intense search for a possible infectious cause. Although agents have been found which stimulate acute inflammation, none has been found to cause the chronic inflammation associated with IBD. The hypothesis that IBD is an autoimmune disease is supported by the previously mentioned extraintestinal manifestation of IBD as joint arthritis, and the known positive response to IBD by treatment with therapeutic agents such as adrenal glucocorticoids, cyclosporine and azathioprine, which are known to suppress immune response. In addition, the GI tract, more than any other organ of the body, is continuously exposed to potential antigenic substances such as proteins from food, bacterial byproducts (LPS), etc.

A chronic inflammatory autoimmune condition of the gastrointestinal (GI) tract presents clinically as either ulcerative colitis (UC) or Crohn's disease (CD). Both IBD conditions are associated with an increased risk for malignancy of the GI tract.

"Crohn's disease" ("CD") is a chronic transmural inflammatory disease with the potential to affect any part of the entire GI tract, and UC is a mucosal inflammation of the colon. Both conditions are characterized clinically by frequent bowel motions, malnutrition, and dehydration, with disruption in the activities of daily living.

CD is frequently complicated by the development of malabsorption, strictures, and fistulae and may require repeated surgery. UC, less frequently, may be complicated by severe bloody diarrhea and toxic megacolon, also requiring surgery. The most prominent feature Crohn's disease is the granular, reddish-purple edematous thickening of the bowel wall. With the development of inflammation, these granulomas often lose their circumscribed borders and integrate with the surrounding tissue. Diarrhea and obstruction of the bowel are the predominant clinical features. As with ulcerative colitis, the course of Crohn's disease may be continuous or relapsing, mild or severe, but unlike ulcerative colitis, Crohn's disease is not curable by resection of the involved segment of bowel. Most patients with Crohn's disease require surgery at some point, but subsequent relapse is common and continuous medical treatment is usual. Crohn's disease may involve any part of the alimentary tract from the mouth to the anus, although typically it appears in the ileocolic, small-intestinal or colonic-anorectal regions. Histopathologically, the disease manifests by discontinuous granulomatomas, crypt abscesses, fissures and aphthous ulcers. The inflammatory infiltrate is
mixed, consisting of lymphocytes (both T and B cells), plasma cells, macrophages, and neutrophils. There is a disproportionate increase in IgM- and IgG-secreting plasma cells, macrophages and neutrophils.

To date, the primary outcome measure in Crohn’s Disease clinical trials is the Crohn’s Disease Activity Index (CDAI), which has served as the basis for approval of multiple drug treatments, including for example, vedolizumab and natalizumab. The CDAI was developed by regressing clinician global assessment of disease activity on eighteen potential items representing patient reported outcomes (PROs) (i.e. abdominal pain, pain awakening patient from sleep, appetite), physical signs (i.e. average daily temperature, abdominal mass), medication use (i.e. loperamide or opiate use for diarrhea) and a laboratory test (i.e. hematocrit). Backward stepwise regression analysis identified eight independent predictors which are the number of liquid or soft stools, severity of abdominal pain, general well-being, occurrence of extra-intestinal symptoms, need for anti-diarrheal drugs, presence of an abdominal mass, hematocrit, and body weight. The final score is a composite of these eight items, adjusted using regression coefficients and standardization to construct an overall CDAI score, ranging from 0 to 600 with higher score indicating greater disease activity. Widely used benchmarks are: CDAI < 150 is defined as clinical remission, 150 to 219 is defined as mildly active disease, 220 to 450 is defined as moderately active disease, and above 450 is defined as very severe disease (Best WR, et al., Gastroenterology 77:843-6, 1979).

Vedolizumab and natalizumab have been approved on the basis of demonstrated clinical remission, i.e. CDAI < 150.

Although the CDAI has been in use for over 40 years, and has served as the basis for drug approval, it has several limitations as an outcome measure for clinical trials. For example, most of the overall score comes from the patient diary card items (pain, number of liquid bowel movements, and general well-being), which are vaguely defined and not standardized terms (Sandler et al., J. Clin. Epidemiol 41:451-8, 1988; Thia et al., Inflamm Bowel Dis 17: 105-1 1, 2011). In addition, measurement of pain is based on a four-point scale rather than an updated seven-point scale. The remaining 5 index items contribute very little to identifying an efficacy signal and may be a source of measurement noise. Furthermore, concerns have been raised about poor criterion validity for the CDAI, a reported lack of correlation between the CDAI and endoscopic measures of inflammation (which may render the CDAI as a poor discriminator of active CD and irritable bowel syndrome) and high reported placebo rates (Korzenik et al., N Engl J Med. 352:2193-201, 2005; Sandborn WJ, et

It is, thus, generally recognized that additional or alternative measures of CD symptoms are needed, such as new PRO tools or adaptations of the CDAI to derive a new PRO. The PR02 and PR03 tools are such adaptations of the CDAI and have been recently described in Khanna et al., Aliment Pharmacol. Ther. 41:77-86, 2015. The PR02 evaluates the frequency of loose/liquid stools and abdominal pain (Id.). These items are derived and weighted accordingly from the CDAI and are the CDAI diary card items, along with general well-being, that contribute most to the observed clinical benefit measured by CDAI (Sandler et al., J. Clin. Epidemiol 41 :451-8, 1988; Thia et al., Inflamm Bowel Dis 17: 105-11, 2011; Kim et al., Gastroenterology 146: (5 supplement 1) S-368, 2014). The remission score of < 11 is the CDAI-weighted sum of the average stool frequency and pain scores in a 7-day period, which yielded optimum sensitivity and specificity for identification of CDAI remission (score of < 150) in a retrospective data analysis of ustekinumab induction treatment for moderate to severe CD in a Phase II clinical study (Gasink C, et al., abstract, ACG Annual Meeting 2014). The PR02 was shown to be sensitive and responsive when used as a continuous outcome measure in a retrospective data analysis of MTX treatment in active CD (Khanna R, et al., Inflamm Bowel Dis 20: 1850-61, 2014) measured by CDAI. Additional outcome measures include the Mayo Clinic Score, the Crohn disease endoscopic index of severity (CDEIS), and the Ulcerative colitis endoscopic index of severity (UCEIS).

Additional outcome measures include Clinical remission, Mucosal healing, Histological healing (transmural), MRI or ultrasound for measurement or evaluation of bowel wall thickness, abscesses, fistula and histology.

An additional means of assessing the extent and severity of Crohn's Disease is endoscopy. Endoscopic lesions typical of Crohn's disease have been described in numerous studies and include, e.g., aphthoid ulcerations, "punched-out ulcers," cobblestoning and stenosis. Endoscopic evaluation of such lesions was used to develop the first validated endoscopic score, the Crohn's Disease Endoscopic Index of Severity (CDEIS) (Mary et al., Gut 39:983-9, 1989). More recently, because the CDEIS is time-consuming, complicated and impractical for routine use, a Simplified Endoscopic Activity Score for Crohn's Disease (SES-CD) was developed and validated (Daperno et al., Gastrointest. Endosc. 60(4):505-12, 2004). The SES-CD consists of four endoscopic variables (size of ulcers, proportion of surface covered by ulcers, proportion of surface with any other lesions (e.g., inflammation),
and presence of narrowings (stenosis) that are scored in five ileocolonic segments, with each variable, or assessment, rated from 0 to 3.

To date, there is no cure for CD. Accordingly, the current treatment goals for CD are to induce and maintain symptom improvement, induce mucosal healing, avoid surgery, and improve quality of life (Lichtenstein GR, et al., Am J Gastroenterol 104:465-83, 2009; Van Assche G, et al., J Crohns Colitis. 4:63-101, 2010). The current therapy of IBD usually involves the administration of anti-inflammatory or immunosuppressive agents, such as sulfasalazine, corticosteroids, 6-mercaptopurine/azathioprine, or cyclosporine, all of which are not typically delivered by localized release of a drug at the site or location of disease.

More recently, biologies like TNF-alpha inhibitors and IL-12/IL-23 blockers, are used to treat IBD. If anti-inflammatory/immunosuppressive/biologic therapies fail, colectomies are the last line of defense. The typical operation for CD not involving the rectum is resection (removal of a diseased segment of bowel) and anastomosis (reconnection) without an ostomy. Sections of the small or large intestine may be removed. About 30% of CD patients will need surgery within the first year after diagnosis. In the subsequent years, the rate is about 5% per year. Unfortunately, CD is characterized by a high rate of recurrence; about 5% of patients need a second surgery each year after initial surgery.

Refining a diagnosis of inflammatory bowel disease involves evaluating the progression status of the diseases using standard classification criteria. The classification systems used in IBD include the Truelove and Witts Index (Truelove S. C. and Witts, L.J. Br Med J. 1955;2: 1041-1048), which classifies colitis as mild, moderate, or severe, as well as Lennard-Jones. (Lennard-Jones JE. Scand J Gastroenterol Suppl 1989; 170:2-6) and the simple clinical colitis activity index (SCCAI). (Walmsley et. al. Gut. 1998; 43:29-32) These systems track such variables as daily bowel movements, rectal bleeding, temperature, heart rate, hemoglobin levels, erythrocyte sedimentation rate, weight, hematocrit score, and the level of serum albumin.

There is sufficient overlap in the diagnostic criteria for UC and CD that it is sometimes impossible to say which a given patient has; however, the type of lesion typically seen is different, as is the localization. UC mostly appears in the colon, proximal to the rectum, and the characteristic lesion is a superficial ulcer of the mucosa; CD can appear anywhere in the bowel, with occasional involvement of stomach, esophagus and duodenum, and the lesions are usually described as extensive linear fissures.
In approximately 10-15% of cases, a definitive diagnosis of ulcerative colitis or Crohn's disease cannot be made and such cases are often referred to as "indeterminate colitis." Two antibody detection tests are available that can help the diagnosis, each of which assays for antibodies in the blood. The antibodies are "perinuclear anti-neutrophil antibody" (pANCA) and "anti-Saccharomyces cervisiae antibody" (ASCA). Most patients with ulcerative colitis have the pANCA antibody but not the ASCA antibody, while most patients with Crohn's disease have the ASCA antibody but not the pANCA antibody. However, these two tests have shortcomings as some patients have neither antibody and some Crohn's disease patients may have only the pANCA antibody. A third test, which measures the presence and accumulation of circulating anti-microbial antibodies - particularly flagellin antibodies, has proven to be useful for detecting susceptibility to Crohn's Disease before disease development. See Choung, R. S., et al. "Serologic microbial associated markers can predict Crohn's disease behavior years before disease diagnosis." Alimentary pharmacology & therapeutics 43.12 (2016): 1300-1310.

"Ulcerative colitis (UC)" affects the large intestine. The course of the disease may be continuous or relapsing, mild or severe. The earliest lesion is an inflammatory infiltration with abscess formation at the base of the crypts of Lieberkuhn. Coalescence of these distended and ruptured crypts tends to separate the overlying mucosa from its blood supply, leading to ulceration. Symptoms of the disease include cramping, lower abdominal pain, rectal bleeding, and frequent, loose discharges consisting mainly of blood, pus and mucus with scanty fecal particles. A total colectomy may be required for acute, severe or chronic, unremitting ulcerative colitis.

The clinical features of UC are highly variable, and the onset may be insidious or abrupt, and may include diarrhea, tenesmus and relapsing rectal bleeding. With fulminant involvement of the entire colon, toxic megacolon, a life-threatening emergency, may occur. Extraintestinal manifestations include arthritis, pyoderma gangrenoum, uveitis, and erythema nodosum.

The terms "antibody" and "immunoglobulin" are used interchangeably in the broadest sense and include monoclonal antibodies (for example, full length or intact monoclonal antibodies), polyclonal antibodies, multivalent antibodies, multispecific antibodies (e.g., bispecific, trispecific etc. antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein). An antibody can be human, humanized and/or affinity matured.
"Antibody fragments" comprise only a portion of an intact antibody, where in certain embodiments, the portion retains at least one, and typically most or all, of the functions normally associated with that portion when present in an intact antibody. In one embodiment, an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding. In one embodiment, an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody. For example, such an antibody fragment may comprise on antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigen. Furthermore, in contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.

The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81 :6851-6855 (1984)).

"Treatment regimen" refers to a combination of dosage, frequency of administration, or duration of treatment, with or without addition of a second medication.

"Effective treatment regimen" refers to a treatment regimen that will offer beneficial response to a patient receiving the treatment.
"Effective amount" refers to an amount of drug that offers beneficial response to a patient receiving the treatment. For example, an effective amount may be a Human Equivalent Dose (HED).

"Dispensable," with reference to any substance, refers to any substance that may be released from an ingestible device as disclosed herein, or from a component of the device such as a reservoir. For example, a dispensable substance may be glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and/or a formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

"Patient response" or "patient responsiveness" can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of disease progression, including slowing down and complete arrest; (2) reduction in the number of disease episodes and/or symptoms; (3) reduction in lesional size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e., reduction, slowing down or complete stopping) of disease spread; (6) decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; (7) relief, to some extent, of one or more symptoms associated with the disorder; (8) increase in the length of disease-free presentation following treatment; and/or (9) decreased mortality at a given point of time following treatment. The term "responsiveness" refers to a measurable response, including complete response (CR) and partial response (PR).

As used herein, "complete response" or "CR" means the disappearance of all signs of inflammation or remission in response to treatment. This does not necessarily mean the disease has been cured.

"Partial response" or "PR" refers to a decrease of at least 50% in the severity of inflammation, in response to treatment.

A "beneficial response" of a patient to treatment with a therapeutic agent and similar wording refers to the clinical or therapeutic benefit imparted to a patient at risk for or suffering from a gastrointestinal inflammatory disorder from or as a result of the treatment with the agent. Such benefit includes cellular or biological responses, a complete response, a partial response, a stable disease (without progression or relapse), or a response with a later relapse of the patient from or as a result of the treatment with the agent.
As used herein, "non-response" or "lack of response" or similar wording means an absence of a complete response, a partial response, or a beneficial response to treatment with a therapeutic agent.

"A patient maintains responsiveness to a treatment" when the patient's responsiveness does not decrease with time during the course of a treatment.

A "symptom" of a disease or disorder (e.g., inflammatory bowel disease, e.g., ulcerative colitis or Crohn's disease) is any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by a subject and indicative of disease.

"Mucosa-associated lymphoid tissue" or "MALT" refers to a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tract, oral passage, nasopharyngeal tract, thyroid, breast, lung, salivary glands, eye, and skin.

"Gut-associated lymphoid tissue" or "GALT" refers to a part of the broader MALT and includes, e.g., Peyer's patches, mesenteric lymph nodes, and isolated lymphoid follicles/intestinal lymphoid aggregates.

"Peyer's patches" refers to aggregated lymphoid modules organized into follicles and are important part of GALT. Peyer's patches are mainly present in the distal jejunum and the ileum.

"Mesenteric lymph nodes" refers to part of the paraaortic lymph node system that is a group of lymph nodes that lie between the layers of the mesentery and drain the gut tissues and deliver lymph to the thoracic duct. Mesenteric lymph nodes include the "superior mesenteric lymph nodes" which receive afferents from the jejunum, ileum, cecum, and the ascending and parts of the transverse colon. Mesenteric lymph nodes also include "inferior mesenteric lymph nodes" which are lymph nodes present throughout the hindgut. The hindgut, e.g., includes the distal third of the transverse colon and the splenic flexure, the descending colon, sigmoid colon, and the rectum. The lymph nodes drain into the superior mesenteric lymph nodes and ultimately to the preaortic lymph nodes.

"Paraaortic lymph nodes" refers to a group of mesenteric lymph nodes that lie in front of the lumbar vertebrae near the aorta. The paraaortic lymph nodes receive drainage from the gastrointestinal tract and the abdominal organs. Paraaortic lymph nodes include, e.g., retroaortic lymph nodes, lateral aortic lymph nodes, preaortic lymph nodes (e.g., Celiac, gastric, hepatic, and splenic lymph nodes), superior mesenteric lymph nodes (e.g.,
mesenteric, ileocolic, and mesocolic lymph nodes), and inferior mesenteric lymph nodes
(e.g., pararectal lymph nodes).

As used herein, "accuracy," when disclosed in connection with a specified location of
a device within the GI tract of a subject, refers to the degree to which the location determined
by the device conforms to the correct location, wherein the correct location is based on a
generally accepted standard. The location within the GI tract of the subject determined by the
device can be based on data, for example, light reflectance data, collected by the ingestible
device. In some embodiments, the correct location can be based on external imaging devices,
such as computer-aided tomography (CT), interpreted, for example, by a qualified clinician
or physician. Therefore, percent accuracy ("% accuracy") can refer to the percentage
agreement between the location of the device in the GI tract as determined by the device, and
the correct location, for example, as determined by CT, e.g., expressed as [(number of
devices in which location determined by the device agrees with location as determined by CT
/ total devices administered to the subject or subjects) x 100%], or, where only one device is
administered per subject, [(number of subjects in which location determined by the device
agrees with location as determined by CT / total number of subjects) x 100%]. The latter
formula for determining % accuracy was used in Example 14. In some embodiments, the
accuracy with which the device determines a location refers to the accuracy with which the
device determines that it is at a location pre-selected for drug release.

As used herein, an "autonomous device" refers to a device comprising one or more
processors configured to independently control certain mechanisms or operations of the
device while in the GI tract of a subject. Preferably, an autonomous device of the invention
has no external electrical or wireless connections that control device mechanisms or
operations, although connections such as wireless connections may be present to enable
alternative device functions, such as transmitting data collected by the device to an external
(ex vivo) system or receiver. The independently controlled mechanisms or operations of the
autonomous device include, for example, triggering the release of a drug (or the formulation
comprising the drug), triggering collection of one or more samples, and/or triggering the
analysis of one or more samples; and/or determining the location of the device within the GI
tract of the subject. Such a mechanism is referred to herein as an "autonomous mechanism;"
for example, an "autonomous triggering mechanism" or an "autonomous localization
mechanism," respectively. Actively implementing such an autonomous triggering or
localization mechanism is referred to as "autonomous triggering" or "autonomous
localizing," respectively. An "autonomous localization mechanism" is synonymous with a
"self-localization mechanism.

As used herein, a "housing" is a portion of an ingestible device that defines the boundary between the interior of the device and the environment exterior to the device.

As used herein, a "self-localizing device" refers to a device comprising a mechanism or system that can be implemented autonomously to determine the location of the ingestible device in vivo, e.g., within the GI tract of a subject. Such a mechanism is referred to as a "self-localization mechanism." A "self-localization mechanism" is synonymous with an "autonomous localization mechanism." A self-localizing device does not require ex vivo visualization devices or systems, for example, using scintigraphy or computer-aided tomography (CT), to localize in the GI tract.

As used herein, "localizing the device" refers to determining a location of the device.

As used herein, "sensor" refers to a mechanism or portion of a mechanism configured to collect information regarding the surroundings of the ingestible device. Examples of "sensors" include environmental sensors and light sensors. Examples of environmental sensors include pH sensors and sensors capable to identifying muscle contractions and/or peristalsis.

As used herein, "time following transition" refers to elapsed time after passage of the device from one portion, section or subsection of the GI tract into an adjacent portion, section or subsection of the GI tract.

As used herein, "proximate" as disclosed in connection with release of a drug from a device to one or more disease sites, refers to a location that is sufficiently spatially close to the one or more disease sites such that releasing the drug at the location treats the disease. For example, when the drug is released proximate to the one or more disease sites, the drug may be released 150 cm or less, such as 125 cm or less, such as 100 cm or less, such as 50 cm or less, such as 40 cm or less, such as 30 cm or less, such as 20 cm or less, such as 10 cm or less, such as 5 cm or less, such as 2 cm or less, from the one or more sites of disease. The proximate location for drug release may be in the same section or subsection of the gastrointestinal tract as the one or more disease sites. In the alternative, the proximate location for drug release may be in a different section or subsection of the GI tract than the one or more disease sites; for example, the drug release may be proximate/ to the one or more disease sites. In a non-limiting example, the drug may be released in the cecum to treat a site of disease tissue in the ascending colon (i.e., distal to the cecum). In another non-limiting
example, the drug may be released in the cecum to treat a site of disease tissue in one or more of the ascending colon, transverse colon, descending colon, or rectum. Thus, where the present application refers to release of a drug proximate to a site of disease, this may in some embodiments refer to release in a section or subsection of the GI tract which has been determined to contain a site of disease. The section may be selected from esophagus, stomach, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum. The subsection may be selected from proximal duodenum, proximal jejunum, proximal ileum, proximal cecum, proximal ascending colon, proximal transverse colon, proximal descending colon, distal duodenum, distal jejunum, distal ileum, distal cecum, distal ascending colon, distal transverse colon, distal descending colon.

As used herein, the "total induction dose" is the sum of induction doses over a given time period.

As used herein, "proximal," when used in connection with an anatomical structure, refers to a portion, section, or subsection that precedes, or is upstream of, an adjacent portion, section, or subsection of the anatomical structure. In some embodiments, proximal refers to a portion, section, or subsection that immediately precedes, or is immediately upstream of, an immediately adjacent portion, section, or subsection of the anatomical structure.

As used herein, "distal," when used in connection with an anatomical structure, refers to a portion, section, or subsection that follows, or is downstream of, an adjacent portion, section, or subsection of the anatomical structure. In some embodiments, distal refers to a portion, section, or subsection that immediately follows, or is immediately downstream of, an immediately adjacent portion, section, or subsection of the anatomical structure.

As used herein, a reference to a drug's international nonproprietary name (INN) is to be interpreted as including generic, bioequivalent and biosimilar versions of that drug, including but not limited to any drug that has received abbreviated regulatory approval by reference to an earlier regulatory approval of that drug.

Glatiramer and pharmaceutically acceptable salts thereof

"Glatiramer," as used herein, refers to a compound made up of a mixture of polypeptides containing the four naturally occurring amino acids L-glutamic acid, L-lysine, L-alanine, and L-tyrosine. A "pharmaceutically acceptable salt" of glatiramer, as used herein, refers to pharmaceutically acceptable salts of the polypeptides that contain the four naturally occurring amino acids L-glutamic acid, L-lysine, L-alanine, and L-tyrosine that make up
glatiramer. It is understood by one of ordinary skill in the art that an amino acid can exist in various forms, including, for example, neutral forms, ionized forms (e.g., cationic forms, anionic forms, or zwitterionic forms), or salt forms. In some embodiments, the glatiramer or the pharmaceutically acceptable salt thereof comprises from about 15 to about 100 amino acids. In some embodiments, the average molecule weight of the glatiramer or the pharmaceutically acceptable salt thereof ranges from about 4,000 to about 12,000 Daltons. In some more particular embodiments, the average molecule weight of the glatiramer or the pharmaceutically acceptable salt thereof ranges from about 4,700 to about 11,000 Daltons. In some embodiments, the glatiramer or the pharmaceutically acceptable salt thereof contains the four naturally occurring amino acids L-glutamic acid, L-alanine, L-tyrosine, and L-lysine, with an average molar fraction of 0.141, 0.427, 0.095, and 0.338, respectively.

Non-limiting examples of pharmaceutically acceptable salts of glatiramer include, but are not limited to, sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate, hydrochloride, hydrobromide, hydriodide, acetate, nitrate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, tocopheryl succinate, suberate, sebacate, fumarate, maleate, butylen-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycollate, tartrate, methanesulfonate, propanesulfonate, naphthalene-2-sulfonate, p-toluene sulfonate and mandelate salts, and combinations of any two or more of the foregoing. In some embodiments, the glatiramer salt is glatiramer acetate.

In some embodiments, the pharmaceutically acceptable salt of glatiramer is glatiramer acetate. Glatiramer acetate, also known as copolymer-1 or cop-1, contains the acetate salts of synthetic polypeptides that contain the four naturally occurring amino acids L-glutamic acid, L-alanine, L-tyrosine, and L-lysine, with an average molar fraction of 0.141, 0.427, 0.095,
and 0.338, respectively. In some embodiments, the average molecule weight of glatiramer acetate is 4,700-11,000 Daltons.

Chemically, glatiramer acetate is designated L-glutamic acid polymer with L-alanine, L-lysine and L-tyrosine, acetate (salt). The CAS number for glatiramer acetate is CAS-147245-92-9. The IUPAC name for glatiramer acetate is acetic acid; (2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid; (2S)-2-aminopentanedioic acid; (2S)-2,6-diaminohexanoic acid. In some embodiments, the glatiramer acetate comprises about 15 to about 100 amino acids.

Glatiramer acetate is marketed as the active ingredient of Copaxone® by Teva Pharmaceuticals Ltd., Israel. Copaxone® is a clear, colorless to slightly yellow, sterile, nonpyrogenic solution. Each 1mL of Copaxone® solution contains 20 mg or 40 mg of glatiramer acetate and 40 mg of mannitol. The pH of Copaxone® solution is approximately 5.5 to 7.0. Copaxone® 20 mg/mL is an FDA-approved product. Copaxone® 40 mg/mL in a prefilled syringe was developed as a newer formulation of the active ingredient glatiramer acetate.

Glatiramer acetate has been shown to therapeutically reduce inflammation and ameliorate the pathological manifestations of inflammatory bowel disease (IBD) in numerous murine models (see, e.g., Aharoni et al., J. of Pharmacology and Experimental Therapeutics 318:68-78, 2006; Yao et al., Eur. J. Immunol. 43:125-136, 2013; and Yablecovitch et al., J. of Pharmacology and Experimental Therapeutics 337:391-399, 2011, each of which is hereby incorporated by reference in its entirety).

As described herein, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered locally from the devices described herein can reduce inflammation in the gastrointestinal system, e.g., as compared to the inflammation in a subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein.

For example, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can modulate the pro-inflammatory immune response caused by Th1 inflammatory cytokines by reducing the levels of inflammatory...
mediators, such as interferon-γ (IFN-γ), in the GI system (see Aharoni et al., J. Pharmacol. Exp. Ther. 318:68-78, 2006), e.g., as compared to the corresponding level of the inflammatory mediator prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. Local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can also induce Th2/3 cells, increasing the levels of regulatory anti-inflammatory cytokines, such as transforming growth factor-β (TGF-β) and interleukin-10 (IL-10), in the GI system, e.g., as compared to the corresponding level(s) in a subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein.

In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can decrease the secretion of interferon-γ (IFN-γ). In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can decrease the level of interferon-γ (IFN-γ) in colon tissue, e.g., as compared to the level of IFN-γ in the subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can decrease the level of interferon-γ (IFN-γ) mRNA in colon tissue. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the secretion of transforming growth factor-β (TGF-β), e.g., as compared to the level of secretion of TGF-β in the subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the level of transforming growth factor-β (TGF-β) in colon tissue, e.g., as compared to the level of TGF-β in a subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the level of transforming growth factor-β (TGF-β) mRNA in colon tissue, e.g., as compared to the level of TGF-β mRNA in colon tissue of subjects prior
to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein.

Glatiramer acetate can also induce Qa-1 restricted CD8+ Treg cells, which exert a regulatory suppressor function and can kill pathogenic CD4+ T cells (see Yao et al., *Eur. J. Immunol.* 43:125-136, 2013). The suppression of GA-induced CD8+ Treg cells requires perforin. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can induce CD8+ Treg cells, e.g., Qa-1 restricted Treg cells. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the number of CD8+ Treg cells, e.g., as compared to the level of CD8+ Treg cells in a subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can decrease the number of CD4+ T cells. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can induce Qa-1 restricted CD8+ Treg cells, and thereby suppress the over activation of pathogenic CD4+ T cells.

Glatiramer acetate has also been shown to restore normal levels of syndecan-1 (also known as CD138), an abundant heparin sulfate proteoglycan in the gastrointestinal tract that helps to mediate cell adhesion and is reduced in the surface intestinal epithelium in IBD, thereby helping to stabilize the intestinal epithelium barrier, reduce intestinal permeability, and aid tissue repair (see Yablecovitch et al., *J. Pharmacol. Exp. Ther.* 337:391-399, 2011). Syndecan-1 binds to components of the extracellular matrix. Loss of syndecan-1 can increase the permeability of the epithelium, and may destabilize the intestinal epithelium barrier and reduce tissue repair.

In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the levels of syndecans in the gastrointestinal tract, e.g., in the surface intestinal epithelium, e.g., as compared to the level in a subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the levels of syndecan-1 in the gastrointestinal tract, e.g., as compared to the level in the subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. For
example, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can increase the levels of syndecan-1 in the gastrointestinal tract of a subject having IBD, e.g., as compared to the level of syndecan-1 in the subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can restore the levels of syndecan-1 in the gastrointestinal tract of a subject having IBD to the same levels as those present in a subject without IBD. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can decrease intestinal permeability in a subject having IBD, e.g., as compared to the level of intestinal permeability in the subject prior to local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices described herein. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can stabilize or enhance the intestinal epithelium barrier in a subject having IBD. In some embodiments, local administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can enhance tissue repair in the colon of a subject having IBD.

In some embodiments, a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be locally administered to a subject (e.g., a human subject) in need thereof, e.g., a subject having irritable bowel syndrome (IBS), ulcerative colitis, or Crohn's Disease.

In certain embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be admixed with inert substances, prior to local administration using any of the devices described herein.

Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be mixed or combined with a pharmaceutically acceptable ester, or salt of such an ester before it is locally administered to a subject using the devices described herein. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be mixed or combined with a pharmaceutically acceptable salt before it is locally administered to a subject using any of the devices described herein. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.

In certain embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be mixed with one or more excipients before it is locally
administered to the subject using any of the devices described herein. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, and polyvinylpyrrolidone.

In some of these embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be mixed with a carrier and formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer, before it is locally administered to a subject using any of the devices described herein. In some examples, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be mixed with other ingredients (e.g., ingredients that aid in solubility or serve as preservatives) before it is locally administered to the subject using any of the devices described herein. For example, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be mixed with an appropriate liquid carrier, suspending agents, and the like, before it is locally administered to a subject using any of the devices described herein. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be formulated as a suspension, a solution, or an emulsion in oily or aqueous vehicles, optionally together with formulatory agents such as suspending, stabilizing, and/or dispersing agents, before it is locally administered to a subject using any of the devices described herein. Solvents suitable for use include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.

Endoscopes, Ingestible Devices, and Reservoirs

As discussed herein, in some embodiments, a method of treating a disease of the gastrointestinal tract comprises administering to the subject a pharmaceutical formulation wherein the pharmaceutical formulation is delivered proximate to one or more sites of disease by one of various methods. For example, the pharmaceutical formulation may be delivered via a medical device such as an endoscope, ingestible device, or reservoir; the pharmaceutical formulation may be a solid dosage form, a liquid dosage form, a suppository or an enema for rectal administration with different types of release such as sustained or delayed release.

In one embodiment, the pharmaceutical formulation is delivered proximate to one or more sites of disease by an endoscope, ingestible device, or reservoir containing the pharmaceutical formulation.
The GI tract can be imaged using endoscopes, or more recently, by ingestible devices that are swallowed. Direct visualization of the GI mucosa is useful to detect subtle mucosal alterations, as in inflammatory bowel diseases, as well as any flat or sessile lesions.

As discussed herein, in some embodiments, the method of treating a disease of the gastrointestinal tract comprises administering to the subject a pharmaceutical formulation. In some embodiments, the pharmaceutical formulation is delivered proximate to one or more sites of disease by one of various methods. For example, the pharmaceutical formulation may be delivered via a medical device such as an endoscope, ingestible device, or reservoir; the pharmaceutical formulation may be a solid dosage form, a liquid dosage form, a suppository or an enema for rectal administration with different types of release such as sustained or delayed release.

In one embodiment, the pharmaceutical formulation is delivered proximate to one or more sites of disease by an endoscope, ingestible device, or reservoir containing the pharmaceutical formulation.

The technology behind standard colonoscopy consists of a long, semi-rigid insertion tube with a steerable tip (stiff if compared to the colon), which is pushed by the physician from the outside. However, invasiveness, patient discomfort, fear of pain, and -more often than not- the need for conscious sedation limit the take-up of screening colonoscopy. Diagnosis and treatment in the GI tract are dominated by the use of flexible endoscopes. A few large companies, namely Olympus Medical Systems Co. (Tokyo, Japan), Pentax Medical Co. (Montvale, NJ, USA), Fujinon, Inc. (Wayne, NJ, USA) and Karl Storz GmbH & Co. KG (Tuttlingen, Germany), cover the majority of the market in flexible GI endoscopy.

Endoscopes may comprise a catheter. As an example, the catheter may be a spray catheter. As an example, a spray catheter may be used to deliver dyes for diagnostic purposes. As an example, a spray catheter may be used to deliver a therapeutic agent at the site of disease in the GI tract. For example, the Olympus PW-205V is a ready-to-use spray catheter that enables efficient spraying for maximal differentiation of tissue structures during endoscopy, but may also be used to deliver drugs diseased tissue.

In a review of robotic endoscopic capsules, Journal of Micro-Bio Robotics 11.1-4 (2016): 1-18, Ciuti et al. state that progress in micro-electromechanical systems (MEMS) technologies have led to the development of new endoscopic capsules with enhanced diagnostic capabilities, in addition to traditional visualization of mucosa (embedding, e.g. pressure, pH, blood detection and temperature sensors).
Endoscopic capsules, however, do not have the capability of accurately locating a site autonomously. They require doctor oversight over a period of hours in order to manually determine the location. Autonomous ingestible devices are advantageous in that regard.

Ingestible devices are also advantageous over spray catheters in that they are less invasive, thereby allowing for regular dosing more frequently than spray catheters. Another advantage of ingestible devices is the greater ease with which they can access, relative to a catheter, certain sections of the GI tract such as the ascending colon, the cecum, and all portions of the small intestine.

Methods and Mechanisms for Localization

In addition to, or as an alternative, to directly visualizing the GI tract, one or more different mechanisms can be used to determine the location of an ingestible device within the GI tract. Various implementations may be used for localization of ingestible devices within the GI tract.

For example, certain implementations can include one or more electromagnetic sensor coils, magnetic fields, electromagnetic waves, electric potential values, ultrasound positioning systems, gamma scintigraphy techniques or other radio-tracker technology have been described by others. Alternatively, imaging can be used to localize, for example, using anatomical landmarks or more complex algorithms for 3D reconstruction based on multiple images. Other technologies rely on radio frequency, which relies on sensors placed externally on the body to receive the strength of signals emitted by the capsule. Ingestible devices may also be localized based on reflected light in the medium surrounding the device; pH; temperature; time following ingestion; and/or acoustic signals. In some embodiments, ingestible devices may be localized based solely on reflected light in the medium surrounding the device.

The disclosure provides an ingestible device, as well as related systems and methods that provide for determining the position of the ingestible device within the GI tract of a subject with very high accuracy. In some embodiments, the ingestible device can autonomously determine its position within the GI tract of the subject. In some embodiments, the ingestible device can autonomously determine its position within the GI tract of the subject based on reflected light in the medium surrounding the device; pH; temperature; time following ingestion; and/or acoustic signals. In some embodiments, the
ingestible device can autonomously determine its position within the GI tract based solely on reflected light in the medium surrounding the device.

Typically, the ingestible device includes one or more processing devices, and one or more machine readable hardware storage devices. In some embodiments, the one or more machine readable hardware storage devices store instructions that are executable by the one or more processing devices to determine the location of the ingestible device in a portion of a GI tract of the subject. In certain embodiments, the one or more machine readable hardware storage devices store instructions that are executable by the one or more processing devices to transmit data to an external device (e.g., a base station external to the subject, such as a base station carried on an article worn by the subject) capable of implementing the data to determine the location of the device within the GI tract of the subject.

In some embodiments, the location of the ingestible device within the GI tract of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. In some embodiments, the location of the ingestible device within the GI tract of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. In such embodiments, the portion of the GI tract of the subject can include, for example, the esophagus, the stomach, duodenum, the jejunum, and/or the terminal ileum, cecum and colon. An exemplary and non-limiting embodiment is provided below in Example 14.

In certain embodiments, the location of the ingestible device within the esophagus of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.

In some embodiments, the location of the ingestible device within the stomach of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.

In certain embodiments, the location of the ingestible device within the duodenum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.

In some embodiments, the location of the ingestible device within the jejunum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at
least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.

In certain embodiments, the location of the ingestible device within the terminal ileum, cecum and colon of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In some embodiments, the location of the ingestible device within the cecum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14. In such embodiments, the portion of the portion of the GI tract of the subject can include, for example, the esophagus, the stomach, duodenum, the jejunum, and/or the terminal ileum, cecum and colon.

In certain embodiments, the location of the ingestible device within the esophagus of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In some embodiments, the location of the ingestible device within the stomach of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In certain embodiments, the location of the ingestible device within the duodenum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In some embodiments, the location of the ingestible device within the jejunum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In certain embodiments, the location of the ingestible device within the terminal ileum, cecum and colon of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

In some embodiments, the location of the ingestible device within the cecum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.

As used herein, the term "reflectance" refers to a value derived from light emitted by the device, reflected back to the device, and received by a detector in or on the device. For example, in some embodiments this refers to light emitted by the device, wherein a portion of
the light is reflected by a surface external to the device, and the light is received by a detector located in or on the device.

As used herein, the term "illumination" refers to any electromagnetic emission. In some embodiments, an illumination may be within the range of Infrared Light (IR), the visible spectrum and ultraviolet light (UV), and an illumination may have a majority of its power centered at a particular wavelength in the range of 100nm to 1000nm. In some embodiments, it may be advantageous to use an illumination with a majority of its power limited to one of the infrared (750nm-1000nm), red (600nm-750nm), green (495nm-600nm), blue (400nm-495nm), or ultraviolet (100nm-400nm) spectrums. In some embodiments a plurality of illuminations with different wavelengths may be used. For illustrative purposes, the embodiments described herein may refer to the use of green or blue spectrums of light. However, it is understood that these embodiments may use any suitable light having a wavelength that is substantially or approximately within the green or blue spectra defined above, and the localization systems and methods described herein may use any suitable spectra of light.

Referring now to FIG. 1, shown therein is a view of an example embodiment of an ingestible device 100, which may be used to identify a location within a gastrointestinal (GI) tract. In some embodiments, ingestible device 100 may be configured to autonomously determine whether it is located in the stomach, a particular portion of the small intestine such as a duodenum, jejunum, or ileum, or the large intestine by utilizing sensors operating with different wavelengths of light. Additionally, ingestible device 100 may be configured to autonomously determine whether it is located within certain portions of the small intestine or large intestine, such as the duodenum, the jejunum, the cecum, or the colon.

Ingestible device 100 may have a housing 102 shaped similar to a pill or capsule. The housing 102 of ingestible device 100 may have a first end portion 104, and a second end portion 106. The first end portion 104 may include a first wall portion 108, and second end portion 106 may include a second wall portion 110. In some embodiments, first end portion 104 and second end portion 106 of ingestible device 100 may be manufactured separately, and may be affixed together by a connecting portion 112.

In some embodiments, ingestible device 100 may include an optically transparent window 114. Optically transparent window 114 may be transparent to various types of illumination in the visible spectrum, infrared spectrum, or ultraviolet light spectrum, and ingestible device 100 may have various sensors and illuminators located within the housing.
102, and behind the transparent window 114. This may allow ingestible device 100 to be configured to transmit illumination at different wavelengths through transparent window 114 to an environment external to housing 102 of ingestible device 100, and to detect a reflectance from a portion of the illumination that is reflected back through transparent window 114 from the environment external to housing 102. Ingestible device 100 may then use the detected level of reflectance in order to determine a location of ingestible device 100 within a GI tract. In some embodiments, optically transparent window 114 may be of any shape and size, and may wrap around the circumference of ingestible device 100. In this case, ingestible device 100 may have multiple sets of sensors and illuminators positioned at different locations azimuthally behind window 114.

In some embodiments, ingestible device 100 may optionally include an opening 116 in the second wall portion 110. In some embodiments, the second wall portion 110 may be configured to rotate around the longitudinal axis of ingestible device 100 (e.g., by means of a suitable motor or other actuator housed within ingestible device 100). This may allow ingestible device 100 to obtain a fluid sample from the GI tract, or release a substance into the GI tract, through opening 116.

FIG. 2 shows an exploded view of ingestible device 100. In some embodiments, ingestible device 100 may optionally include a rotation assembly 118. Optional rotation assembly 118 may include a motor 118-1 driven by a microcontroller (e.g., a microcontroller coupled to printed circuit board 120), a rotation position sensing ring 118-2, and a storage sub-unit 118-3 configured to fit snugly within the second end portion 104. In some embodiments, rotation assembly 118 may cause second end portion 104, and opening 116, to rotate relative to the storage sub-unit 118-3. In some embodiments, there may be cavities on the side of storage sub-unit 118-3 that function as storage chambers. When the opening 116 is aligned with a cavity on the side of the storage sub-unit 118-3, the cavity on the side of the storage sub-unit 118-3 may be exposed to the environment external to the housing 102 of ingestible device 100. In some embodiments, the storage sub-unit 118-3 may be loaded with a medicament or other substance prior to the ingestible device 100 being administered to a subject. In this case, the medicament or other substance may be released from the ingestible device 100 by aligning opening 116 with the cavity within storage sub-unit 118-3. In some embodiments, the storage sub-unit 118-3 may be configured to hold a fluid sample obtained from the GI tract. For example, ingestible device 100 may be configured to align opening 116 with the cavity within storage sub-unit 118-3, thus allowing a fluid sample from the GI
tract to enter the cavity within storage sub-unit 118-3. Afterwards, ingestible device 100 may be configured to seal the fluid sample within storage sub-unit 118-3 by further rotating the second end portion 106 relative to storage sub-unit 118-3. In some embodiments, storage sub-unit 118-3 may also contain a hydrophilic sponge, which may enable ingestible device 100 to better draw certain types of fluid samples into ingestible device 100. In some embodiments, ingestible device 100 may be configured to either obtain a sample from within the GI tract, or to release a substance into the GI tract, in response to determining that ingestible device 100 has reached a predetermined location within the GI tract. For example, ingestible device 100 may be configured to obtain a fluid sample from the GI tract in response to determining that the ingestible device has entered the jejunum portion of the small intestine (e.g., as determined by process 900 discussed in relation to FIG. 9). Other ingestible devices capable of obtaining samples or releasing substances are discussed in commonly-assigned PCT Application No. PCT/CA2013/000133 filed February 15, 2013, commonly-assigned U.S. Provisional Application No. 62/385,553, and commonly-assigned U.S. Provisional Application No. 62/376,688, which each are hereby incorporated by reference herein in their entirety. It is understood that any suitable method of obtaining samples or releasing substances may be incorporated into some of the embodiments of the ingestible devices disclosed herein, and that the systems and methods for determining a location of an ingestible device may be incorporated into any suitable type of ingestible device.

Ingestible device 100 may include a printed circuit board (PCB) 120, and a battery 128 configured to power PCB 120. PCB 120 may include a programmable microcontroller, and control and memory circuitry for holding and executing firmware or software for coordinating the operation of ingestible device 100, and the various components of ingestible device 100. For example, PCB 120 may include memory circuitry for storing data, such as data sets of measurements collected by sensing sub-unit 126, or instructions to be executed by control circuitry to implement a localization process, such as, for example, one or more of the processes, discussed herein, including those discussed below in connection with one or more of the associated flow charts. PCB 120 may include a detector 122 and an illuminator 124, which together form sensing sub-unit 126. In some embodiments, control circuitry within PCB 120 may include processing units, communication circuitry, or any other suitable type of circuitry for operating ingestible device 100. For illustrative purposes, only a single detector 122 and a single illuminator 124 forming a single sensing sub-unit 126 are shown.
However, it is understood that in some embodiments there may be multiple sensing sub-units, each with a separate illuminator and detector, within ingestible device 100. For example, there may be several sensing sub-units spaced azimuthally around the circumference of the PCB 120, which may enable ingestible device 100 to transmit illumination and detect reflectances or ambient light in all directions around the circumference of the device. In some embodiments, sensing sub-unit 126 may be configured to generate an illumination using illuminator 124, which is directed through the window 114 in a radial direction away from ingestible device 100. This illumination may reflect off of the environment external to ingestible device 100, and the reflected light coming back into ingestible device 100 through window 114 may be detected as a reflectance by detector 122.

In some embodiments, window 114 may be of any suitable shape and size. For example, window 114 may extend around a full circumference of ingestible device 100. In some embodiments there may be a plurality of sensing sub-units (e.g., similar to sensing sub-unit 126) located at different positions behind the window. For example, three sensing sub-units may be positioned behind the window at the same longitudinal location, but spaced 120 degrees apart azimuthally. This may enable ingestible device 100 to transmit illuminations in all directions radially around ingestible device 100, and to measure each of the corresponding reflectances.

In some embodiments, illuminator 124 may be capable of producing illumination at a variety of different wavelengths in the ultraviolet, infrared, or visible spectrum. For example, illuminator 124 may be implemented by using Red-Green-Blue Light-Emitting diode packages (RGB-LED). These types of RGB-LED packages are able to transmit red, blue, or green illumination, or combinations of red, blue, or green illumination. Similarly, detector 122 may be configured to sense reflected light of the same wavelengths as the illumination produced by illuminator 124. For example, if illuminator 124 is configured to produce red, blue, or green illumination, detector 122 may be configured to detect different reflectances produced by red, blue, or green illumination (e.g., through the use of an appropriately configured photodiode). These detected reflectances may be stored by ingestible device 100 (e.g., within memory circuitry of PCB 120), and may then be used by ingestible device 100 in determining a location of ingestible device 100 within the GI tract (e.g., through the use of process 500 (FIG. 5), process 600 (FIG. 6), or process 900 (FIG. 9)).

It is understood that ingestible device 100 is intended to be illustrative, and not limiting. It will be understood that modifications to the general shape and structure of the
various devices and mechanisms described in relation to FIG. 1 and FIG. 2 may be made
without significantly changing the functions and operations of the devices and mechanisms.
For example, ingestible device 100 may have a housing formed from a single piece of molded
plastic, rather than being divided into a first end portion 104 and a second end portion 106.

As an alternate example, the location of window 114 within ingestible device 100 may be
moved to some other location, such as the center of ingestible device 100, or to one of the
ends of ingestible device 100. Moreover, the systems and methods discussed in relation to
FIGS. 1-10 may be implemented on any suitable type of ingestible device, provided that the
ingestible device is capable of detecting reflectances or levels of illumination in some
capacity. For example, in some embodiments ingestible device 100 may be modified to
replace detector 122 with an image sensor, and the ingestible device may be configured to
measure relative levels of red, blue, or green light by decomposing a recorded image into its
individual spectral components. Other examples of ingestible devices with localization
capabilities, which may be utilized in order to implement the systems and methods discussed
in relation to FIG. 1-11, are discussed in co-owned PCT Application No.
PCT/US20 15/052500 filed on September 25, 2015, which is hereby incorporated by
reference herein in its entirety. Furthermore, it should be noted that the features and
limitations described in any one embodiment may be applied to any other embodiment
herein, and the descriptions and examples relating to one embodiment may be combined with
any other embodiment in a suitable manner.

FIG. 3 is a diagram of an ingestible device during an example transit through a
gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure.
Ingestible device 300 may include any portion of any other ingestible device discussed in this
disclosure (e.g., ingestible device 100 (FIG. 1)), and may be any suitable type of ingestible
device with localization capabilities. For example, ingestible device 300 may be one
embodiment of ingestible device 100 without the optional opening 116 (FIG. 1) or optional
rotation assembly 118 (FIG. 2). In some embodiments, ingestible device 300 may be
ingested by a subject, and as ingestible device 300 traverses the GI tract, ingestible device
300 may be configured to determine its location within the GI tract. For example, the
movement of ingestible device 300 and the amount of light detected by ingestible device 300
(e.g., via detector 122 (FIG. 2)) may vary substantially depending on the location of
ingestible device 300 within the GI tract, and ingestible device 300 may be configured to use
this information to determine a location of ingestible device 300 within the GI tract. For
instance, ingestible device 300 may detect ambient light from the surrounding environment,
or reflectances based on illumination generated by ingestible device 300 (e.g., generated by illuminator 124 (FIG. 1)), and use this information to determine a location of ingestible device 300 through processes, such as described herein. The current location of ingestible device 300, and the time that ingestible device 300 detected each transition between the various portions of the GI tract, may then be stored by ingestible device 300 (e.g., in memory circuitry of PCB 120 (FIG. 2)), and may be used for any suitable purpose.

Shortly after ingestible device 300 is ingested, ingestible device will traverse the esophagus 302, which may connect the subject's mouth to a stomach 306. In some embodiments, ingestible device 300 may be configured to determine that it has entered the esophagus portion GI tract by measuring the amount and type of light (e.g., via detector 122 (FIG. 2)) in the environment surrounding the ingestible device 300. For instance, ingestible device 300 may detect higher levels of light in the visible spectrum (e.g., via detector 122 (FIG. 2)) while outside the subject's body, as compared to the levels of light detected while within the GI tract. In some embodiments, ingestible device 300 may have previously stored data (e.g., on memory circuitry of PCB 120 (FIG. 2)) indicating a typical level of light detected when outside of the body, and the ingestible device 300 may be configured to determine that entry to the body has occurred when a detected level of light (e.g., detected via detector 122 (FIG. 2)) has been reduced beyond a threshold level (e.g., at least a 20-30% reduction) for a sufficient period of time (e.g., 5.0 seconds).

In some embodiments, ingestible device 300 may be configured to detect a transition from esophagus 302 to stomach 306 by passing through sphincter 304. In some embodiments, ingestible device 300 may be configured to determine whether it has entered stomach 306 based at least in part on a plurality of parameters, such as but not limited to the use of light or temperature measurements (e.g., via detector 122 (FIG. 2) or via a thermometer within ingestible device 300), pH measurements (e.g., via a pH meter within ingestible device 300), time measurements (e.g., as detected through the use of clock circuitry included within PCB 120 (FIG. 2)), or any other suitable information. For instance, ingestible device 300 may be configured to determine that ingestible device 300 has entered stomach 306 after detecting that a measured temperature of ingestible device 300 exceeds 31 degrees Celsius. Additionally or alternately, ingestible device 300 may be configured to automatically determine it has entered stomach 306 after one minute (or another pre-set time duration parameter, 80 seconds, 90 seconds, etc.) has elapsed from the time that ingestible
device 300 was ingested, or one minute (or another pre-set time duration parameter, 80 seconds, 90 seconds, etc.) from the time that ingestible device 300 detected that it has entered the GI tract.

Stomach 306 is a relatively large, open, and cavernous organ, and therefore ingestible device 300 may have a relatively large range of motion. By comparison, the motion of ingestible device 300 is relatively restricted within the tube-like structure of the duodenum 310, the jejunum 314, and the ileum (not shown), all of which collectively form the small intestine. Additionally, the interior of stomach 306 has distinct optical properties from duodenum 310 and jejunum 314, which may enable ingestible device 300 to detect a transition from stomach 306 to duodenum 310 through the appropriate use of measured reflectances (e.g., through the use of reflectances measured by detector 122 (FIG. 2)), as used in conjunction with process 600 (FIG. 6).

In some embodiments, ingestible device 300 may be configured to detect a pyloric transition from stomach 306 to duodenum 310 through the pylorus 308. For instance, in some embodiments, ingestible device 300 may be configured to periodically generate illumination in the green and blue wavelengths (e.g., via illuminator 124 (FIG. 2)), and measure the resulting reflectances (e.g., via detector 122 (FIG. 2)). Ingestible device 300 may be configured to then use a ratio of the detected green reflectance to the detected blue reflectance to determine whether ingestible device 300 is located within the stomach 306, or duodenum 310 (e.g., via process 600 (FIG. 6)). In turn, this may enable ingestible device 300 to detect a pyloric transition from stomach 306 to duodenum 310, an example of which is discussed in relation to FIG. 6.

Similarly, in some embodiments, ingestible device 300 may be configured to detect a reverse pyloric transition from duodenum 310 to stomach 306. Ingestible device 300 will typically transition naturally from stomach 306 to duodenum 310, and onward to jejunum 314 and the remainder of the GI tract. However, similar to other ingested substances, ingestible device 300 may occasionally transition from duodenum 310 back to stomach 306 as a result of motion of the subject, or due to the natural behavior of the organs with the GI tract. To accommodate this possibility, ingestible device 300 may be configured to continue to periodically generate illumination in the green and blue wavelengths (e.g., via illuminator 124 (FIG. 2)), and measure the resulting reflectances (e.g., via detector 122 (FIG. 2)) to detect whether or not ingestible device 300 has returned to stomach 306. An exemplary detection process is described in additional detail in relation to FIG. 6.
After entering duodenum 310, ingestible device 300 may be configured to detect a transition to the jejunum 314 through the duodenjejuninal flexure 312. For example, ingestible device 300 may be configured to use reflectances to detect peristaltic waves within the jejunum 314, caused by the contraction of the smooth muscle tissue lining the walls of the jejunum 314. In particular, ingestible device 300 may be configured to begin periodically transmitting illumination (and measuring the resulting reflectances (e.g., via detector 122 and illuminator 124 of sensing sub-unit 126 (FIG. 2)) at a sufficiently high frequency in order to detect muscle contractions within the jejunum 314. Ingestible device 300 may then determine that it has entered the jejunum 314 in response to having detected either a first muscle contraction, or a predetermined number of muscle contractions (e.g., after having detected three muscle contractions in sequence). The interaction of ingestible device 300 with the walls of jejunum 314 is also discussed in relation to FIG. 4, and an example of this detection process is described in additional detail in relation to FIG. 9.

FIG. 4 is a diagram of an ingestible device during an example transit through a jejunum, in accordance with some embodiments of the disclosure. Diagrams 410, 420, 430, and 440 depict ingestible device 400 as it traverses through a jejunum (e.g., jejunum 314), and how ingestible device 400 interacts with peristaltic waves formed by walls 406A and 406B (collectively, walls 406) of the jejunum. In some implementations, ingestible device 400 may include any portion of any other ingestible device discussed in this disclosure (e.g., ingestible device 100 (FIG. 1) or ingestible device 300 (FIG. 3)), and may be any suitable type of ingestible device with localization capabilities. For example, ingestible device 400 may be substantially similar to the ingestible device 300 (FIG. 3) or ingestible device 100 (FIG. 1), with window 404 being the same as window 114 (FIG. 1), and sensing sub-unit 402 being the same as sensing sub-unit 126 (FIG. 2).

Diagram 410 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum are relaxed. In some embodiments, the confined tube-like structure of the jejunum naturally causes ingestible device 400 to be oriented longitudinally along the length of the jejunum, with window 404 facing walls 406. In this orientation, ingestible device 400 may use sensing sub-unit 402 to generate illumination (e.g., via illuminator 124 (FIG. 2)) oriented towards walls 406, and to detect the resulting reflectances (e.g., via detector 122 (FIG. 2)) from the portion of the illumination reflected off of walls 406 and back through window 404. In some embodiments, ingestible device 400 may be configured to use sensing sub-unit 402 to generate illumination and measure the resulting reflectance with sufficient
frequency to detect peristaltic waves within the jejunum. For instance, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz. Therefore, the ingestible device 400 may be configured to generate illumination and measure the resulting reflectance at least once every 2.5 seconds (i.e., the minimum rate necessary to detect a 0.2 Hz signal), and preferably at a higher rate, such as once every 0.5 seconds, which may improve the overall reliability of the detection process due to more data points being available. It is understood that the ingestible device 400 need not gather measurements at precise intervals, and in some embodiments the ingestible device 400 may be adapted to analyze data gathered at more irregular intervals, provided that there are still a sufficient number of appropriately spaced data points to detect 0.1 Hz to 0.2 Hz signals.

Diagram 420 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum begin to contract and form a peristaltic wave. Diagram 420 depicts contracting portion 408A of wall 406A and contracting portion 408B of wall 406B (collectively, contracting portion 408 of wall 406) that form a peristaltic wave within the jejunum. The peristaltic wave proceeds along the length of the jejunum as different portions of wall 406 contract and relax, causing it to appear as if contracting portions 408 of wall 406 proceed along the length of the jejunum (i.e., as depicted by contracting portions 408 proceeding from left to right in diagrams 410-430). While in this position, ingestible device 400 may detect a similar level of reflectance (e.g., through the use of illuminator 124 and detector 122 of sensing sub-unit 126 (FIG. 2)) as detected when there is no peristaltic wave occurring (e.g., as detected when ingestible device 400 is in the position indicated in diagram 410).

Diagram 430 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum continue to contract, squeezing around ingestible device 400. As the peristaltic wave proceeds along the length of the jejunum, contracting portions 408 of wall 406 may squeeze tightly around ingestible device 400, bringing the inner surface of wall 406 into contact with window 404. While in this position, ingestible device 400 may detect a change in a reflectance detected as a result of illumination produced by sensing sub-unit 402. The absolute value of the change in the measured reflectance may depend on several factors, such as the optical properties of the window 404, the spectral components of the illumination, and the optical properties of the walls 406. However, ingestible device 400 may be configured to store a data set with the reflectance values over time, and search for periodic changes in the data set consistent with the frequency of the peristaltic waves (e.g., by analyzing the data set in the frequency domain, and searching for peaks between 0.1 Hz to 0.2 Hz). This may
enable ingestible device 400 to detect muscle contractions due to peristaltic waves without
foreknowledge of the exact changes in reflectance signal amplitude that may occur as a result
of detecting the muscle contractions of the peristaltic wave. An example procedure for
detecting muscle contractions is discussed further in relation to FIG. 9, and an example of a
reflectance data set gathered while ingestible device 400 is located within the jejunum is
discussed in relation to FIG. 10.

Diagram 440 depicts ingestible device 400 within the jejunum, when the peristaltic
wave has moved past ingestible device 400. Diagram 440 depicts contracting portions 408
that form the peristaltic wave within the jejunum having moved past the end of ingestible
device 400. The peristaltic wave proceeds along the length of the jejunum as different
portions of wall 406 contract and relax, causing it to appear as if contracting portions 408 of
wall 406 proceed along the length of the jejunum (i.e., as depicted by contracting portions
408 proceeding from left to right in diagrams 410-430). While in this position, ingestible
device 400 may detect a similar level of reflectance (e.g., through the use of illuminator 124
and detector 122 of sensing sub-unit 126 (FIG. 2)) as detected when there is no peristaltic
wave occurring (e.g., as detected when ingestible device 400 is in the position indicated in
diagram 410, or diagram 420).

Depending on the species of the subject, peristaltic waves may occur with relatively
predictable regularity. After the peristaltic wave has passed over ingestible device 400 (e.g.,
as depicted in diagram 440), the walls 406 of the jejunum may relax again (e.g., as depicted
in diagram 410), until the next peristaltic wave begins to form. In some embodiments,
ingestible device 400 may be configured to continue to gather reflectance value data while it
is within the GI tract, and may store a data set with the reflectance values over time. This
may allow ingestible device 400 to detect each of the muscle contractions as the peristaltic
wave passes over ingestible device 400 (e.g., as depicted in diagram 430), and may enable
ingestible device 400 to both count the number of muscle contractions that occur, and to
determine that a current location of the ingestible device 400 is within the jejunum. For
example, ingestible device 400 may be configured to monitor for possible muscle
contractions while is inside either the stomach or the duodenum, and may determine that
ingestible device 400 has moved to the jejunum in response to detecting a muscle contraction
consistent with a peristaltic wave.

FIG. 5 is a flowchart illustrating some aspects of a localization process used by the
ingestible device. Although FIG. 5 may be described in connection with the ingestible device
100 for illustrative purposes, this is not intended to be limiting, and either portions or the entirety of the localization procedure 500 described in FIG. 5 may be applied to any device discussed in this application (e.g., the ingestible devices 100, 300, and 400), and any of the ingestible devices may be used to perform one or more parts of the process described in FIG. 5. Furthermore, the features of FIG. 5 may be combined with any other systems, methods or processes described in this application. For example, portions of the process in FIG. 5 may be integrated into or combined with the pyloric transition detection procedure described by FIG. 6, or the jejunum detection process described by FIG. 9.

At 502, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements (e.g., through detector 122 (FIG. 2)) of ambient light. For example, ingestible device 100 may be configured to periodically measure (e.g., through detector 122 (FIG. 2)) the level of ambient light in the environment surrounding ingestible device 100. In some embodiments, the type of ambient light being measured may depend on the configuration of detector 122 within ingestible device 100. For example, if detector 122 is configured to measure red, green, and blue wavelengths of light, ingestible device 100 may be configured to measure the ambient amount of red, green, and blue light from the surrounding environment. In some embodiments, the amount of ambient light measured by ingestible device 100 will be larger in the area external to the body (e.g., a well-lit room where ingestible device 100 is being administered to a subject) and in the oral cavity of the subject, as compared to the ambient level of light measured by ingestible device 100 when inside of an esophagus, stomach, or other portion of the GI tract (e.g., esophagus 302, stomach 306, duodenum 310, or jejunum 314 (FIG. 3)).

At 504, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the ingestible device has detected entry into the GI tract. For example, ingestible device 100 may be configured to determine when the most recent measurement of ambient light (e.g., the measurement gathered at 502) indicates that the ingestible device has entered the GI tract. For instance, the first time that ingestible device 100 gatherers a measurement of ambient light at 502, ingestible device 100 may store that measurement (e.g., via storage circuitry within PCB 120 (FIG. 2)) as a typical level of ambient light external to the body. Ingestible device 100 may be configured to then compare the most recent measurement of ambient light to the typical level of ambient light external to the body (e.g., via control circuitry within PCB 120 (FIG. 2)), and determine that ingestible device 100 has entered the GI tract when the most recent
measurement of ambient light is substantially smaller than the typical level of ambient light external to the body. For example, ingestible device 100 may be configured to detect that it has entered the GI tract in response to determining that the most recent measurement of ambient light is less than or equal to 20% of the typical level of ambient light external to the body. If ingestible device 100 determines that it has detected entry into the GI tract (e.g., that ingestible device 100 has entered at least the esophagus 302 (FIG. 3)), process 500 proceeds to 506. Alternately, if ingestible device 100 determines that it has not detected entry into the GI tract (e.g., as a result of the most recent measurement being similar to the typical level of ambient light external to the body), process 500 proceeds back to 502 where the ingestible device 100 gathers further measurements. For instance, ingestible device 100 may be configured to wait a predetermined amount of time (e.g., five seconds, ten seconds, etc.), and then gather another measurement of the level of ambient light from the environment surrounding ingestible device 100.

At 506, the ingestible device (e.g., ingestible device 100, 300, or 400) waits for a transition from the esophagus to the stomach (e.g., from esophagus 302 to stomach 306 (FIG. 3)). For example, ingestible device 100 may be configured to determine that it has entered the stomach (e.g., stomach 306 (FIG. 3)) after waiting a predetermined period of time after having entered the GI tract. For instance, a typical esophageal transit time in a human patient may be on the order of 15-30 seconds. In this case, after having detected that ingestible device 100 has entered the GI tract at 504 (i.e., after detecting that ingestible device 100 has reached at least esophagus 302 (FIG. 3)), ingestible device 100 may be configured to wait one minute, or a similar amount of time longer than the typical esophageal transit time (e.g., ninety-seconds), before automatically determining that ingestible device 100 has entered at least the stomach (e.g., stomach 306 (FIG. 3)).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also determine it has entered the stomach based on measurements of pH or temperature. For example, ingestible device 100 may be configured to determine that it has entered the stomach if a temperature of ingestible device has increased to at least 31 degrees Celsius (i.e., consistent with the temperature inside the stomach), or if a measured pH of the environment surrounding ingestible device 100 is sufficiently acidic (i.e., consistent with the acidic nature of gastric juices that may be found inside the stomach).

At 508, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating the ingestible device has entered the stomach (e.g., stomach 306 (FIG. 3)). For
example, after having waited a sufficient amount of time at 506, ingestible device 100 may store data (e.g., within storage circuitry of PCB 120 (FIG. 2)) indicative of ingestible device 100 having entered at least the stomach. Once ingestible device 100 reaches at least the stomach, process 500 proceeds to 510 where ingestible device 100 may be configured to gather data to detect entry into the duodenum (e.g., duodenum 310 (FIG. 3)).

In some embodiments, process 500 may also simultaneously proceed from 508 to 520, where ingestible device 100 may be configured to gather data in order to detect muscle contractions and detect entry into the jejunum (e.g., jejunum 314 (FIG. 3)). In some embodiments, ingestible device 100 may be configured to simultaneously monitor for entry into the duodenum at 516-518, as well as detect for entry into the jejunum at 520-524. This may allow ingestible device 100 to determine when it has entered the jejunum (e.g., as a result of detecting muscle contractions), even when it fails to first detect entry into the duodenum (e.g., as a result of very quick transit times of the ingestible device through the duodenum).

At 510, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements of green and blue reflectance levels (e.g., through the use of illuminator 124 and detector 122 of sensing sub-unit 126 (FIG. 2)) while in the stomach (e.g., stomach 306 (FIG. 3)). For example, ingestible device 100 may be configured to periodically gather measurements of green and blue reflectance levels while in the stomach. For instance, ingestible device 100 may be configured to transmit a green illumination and a blue illumination (e.g., via illuminator 124 (FIG. 2)) every five to fifteen seconds, and measure the resulting reflectance (e.g., via detector 122 (FIG. 2)). Every time that ingestible device 100 gathers a new set of measurements, the measurements may be added to a stored data set (e.g., stored within memory circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may then use this data set to determine whether or not ingestible device 100 is still within a stomach (e.g., stomach 306 (FIG. 3)), or a duodenum (e.g., duodenum 310 (FIG. 3)).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to detect a first reflectance based on generating an illumination of a first wavelength in approximately the green spectrum of light (between 495-600 nm), and detecting a second reflectance based on generating an illumination of the second wavelength in approximately the blue spectrum of light (between 400-495 nm). In some embodiments, the ingestible device may ensure that the illumination in the green spectrum and the illumination in the blue spectrum have wavelengths separated by at least 50 nm. This may
enable ingestible device 100 to sufficiently distinguish between the two wavelengths when
detecting the reflectances (e.g., via detector 122 (FIG. 2)). It is understood that the separation
of 50 nm is intended to be illustrative, and not limiting, and depending on the accuracy of the
detectors within ingestible device 100, smaller separations may be possible to be used.

At 512, the ingestible device (e.g., ingestible device 100, 300, or 400) determines
(e.g., using control circuitry within PCB 120 (FIG. 2)) whether the ingestible device has
detected a transition from the stomach (e.g., stomach 306 (FIG. 3)) to a duodenum (e.g.,
duodenum 310 (FIG. 3)) based on a ratio of green and blue (G/B) reflectance levels. For
example, ingestible device 100 may obtain (e.g., from memory circuitry of PCB 120 (FIG.
2)) a data set containing historical data for the respective ratio of the green reflectance to
the blue reflectance as measured at a respective time. Generally speaking, a duodenum (e.g.,
duodenum 310 (FIG. 3)) of a human subject reflects a higher ratio of green light to blue light,
as compared to the ratio of green light to blue light that is reflected by a stomach (e.g.,
stomach 306 (FIG. 3)). Based on this, ingestible device 100 may be configured to take a first
set of ratios from the data set, representing the result of recent measurements, and compare
them to a second set of ratios from the data set, representing the results of past measurements.
When the ingestible device 100 determines that the mean value of the first set of ratios is
substantially larger than the mean value of the second set of ratios (i.e., that the ratio of
reflected green light to reflected blue light has increased), the ingestible device 100 may
determine that it has entered the duodenum (e.g., duodenum 310 (FIG. 3)) from the stomach
(e.g., stomach 306 (FIG. 3)). If the ingestible device 100 detects a transition from the
stomach (e.g., stomach 306 (FIG. 3)) to a duodenum (e.g., duodenum 310 (FIG. 3)), process
500 proceeds to 514, where ingestible device 100 stores data indicating that the ingestible
device 100 has entered the duodenum (e.g., duodenum 310 (FIG. 3)). Alternatively, if the
ingestible device determines that the ingestible device has not transitioned from the stomach
(e.g., stomach 306 (FIG. 3)) to the duodenum (e.g., duodenum 310 (FIG. 3)), process 500
proceeds back to 510 to gather more measurements of green and blue reflectance levels while
still in the stomach (e.g., stomach 306 (FIG. 3)). An example procedure for using
measurements of green and blue reflectances to monitor for transitions between the stomach
and the duodenum is discussed in greater detail in relation to FIG. 6.

In some embodiments, the first time that ingestible device 100 detects a transition
from the stomach (e.g., stomach 306 (FIG. 3)) to the duodenum (e.g., duodenum 310 (FIG.
3)), ingestible device 100 may be configured to take a mean of the second set of data, (e.g.,
the set of data previously recorded while in stomach 306 (FIG. 3)) and store this as a typical ratio of green light to blue light detected within the stomach (e.g., stomach 306 (FIG. 3)) (e.g., within memory circuitry of PCB 120 (FIG. 2)). This stored information may later be used by ingestible device 100 to determine when ingestible device 100 re-enters the stomach (e.g., stomach 306 (FIG. 3)) from the duodenum (e.g., duodenum 310 (FIG. 3)) as a result of a reverse pyloric transition.

At 514, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating that the ingestible device has entered the duodenum (e.g., duodenum 310 (FIG. 3)). For example, ingestible device 100 may store a flag within local memory (e.g., memory circuitry of PCB 120) indicating that the ingestible device 100 is currently in the duodenum. In some embodiments, the ingestible device 100 may also store a timestamp indicating the time when ingestible device 100 entered the duodenum. Once ingestible device 100 reaches the duodenum, process 500 proceeds to 520 where ingestible device 100 may be configured to gather data in order to detect muscle contractions and detect entry into the jejunum (e.g., jejunum 314 (FIG. 3)). Process 500 also proceeds from 514 to 516, where ingestible device 100 may be configured to gather data additional data in order to detect re-entry into the stomach (e.g., stomach 306 (FIG. 3)) from the duodenum (e.g., duodenum 310 (FIG. 3)).

At 516, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements (e.g., via sensing sub-unit 126 (FIG. 2)) of green and blue reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)). For example, ingestible device 100 may be configured to periodically gather measurements (e.g., via sensing sub-unit 126 (FIG. 2)) of green and blue reflectance levels while in the duodenum, similar to the measurements made at 510 while in the stomach. For instance, ingestible device 100 may be configured to transmit a green illumination and a blue illumination (e.g., via illuminator 124 (FIG. 2)) every five to fifteen seconds, and measure the resulting reflectance (e.g., via detector 122 (FIG. 2)). Every time that ingestible device 100 gathers a new set of measurements, the measurements may be added to a stored data set (e.g., stored within memory circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may then use this data set to determine whether or not ingestible device 100 is still within the duodenum (e.g., duodenum 310 (FIG. 3)), or if the ingestible device 100 has transitioned back into the stomach (e.g., stomach 306 (FIG. 3)).

At 518, the ingestible device (e.g., ingestible device 100, 300, or 400) determines a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)) based on a ratio of the measured green reflectance levels to the measured blue
reflectance levels. In some embodiments, ingestible device 100 may compare the ratio of the measured green reflectance levels to the measured blue reflectance levels recently gathered by ingestible device 100 (e.g., measurements gathered at 516), and determine whether or not the ratio of the measured green reflectance levels to the measured blue reflectance levels is similar to the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach (e.g., stomach 306 (FIG. 3)). For instance, ingestible device 100 may retrieve data (e.g., from memory circuitry of PCB 120 (FIG. 2)) indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach, and determine that ingestible device 100 has transitioned back to the stomach if the recently measured ratio of the measured green reflectance levels to the measured blue reflectance levels is sufficiently similar to the average level in the stomach (e.g., within 20% of the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach, or within any other suitable threshold level). If the ingestible device detects a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)), process 500 proceeds to 508 to store data indicating the ingestible device has entered the stomach (e.g., stomach 306 (FIG. 3)), and continues to monitor for further transitions. Alternatively, if the ingestible device does not detect a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)), process 500 proceeds to 516 to gather additional measurements of green and blue reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)), which may be used to continuously monitor for possible transitions back into the stomach. An example procedure for using measurements of green and blue reflectances to monitor for transitions between the stomach and the duodenum is discussed in greater detail in relation to FIG. 6.

At 520, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers periodic measurements of the reflectance levels (e.g., via sensing sub-unit 126 (FIG. 2)) while in the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may gather similar periodic measurements while in the stomach as well. In some embodiments, these periodic measurements may enable ingestible device 100 to detect muscle contractions (e.g., muscle contractions due to a peristaltic wave as discussed in relation to FIG. 4), which may be indicative of entry into a jejunum (e.g., jejunum 314 (FIG. 3)). Ingestible device 100 may be configured to gather periodic measurements using any suitable wavelength of illumination (e.g., by generating illumination
using illuminator 124, and detecting the resulting reflectance using detector 122 (FIG. 2)), or combinations of wavelengths of illumination. For example, in some embodiments, ingestible device 100 may be configured to generate red, green, and blue illumination, store separate data sets indicative of red, green, and blue illumination, and analyze each of the data sets separately to search for frequency components in the recorded data indicative of detected muscle contractions. In some embodiments, the measurements gathered by ingestible device 100 at 520 may be sufficiently fast as to detect peristaltic waves in a subject. For instance, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz. Therefore, the ingestible device 400 may be configured to generate illumination and measure the resulting reflectance at least once every 2.5 seconds (i.e., the minimum rate necessary to detect a 0.2 Hz signal), and preferably at a higher rate, such as once every 0.5 seconds or faster, and store values indicative of the resulting reflectances in a data set (e.g., within memory circuitry of PCB 120 (FIG. 2)). After gathering additional data (e.g., after gathering one new data point, or a predetermined number of new data points), process 500 proceeds to 522, where ingestible device 100 determines whether or not a muscle contraction has been detected.

At 522, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the ingestible device detects a muscle contraction based on the measurements of reflectance levels (e.g., as gathered by sensing sub-unit 126 (FIG. 2)). For example, ingestible device 100 may obtain a fixed amount of data stored as a result of measurements made at 520 (e.g., retrieve the past minute of data from memory circuitry within PCB 120 (FIG. 2)). Ingestible device 100 may then convert the obtained data into the frequency domain, and search for peaks in a frequency range that would be consistent with peristaltic waves. For example, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz, and an ingestible device 100 may be configured to search for peaks in the frequency domain representation of the data between 0.1 Hz and 0.2 Hz above a threshold value. If the ingestible device 100 detects a contraction based on the reflectance levels (e.g., based on detecting peaks in the frequency domain representation of the data between 0.1 Hz and 0.2 Hz), process 500 proceeds to 524 to store data indicating that the device has entered the jejunum. Alternatively, if the ingestible device 100 does not detect a muscle contraction, process 500 proceeds to 520 to gather periodic measurements of the reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, the ingestible device
(e.g., ingestible device 100, 300, or 400) may store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction was detected, and process 500 will not proceed from 522 to 524 until a sufficient number of muscle contractions have been detected.

At 524, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the device has entered the jejunum (e.g., jejunum 314 (FIG. 3)). For example, in response to detecting that muscle contraction has occurred at 522, ingestible device 100 may determine that it has entered the jejunum 314, and is no longer inside of the duodenum (e.g., duodenum 310 (FIG. 3)) or the stomach (e.g., stomach 306 (FIG. 3)). In some embodiments, the ingestible device 100 may continue to measure muscle contractions while in the jejunum, and may store data indicative of the frequency, number, or strength of the muscle contractions over time (e.g., within memory circuitry of PCB 120 (FIG. 2)). In some embodiments, the ingestible device 100 may also be configured to monitor for one or more transitions. Such transitions can include a transition from the jejunum to the ileum, an ileocecal transition from the ileum to the cecum, a transition from the cecum to the colon, or detect exit from the body (e.g., by measuring reflectances, temperature, or levels of ambient light).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also determine that it has entered the jejunum (e.g., jejunum 314 (FIG. 3)) after a pre-determined amount of time has passed after having detected entry into the duodenum (e.g., duodenum 310 (FIG. 3)). For example, barring a reverse pyloric transition from the duodenum (e.g., duodenum 310 (FIG. 3)) back to the stomach (e.g., stomach 306 (FIG. 3)), the typical transit time for an ingestible device to reach the jejunum from the duodenum in a healthy human subject is less than three minutes. In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may therefore be configured to automatically determine that it has entered the jejunum after spending at least three minutes within the duodenum. This determination may be made separately from the determination made based on measured muscle contractions (e.g., the determination made at 522), and in some embodiments, ingestible device 100 may determine that it has entered the jejunum in response to either detecting muscle contractions, or after three minutes has elapsed from having entered the duodenum (e.g., as determined by storing data at 514 indicative of the time that ingestible device entered the duodenum).
For illustrative purposes, 512-518 of process 500 describe the ingestible device (e.g., ingestible device 100, 300, or 400) measuring green reflectances and blue reflectances, calculating a ratio of the two reflectances, and using this information to determine when the ingestible device has transitioned between the duodenum and stomach. However, in some embodiments, other wavelengths of light may be used other than green and blue, provided that the wavelengths of light chosen have different reflective properties within the stomach and the duodenum (e.g., as a result of different reflection coefficients of the stomach tissue and the tissue of the duodenum).

It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 5, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 5, may be modified, omitted, rearranged, and performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel in order to speed up the overall computation time. As another example, ingestible device 100 may gather data periodic measurements and detect possible muscle contractions (e.g., at 520-522) while simultaneously gathering green and blue reflectance levels to determine transitions to and from the stomach and duodenum (e.g., at 510-518). Furthermore, it should be noted that the steps and descriptions of FIG. 5 may be combined with any other system, device, or method described in this application, including processes 600 (FIG. 6) and 900 (FIG. 9), and any of the ingestible devices or systems discussed in this application (e.g., ingestible devices 100, 300, or 400) could be used to perform one or more of the steps in FIG. 5.

FIG. 6 is a flowchart illustrating some aspects of a process for detecting transitions from a stomach to a duodenum and from a duodenum back to a stomach, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. In some embodiments, process 600 may begin when an ingestible device first detects that it has entered the stomach, and will continue as long as the ingestible device determines that it is within the stomach or the duodenum. In some embodiments, process 600 may only be terminated when an ingestible device determines that it has entered the jejunum, or otherwise progressed past the duodenum and the stomach. Although FIG. 6 may be described in connection with the ingestible device 100 for illustrative purposes, this is not intended to be limiting, and either
portions or the entirety of the duodenum detection process 600 described in FIG. 6 may be
applied to any device discussed in this application (e.g., the ingestible devices 100, 300, or
400), and any of the ingestible devices may be used to perform one or more parts of the
process described in FIG. 6. Furthermore, the features of FIG. 6 may be combined with any
other systems, methods or processes described in this application. For example, portions of
the process described by the process in FIG. 6 may be integrated into process 500 discussed
in relation to FIG. 5.

At 602, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a data
set (e.g., from memory circuitry within PCB 120 (FIG. 2)) with ratios of the measured green
reflectance levels to the measured blue reflectance levels over time. For example, ingestible
device 100 may retrieve a data set from PCB 120 containing recently recorded ratios of the
measured green reflectance levels to the measured blue reflectance levels (e.g., as recorded at
510 or 516 of process 500 (FIG. 5)). In some embodiments, the retrieved data set may
include the ratios of the measured green reflectance levels to the measured blue reflectance
levels over time. Example plots of data sets of ratios of the measured green reflectance levels
to the measured blue reflectance levels are discussed further in relation to FIG. 7 and FIG. 8.

At 604, the ingestible device (e.g., ingestible device 100, 300, or 400) includes a new
measurement (e.g., as made with sensing sub-unit 126 (FIG. 2)) of a ratio of the measured
green reflectance level to the measured blue reflectance level in the data set. For example,
ingestible device 100 may be configured to occasionally record new data by transmitting
green and blue illumination (e.g., via illuminator 124 (FIG. 2)), detecting the amount of
reflectance received due to the green and blue illumination (e.g., via detector 122 (FIG. 2)),
and storing data indicative of the amount of the received reflectance (e.g., in memory
circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may be configured to record new
data every five to fifteen seconds, or at any other convenient interval of time. For illustrative
purposes, ingestible device 100 is described as storing and retrieving the ratio of the
measured green reflectance levels to the measured blue reflectance levels (e.g., if the amount
of detected green reflectance was identical to the amount of detected blue reflectance at a
given time, the ratio of the green and blue reflectances would be "1.0" at that given time);
however, it is understood that the green reflectance data and the blue reflectance data may be
stored separately within the memory of ingestible device 100 (e.g., stored as two separate
data sets within memory circuitry of PCB 120 (FIG. 2)).
At 606, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a first subset of recent data by applying a first sliding window filter to the data set. For example, ingestible device 100 may use a sliding window filter to obtain a predetermined amount of the most recent data within the data set, which may include any new values of the ratio of the measured green reflectance level to the measured blue reflectance level obtained at 604. For instance, the ingestible device may be configured to select between ten and forty data points from the data set, or ingestible device 100 may be configured to select a predetermined range of data values between fifteen seconds of data and five minutes of data. In some embodiments, other ranges of data may be selected, depending on how frequently measurements are recorded, and the particular application at hand. For instance, any suitable amount of data may be selected in the sliding window, provided that it is sufficient to detect statistically significant differences between the data selected in a second sliding window (e.g., the second subset of data selected at 614).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also be configured to remove outliers from the data set, or to smooth out unwanted noise in the data set. For example, ingestible device 100 may select the first subset of data, or any other subset of data, by first obtaining a raw set of data by applying a window filter to the data set (e.g., selecting a particular range of data to be included). Ingestible device 100 may then be configured to identify outliers in the raw set of values; for instance, by identifying data points that are over three standard deviations away from the mean value of the raw set of values, or any other suitable threshold. Ingestible device 100 may then determine the subset of data by removing outliers from the raw set of values. This may enable ingestible device 100 to avoid spurious information when determining whether or not it is located within the stomach or the duodenum.

At 608, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the most recently detected location was the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating the most recent portion of the GI tract that the ingestible device 100 detected itself to be within. For instance, every time ingestible device 100 detects entry to the stomach (e.g., detects entry into stomach 306 (FIG. 3) as a result of the decision made at 610), a flag is stored in memory indicating the ingestible device 100 is in the stomach (e.g., as part of storing data at 612). If ingestible device 100 subsequently detects entry into the duodenum (e.g., detects entry into duodenum 310 (FIG. 3) as a result of
a decision made at 624), another different flag is stored in memory indicating that the ingestible device 100 is in the duodenum (e.g., as part of storing data at 624). In this case, ingestible device 100 may retrieve the most recently stored flag at 608, and determine whether or not the flag indicates that the ingestible device 100 was most recently within the duodenum. If ingestible device 100 detects that it was most recently in the duodenum, process 600 proceeds to 610 where the ingestible device compares the recent measurements of the ratios of the measured green reflectance levels to the measured blue reflectance levels (e.g., measurements that include the recent measurement made at 606) to the typical ratios measured within the stomach, and uses this information to determine whether a reverse pyloric transition from the duodenum back to the stomach has occurred. Alternately, if ingestible device 100 detects that it was not most recently in the duodenum (e.g., because it was in the stomach instead), process 600 proceeds to 614 where the ingestible device compares the recent measurements of the ratios of the measured green reflectance levels to the measured blue reflectance levels (e.g., measurements that include the recent measurement made at 606) to past measurements, and uses this information to determine whether a pyloric transition from the stomach to the duodenum has occurred.

Process 600 proceeds from 608 to 610 when the ingestible device determined that it was most recently in the duodenum. At 610, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the current G/B signal is similar to a recorded average G/B signal in the stomach. For example, ingestible device 100 may be configured to have previously stored data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels measured in the stomach. Ingestible device 100 may then retrieve this stored data indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels in the stomach, and compare this against the recent measurements in order to determine whether or not ingestible device 100 has returned back to the stomach from the duodenum. For instance, ingestible device 100 may determine if the mean value of the first subset of recent data (i.e., the average value of the recently measured ratios of the measured green reflectance levels to the measured blue reflectance levels) is less than the average ratio of the measured green reflectance levels to the measured blue reflectance levels within the stomach, or less that the average ratio measured within the stomach plus a predetermined number times the standard deviation of the ratios measured within the stomach. For instance, if the average ratio of the measured
green reflectance levels to the measured blue reflectance levels in the stomach was "1," with a standard deviation of "0.2," ingestible device 100 may determine whether or not the mean value of the first subset of data is less than "1.0 + k*0.2," where "k" is a number between zero and five. It is understood that, in some embodiments, the ingestible device 100 may be configured to use a different threshold level to determine whether or not the mean value of the first subset of recent data is sufficiently similar to the average ratio of the measured green reflectance levels to the measured blue reflectance levels within the stomach. In response to determining that the recent ratio of the measured green reflectance levels to the measured blue reflectance levels is similar to the average ratio of measured green and blue reflectance levels seen in the stomach, process 600 proceeds to 612 where ingestible device 100 stores data indicating that it has re-entered the stomach from the duodenum. Alternately, in response to determining that the recent ratio of measured green and blue reflectance levels is sufficiently different from the average ratio of measured green and blue reflectance levels seen in the stomach, ingestible device 100 proceeds directly to 604, and continues to obtain new data on an ongoing basis.

At 612, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a reverse pyloric transition from the duodenum to the stomach was detected. For example, ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the ingestible device 100 most recently detected itself to be within the stomach portion of the GI tract (e.g., stomach 306 (FIG. 3)). In some embodiments, ingestible device 100 may also store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating a time that ingestible device 100 detected the reverse pyloric transition from the duodenum to the stomach. This information may be used by ingestible device 100 at 608, and as a result process 600 may proceed from 608 to 614, rather than proceeding from 618 to 610. After ingestible device 100 stores the data indicating a reverse pyloric transition from the duodenum to the stomach was detected, process 600 proceeds to 604 where ingestible device 100 continues to gather additional measurements, and continues to monitor for further transitions between the stomach and the duodenum.

Process 600 proceeds from 608 to 614 when the ingestible device determined that it was not most recently in the duodenum (e.g., as a result of having most recently been in the stomach instead). At 614, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a second subset of previous data by applying a second sliding window filter to the data set. For example, ingestible device 100 may use a sliding window filter to obtain a
predetermined amount of older data from a past time range, which may be separated from recent time range used to select the first subset of data gathered at 606 by a predetermined period of time. In some embodiments, any suitable amount of data may be selected by the first and second window filters, and the first and second window filters may be separated by any appropriate predetermined amount of time. For example, in some embodiments, the first window filter and the second window filter may each be configured to select a predetermined range of data values from the data set, the predetermined range being between fifteen seconds of data and five minutes of data. In some embodiments, the recent measurements and the past measurements may then be separated by a predetermined period of time that is between one to five times the predetermined range of data values. For instance, ingestible device 100 may select the first subset of data and the second subset of data to each be one minute of data selected from the dataset (i.e., selected to have a predetermined range of one minute), and the first subset of data and the second subset of data are selected from recorded measurements that are at least two minutes apart (i.e., the predetermined period of time is two minutes, which is twice the range used to select the subsets of data using the window filters). As another example, ingestible device 100 may select the first subset of data and the second subset of data to each be five minutes of data selected from the dataset (i.e., selected to have a predetermined range of five minutes), and the first subset of data and the second subset of data are selected from recorded measurements that are at least 10 minutes apart (i.e., the predetermined period of time is two minutes, which is twice the range used to select the subsets of data using the window filters).

In some embodiments, if ingestible device 100 recently transitioned to the stomach from the duodenum (e.g., as determined by checking for recent data stored within ingestible device 100 at 612), ingestible device 100 may select the second subset of data at 614 from a time frame when ingestible device 100 is known to be within the stomach. In some embodiments, ingestible device 100 may alternately select a previously recorded average and standard deviation for ratios of green reflectances and blue reflectances within the stomach (e.g., an average and standard deviation typical of data recorded within the stomach, as previously recorded within memory circuitry of PCB 120 at 620) in place of the second subset of data. In this case, ingestible device 100 may simply use the previously recorded average and previously recorded standard deviation when making a determination at 616, rather than expending resources to calculate the mean and standard deviation of the second subset.
At 616, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the difference between the mean of the second subset and the mean of the first subset is greater than a predetermined multiple of the standard deviation of the first subset. For example, ingestible device 100 may compute a difference between a mean of the first subset of recent data and a mean of a second subset of past data, and determine whether this difference is greater than three times the standard deviation of the second subset of past data. In some embodiments, it is understood that any convenient threshold level may be used other than three times the standard deviation, such as any value between one and five times the standard deviation. Also, in some embodiments, the ingestible device may instead set the threshold level based on the standard deviation of the second subset instead of the first subset. In response to determining that the difference between the mean of the first subset and the mean of the second subset is greater than a predetermined multiple of the standard deviation of the second subset, process 600 proceeds to 618. Otherwise, process 600 proceeds back to 604, where the ingestible device 604 continues to gather new data to be used in monitoring for transitions between the stomach (e.g., stomach 306 (FIG. 3)) and the duodenum (e.g., duodenum 310 (FIG. 3)).

At 618, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the determination made at 616 is the first time that the difference between the mean of the first subset of recent data and the mean of the second subset of past data is calculated to be greater than the standard deviation of the second subset. If the ingestible device determines that this is the first time that the difference between the mean of the first subset and the mean of the second subset is calculated to be greater than the standard deviation of the second subset, process 600 proceeds to 620 to store the mean of the second subset of past data as an average G/B signal in the stomach. Alternatively, if the ingestible device determines that the immediately preceding determination made at 616 is not the first time that the difference between the mean of the first subset of recent data and the mean of the second subset of past data is calculated to be greater than the standard deviation of the second subset, process 600 proceeds directly to 622.

At 620, the ingestible device (e.g., ingestible device 100, 300, or 400) stores the mean of the second subset as an average G/B signal in the stomach. For example, ingestible device 100 may be configured to store the mean of the second subset of past data (e.g., store within memory circuitry of PCB 120 (FIG. 2)) as the average ratio of the measured green reflectance.
levels to the measured blue reflectance levels measured in the stomach. In some embodiments, ingestible device 100 may also store the standard deviation of the second subset of past data as a typical standard deviation of the ratios of the measured green reflectance levels to the measured blue reflectance levels detected within the stomach. This stored information may be used by the ingestible device later on (e.g., at 610) to compare against future data, which may enable the ingestible device to detect reverse pyloric transitions from the duodenum (e.g., duodenum 310 (FIG. 3)) back to the stomach (e.g., stomach 306 (FIG. 3)), and may generally be used in place of other experimental data gathered from the stomach (e.g., in place of the second subset of data at 616). After storing the mean of the second subset as an average G/B signal in the stomach, process 600 proceeds to 622.

At 622, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether a difference of the mean of the first subset of recent data to the mean of the second subset of past data is greater than a predetermined threshold, "M". In some embodiments, the predetermined threshold, "M," will be sufficiently large to ensure that the mean of the first subset is substantially larger than the mean of the second subset, and may enable ingestible device 100 to ensure that it detected an actual transition to the duodenum. This may be particularly advantageous when the determination made at 616 is potentially unreliable due to the standard deviation of the second subset of past data being abnormally small. For example, a typical value of the predetermined threshold "M," may be on the order of 0.1 to 0.5. If ingestible device 100 determines that the difference of the mean of the first subset of recent data to the second subset of past data is greater than a predetermined threshold, process 600 proceeds to 624 to store data indicating that a pyloric transition from the stomach to the duodenum (e.g., from stomach 306 to duodenum 310 (FIG. 3)) was detected. Alternatively, if the ingestible device determines that the ratio of the mean of the first subset to the second subset is less than or equal to the predetermined threshold, "M" (i.e., determines that a transition to the duodenum has not occurred), process 600 proceeds directly to 604 where ingestible device 100 continues to make new measurements and monitor for possible transitions between the stomach and the duodenum.

In some embodiments, instead of using a difference of the mean of the first subset of recent data to the mean of the second subset of past data, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the ratio of the mean of the first subset of recent data to the mean of the second subset of past data is greater than a predetermined threshold,
"M". In some embodiments, the predetermined threshold, "M," will be sufficiently large to ensure that the mean of the first subset is substantially larger than the mean of the second subset, and may enable ingestible device 100 to ensure that it detected an actual transition to the duodenum. This may be particularly advantageous when the determination made at 616 is potentially unreliable due to the standard deviation of the second subset of past data being abnormally small. For example, a typical value of the predetermined threshold "M," may be on the order of 1.2 to 2.0. It is understood any convenient type of threshold or calculation may be used to determine whether or not the first subset of data and the second subset of data are both statistically distinct from one another, and also substantially different from one another in terms of overall average value.

At 624, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a pyloric transition from the stomach to the duodenum was detected. For example, ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the ingestible device 100 most recently detected itself to be within the duodenum portion of the GI tract (e.g., duodenum 310 (FIG. 3)). In some embodiments, ingestible device 100 may also store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating a time that ingestible device 100 detected the pyloric transition from the stomach to the duodenum. This information may be used by ingestible device 100 at 608, and as a result process 600 may proceed from 608 to 610, rather than proceeding from 618 to 614.

After ingestible device 100 stores the data indicating a pyloric transition from the stomach to the duodenum was detected, process 600 proceeds to 604 where ingestible device 100 continues to gather additional measurements, and continues to monitor for further transitions between the stomach and the duodenum.

It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 6, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 6, may be modified, omitted, rearranged, and performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel in order to speed up the overall computation time. Furthermore, it should be noted that the steps and descriptions of FIG. 6 may be combined with any other system, device, or method described in this application, and any of the ingestible devices or systems discussed in this application could be used to perform one or more of the steps in FIG. 6. For
example, portions of process 600 may be incorporated into 508-516 of process 500 (FIG. 5), and may be part of a more general process for determining a location of the ingestible device. As another example, the ratio of detected blue and green light (e.g., as measured and added to the data set at 604) may continue even outside of the stomach or duodenum, and similar information may be recorded by the ingestible device throughout its transit in the GI tract.

Example plots of data sets of ratios of measured green and blue reflectance levels, which may be gathered throughout the GI tract, are discussed further in relation to FIG. 7 and FIG. 8 below.

FIG. 7 is a plot illustrating data collected during an example operation of an ingestible device (e.g., ingestible device 100, 300, or 400), which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure.

Although FIG. 7 may be described in connection with ingestible device 100 for illustrative purposes, this is not intended to be limiting, and plot 700 and data set 702 may be typical of data gathered by any device discussed in this application. Plot 700 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels over time. For example, ingestible device 100 may have computed the value for each point in the data set 702 by transmitting green and blue illumination at a given time (e.g., via illuminator 124 (FIG. 2)), measuring the resulting green and blue reflectances (e.g., via detector 122 (FIG. 2)), calculating the ratio of the resulting reflectances, and storing the ratio in the data set along with a timestamp indicating the time that the reflectances were gathered.

At 704, shortly after ingestible device 100 begins operation, ingestible device 100 determines that it has reached at least the stomach (e.g., as a result of making a determination similar to the determination discussed in relation to 506 in process 500 (FIG. 5)). Ingestible device 100 continues to gather additional measurements of green and blue reflectance levels, and at 706 ingestible device 100 determines that a pyloric transition has occurred from the stomach to the duodenum (e.g., as a result of making a determination similar to the determinations discussed in relation to 616-624 of process 600 (FIG. 6)). Notably, the values in data set 702 around 706 jump up precipitously, which is indicative of the higher ratios of measured green reflectance levels to measured blue reflectance levels typical of the duodenum.

The remainder of the data set 702 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels throughout the remainder of the GI tract. At
708, ingestible device 100 has reached the jejunum (e.g., as determined through measurements of muscle contractions, as discussed in relation to FIG. 9), and by 710, ingestible device 100 has reached the cecum. It is understood that, in some embodiments, the overall character and appearance of data set 702 changes within the small intestine (i.e., the duodenum, jejunum, and ileum) versus the cecum. Within the jejunum and ileum, there may typically be a wide variation in the ratios of the measured green reflectance levels to the measured blue reflectance levels, resulting in relatively noisy data with a high standard deviation. By comparison, within the cecum ingestible device 100 may measure a relatively stable ratio of the measured green reflectance levels to the measured blue reflectance levels.

In some embodiments, ingestible device 100 may be configured to determine transitions from the small intestine to the cecum based on these differences. For example, ingestible device 100 may compare recent windows of data to past windows of data, and detect a transition to the cecum in response to determining that the standard deviation of the ratios in the recent window of data is substantially less than the standard deviation of the ratios in the past window of data.

FIG. 8 is another plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. Similar to FIG. 7, FIG. 8 may be described in connection with the ingestible device 100 for illustrative purposes. However, this is not intended to be limiting, and plot 800 and data set 802 may be typical of data gathered by any device discussed in this application.

At 804, shortly after ingestible device 100 begins operation, ingestible device 100 determines that it has reached at least the stomach (e.g., as a result of making a determination similar to the determination discussed in relation to 506 in process 500 (FIG. 5)). Ingestible device 100 continues to gather additional measurements of green and blue reflectance levels (e.g., via sensing sub-unit 126 (FIG. 2)), and at 806 ingestible device 100 determines that a pyloric transition has occurred from the stomach to the duodenum (e.g., as a result of making a determination similar to the determinations discussed in relation to 616-624 of process 600 (FIG. 6)). Notably, the values in data set 802 around 806 jump up precipitously, which is indicative of the higher ratios of measured green reflectance levels to measured blue reflectance levels typical of the duodenum, before falling shortly thereafter. As a result of the reduced values in data set 802, ingestible device 100 determines that a reverse pyloric
transition has occurred from the duodenum back to the stomach at 808 (e.g., as a result of making a determination similar to the determinations discussed in relation to 610-612 of process 600 (FIG. 6)). At 810, as a result of the values in data set 802 increasing again, ingestible device 100 determines that another pyloric transition has occurred from the stomach to the duodenum, and shortly thereafter ingestible device 100 proceeds onwards to the jejunum, ileum, and cecum.

The remainder of the data set 802 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels throughout the remainder of the GI tract. Notably, at 812, ingestible device reaches the transition point between the ileum and the cecum. As discussed above in relation to FIG. 7, the transition to the cecum is marked by a reduced standard deviation in the ratios of measured green reflectances and measured blue reflectances over time, and ingestible device 100 may be configured to detect a transition to the cecum based on determining that the standard deviation of a recent set of measurements is substantially smaller than the standard deviation of past measurements taken from the jejunum or ileum.

FIG. 9 is a flowchart of illustrative steps for detecting a transition from a duodenum to a jejunum, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. Although FIG. 9 may be described in connection with the ingestible device 100 for illustrative purposes, this is not intended to be limiting, and either portions or the entirety of process 900 described in FIG. 9 may be applied to any device discussed in this application (e.g., the ingestible devices 100, 300, and 400), and any of these ingestible devices may be used to perform one or more parts of the process described in FIG. 9. Furthermore, the features of FIG. 9 may be combined with any other systems, methods or processes described in this application. For example, portions of the process described by the process in FIG. 9 may be integrated into the localization process described by FIG. 5 (e.g., as part of 520-524 of process 500 (FIG. 5)). In some embodiments, an ingestible device 100 may perform process 900 while in the duodenum, or in response to detecting entry to the duodenum. In other embodiments, an ingestible device 100 may perform process 900 while in the stomach, or in response to detecting entry into the GI tract. It is also understood that process 900 may be performed in parallel with any other process described in this disclosure (e.g., process 600 (FIG. 6)), which may enable ingestible device 100 to detect entry into various portions of the GI tract, without necessarily detecting entry into a preceding portion of the GI tract.
For illustrative purposes, FIG. 9 may be discussed in terms of ingestible device 100 generating and making determinations based on a single set of reflectance levels generated at a single wavelength by a single sensing sub-unit (e.g., sensing sub-unit 126 (FIG. 2)). However, it is understood that ingestible device 100 may generate multiple wavelengths of illumination from multiple different sensing sub-units positioned around the circumference of ingestible device (e.g., multiple sensing sub-units positioned at different locations behind window 114 of ingestible device 100 (FIG. 1), and each of the resulting reflectances may be stored as a separate data set. Moreover, each of these sets of reflectance levels may be used to detect muscle contractions by running multiple versions of process 900, each one of which processes data for a different set of reflectances corresponding to data sets obtained from measurements of different wavelengths or measurements made by different sensing sub-units.

At 902, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a set of reflectance levels. For example, ingestible device 100 may retrieve a data set of previously recorded reflectance levels from memory (e.g., from memory circuitry of PCB 120 (FIG. 2)). Each of the reflectance levels may correspond to reflectances previously detected by ingestible device 100 (e.g., via detector 122 (FIG. 2)) from illumination generated by ingestible device 100 (e.g., via illuminator 124 (FIG. 2)), and may represent a value indicative of an amount of light detected in a given reflectance. However, it is understood that any suitable frequency of light may be used, such as light in the infrared, visible, or ultraviolet spectrums. In some embodiments, the reflectance levels may correspond to reflectances previously detected by ingestible device 100 at periodic intervals.

At 904, the ingestible device (e.g., ingestible device 100, 300, or 400) includes new measurements of reflectance levels in the data set. For example, ingestible device 100 may be configured to detect a new reflectance (e.g., transmit illumination and detect the resulting reflectance using sensing sub-unit 126 (FIG. 2)) at regular intervals, or with sufficient speed as to detect peristaltic waves. For example, ingestible device 100 may be configured to generate illumination and measure the resulting reflectance once every three seconds (i.e., the minimum rate necessary to detect a 0.17 Hz signal), and preferably at a higher rate, as fast at 0.1 second or even faster. It is understood that the periodic interval between measurements may be adapted as needed based on the species of the subject, and the expected frequency of the peristaltic waves to be measured. Every time ingestible device 100 makes a new reflectance level measurement at 904, the new data is included to the data set (e.g., a data set stored within memory circuitry of PCB 120 (FIG. 2)).
At 906, the ingestible device (e.g., ingestible device 100, 300, or 400) obtains a first subset of recent data by applying a sliding window filter to the data set. For example, ingestible device 100 may retrieve a one-minute worth of data from the data set. If the data set includes values for reflectances measured every second, this would be approximately 60 data points worth of data. Any suitable type of window size may be used, provided that the size of the window is sufficiently large to detect peristaltic waves (e.g., fluctuations on the order of 0.1 Hz to 0.2 Hz for healthy human subjects). In some embodiments, ingestible device 100 may also clean the data, for example, by removing outliers from the first subset of data obtained through the use of the sliding window filter.

At 908, the ingestible device (e.g., ingestible device 100, 300, or 400) obtains a second subset of recent data by interpolating the first subset of recent data. For example, ingestible device 100 may interpolate the first subset of data in order to generate a second subset of data with a sufficient number of data points (e.g., data points spaced every 0.5 seconds or greater). In some embodiments, this may enable ingestible device 100 to also replace any outlier data points that may have been removed as part of applying the window filter at 906.

At 910, the ingestible device (e.g., ingestible device 100, 300, or 400) calculates a normalized frequency spectrum from the second subset of data. For example, ingestible device 100 may be configured to perform a fast Fourier transform to convert the second subset of data from a time domain representation into a frequency domain representation. It is understood that depending on the application being used, and the nature of the subset of data, any number of suitable procedures (e.g., Fourier transform procedures) may be used to determine a frequency spectrum for the second subset of data. For example, the sampling frequency and size of the second subset of data may be known in advance, and ingestible device 100 may be configured to have pre-stored values of a normalized discreet Fourier transform (DFT) matrix, or the rows of the DFT matrix corresponding to the 0.1 Hz to 0.2 Hz frequency components of interest, within memory (e.g., memory circuitry of PCB 120 (FIG. 2)). In this case, the ingestible device may use matrix multiplication between the DFT matrix and the data set to generate an appropriate frequency spectrum. An example data set and corresponding frequency spectrum that may be obtained by the ingestible device is discussed in greater detail in relation to FIG. 10.

At 912, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether at least a portion of the normalized frequency spectrum is between 0.1 Hz and 0.2 Hz.
above a threshold value of 0.5 Hz. Peristaltic waves in a healthy human subject occur at a rate between 0.1 Hz and 0.2 Hz, and an ingestible device experiencing peristaltic waves (e.g., ingestible device 400 detecting contractions in walls 406 of the jejunum (FIG. 4)) may detect sinusoidal variations in the amplitude of detected reflectances levels that follow a similar 0.1 Hz to 0.2 Hz frequency. If the ingestible device determines that a portion of the normalized frequency spectrum between 0.1 Hz and 0.2 Hz is above a threshold value of 0.5, this measurement may be consistent with peristaltic waves in a healthy human subject, and process 900 proceeds to 914 where ingestible device 100 stores data indicating a muscle contraction was detected. Alternatively, if the ingestible device determines that no portion of the normalized frequency spectrum between 0.1 Hz and 0.2 Hz above a threshold value of 0.5, process 900 proceeds directly to 904 to make new measurements and to continue to monitor for new muscle contractions. It is understood that a threshold value other than 0.5 may be used, and that the exact threshold may depend on the sampling frequency and type of frequency spectrum used by ingestible device 100.

At 914, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a muscle contraction was detected. For example, ingestible device 100 may store data in memory (e.g., memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction was detected, and indicating the time that the muscle contraction was detected. In some embodiments, ingestible device 100 may also monitor the total number of muscle contractions detected, or the number of muscle contractions detected in a given time frame.

In some embodiments, detecting a particular number of muscle contractions may be consistent with ingestible device 100 being within the jejunum (e.g., jejunum 314 (FIG. 3)) of a healthy human subject. After detecting a muscle contraction, process 900 proceeds to 916.

At 916, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether a total number of muscle contractions exceeds a predetermined threshold number. For example, ingestible device 100 may retrieve the total number of muscle contractions detected from memory (e.g., from memory circuitry of PCB 120 (FIG. 2)), and compare the total number to a threshold value. In some embodiments, the threshold value may be one, or any number larger than one. The larger the threshold value, the more muscle contractions need to be detected before ingestible device 100 stores data indicating that it has entered the jejunum. In practice, setting the threshold value as three or higher may prevent the ingestible device from detecting false positives (e.g., due to natural movement of the GI tract organs, or due to movement of the subject). If the total number of contractions exceeds the
predetermined threshold number, process 900 proceeds to 918 to store data indicating
detection of a transition from the duodenum to the jejunum. Alternatively, if the total number
of contractions does not exceed a predetermined threshold number, process 900 proceeds to
904 to include new measurements of reflectance levels in the data set. An example plot of
the muscle contractions detected over time is discussed in greater detail in relation to FIG. 11.

At 918, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data
indicating detection of a transition from the duodenum to the jejunum. For example,
-ingestible device 100 may store data at 918 indicating detection of a transition from the stomach
directly to the jejunum (e.g., as a result of transitioning too quickly through the duodenum for
the pyloric transition to be detected using process 600 (FIG. 6)).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400)
may be configured to obtain a fluid sample from the environment external to a housing of the
ingestible device in response to identifying a change in the location of the ingestible device.
For example, ingestible device 100 may be configured to obtain a fluid sample from the
environment external to the housing of ingestible device 100 (e.g., through the use of optional
opening 116 and optional rotating assembly 118 (FIG. 2)) in response to determining that the
-ingestible device is located within the jejunum (e.g., jejunum 314 (FIG. 3)). In some
embodiments, ingestible device 100 may also be equipped with appropriate diagnostics to
detect certain medical conditions based on the retrieved fluid sample, such as small intestinal
bacterial overgrowth (SIBO).

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400)
may be configured to deliver a dispensable substance that is pre-stored within the ingestible
device from the ingestible device into the gastrointestinal tract in response to identifying the
change in the location of the ingestible device. For example, ingestible device 100 may have
a dispensable substance pre-stored within the ingestible device 100 (e.g., within a storage
chamber or cavity on optional storage sub-unit 118-3 (FIG. 2)), and ingestible device 100
may be configured to dispense the substance into the gastrointestinal tract (e.g., through the
use of optional opening 116 and optional rotating assembly 118 (FIG. 2)) when the ingestible
device 100 detects that the ingestible device 100 is located within the jejunum (e.g., jejenum
314 (FIG. 3)). In some embodiments, this may enable ingestible device 100 to deliver substances (e.g., therapeutics and medicaments) at targeted locations within the GI tract.

In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to perform an action based on the total number of detected muscle contractions. For example, ingestible device 100 may be configured to retrieve data indicative of the total number of muscle contractions (e.g., from memory circuitry of PCB 120 (FIG. 2)), and compare that to an expected number of muscle contractions in a healthy individual. In response, the ingestible device may either dispense a substance into the gastrointestinal tract (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)), or may obtain a fluid sample from the environment external to the housing of ingestible device 100 (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)). For instance, ingestible device 100 may be configured to obtain a sample in response to determining that a number of detected muscle contractions is abnormal, and differs greatly from the expected number. As another example, ingestible device 100 may be configured to deliver a substance into the GI tract (such as a medicament), in response to determining that the detected muscle contractions are consistent with a functioning GI tract in a healthy individual.

It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 9, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 9, may be modified, omitted, rearranged, performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel (e.g., multiple data sets, each one corresponding to a different wavelength of reflectance or different sensing sub-unit used to detect the reflectance) in order to speed up the overall computation time. Furthermore, it should be noted that the steps and descriptions of FIG. 9 may be combined with any other system, device, or method described in this application, and any of the ingestible devices or systems discussed in this application could be used to perform one or more of the steps in FIG. 9.

FIG. 10 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when detecting a transition from a duodenum to a jejunum, in accordance with some embodiments of the disclosure. Diagram 1000 depicts a time domain plot 1002 of a data set of reflectance levels measured by an ingestible device.
(e.g., the second subset of data discussed in relation to 908 of FIG. 9). In some embodiments, ingestible device 100 may be configured to gather data points at semi-regular intervals approximately 0.5 seconds apart. By comparison, diagram 1050 depicts a frequency domain plot 1004 of the same data set of reflectance levels measured by an ingestible device (e.g., as a result of ingestible device 100 calculating a frequency spectrum at 910 of FIG. 9). In some embodiments, ingestible device 100 may be configured to calculate the frequency spectrum through any convenient means.

In diagram 1050, the range of frequencies 1006 between 0.1 Hz and 0.2 Hz may be the range of frequencies that ingestible device 100 searches in order to detect muscle contractions. As shown in diagram 1050, there is a strong peak in the frequency domain plot 1004 around 0.14 Hz, which is consistent with the frequency of peristaltic motion in a healthy human individual. In this case, an ingestible device 100 analyzing frequency domain plot 1004 may be configured to determine that the data is consistent with a detected muscle contraction (e.g., using a process similar to 912 of process 900 (FIG. 9)), and may store data (e.g., in memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction has been detected. Because the muscle contraction was detected from the one-minute window of data ending at 118 minutes, ingestible device 100 may also store data indicating that the muscle contraction was detected at the 118-minute mark (i.e., which may indicate that the ingestible device 100 was turned on and ingested by the subject 118 minutes ago).

FIG. 11 is a plot illustrating muscle contractions detected by an ingestible device over time, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. In some embodiments, ingestible device 100 may be configured to detect muscle contractions, and store data indicative of when each muscle contraction is detected (e.g., as part of 914 of process 900 (FIG. 9)). Plot 1100 depicts the detected muscle contractions 1106 over time, with each muscle contraction being represented by a vertical line reaching from "0" to "1" on the y-axis.

At 1102, around the 10-minute mark, ingestible device 100 first enters the duodenum (e.g., as determined by ingestible device 100 performing process 600 (FIG. 6)). Shortly thereafter, at 1108, ingestible device 100 begins to detect several muscle contractions 1106 in quick succession, which may be indicative of the strong peristaltic waves that form in the jejunum (e.g., jejunum 314 (FIG. 3)). Later, around 1110, ingestible device 100 continues to detect intermittent muscle contractions, which may be consistent with an ingestible device
100 within the ileum. Finally, at 1104, ingestible device 100 transitions out of the small intestine, and into the cecum. Notably, ingestible device 100 detects more frequent muscle contractions in the jejunum portion of the small intestine as compared to the ileum portion of the small intestine, and ingestible device 100 does not measure any muscle contractions after having exited the small intestine. In some embodiments, ingestible device 100 may incorporate this information into a localization process. For example, ingestible device 100 may be configured to detect a transition from a jejunum to an ileum in response to determining that a frequency of detected muscle contractions (e.g., the number of muscle contractions measured in a given 10-minute window) has fallen below a threshold number. As another example, ingestible device 100 may be configured to detect a transition from an ileum to a cecum in response to determining that no muscle contractions have been detected for a threshold period of time. It is understood that these examples are intended to be illustrative, and not limiting, and that measurements of muscle contractions may be combined with any of the other processes, systems, or methods discussed in this disclosure.

FIG. 12 is a flowchart 1200 for certain embodiments for determining a transition of the device from the jejunum to the ileum. It is to be noted that, in general, the jejunum is redder and more vascular than the ileum. Moreover, generally, in comparison to the ileum, the jejunum has a thicker intestine wall with more mesentry fat. These differences between the jejunum and the ileum are expected to result in differences in optical responses in the jejunum relative to the ileum. Optionally, one or more optical signals may be used to investigate the differences in optical responses. For example, the process can include monitoring a change in optical response in reflected red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light. In some embodiments, reflected red light is detected in the process.

Flowchart 1200 represents a single sliding window process. In step 1210, the jejunum reference signal is determined based on optical reflection. Typically, this signal is as the average signal (e.g., reflected red light) over a period of time since the device was determined to enter the jejunum. The period of time can be, for example, from five minutes to 40 minutes (e.g., from 10 minutes to 30 minutes, from 15 minutes to 25 minutes). In step 1220, the detected signal (e.g., reflected red light) just after the period of time used in step 1210 is normalized to the reference signal determined in step 1210. In step 1230, the signal (e.g., reflected red light) is detected. In step 1240, the mean signal detected based on the single sliding window is compared to a signal threshold. The signal threshold in step 1240 is
generally a fraction of the reference signal of the jejunum reference signal determined in step 1210. For example, the signal threshold can be from 60% to 90% (e.g., from 70% to 80%) of the jejunum reference signal. If the mean signal exceeds the signal threshold, then the process determines that the device has entered the ileum at step 1250. If the mean signal does not exceed the signal threshold, then the process returns to step 1230.

FIG. 13 is a flowchart 1200 for certain embodiments for determining a transition of the device from the jejunum to the ileum using a two sliding window process. In step 1310, the jejunum reference signal is determined based on optical reflection. Typically, this signal is as the average signal (e.g., reflected red light) over a period of time since the device was determined to enter the jejunum. The period of time can be, for example, from five minutes to 40 minutes (e.g., from 10 minutes to 30 minutes, from 15 minutes to 25 minutes). In step 1320, the detected signal (e.g., reflected red light) just after the period of time used in step 1310 is normalized to the reference signal determined in step 1310. In step 1330, the signal (e.g., reflected red light) is detected. In step 1340, the mean difference in the signal detected based on the two sliding windows is compared to a signal threshold. The signal threshold in step 1340 is based on whether the mean difference in the detected signal exceeds a multiple (e.g., from 1.5 times to five times, from two times to four times) of the detected signal of the first window. If signal threshold is exceeded, then the process determines that the device has entered the ileum at step 1350. If the signal threshold is not exceeded, then the process returns to step 1330.

FIG. 14 is a flowchart 1400 for a process for certain embodiments for determining a transition of the device from the ileum to the cecum. In general, the process involves detecting changes in the reflected optical signal (e.g., red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light). In some embodiments, the process includes detecting changes in the ratio of reflected red light to reflected green light, and also detecting changes in the ratio of reflected green light to reflected blue light. Generally, in the process 1400, the sliding window analysis (first and second windows) discussed with respect to process 600 is continued.

Step 1410 includes setting a first threshold in a detected signal, e.g., ratio of detected red light to detected green light, and setting a second threshold for the coefficient of variation for a detected signal, e.g., the coefficient of variation for the ratio of detected green light to detected blue light. The first threshold can be set to a fraction (e.g., from 0.5 to 0.9, from 0.6 to 0.8) of the average signal (e.g., ratio of detected red light to detected green light) in the
first window, or a fraction (e.g., from 0.4 to 0.8, from 0.5 to 0.7) of the mean difference between the detected signal (e.g., ratio of detected red light to detected green light) in the two windows. The second threshold can be set to 0.1 (e.g., 0.05, 0.02).

Step 1420 includes detecting the signals in the first and second windows that are to be used for comparing to the first and second thresholds.

Step 1430 includes comparing the detected signals to the first and second thresholds. If the corresponding value is not below the first threshold or the corresponding value is not below the second threshold, then it is determined that the device has not left the ileum and entered the cecum, and the process returns to step 1420. If the corresponding value is below the first threshold and the corresponding value is below the second threshold, then it is determined that the device has left the ileum and entered the cecum, and the process proceeds to step 1440.

Step 1450 includes determining whether it is the first time that the device was determined to leave the ileum and enter the cecum. If it is the first time that the device was determined to leave the ileum and enter the cecum, then the process proceeds to step 1460. If it is not the first time that the device has left the ileum and entered the cecum, then the process proceeds to step 1470.

Step 1460 includes setting a reference signal. In this step the optical signal (e.g., ratio of detected red light to detected green light) as a reference signal.

Step 1470 includes determining whether the device may have left the cecum and returned to the ileum. The device is determined to have left the cecum and returned to the ileum if the corresponding detected signal (e.g., ratio of detected red light to detected green light) is statistically comparable to the reference signal (determined in step 1460) and the coefficient of variation for the corresponding detected signal (e.g., ratio of detected green light to detected blue light) exceeds the second threshold. If it is determined that the device may have left the cecum and returned to the ileum, the process proceeds to step 1480.

Step 1480 includes continuing to detect the relevant optical signals for a period of time (e.g., at least one minute, from five minutes to 15 minutes).

Step 1490 includes determining whether the signals determined in step 1480 indicate (using the methodology discussed in step 1470) that the device re-entered the ileum. If the signals indicate that the device re-entered the ileum, the process proceeds to step 1420. If the signals indicate that the device is in the cecum, the process proceeds to step 1492.
Step 1492 includes continuing to monitor the relevant optical signals for a period of time (e.g., at least 30 minutes, at least one hour, at least two hours).

Step 1494 includes determining whether the signals determined in step 1492 indicate (using the methodology discussed in step 1470) that the device re-entered the ileum. If the signals indicate that the device re-entered the ileum, the process proceeds to step 1420. If the signals indicate that the device is in the cecum, the process proceeds to step 1496.

At step 1496, the process determines that the device is in the cecum.

FIG. 15 is a flowchart 1500 for a process for certain embodiments for determining a transition of the device from the cecum to the colon. In general, the process involves detecting changes in the reflected optical signal (e.g., red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light). In some embodiments, the process includes detecting changes in the ratio of reflected red light to reflected green light, and also detecting changes in the ratio of reflected blue light. Generally, in the process 1500, the sliding window analysis (first and second windows) discussed with respect to process 1400 is continued.

In step 1510, optical signals (e.g., the ratio of reflected red signal to reflected green signal, and reflected blue signal) are collected for a period of time (e.g., at least one minute, at least five minutes, at least 10 minutes) while the device is in the cecum (e.g., during step 1480). The average values for the recorded optical signals (e.g., the ratio of reflected red signal to reflected green signal, and reflected blue signal) establish the cecum reference signals.

In step 1520, the optical signals are detected after it has been determined that the device entered the cecum (e.g., at step 1440). The optical signals are normalized to the cecum reference signals.

Step 1530 involves determining whether the device has entered the colon. This includes determining whether any of three different criteria are satisfied. The first criterion is satisfied if the mean difference in the ratio of a detected optical signal (e.g., ratio of detected red signal to the detected green) is a multiple greater than one (e.g., 2X, 3X, 4X) the standard deviation of the corresponding signal (e.g., ratio of detected red signal to the detected green) in the second window. The second criterion is satisfied if the mean of a detected optical signal (e.g., a ratio of detected red light to detected green light) exceeds a given value (e.g., exceeds one). The third criterion is satisfied if the coefficient of variation of an optical signal (e.g., detected blue light) in the first window exceeds a given value (e.g., exceeds 0.2).
of the three criteria are satisfied, then the process proceeds to step 1540. Otherwise, none of the three criteria are satisfied, the process returns to step 1520.

For illustrative purposes the disclosure focuses primarily on a number of different example embodiments of an ingestible device, and example embodiments of methods for determining a location of an ingestible device within a GI tract. However, the possible ingestible devices that may be constructed are not limited to these embodiments, and variations in the shape and design may be made without significantly changing the functions and operations of the device. Similarly, the possible procedures for determining a location of the ingestible device within the GI tract are not limited to the specific procedures and embodiments discussed (e.g., process 500 (FIG. 5), process 600 (FIG. 6), process 900 (FIG. 9), process 1200 (FIG. 12), process 1300 (FIG. 13), process 1400 (FIG. 14) and process 1500 (FIG. 15)). Also, the applications of the ingestible devices described herein are not limited merely to gathering data, sampling and testing portions of the gastrointestinal tract, or delivering medicament. For example, in some embodiments the ingestible device may be adapted to include a number of chemical, electrical, or optical diagnostics for diagnosing a number of diseases. Similarly, a number of different sensors for measuring bodily phenomenon or other physiological qualities may be included on the ingestible device. For example, the ingestible device may be adapted to measure elevated levels of certain chemical compounds or impurities in the gastrointestinal tract, or the combination of localization, sampling, and appropriate diagnostic and assay techniques incorporated into a sampling chamber may be particularly well suited to determine the presence of small intestinal bacterial overgrowth (SIBO).

At least some of the elements of the various embodiments of the ingestible device described herein that are implemented via software (e.g., software executed by control circuitry within PCB 120 (FIG. 2)) may be written in a high-level procedural language such as object oriented programming, a scripting language or both. Accordingly, the program code may be written in C, C++ or any other suitable programming language and may comprise modules or classes, as is known to those skilled in object oriented programming. Alternatively, or in addition, at least some of the elements of the embodiments of the ingestible device described herein that are implemented via software may be written in assembly language, machine language or firmware as needed. In either case, the language may be a compiled or an interpreted language.
At least some of the program code used to implement the ingestible device can be stored on a storage media or on a computer readable medium that is readable by a general or special purpose programmable computing device having a processor, an operating system and the associated hardware and software that is necessary to implement the functionality of at least one of the embodiments described herein. The program code, when read by the computing device, configures the computing device to operate in a new, specific and predefined manner in order to perform at least one of the methods described herein.

Furthermore, at least some of the programs associated with the systems, devices, and methods of the example embodiments described herein are capable of being distributed in a computer program product comprising a computer readable medium that bears computer usable instructions for one or more processors. The medium may be provided in various forms, including non-transitory forms such as, but not limited to, one or more diskettes, compact disks, tapes, chips, and magnetic and electronic storage. In some embodiments, the medium may be transitory in nature such as, but not limited to, wire-line transmissions, satellite transmissions, internet transmissions (e.g. downloads), media, digital and analog signals, and the like. The computer usable instructions may also be in various formats, including compiled and non-compiled code.

The techniques described above can be implemented using software for execution on a computer. For instance, the software forms procedures in one or more computer programs that execute on one or more programmed or programmable computer systems (which may be of various architectures such as distributed, client/server, or grid) each including at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device or port, and at least one output device or port.

The software may be provided on a storage medium, such as a CD-ROM, readable by a general or special purpose programmable computer or delivered (encoded in a propagated signal) over a communication medium of a network to the computer where it is executed. All of the functions may be performed on a special purpose computer, or using special-purpose hardware, such as coprocessors. The software may be implemented in a distributed manner in which different parts of the computation specified by the software are performed by different computers. Each such computer program is preferably stored on or downloaded to a storage media or device (e.g., solid state memory or media, or magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and
operating the computer when the storage media or device is read by the computer system to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer system to operate in a specific and predefined manner to perform the functions described herein.

Methods and Mechanisms of Delivery

FIG. 16 provides an example mock-up diagram illustrating aspects of a structure of an ingestible device 1600 for delivering a dispensable substance, such as a formulation of a therapeutic agent described herein, according to some embodiments described herein. In some embodiments, the ingestible device 1600 may generally be in the shape of a capsule, a pill or any swallowable form that may be orally consumed by an individual. In this way, the ingestible device 1600 may be ingested by a patient and may be prescribed by healthcare practitioners and patients.

FIG. 16 provides an example mock-up diagram illustrating aspects of a structure of an ingestible device 1600 for delivering a dispensable substance, according to some embodiments described herein. In some embodiments, the ingestible device 1600 may generally be in the shape of a capsule, a pill or any swallowable form that may be orally consumed by an individual. In this way, the ingestible device 1600 may be ingested by a patient and may be prescribed by healthcare practitioners and patients.

The ingestible device 1600 includes a housing 1601 that may take a shape similar to a capsule, a pill, and/or the like, which may include two ends 1602a-b. The housing 1601 may be designed to withstand the chemical and mechanical environment of the GI tract (e.g., effects of muscle contractile forces and concentrated hydrochloric acid in the stomach). A broad range of materials that may be used for the housing 1601. Examples of these materials include, but are not limited to, thermoplastics, fluoropolymers, elastomers, stainless steel and glass complying with ISO 10993 and USP Class VI specifications for biocompatibility; and any other suitable materials and combinations thereof.

In some embodiment, the wall of the housing 1601 may have a thickness of 0.5mm-1mm, which is sufficient to sustain an internal explosion (e.g., caused by hydrogen ignition or over pressure inside the housing).

The housing 1601 may or may not have a pH-sensitive enteric coating to detect or otherwise be sensitive to a pH level of the environment external to the ingestible device. As
discussed elsewhere in the application in more detail, the ingestible device 1600 may additionally or alternatively include one more sensors, e.g., temperature sensor, optical sense.

The housing 1601 may be formed by coupling two enclosure portions together. The ingestible device 1600 may include an electronic component within the housing 1600. The electronic component may be placed proximally to an end 1602b of the housing, and includes a printed circuit board (PCB), a battery, an optical sensing unit, and/or the like.

The ingestible device 1600 further includes a gas generating cell 1603 that is configured to generate gas and thus cause an internal pressure within the housing 1601. In some embodiments, the gas generating cell may include or be connected to a separate channel or valve of the ingestible device such that gas may be release through the channel or valve to create a motion to alter the position of the ingestible device within the GI tract. Such gas release can also be used to position the ingestible device relative to the intestinal lining. In another embodiment, gas may be released through the separate channel or valve to alter the surface orientation of the intestinal tissue prior to delivery of the dispensable substance.

A traveling plunger 1604 may be placed on top of the gas generating cell 1603 within the housing 1601. The traveling plunger 1604 is a membrane that separates the gas generating cell 1603 and a storage reservoir that stores the dispensable substance 1605. In some embodiments, the traveling plunger 1604 may be a movable piston. In some embodiments, the traveling plunger 1604 may instead be a flexible membrane such as but not limited to a diaphragm. In some embodiments, the traveling plunger 1604, which may have the form of a flexible diaphragm, may be placed along an axial direction of the housing 1601, instead of being placed on top of the gas generating cell 1603. The traveling plunger or the membrane 1604 may move (when the membrane 1604 is a piston) or deform (when the membrane 1604 is a diaphragm) towards a direction of the end 1602a of the housing, when the gas generating cell 1603 generates gas to create an internal pressure that pushes the membrane 1604. In this way, the membrane or traveling plunger 1604 may push the dispensable substance 1605 out of the housing via a dispensing outlet 1607.

The housing 1601 may include a storage reservoir storing one or more dispensable substances 1605 adjacent to the traveling plunger 1604. The dispensable substance 1605 may be a therapeutic or medical agent that may take a form of a powder, a compressed powder, a fluid, a semi-liquid gel, or any other dispensable or deliverable form. The delivery of the dispensable substance 1605 may take a form such as but not limited to bolus, semi-bolus, continuous, burst drug delivery, and/or the like. In some embodiments, a single bolus is
delivered proximate to the disease location. In some embodiments, more than one bolus is released at one location or more than one location. In some embodiments the release of more than one bolus is triggered according to a pre-programmed algorithm. In some embodiments the release profile is continuous. In some embodiments the release profile is time-based. In some embodiments the release profile is location-based. In some embodiments, the amount delivered is based on the severity and/or extent of the disease in the following manner. In some embodiments, the bolus is delivered in one or more of the following locations: stomach; duodenum; proximal jejunum; ileum; cecum; ascending colon; transverse colon; descending colon.

In some embodiments the dispensable substance is a small molecule therapeutic that is released in the cecum and/or other parts of the large intestine. Small molecules that are administered by typical oral routes are primarily absorbed in the small intestine, with much lower absorption taking place in the large intestine (outside of the rectum). Accordingly, an ingestible device that is capable of releasing a small molecule selectively in the large intestine (e.g., the cecum) with resulting low systemic levels (even when high doses are used) is attractive for subjects with inflammatory bowel disease in the large intestine.

In some embodiments, the storage reservoir may include multiple chambers, and each chamber stores a different dispensable substance. For example, the different dispensable substances can be released at the same time via the dispensing outlet 1607. Alternatively, the multiple chambers may take a form of different layers within the storage reservoir such that the different dispensable substance from each chamber is delivered sequentially in an order. In one example, each of the multiple chambers is controlled by a separate traveling plunger, which may be propelled by gas generation. The electronic component may control the gas generating cell 1603 to generate gas to propel a specific traveling plunger, e.g., via a separate gas generation chamber, etc., to deliver the respective substance. In some embodiments, the content of the multiple chambers may be mixed or combined prior to release, for example, to activate the drug.

The ingestible device 1600 may include a dispensing outlet 1607 at one end 1602a of the housing 1601 to direct the dispensable substance 105 out of the housing. The dispensing outlet 1607 may include an exit valve, a slit or a hole, a jet injection nozzle with a syringe, and/or the like. When the traveling plunger 1604 moves towards the end 1602a of the housing 1601, an internal pressure within the storage reservoir may increase and push the
dispensing outlet to be open to let the dispensable substance 1605 be released out of the housing 1601.

In an embodiment, a pressure relief device 1606 may be placed within the housing 1601, e.g., at the end 1602a of the housing 1601.

In some embodiments, the housing 1601 may include small holes (e.g., with a diameter smaller than 2 mm), e.g., on the side of the housing 1601, or at the end 1602a to facilitate loading the dispensable substance into the storage reservoir.

In some embodiments, a feedback control circuit (e.g., a feedback resistor, etc.) may be added to send feedback from the gas generating cell 1603 to the electronic component such that when the internal pressure reaches a threshold level, the electronic component may control the gas generating cell 1603 to turn off gas generation, or to activate other safety mechanism (e.g., feedback-controlled release valve, etc.). For example, an internal pressure sensor may be used to measure the internal pressure within the ingestible device and generate feedback to the feedback control circuit.

FIG. 17 provides an example diagram illustrating aspects of a mechanism for a gas generating cell 1603 configured to generate a gas to dispense a substance, according to some embodiments described herein. As shown in FIG. 17, the gas generating cell 1603 generates a gas 161I which can propel the dispensable substance 1605 out of the dispensing outlet 1607. A variable resistor 1608 may be connected to a circuit with the gas generating cell 1603 such that the variable resistor 1608 may be used to control an intensity and/or an amount of gas 161I (e.g., hydrogen) generated by the cell 1603. Specifically, the gas generating cell 1603 may be a battery form factor cell that is capable of generating hydrogen when a resistor is applied. In this way, as the gas generating cell 1603 only needs the use of a resistor only without any active power requirements, the gas generating cell 1603 may be integrated into an ingestible device such as a capsule with limited energy/power available. For example, the gas generating cell 1603 may be compatible with a capsule at a size of 26mm x 13mm or smaller.

In some embodiments, based on the elution rate of gas from the cell, and an internal volume of the ingestible device, it may take time to generate sufficient gas 161I to deliver the substance 1605, and the time required may be 30 seconds or longer. For example, the time to generate a volume of hydrogen equivalent to 500µL of fluid would be approximately 5 minutes. A longer period of time may be needed based upon non-ideal conditions within the ingestible device, such as friction, etc. Thus, given that the production of gas (e.g., hydrogen)
may take time, gas generation may need to start prior to the ingestible device arriving at the site of delivery to build pressure up within the device. The ingestible device may then need to know when it is approaching the site of delivery. For example, the device may start producing gas on an "entry transition," which is determined by temperature, so as to produce enough gas to be close to the pressure high enough to deliver the dispensable substance. The ingestible device may then only start producing gas again when it arrives at the site of delivery, which will cause the internal pressure within the ingestible device to reach a level required by the dispensing outlet to release the dispensable substance. Also, for region-specific delivery, the ingestible device may estimate the time it takes to build up enough pressure to deliver the dispensable substance before the ingestible device arrives at a specific location, to activate gas generation.

For example, for systemic delivery, when an internal volume of the ingestible device is around 500µL, a gas generation time of 2 hours, an initial pressure of approximately 300 pound per square inch absolute (psia) may be generated, with higher and lower pressures possible. The generated pressure may drop when air enters the storage reservoir which was previously occupied by the dispensable substance during the dispensing process. For systemic drug delivery, a force with a generated pressure of approximately 100 to 360 pound per square inch (psi) may be required for dermal penetration, e.g., to penetrate the mucosa or epithelial layer. The pressure may also vary depending on the nozzle design at the dispensing outlet, fluid viscosity, and surrounding tissue proximity and properties.

The gas 161 l that may be generated for a continuous delivery of drug (e.g., 1 cc Fl₂ in 4 hours, 16 breaths per minute at 0.5 L tidal volume) may equate to 1 cc hydrogen in approximately 2000L of exhaled air, or approximately 0.5 ppm H₂, which is below physiologic values of exhaled hydrogen. Reducing this time to 10 minutes equates to approximately 13 ppm hydrogen. Thus, due to the length of intestine that may be covered during this time period, the ingestible device may possess a higher localized value than physiologic.

FIGS. 18 and 19, disclosed in US Provisional Application No. 62/385,553, incorporated by reference herein in its entirety, illustrates an example of an ingestible device for localized delivery of pharmaceutical compositions disclosed herein, in accordance with particular implementations. The ingestible device 1600 includes a piston or drive element 1634 to push for drug delivery, in accordance with particular implementations described herein. The ingestible device 1600 may have one or more batteries 163 l placed at one end.
1602a of a housing 1601 to provide power for the ingestible device 1600. A printed circuit
board (PCB) 1632 may be placed adjacent to a battery or other power source 1631, and a gas
generating cell 1603 may be mounted on or above the PCB 1632. The gas generating cell
1603 may be sealed from the bottom chamber (e.g., space including 1631 and 1632) of the
ingestible device 1600. A movable piston 1634 may be placed adjacent to the gas generating
cell 1603. In this way, gas generation from the gas generating cell 1603 may propel a piston
1634 to move towards another end 1602b of the housing 1601 such that the dispensable
substance in a reservoir compartment 1635 can be pushed out of the housing through a
dispensing outlet 1607, e.g., the movement is shown at 1636, with the piston 1634 at a
position after dispensing the substance. The dispensing outlet 1607 may comprise a plug. The
reservoir compartment 1635 can store the dispensable substance (e.g., drug substance), or
alternatively the reservoir compartment can house a storage reservoir 1661 which comprises
the dispensable substance. The reservoir compartment 1635 or storage reservoir 1661 may
have a volume of approximately 600 µL or even more dispensable substance, which may be
dispensed in a single bolus, or gradually over a period of time.

The battery cells 1631 may have a height of 1.65 mm each, and one to three batteries
may be used. The height of the piston may be reduced with custom molded part for around
1.5 mm to save space. If the gas generating cell 1603 is integrated with the piston 1634, the
overall height of the PCB, batteries and gas generating cell in total can be reduced to around
5 mm, thus providing more space for drug storage. For example, for an ingestible device of
7.8 mm in length (e.g., from end 1602a to the other end 1602b), a reservoir compartment
1635 or a storage reservoir 1661 of approximately 600 µL may be used for drug delivery.
For another example, for an ingestible device of 17.5 mm in length, a reservoir compartment
1635 or a storage reservoir 1661 of approximately 1300 µL may be used for drug release.

In some implementations, at the reservoir 1635 or 1661 for storing a therapeutically
effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) forms at least a portion of the device housing 1601. The therapeutically
effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) can be stored in the reservoir 1635 or 1661 at a particular pressure, for
example, determined to be higher than a pressure inside the GI tract so that once the reservoir
1635 or 1661 is in fluid communication with the GI tract, glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) is automatically released. In certain
implementations, the reservoir compartment 1635 includes a plurality of chambers, and each
of the plurality of the chambers stores a different dispensable substance or a different storage reservoir 1661.

In certain embodiments, the storage reservoir 1661 is a compressible component or has compressible side walls. In particular embodiments, the compressible component can be composed, at least in part, or coated (e.g., internally) with polyvinyl chloride (PVC), silicone, DEHP (di-2-ethylhexyl phthalate), Tyvek, polyester film, polyolefin, polyethylene, polyurethane, or other materials that inhibit glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from sticking to the reservoir and provide a sterile reservoir environment for glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). The storage reservoir 1661 can be hermetically sealed. The reservoir compartment 1635 or storage reservoir 1661 can be configured to store glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in quantities in the range of 0.01 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.05 mL - 2 mL, such as 0.6 mL - 2 mL. In some embodiments, the storage reservoir 1661 is attachable to the device housing 1601, for example, in the reservoir compartment. Accordingly, the storage reservoir 1635 can be loaded with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) prior to being positioned in and/or coupled to the ingestible device housing 1601. The ingestible device housing 1601 includes one or more openings configured as a loading port to load the dispensable substance into the reservoir compartment.

In another embodiment, the ingestible device housing 1601 includes one or more openings configured as a vent.

As noted above, in some embodiments, a storage reservoir (optionally, containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), such as a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate)) is attachable to an ingestible device. In general, in such embodiments the storage reservoir and ingestible device can be designed in any appropriate fashion so that the storage reservoir can attach to the ingestible device when desired. Examples of designs include a storage reservoir that fits entirely within the ingestible device (e.g., in the ingestible device so that the storage reservoir is sealed within the device at the time the device is ingested by a subject), a storage reservoir that fits partially within the ingestible device, and a storage reservoir that is carried by the housing of the device. In some embodiments, the storage reservoir snap fits with the ingestible device. In certain embodiments, the storage reservoir is friction fit with the ingestible device. In some
embodiments, the storage reservoir is held together with the ingestible device via a biasing mechanism, such as one or more springs, one or more latches, one or more hooks, one or more magnets, and/or electromagnetic radiation. In certain embodiments, the storage reservoir can be a piercable member. In some embodiments, the ingestible device has a sleeve into which the storage reservoir securely fits. In some embodiments, the storage reservoir is disposed in/on a slidable track/groove so that it can move onto a piercing needle when delivery of the therapeutic agent is desired. In certain embodiments, the storage reservoir is made of a soft plastic coating, which is contacted with a needle at any orientation to deliver the therapeutic agent when desired. Generally, the storage reservoir can be made of one or more appropriate materials, such as, for example, one or more plastics and/or one or more metals or alloys. Exemplary materials include silicone, polyvinyl chloride, polycarbonate and stainless steel. Optionally, the design may be such that the storage reservoir carries some or all of the electrical componentry to be used by the ingestible device. Although the foregoing discussion relates to one storage reservoir, it is to be understood that an ingestible device can be designed to carry any desired number (e.g., two, three, four, five) storage reservoirs. Different storage reservoirs can have the same or different designs. In some embodiments, the ingestible device (when fully assembled and packaged) satisfies the regulatory requirements for marketing a medical device in one or more jurisdictions selected from the United States of America, the European Union or any member state thereof, Japan, China, Brazil, Canada, Mexico, Colombia, Argentina, Chile, Peru, Russia, the UK, Switzerland, Norway, Turkey, Israel, any member state of the Gulf Cooperative Council, South Africa, India, Australia, New Zealand, South Korea, Singapore, Thailand, the Philippines, Malaysia, Viet Nam, Indonesia, Taiwan and Hong Kong.

In certain embodiments, the ingestible device housing 1601 includes one or more actuation systems (e.g., gas generating cell 1603) for pumping glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir 1635. In some embodiments, the actuation system can include a mechanical, electrical, electromechanical, hydraulic, and/or fluid actuation system. For example, a chemical actuation means may use chemical reaction of mixing one or more reagents to generate a sufficient volume of gas to propel the piston or drive element 1634 for drug release. The actuation system can be integrated into the reservoir compartment 1635 or can be an auxiliary system acting on or outside of the reservoir compartment 1635. For example, the actuation system can include pumping system for pushing/pulling glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) out of the reservoir compartment 1635 or the actuation system can be configured to cause the reservoir compartment 1635 to change structurally so that the volume inside of the reservoir compartment 1635 changes, thereby dispensing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir compartment 1635. The actuation system can include an energy storage component such as a battery or a capacitor for powering the actuation system. The actuation system can be actuated via gas pressure or a system storing potential energy, such as energy from an elastic reservoir component being expanded during loading of the reservoir and after being positioned in the ingestible device housing 1601 being subsequently released from the expanded state when the ingestible device housing is at the location for release within the GI tract. In certain embodiments, the reservoir compartment 1635 can include a membrane portion, whereby glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is dispensed from the reservoir compartment 1635 or storage reservoir 1661 via osmotic pressure.

In particular embodiments the storage reservoir 1661 is in a form of a bellow that is configured to be compressed via a pressure from the gas generating cell. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be loaded into the bellow, which may be compressed by gas generation from the gas generating cell or other actuation means to dispense the dispensable substance through the dispensing outlet 1607 and out of the housing 1601. In some embodiments, the ingestible device includes a capillary plate placed between the gas generating cell and the first end of the housing, and a wax seal between the gas generating cell and the reservoir, wherein the wax seal is configured to melt and the dispensable substance is pushed through the capillary plate by a pressure from the gas generating cell. The shape of the bellow may aid in controlled delivery. The reservoir compartment 1635 includes a dispensing outlet, such as a valve or dome slit 1662 extending out of an end of the housing 1601, in accordance with particular implementations. Thus when the bellow is being compressed, the dispensable substance may be propelled out of the bellow through the valve or the dome slit.

In certain embodiments, the reservoir compartment 1635 includes one or more valves (e.g. a valve in the dispensing outlet 1607) that are configured to move or open to fluidly couple the reservoir compartment 1635 to the GI tract. In certain embodiments, a housing wall of the housing 1601 can form a portion of the reservoir compartment 1635. In certain embodiments, the housing walls of the reservoir serve as a gasket. One or more of the one or
more valves are positioned in the housing wall of the device housing 1601, in accordance with particular implementations. One or more conduits may extend from the reservoir 1635 to the one or more valves, in certain implementations.

In certain embodiments, a housing wall of the housing 1601 can be formed of a material that is configured to dissolve, for example, in response to contact at the disease site. In certain embodiments, a housing wall of the housing 1601 can be configured to dissolve in response to a chemical reaction or an electrical signal. The one or more valves and/or the signals for causing the housing wall of the housing 1601 to dissolve or dissipate can be controlled by one or more processors or controllers positioned on PCB 1632 in the device housing 1601. The controller is communicably coupled to one or more sensors or detectors configured to determine when the device housing 1601 is proximate to a disease site. The sensors or detectors comprise a plurality of electrodes comprising a coating, in certain implementations. Releasing of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir compartment 1635 is triggered by an electric signal from the electrodes resulting from the interaction of the coating with the one or more sites of disease site. The one or more sensors can include a chemical sensor, an electrical sensor, an optical sensor, an electromagnetic sensor, a light sensor, a gas sensor, and/or a radiofrequency sensor. Methods for detecting volatile organic compounds (VOCs) and other gases from a biological sample include resistive metal oxide gas sensors/mixed metal oxide gas sensors, electrochemical gas sensors, optical/IR gas sensors, conducting polymer/composite polymer resistive/capacitive gas sensors, quartz crystal microbalance gas sensors, carbon nanotubes, and pellister/calorimetric gas sensors. Examples of ingestible gas sensors are described in US Patent Publication No. US20130289368, which published on October 31, 2013, US Patent Publication No. US20170284956, which published on October 5, 2017, and PCT Patent Publication No. WO2016197181, which published on December 15, 2016. Examples of gases that can be detected in the gastrointestinal tract using a sensor include, but are not limited to, oxygen, hydrogen, and carbon dioxide.

In particular embodiments, the device housing 1601 can include one or more pumps configured to pump the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir compartment 1635. The pump is communicably coupled to the one or more controllers. The controller is configured to activate the pump in response to detection by the one or more detectors of the disease site and activation of the valves to allow the reservoir 1635 to be in fluid
communication with the GI tract. The pump can include a fluid actuated pump, an electrical pump, or a mechanical pump.

In certain embodiments, the device housing 1601 comprises one or more anchor systems for anchoring the device housing 1601 or a portion thereof at a particular location in the GI tract adjacent the disease site. In some embodiments, a storage reservoir comprises an anchor system, and the storage reservoir comprising a releasable substance is anchored to the GI tract. The anchor system can be activated by the controller in response to detection by the one or more detectors of the disease site. In certain implementations, the anchor system includes legs or spikes configured to extend from the housing wall(s) of the device housing 1601. The spikes can be configured to retract and/or can be configured to dissolve over time. An example of an attachable device that becomes fixed to the interior surface of the GI tract is described in PCT Patent Application PCT/US20 15/012209, "Gastrointestinal Sensor Implantation System", filed January 21, 2015, which is hereby incorporated by reference herein in its entirety.

FIG. 20 provides an example structural diagram having a flexible diaphragm 1665 that may deform towards the dispensing outlet 1607 when the gas generating cell 1603 generates gas. The dispensable substance may then be propelled by the deformed diaphragm out of the housing through the dispensing outlet 1607. The dispensing outlet 1607 shown at FIG. 20 is in the form of a ring valve, however, any outlet design can be applied.

In some embodiments, an ingestible device can have an umbrella-shaped exit valve structure as a dispensing outlet of the ingestible device. Optionally, an ingestible device can have a flexible diaphragm to deform for drug delivery, and/or an integrated piston and gas generating cell such that the gas generating cell is movable with the piston to push for drug delivery.

In certain embodiments, an ingestible device can be anchored within the intestine by extending hooks from the ingestible device after it has entered the region of interest. For example, when the ingestible device determines it has arrived at a location within the GI tract, the hooks can be actuated to extend outside of the ingestible device to catch in the intestinal wall and hold the ingestible device in the respective location. In some embodiments, the hook can pierce into the intestinal wall to hold the ingestible device 100 in place. The hooks can be hollow. A hollow hook can be used to anchor the ingestible device and/or to dispense a substance from the dispensable substance, e.g., into the intestinal wall.
In some embodiments an ingestible device includes an intestinal gripper to grip a portion of the intestinal wall for delivering the dispensable substance. Such a gripper can include two or more arms configured to out of the device and close to grip a portion of the intestinal wall.

An injecting needle can be used with the anchoring arms to inject dispensable substance into the intestinal wall after a portion of the intestinal wall is gripped.

In some embodiments, when the gas generating cell generates gas to propel the piston to move towards the nozzle such that the dispensable substance can be pushed under the pressure to break a burst disc to be injected via the nozzle.

In some embodiments, an ingestible device has a jet delivery mechanism with enhanced usable volume of dispensable substance. For example, the nozzle may be placed at the center of the ingestible device, and gas channels may be placed longitudinally along the wall of the ingestible device to transport gas from the gas generating cell to propel the piston, which is placed at an end of the ingestible device.

In some embodiments, the ingestible device can use osmotic pressure to adhere a suction device of the ingestible device to the intestinal wall. For example, the ingestible device may have an osmotic mechanism that has a chamber storing salt crystals. The chamber can include a mesh placed in proximate to a burst valve at one end of the chamber, and a reverse osmosis (RO) membrane placed in proximate to a valve on the other end of the chamber. A suction device, e.g., two or more suction fingers, is placed outside of the chamber with an open outlet exposed to luminal fluid in the GI tract. When the osmotic mechanism is inactivated, e.g., the valve is closed so that no luminal fluid is drawn into the osmotic chamber. When the osmotic mechanism is activated by opening the valve, luminal fluid enters the ingestible device through an outlet of the suction device and enters the osmotic chamber through the valve. The salt in the chamber is then dissolved into the fluid. The RO membrane prevents any fluid to flow in the reverse direction, e.g., from inside the chamber to the valve. The fluid continues to flow until all the salt contained in the chamber is dissolved or until intestinal tissue is drawn into the suction device. As luminal fluid keeps flowing into the chamber, the solution of the luminal fluid with dissolved salt in the chamber may reduce osmotic pressure such that the suction force at may also be reduced. In this way, suction of the intestinal tissue may stall before the tissue is in contact with the valve to avoid damage to the intestinal tissue.
An ingestible device employing an osmotic mechanism can also include a suction device as illustrated. The suction device can be two or more suction fingers 347a-b disposed proximate to the outlet. The outlet can be connected to a storage reservoir storing the dispensable substance (e.g., therapeutic agent). The storage reservoir can contact a piston (similar to 104 in FIG. 16), which can be propelled by pressure generated from the osmotic pump to move towards the outlet. The osmotic pump can be similar to the osmotic mechanism described in the preceding paragraph. A breakaway section can be placed in proximate to the other end (opposite to the end where the outlet 107 is disposed) of the ingestible device.

In some embodiments, tumbling suction by an ingestible device is used. Such an ingestible device does not require any electronics or other actuation elements. Such an ingestible device may constantly, intermittently, or periodically tumble when travelling through the intestine. When the ingestible device tumbles to a position that the outlet is in direct contact with the intestinal wall, a suction process similar to that described in the preceding paragraph may occur. Additional structural elements such as fins, flutes or the like may be added to the outer wall of the ingestible device 100 to promote the tumbling motion.

In certain embodiments, the reservoir is an anchorable reservoir, which is a reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract adjacent the disease site. In certain embodiments, the anchor system includes legs or spikes or other securing means such as a piercing element, a gripping element, a magnetic-flux-guiding element, or an adhesive material, configured to extend from the anchorable reservoir of the device housing. The spikes can be configured to retract and/or can be configured to dissolve over time. In some embodiments, the anchorable reservoir is suitable for localizing, positioning and/or anchoring. In some embodiments, the anchorable reservoir is suitable for localizing, and positioning and/or anchoring by an endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for oral administration. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for rectal administration. Accordingly, provided herein in some embodiments is an anchorable reservoir is connected to an endoscope wherein the anchorable reservoir comprises a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments the endoscope is fitted with a spray catheter.
Exemplary embodiments of anchorable reservoirs are as follows. In more particular examples of the following exemplary embodiments the reservoir is connected to an endoscope.

In one embodiment, the anchorable reservoir comprises an implant capsule for insertion into a body canal to apply radiation treatment to a selected portion of the body canal. The reservoir includes a body member defining at least one therapeutic treatment material receiving chamber and at least one resilient arm member associated with the body member for removably engaging the body canal when the device is positioned therein.

In one embodiment the anchorable reservoir has multiple suction ports and permits multiple folds of tissue to be captured in the suction ports with a single positioning of the device and attached together by a tissue securement mechanism such as a suture, staple or other form of tissue bonding. The suction ports may be arranged in a variety of configurations on the reservoir to best suit the desired resulting tissue orientation.

In some embodiments an anchorable reservoir comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened. The catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa. A second stimulation/sense electrode is located at the fixation site.

In some embodiments a reservoir for sensing one or more parameters of a patient is anchored to a tissue at a specific site and is released from a device, using a single actuator operated during a single motion. As an example, a delivery device may anchor the capsule to the tissue site and release the reservoir from the delivery device during a single motion of the actuator.
In some embodiments a device is provided comprising: a reservoir configured to contain a fluid, the reservoir having at least one outlet through which the fluid may exit the reservoir; a fluid contained within the reservoir; a primary material contained within the reservoir and having a controllable effective concentration in the fluid; and at least one electromagnetically responsive control element located in the reservoir or in a wall of the reservoir and adapted for modifying the distribution of the primary material between a first active form carried in the fluid and a second form within the reservoir in response to an incident electromagnetic control signal, the effective concentration being the concentration of the first active form in the fluid, whereby fluid exiting the reservoir carries the primary material in the first active form at the effective concentration.

In some embodiments systems and methods are provided for implementing or deploying medical or veterinary devices or reservoirs (a) operable for anchoring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of anchoring, (e) facilitating a "primary" material supply deployable within a stomach for an extended and/or controllable period, (f) anchored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.

In certain embodiments, the reservoir is attachable to an ingestible device. In certain embodiments, the ingestible device comprises a housing and the reservoir is attachable to the housing. In certain embodiments, the attachable reservoir is also an anchorable reservoir, such as an anchorable reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract as disclosed hereinabove.

Accordingly, in certain embodiments, provided herein is glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use in a method of treating a disease of the gastrointestinal tract as disclosed herein, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.

In certain embodiments, provided herein is an attachable reservoir containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for
use in a method of treating a disease of the gastrointestinal tract, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In certain embodiments, provided herein is an attachable reservoir containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the reservoir is attachable to a device housing to form an ingestible device that is suitable for oral administration to a subject and that is capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

In particular implementation the ingestible device includes cameras (e.g., video cameras) that affords inspection of the entire GI tract without discomfort or the need for sedation, thus avoiding many of the potential risks of conventional endoscopy. Video imaging can be used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease). In some embodiments, the ingestible device 101 may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device. Examples of video imaging capsules include Medtronic's PillCam™, Olympus' Endocapsule®, and IntroMedic's MicroCam™. For a review of imaging capsules, see Basar et al. "Ingestible Wireless Capsule Technology: A Review of Development and Future Indication" International Journal of Antennas and Propagation (2012); 1-14). Other imaging technologies implemented with the device 101 can include thermal imaging cameras, and those that employ ultrasound or Doppler principles to generate different images (see Chinese patent application CN104473611: "Capsule endoscope system having ultrasonic positioning function".

Ingestible devices can be equipped with sources for generating reflected light, including light in the Ultraviolet, Visible, Near-infrared and/or Mid-infrared spectrum, and the corresponding detectors for spectroscopy and hyperspectral imaging. Likewise, autofluorescence may be used to characterize GI tissue (e.g., subsurface vessel information), or low-dose radiation (see Check-Cap™) can be used to obtain 3D reconstructed images.
Device Components

An ingestible device in accordance with particular embodiments of the present invention may comprise a component made of a non-digestible material and contain glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the material is plastic.

It is envisaged that the device is single-use. The device is loaded with a drug prior to the time of administration. In some embodiments, it may be preferred that there is provided a medicinal product comprising the device pre-filled with the drug.

Anchoring components

Several systems may actively actuate and control the capsule position and orientation in different sections of the GI tract. Examples include leg-like or anchor-like mechanisms that can be deployed by an ingestible device to resist peristaltic forces in narrowed sections of the GI tract, such as the intestine, and anchor the device to a location. Other systems employ magnetic shields of different shapes that can interact with external magnetic fields to move the device. These mechanisms may be particularly useful in areas outside of the small intestine, like the cecum and large intestine.

An anchoring mechanism may be a mechanical mechanism. For example, a device may be a capsule comprising a plurality of legs configured to steer the capsule. The number of legs in the capsule may be, for example, two, four, six, eight, ten or twelve. The aperture between the legs of the device may be up to about 35 mm; about 30 to about 35 mm; about 35 to about 75 mm; or about 70 to about 75 mm. The contact area of each leg may be varied to reduce impact on the tissue. One or more motors in the capsule may each actuate a set of legs independently from the other. The motors may be battery-powered motors.

An anchoring mechanism may be a non-mechanical mechanism. For example, a device may be a capsule comprising a permanent magnet located inside the capsule. The capsule may be anchored at the desired location of the GI tract by an external magnetic field.

An anchoring mechanism may comprise a non-mechanical mechanism and a mechanical mechanism. For example, a device may be a capsule comprising one or more legs, one or more of which are coated with an adhesive material.
Locomotion components

Ingestible devices can be active or passive, depending on whether they have controlled or non-controlled locomotion. Passive (non-controlled) locomotion is more commonly used among ingestible devices given the challenges of implementing a locomotion module. Active (controlled) locomotion is more common in endoscopic ingestible capsules. For example, a capsule may comprise a miniaturized locomotion system (internal locomotion). Internal locomotion mechanisms may employ independent miniaturized propellers actuated by DC brushed motors, or the use of water jets. As an example, a mechanism may comprise flagellar or flap-based swimming mechanisms. As an example, a mechanism may comprise cyclic compression/extension shape-memory alloy (SMA) spring actuators and anchoring systems based on directional micro-needles. As an example, a mechanism may comprise six SMA actuated units, each provided with two SMA actuators for enabling bidirectional motion. As an example, a mechanism may comprise a motor adapted to electrically stimulating the GI muscles to generate a temporary restriction in the bowel.

As an example, a capsule may comprise a magnet and motion of the capsule is caused by an external magnetic field. For example, a locomotion system may comprise an ingestible capsule and an external magnetic field source. For example, the system may comprise an ingestible capsule and magnetic guidance equipment such as, for example, magnetic resonance imaging and computer tomography, coupled to a dedicated control interface. In some embodiments drug release mechanisms may also be triggered by an external condition, such as temperature, pH, movement, acoustics, or combinations thereof.

Sampling Components

Ingestible devices may comprise a mechanism adapted to permit the collection of tissue samples. In some examples, this is achieved using electro-mechanical solutions to collect and store the sample inside an ingestible device. As an example, a biopsy mechanism may include a rotational tissue cutting razor fixed to a torsional spring or the use of microgrippers to fold and collect small biopsies. As an example, Over-the-scope clips (OTSC®) may be used to perform endoscopic surgery and/or biopsy. As an example of the methods disclosed herein, the method may comprise releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and collecting a sample inside the device. As an example, the method may comprise releasing glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and collecting a sample inside the device in a single procedure.

FIG. 21 illustrates an example ingestible device 2100 with multiple openings in the housing. The ingestible device 2100 has an outer housing with a first end 2102A, a second end 2102B, and a wall 2104 extending longitudinally from the first end 2102A to the second end 2102B. Ingestible device 2100 has a first opening 2106 in the housing, which is connected to a second opening 2108 in the housing. The first opening 2106 of the ingestible device 2100 is oriented substantially perpendicular to the second opening 2108, and the connection between the first opening 2106 and the second opening 2108 forms a curved chamber 2110 within the ingestible device 2100.

The overall shape of the ingestible device 2100, or any of the other ingestible devices discussed in this disclosure, may be similar to an elongated pill or capsule.

In some embodiments, a portion of the curved chamber 2110 may be used as a sampling chamber, which may hold samples obtained from the GI tract. In some embodiments the curved chamber 2110 is subdivided into sub-chambers, each of which may be separated by a series of one or more valves or interlocks.

In some embodiments, the first opening 2106, the second opening 2108, or the curved chamber 2110 include one or more of a hydrophilic or hydrophobic material, a sponge, a valve, or an air permeable membrane.

The use of a hydrophilic material or sponge may allow samples to be retained within the curved chamber 2110, and may reduce the amount of pressure needed for fluid to enter through the first opening 2106 and dislodge air or gas in the curved chamber 2110. Examples of hydrophilic materials that may be incorporated into the ingestible device 2100 include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and the like.

Similarly, materials that have undergone various types of treatments, such as plasma treatments, may have suitable hydrophilic properties, and may be incorporated into the ingestible device 2100. Sponges may be made of any suitable material or combination of materials, such as fibers of cotton, rayon, glass, polyester, polyethylene, polyurethane, and the like. Sponges generally may be made from commercially available materials, such as those produced by Porex®.

As discussed in more detail below, in some embodiments, the sponges may be treated in order to change their absorbency or to help preserve samples.
In some embodiments, the sponges may be cut or abraded to change their absorbency or other physical properties.

Hydrophobic materials located near the second opening 2108 may repel liquids, discouraging liquid samples from entering or exiting the curved chamber 2110 through the second opening 2108. This may serve a similar function as an air permeable membrane. Examples of hydrophobic materials which may be incorporated into the ingestible device 2100 include polycarbonate, acrylics, fluorocarbons, styrenes, certain forms of vinyl, stainless steel, silicone, and the like.

The various materials listed above are provided as examples, and are not limiting. In practice, any type of suitable hydrophilic, hydrophobic, or sample preserving material may be used in the ingestible device 2100.

In some embodiments, an ingestible device includes a moveable valve as a diaphragm valve, which uses a mechanical actuator to move a flexible diaphragm in order to seal or unseal an aperture in a second portion of an inlet region, which may effectively block or unblock the inlet region. However, it will be understood that, in some embodiments, the moveable valve may be a different type of valve. For example, in some embodiments the moveable valve may be replaced by a pumping mechanism. As another example, in some embodiments the moveable valve is replaced with an osmotic valve.

A sampling chamber of an ingestible device can have an exit port to allow air or gas to exit the sampling chamber, while preventing at least a portion of the sample obtained by the ingestible device from exiting the sampling chamber. For example, the exit port may include a gas-permeable membrane. An ingestible device can include one-way valve as part of its exit port.

An ingestible device can include an outlet port connected to the volume within housing of the ingestible device. The outlet port may provide a path for the gas to exit the ingestible device and be released into the environment surrounding the ingestible device. This may prevent pressure from building up within the housing of the ingestible device. In some embodiments, an ingestible device does not include an outlet port, and the gas stays inside the volume of the ingestible device. In some embodiments, the outlet port may contain a gas permeable membrane, a one-way valve, a hydrophobic channel, or some other mechanism to avoid unwanted material, (e.g., fluids and solid particulates from within the GI tract), from entering the ingestible device through the outlet port.
In some embodiments, the ingestible device may include a sensor within or proximate to the sampling chamber. For example, this sensor may be used to detect various properties of a sample contained within the sampling chamber, or this sensor may be used to detect the results of an assay technique applied to the sample contained within the sampling chamber.

In some embodiments, a hydrophilic sponge is located within the sampling chamber, and the hydrophilic sponge may be configured to absorb the sample as the sample enters the sampling chamber. In some embodiments, the hydrophilic sponge fills a substantial portion of the sampling chamber, and holds the sample for an extended period of time. This may be particularly advantageous if the sample is collected from the ingestible device after the ingestible device exits the body. In some embodiments, the hydrophilic sponge is placed on only certain surfaces or fills only certain portions of the sampling chamber. For example, it may be possible to line certain walls (or all walls) of the sampling chamber with a hydrophilic sponge to assist in drawing in the sample, while leaving some (or none) of the walls of the sampling chamber uncovered. Leaving walls uncovered may allow the use of diagnostics or assay techniques that require a relatively un-obscured optical path.

In some embodiments, the ingestible device may include a sealed vacuum chamber connected to the exit port, or connected directly or indirectly to the sampling chamber. In some embodiments a pin valve may be used as a moveable valve (e.g., as moveable valve of ingestible device). In certain embodiments, a rotary valve may be used as a moveable valve (e.g., as moveable valve of ingestible device). In some embodiments, a flexible diaphragm, or diaphragm valve, may be used as a moveable valve (e.g., as moveable valve of ingestible device). In certain embodiments, a mechanism is near the diaphragm or in direct contact with the diaphragm. The spring mechanism may apply pressure to the diaphragm to oppose the pressure applied by the mechanical actuator, which may cause the flexible diaphragm to be moved into an open position when the mechanical actuator is not applying pressure to the flexible diaphragm. Additionally, this may ensure that the diaphragm valve remains open when the mechanical actuator is not applying pressure across the flexible diaphragm. In some embodiments, moving the mechanical actuator from a closed position to an open position causes a volume of the inlet region within the ingestible device to increase. This may cause the pressure within the inlet region to be reduced, generating suction to draw a sample into the inlet region. Similarly, moving the mechanical actuator from an open position to a closed position may cause the volume of the inlet region to be reduced. This may cause the pressure within the inlet region to be increased, pushing the sample out of the
inlet region. Depending on the design of the inlet region, the mechanical actuator, and the moveable valve, this may push the sample into the sampling chamber rather than pushing the sample back through the opening in the ingestible device.

FIG. 22 depicts a cross-sectional view of a portion of the interior of ingestible device 3000. As shown in FIG. 22, the interior of ingestible device 3000 includes a valve system 3100 and a sampling system 3200. Valve system 3100 is depicted as having a portion that is flush with the opening 3018 so that valve system 3100 prevents fluid exterior to ingestible device 2000 from entering sampling system 3200. However, as described in more detail below with reference to FIGS. 22-27, valve system 3100 can change position so that valve system 3100 allows fluid exterior to ingestible device 3000 to enter sampling system 3200.

FIGS. 23 and 27 illustrate valve system 3100 in more detail. As shown in FIG. 23, valve system 3100 includes an actuation mechanism 3110, a trigger 3120, and a gate 3130. In FIGS. 23 and 7, a leg 3132 of gate 3130 is flush against, and parallel with, housing wall 3016 so that gate leg 3132 covers opening 3018 to prevent fluid exterior to ingestible device 3000 (e.g., fluid in the GI tract) from entering the interior of ingestible device 3000. A protrusion 3134 of gate 3130 engages a lip 3122 of trigger 3120. A peg 3124 of trigger 3120 engages a wax pot 3112 of actuation mechanism 3110. Referring to FIG. 27, a biasing mechanism 3140 includes a compression spring 3142 that applies an upward force on gate 3130. Biasing mechanism 3140 also includes a torsion spring 3144 that applies a force on trigger 3120 in the counter-clockwise direction. In FIGS. 23 and 27, the force applied by torsion spring 3144 is counter-acted by the solid wax in pot 3112, and the force applied by compression spring 3142 is counter-acted by lip 3122.

FIGS. 24A and FIG 24B show an embodiment of the manner in which actuation mechanism 3110 actuates movement of trigger 3120. Similar to FIGS. 23 and 27, FIG. 24A shows a configuration in which peg 3124 applies a force against solid wax pot 3112 due to torsion spring 3144, and in which the solid nature of wax pot 3112 resists the force applied by peg 3124. A control unit 3150 is in signal communication with valve system 3100. During use of ingestible device 3000, a control unit 3150 receives a signal, indicating that the position of valve system 3100 should change, e.g., so that ingestible device 3000 can take a sample of a fluid in the GI tract. Control unit 3150 sends a signal that causes a heating system 3114 of actuation system 3100 to heat the wax in pot 3112 so that the wax melts. As shown in FIG. 24B, the melted wax is not able to resist the force applied by peg 3124 so that, under the force of torsion spring 3144, trigger 3120 moves in a counter-clockwise fashion.
FIGS. 25A and 25B illustrate the interaction of trigger 3120 and gate 3130 before and after actuation. As shown in FIG 25A, when wax pot 3112 is solid (corresponding to the configuration shown in FIG. 24A), protrusion 3134 engages lip 3122, which prevents the force of compression spring 3142 from moving gate 3130 upward. As shown in FIG. 25B, when the wax in pot 3112 melts (FIG. 24B), trigger 3120 moves counter-clockwise, and lip 3122 disengages from protrusion 3134. This allows the force of compression spring 3142 to move gate 3130 upward. As seen by comparing FIG. 25A to FIG. 25B, the upward movement of gate 3130 results in an upward movement of an opening 3136 in gate leg 3132.

FIGS. 26A and 26B illustrate the impact of the upward movement of opening 3136 on the ability of ingestible device 3000 to obtain a sample. As shown in FIG. 26A, when the wax in pot 3112 is solid (FIGS. 24A and 25A), opening 3136 in is not aligned with opening 3018 in wall 3016 of ingestible device 3000. Instead, gate leg 3132 covers opening 3018 and blocks fluid from entering the interior of ingestible device 3000. As shown in FIG. 26B, when the wax in pot 3112 is melted and trigger 3120 and gate 3130 have moved (FIGS. 24B and 42B), opening 3136 in gate 3130 is aligned with opening 3018 in wall 3016. In this configuration, fluid that is exterior to ingestible device 3000 (e.g., in the GI tract) can enter the interior of ingestible device 3000 via openings 3018 and 3036.

FIG. 27 illustrates a more detailed view of ingestible device 3000 including valve system 3100 and sampling system 3200.

While the foregoing description is made with regard to a valve system having one open position and one closed position (e.g., a two-stage valve system), the disclosure is not limited in this sense. Rather, the concepts described above with regard to a two stage valve system can be implemented with a valve system have more than two stages (e.g., three stages, four stages, five stages, etc.).

As noted above in addition to a valve system, an ingestible device includes a sampling system. FIG. 28 illustrates a partial cross sectional view of ingestible device 3000 with sampling system 3200 and certain components of valve system 3100. Sampling system 3200 includes a series of sponges configured to absorb fluid from an opening, move the fluid to a location within the housing, and prepare the fluid for testing. Preparation for testing may include filtering the fluid and combining the fluid with a chemical assay. The assay may be configured to dye cells in the filtered sample. The series of sponges includes a wicking sponge 3210, a transfer sponge 3220, a volume sponge 3230, and an assay sponge 3240. Sampling system 3200 also includes a membrane 3270 located between assay sponge 3240.
and a vent 3280 for gases to leave sampling system 3200. A cell filter 3250 is located between distal end 3214 of wicking sponge 3210 and a first end 3222 of transfer sponge 3220. Membrane 3270 is configured to allow one or more gases to leave sampling system 3200 via an opening 3280, while maintaining liquid in sampling system 3200.

FIG. 29 is a highly schematic illustration of an ingestible device 4000 that contains multiple different systems that cooperate for obtaining a sample and analyzing a sample, e.g., within the GI tract of a subject. Ingestible device 4000 includes a power system 4100 (e.g., one or more batteries), configured to power an electronics system 4200 (e.g., including a control system, optionally in signal communication with an external base station), a valve system 4300, a sampling system 4400, and an analytic system 4500. Exemplary analytical systems include assay systems, such as, for example, optical systems containing one or more sources of radiation and/or one more detectors.

Some or all of the sponges of the above-described sampling systems may contain one or more preservatives (see discussion above). Typically, the assay sponge and/or the volume sponge 3230 and/or the transfer sponge contain one or more preservatives. Typically, the preservative(s) are selected based on the analyte of interest, e.g., an analyte (such as a protein biomarker) for a GI disorder.

Communication systems

An ingestible device may be equipped with a communication system adapted to transmit and/or receive data, including imaging and/or localization data. As an example, a communication system may employ radiofrequency transmission. Ingestible devices using radiofrequency communication are attractive because of their efficient transmission through the layers of the skin. This is especially true for low frequency transmission (UHF-433 ISM and lower, including the Medical Device Radio Communication Service band (MDRS) band 402-406MHz). In another embodiment, acoustics are used for communications, including the transmission of data. For example, an ingestible capsule may be able to transmit information by applying one or more base voltages to an electromechanical transducer or piezoelectric (e.g., PZT, PVDF, etc.) device to cause the piezoelectric device to ring at particular frequencies, resulting in an acoustic transmission. A multi-sensor array for receiving the acoustic transmission may include a plurality of acoustic transducers that receive the acoustic transmission from a movable device such as an ingestible capsule as described in US Patent
Application No. 11/851214 filed September 6, 2007, incorporated by reference herein in its entirety.

As an example, a communication system may employ human body communication technology. Human body communication technology uses the human body as a conductive medium, which generally requires a large number of sensor electrodes on the skin. As an example, a communication system may integrate a data storage system.

Environmental Sensors

In some embodiments the device may comprise environmental sensors to measure pH, temperature, transit times, or combinations thereof. Other examples of environmental sensors include, but are not limited to a capacitance sensor, an impedance sensor, a heart rate sensor, acoustic sensor such as a microphone or hydrophone, image sensor, and/or a movement sensor. In one embodiment, the ingestible device comprises a plurality of different environmental sensors for generating different kinds of environmental data.

In order to avoid the problem of capsule retention, a thorough past medical and surgical history should be undertaken. In addition, several other steps have been proposed, including performing investigations such as barium follow-through. In cases where it is suspected that there is a high risk of retention, the patient is given a patency capsule a few days before swallowing an ingestible device. Any dissolvable non-endoscopic capsule may be used to determine the patency of the GI tract. The patency capsule is usually the same size as the ingestible device and can be made of cellophane. In some embodiments, the patency capsule contains a mixture of barium and lactose, which allows visualization by x-ray. The patency capsule may also include a radiotag or other label, which allows for it to be detected by radio-scanner externally. The patency capsule may comprise wax plugs, which allow for intestinal fluid to enter and dissolve the content, thereby dividing the capsule into small particles.

Accordingly, in some embodiments, the methods herein comprise (a) identifying a subject having a disease of the gastrointestinal tract and (b) evaluating the subject for suitability to treatment. In some embodiments, the methods herein comprise evaluating for suitability to treatment a subject identified as having a disease of the gastrointestinal tract. In some embodiments, evaluating the subject for suitability to treatment comprises determining the patency of the subject's GI tract.
In some embodiments, an ingestible device comprises a tissue anchoring mechanism for anchoring the ingestible device to a subject's tissue. For example, an ingestible device could be administered to a subject and once it reaches the desired location, the tissue anchoring mechanism can be activated or deployed such that the ingestible device, or a portion thereof, is anchored to the desired location. In some embodiments, the tissue anchoring mechanism is reversible such that after initial anchoring, the tissue attachment device is retracted, dissolved, detached, inactivated or otherwise rendered incapable of anchoring the ingestible device to the subject's tissue. In some embodiments the attachment mechanism is placed endoscopically.

In some embodiments, a tissue anchoring mechanism comprises an osmotically-driven sucker. In some embodiments, the osmotically-driven sucker comprises a first valve on the near side of the osmotically-driven sucker (e.g., near the subject's tissue) and a second one-way valve that is opened by osmotic pressure on the far side of the osmotically-driven sucker, and an internal osmotic pump system comprising salt crystals and semi-permeable membranes positioned between the two valves. In such embodiments, osmotic pressure is used to adhere the ingestible device to the subject's tissue without generating a vacuum within the ingestible capsule. After the osmotic system is activated by opening the first valve, fluid is drawn in through the sucker and expelled through the second burst valve. Fluid continues to flow until all the salt contained in the sucker is dissolved or until tissue is drawn into the sucker. As liminal fluid is drawn through the osmotic pump system, solutes build up between the tissue and the first valve, reducing osmotic pressure. In some embodiments, the solute buildup stalls the pump before the tissue contacts the valve, preventing tissue damage. In some embodiments, a burst valve is used on the far side of the osmotically-driven sucker rather than a one-way valve, such that liminal fluid eventually clears the saline chamber and the osmotic flow reverses, actively pushing the subject's tissue out of the sucker. In some embodiments, the ingestible device may be anchored to the interior surface of tissues forming the GI tract of a subject. In one embodiment, the ingestible device comprises a connector for anchoring the device to the interior surface of the GI tract. The connector may be operable to ingestible device to the interior surface of the GI tract using an adhesive, negative pressure and/or fastener.

In some embodiments a device comprises a tract stimulator and/or monitor comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active
fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is
effected, the elongated flexible member bends into a preformed shape that presses the
housing against the mucosa so that forces that would tend to dislodge the fixation mechanism
are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation
mechanism aimed toward the catheter distal end opening whereby the bend in the flexible
member is straightened. The catheter body is inserted through the esophagus into the GI tract

cavity to direct the catheter distal end to the site of implantation and fix the fixation
mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member
assumes its bent configuration and lodges the hermetically sealed housing against the
mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the
housing that is aligned with the bend of the flexible member so that it is pressed against the
mucosa. A second stimulation/sense electrode is located at the fixation site.

In some embodiments a device includes a fixation mechanism to anchor the device to
tissue within a body lumen, and a mechanism to permit selective de-anchoring of the device
from the tissue anchoring site without the need for endoscopic or surgical intervention. An
electromagnetic device may be provided to mechanically actuate the de-anchoring
mechanism. Alternatively, a fuse link may be electrically blown to de-anchor the device. As a
further alternative, a rapidly degradable bonding agent may be exposed to a degradation agent
to de-anchor the device from a bonding surface within the body lumen.

In some embodiments a device is as disclosed in patent publication
WO20151 12575A1, incorporated by reference herein in its entirety. The patent publication is
directed to a gastrointestinal sensor implantation system. In some embodiments an orally-
administrable capsule comprises a tissue capture device or reservoir removably coupled to the
orally-administrable capsule, where the tissue capture device including a plurality of fasteners
for anchoring the tissue capture device to gastrointestinal tissue within a body

In some embodiments, the ingestible device contains an electric energy emitting
means, a radio signal transmitting means, a medicament storage means and a remote
actuatable medicament releasing means. The capsule signals a remote receiver as it
progresses through the alimentary tract in a previously mapped route and upon reaching a
specified site is remotely triggered to release a dosage of medicament. Accordingly, in some
embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) is triggered by a remote electromagnetic signal.
In some embodiments, the ingestible device includes a housing introducible into a body cavity and of a material insoluble in the body cavity fluids, but formed with an opening covered by a material which is soluble in body cavity fluids. A diaphragm divides the interior of the housing into a medication chamber including the opening, and a control chamber. An electrolytic cell in the control chamber generates a gas when electrical current is passed therethrough to deliver medication from the medication chamber through the opening into the body cavity at a rate controlled by the electrical current. Accordingly, in some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by generation in the composition of a gas in an amount sufficient to expel glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the ingestible device includes an oral drug delivery device having a housing with walls of water permeable material and having at least two chambers separated by a displaceable membrane. The first chamber receives drug and has an orifice through which the drug is expelled under pressure. The second chamber contains at least one of two spaced apart electrodes forming part of an electric circuit which is closed by the ingress of an aqueous ionic solution into the second chamber. When current flows through the circuit, gas is generated and acts on the displaceable membrane to compress the first chamber and expel the active ingredient through the orifice for progressive delivery to the gastrointestinal tract.

In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.

In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy
field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.

In some embodiments, the ingestible device is a device a swallowable capsule. A sensing module is disposed in the capsule. A bioactive substance dispenser is disposed in the capsule. A memory and logic component is disposed in the capsule and in communication with the sensing module and the dispenser.

In some embodiments, localized administration is implemented via an electronic probe which is introduced into the intestinal tract of a living organism and which operates autonomously therein, adapted to deliver one or more therapy agents. In one embodiment, the method includes loading the probe with one or more therapy agents, and selectively releasing the agents from the probe at a desired location of the intestinal tract in order to provide increased efficacy over traditional oral ingestion or intravenous introduction of the agent(s).

In some embodiments, the ingestible device includes electronic control means for dispensing the drug substantially to the diseased tissue sites of the GI tract, according to a pre-determined drug release profile obtained prior to administration from the specific mammal. Accordingly, in some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by an electromagnetic signal generated within the device. The releasing may occur according to a pre-determined drug release profile.

In some embodiments, the ingestible device can include at least one guide tube, one or more tissue penetrating members positioned in the guide tube, a delivery member, an actuating mechanism and a release element. The release element degrades upon exposure to various conditions in the intestine so as to release and actuate the actuating mechanism. Embodiments of the invention are particularly useful for the delivery of drugs which are poorly absorbed, tolerated and/or degraded within the GI tract.

In some embodiments, the ingestible device includes an electronic pill comprising at least one reservoir with a solid powder or granulate medicament or formulation, a discharge opening and an actuator responsive to control circuitry for displacing medicine from the reservoir to the discharge opening. The medicament or formulation comprises a dispersion of
one or more active ingredients—e.g., solids in powder or granulate form—in an inert carrier matrix. Optionally, the active ingredients are dispersed using intestinal moisture absorbed into the pill via a semi-permeable wall section.

In some embodiments, the ingestible device includes a sensor comprising a plurality of electrodes having a miniature size and a lower power consumption and a coating exterior to the electrodes, wherein the coating interacts with a target condition thereby producing a change in an electrical property of the electrodes, wherein the change is transduced into an electrical signal by the electrodes. Accordingly, in some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by an electric signal by the electrodes resulting from the interaction of the coating with the one or more sites of disease. Further provided herein is a system for medication delivery comprising such sensor and a pill.

In some embodiments, the ingestible device includes an electronic pill comprising a plurality of reservoirs, each of the reservoirs comprising a discharge opening covered by a removable cover. The pill comprises at least one actuator responsive to control circuitry for removing the cover from the discharge opening. The actuator can for example be a spring loaded piston breaking a foil cover when dispensing the medicament. Alternatively, the cover can be a rotatable disk or cylinder with an opening which can be brought in line with the discharge opening of a reservoir under the action of the actuator.

In some embodiments, the ingestible device includes an electronically and remotely controlled pill or medicament delivery system. The pill includes a housing; a reservoir for storing a medicament; an electronically controlled release valve or hatch for dispensing one or more medicaments stored in the reservoir while traversing the gastrointestinal tract; control and timing circuitry for opening and closing the valve; and a battery. The control and timing circuitry opens and closes the valve throughout a dispensing time period in accordance with a preset dispensing timing pattern which is programmed within the control and timing circuitry. RF communication circuitry receives control signals for remotely overriding the preset dispensing timing pattern, reprogramming the control and timing circuitry or terminating the dispensing of the medicament within the body. The pill includes an RFID tag for tracking, identification, inventory and other purposes.

In some embodiments, the ingestible device includes an electronic capsule which has a discrete drive element comprising: a housing, electronics for making the electronic capsule operable, a pumping mechanism for dosing and displacing a substance, a power source for
powering the electronic capsule and enabling the electronics and the pumping mechanism to
operate, and a locking mechanism; and a discrete payload element comprising: a housing, a
reservoir for storing the substance, one or more openings in the housing for releasing the
substance from the reservoir and a locking mechanism for engaging the drive element locking
mechanism. Engagement of the drive element locking mechanism with the payload element
locking mechanism secures the drive element to the payload element, thereby making the
electronic capsule operable and specific.

In some embodiments, the ingestible device may be a mucoadhesive device
configured for release of an active agent.

In some embodiments, the ingestible device includes an apparatus that includes an
ingestible medical treatment device, which is configured to initially assume a contracted state
having a volume of less than 4 cm3. The device includes a gastric anchor, which initially
assumes a contracted size, and which is configured to, upon coming in contact with a liquid,
expand sufficiently to prevent passage of the anchor through a round opening having a
diameter of between 1 cm and 3 cm. The device also includes a duodenal unit, which is
configured to pass through the opening, and which is coupled to the gastric anchor such that
the duodenal unit is held between 1 cm and 20 cm from the gastric anchor.

In some embodiments, the ingestible device includes a medical robotic system and
method of operating such comprises taking intraoperative external image data of a patient
anatomy, and using that image data to generate a modeling adjustment for a control system of
the medical robotic system (e.g., updating anatomic model and/or refining instrument
registration), and/or adjust a procedure control aspect (e.g., regulating substance or therapy
delivery, improving targeting, and/or tracking performance).

In one embodiment the ingestible device may also include one or more environmental
sensors. Environmental sensor may be used to generate environmental data for the
environment external to device in the gastrointestinal (GI) tract of the subject. In some
embodiments, environmental data is generated at or near the location within the GI tract of
the subject where a drug is delivered. Examples of environmental sensor include, but are not
limited to a capacitance sensor, a temperature sensor, an impedance sensor, a pH sensor, a
heart rate sensor, acoustic sensor, image sensor (e.g., a hydrophone), and/or a movement
sensor (e.g., an accelerometer). In one embodiment, the ingestible device comprises a
plurality of different environmental sensors for generating different kinds of environmental
data.
In one embodiment, the image sensor is a video camera suitable for obtaining images in vivo of the tissues forming the GI tract of the subject. In one embodiment, the environmental data is used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease). In some embodiments, the ingestible device may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device.

In one embodiment, drug delivery is triggered when it encounters the site of disease in the GI tract.

In one embodiment, the one or more environmental sensors measure pH, temperature, transit times, or combinations thereof.

In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is dependent on the pH at or in the vicinity of the location. In some embodiments the pH in the jejunum is from 6.1 to 7.2, such as 6.6. In some embodiments the pH in the mid small bowel is from 7.0 to 7.8, such as 7.4. In some embodiments the pH in the ileum is from 7.0 to 8.0, such as 7.5. In some embodiments the pH in the right colon is from 5.7 to 7.0, such as 6.4. In some embodiments the pH in the mid colon is from 5.7 to 7.4, such as 6.6. In some embodiments the pH in the left colon is from 6.3 to 7.7, such as 7.0. In some embodiments, the gastric pH in fasting subjects is from about 1.1 to 2.1, such as from 1.4 to 2.1, such as from 1.1 to 1.6, such as from 1.4 to 1.6. In some embodiments, the gastric pH in fed subjects is from 3.9 to 7.0, such as from 3.9 to 6.7, such as from 3.9 to 6.4, such as from 3.9 to 5.8, such as from 3.9 to 5.5, such as from 3.9 to 5.4, such as from 4.3 to 7.0, such as from 4.3 to 6.7, such as from 4.3 to 6.4, such as from 4.3 to 5.8, such as from 4.3 to 5.5, such as from 4.3 to 5.4. In some embodiments, the pH in the duodenum is from 5.8 to 6.8, such as from 6.0 to 6.8, such as from 6.1 to 6.8, such as from 6.2 to 6.8, such as from 5.8 to 6.7, such as from 6.0 to 6.7, such as from 6.1 to 6.7, such as
from 6.2 to 6.7, such as from 5.8 to 6.6, such as from 6.0 to 6.6, such as from 6.1 to 6.6, such as from 6.2 to 6.6, such as from 5.8 to 6.5, such as from 6.0 to 6.5, such as from 6.1 to 6.5, such as from 6.2 to 6.5.

In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on the pH at or in the vicinity of the location. In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by degradation of a release component located in the capsule. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not triggered by degradation of a release component located in the capsule. In some embodiments, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on bacterial activity at or in the vicinity of the location.

In some embodiments, the pharmaceutical composition is an ingestible device, comprising:

a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

a reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein a first end of the reservoir is attached to the first end of the housing;

a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir; and

an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to be released out of the housing from the reservoir.

In some embodiments, the ingestible device further comprises:

an electronic component located within the housing; and

a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas.

In some embodiments, the ingestible device further comprises:
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

In some embodiments, the pharmaceutical composition is an ingestible device,

comprising:

a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

an electronic component located within the housing;

a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas;

a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;

an exit valve located at the first end of the housing,

wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and

a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

In some embodiments, the pharmaceutical composition is an ingestible device,

comprising:

a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

an electronic component located within the housing;

a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas;

a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
an injection device located at the first end of the housing,
wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing.

In some embodiments, the pharmaceutical composition is an ingestible device, comprising:
a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
an optical sensing unit located on a side of the housing,
wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;
a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and
a dispensing outlet placed at the first end of the housing,
wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.

In one embodiment, drug delivery is triggered when it encounters the site of disease in the GI tract.

In one embodiment, the one or more environmental sensors measure pH, temperature, transit times, or combinations thereof.

In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is dependent on the pH at or in the vicinity of the
location. In some embodiments the pH in the jejunum is from 6.1 to 7.2, such as 6.6. In some embodiments the pH in the mid small bowel is from 7.0 to 7.8, such as 7.4. In some embodiments the pH in the ileum is from 7.0 to 8.0, such as 7.5. In some embodiments the pH in the right colon is from 5.7 to 7.0, such as 6.4. In some embodiments the pH in the mid colon is from 5.7 to 7.4, such as 6.6. In some embodiments the pH in the left colon is from 6.3 to 7.7, such as 7.0. In some embodiments, the gastric pH in fasting subjects is from about 1.1 to 2.1, such as from 1.4 to 2.1, such as from 1.1 to 1.6, such as from 1.4 to 1.6. In some embodiments, the gastric pH in fed subjects is from 3.9 to 7.0, such as from 3.9 to 6.7, such as from 3.9 to 6.4, such as from 3.9 to 5.8, such as from 3.9 to 5.5, such as from 3.9 to 5.4, such as from 4.3 to 7.0, such as from 4.3 to 6.7, such as from 4.3 to 6.4, such as from 4.3 to 5.8, such as from 4.3 to 5.5, such as from 4.3 to 5.4. In some embodiments, the pH in the duodenum is from 5.8 to 6.8, such as from 6.0 to 6.8, such as from 6.1 to 6.8, such as from 6.2 to 6.8, such as from 5.8 to 6.7, such as from 6.0 to 6.7, such as from 6.1 to 6.7, such as from 6.2 to 6.7, such as from 5.8 to 6.6, such as from 6.0 to 6.6, such as from 6.1 to 6.6, such as from 6.2 to 6.6, such as from 5.8 to 6.5, such as from 6.0 to 6.5, such as from 6.1 to 6.5, such as from 6.2 to 6.5.

In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on the pH at or in the vicinity of the location. In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by degradation of a release component located in the capsule. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not triggered by degradation of a release component located in the capsule. In some embodiments, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments, releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on bacterial activity at or in the vicinity of the location.

In some embodiments, the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- a reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
wherein a first end of the reservoir is attached to the first end of the housing;
a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate) from the reservoir;
and:
an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) to be released out of the housing from the reservoir.
In some embodiments, the ingestible device further comprises:
an electronic component located within the housing; and
a gas generating cell located within the housing and adjacent to the electronic
component,
wherein the electronic component is configured to activate the gas generating cell to
generate gas.
In some embodiments, the ingestible device further comprises:
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the
housing when the internal pressure exceeds a threshold level.
In some embodiments, the pharmaceutical composition is an ingestible device,
comprising:
a housing defined by a first end, a second end substantially opposite from the first
end, and a wall extending longitudinally from the first end to the second end;
an electronic component located within the housing;
a gas generating cell located within the housing and adjacent to the electronic
component,
wherein the electronic component is configured to activate the gas generating cell to
generate gas;
a reservoir located within the housing,
wherein the reservoir stores a dispensable substance and a first end of the reservoir is
attached to the first end of the housing;
an exit valve located at the first end of the housing,
wherein the exit valve is configured to allow the dispensable substance to be released
out of the first end of the housing from the reservoir; and
a safety device placed within or attached to the housing,
wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

In some embodiments, the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- an electronic component located within the housing,
- a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas;

- a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;

- an injection device located at the first end of the housing,

wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and

- a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing.

In some embodiments, the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

- an optical sensing unit located on a side of the housing,

wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;

- an electronic component located within the housing;

- a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;
a reservoir located within the housing, wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing; a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and a dispensing outlet placed at the first end of the housing, wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.

In some embodiments, the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.

In some embodiments, the pharmaceutical composition is an ingestible device as disclosed in the following applications, each of which is incorporated by reference herein in its entirety: U.S. Patent Application Serial Numbers 14/460,893; 15/514,413; 62/376,688; 62/385,344; 62/478,955; 62/434,188; 62/434,320; 62/431,297; 62/434,797; 62/480,187; 62/502,383; and 62/540,873.

In some embodiments, the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US20 15/052500, incorporated by reference herein in its entirety.

In some embodiments, the pharmaceutical composition is not a dart-like dosage form.

In some embodiments of any ingestible device disclosed herein comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a therapeutically effective amount.

In case of conflict between the present specification and any subject matter incorporated by reference herein, the present specification, including definitions, will control.

Devices and Methods for Detection of Analytes in GI tract

Detection of certain analytes in the GI tract may be useful in the identification of the nature and severity of the disease, in accurately locating the site(s) of disease, and in assessing patient response to a therapeutic agent. The appropriate therapeutic agent may accordingly be released at the correct locations(s), dosage, or timing for the disease. As discussed further herein, analytes may include biomarkers associated with a disease or
associated with patient response and/or therapeutic agents previously administered to treat the disease. In some embodiments, the disclosure provides an ingestible device for detecting an analyte in a sample, the ingestible device comprising a sampling chamber that is configured to hold a composition comprising: (1) a plurality of donor particles, each of the plurality of donor particles comprising a photosensitizer and having coupled thereto a first antigen-binding agent that binds to the analyte, wherein the photosensitizer, in its excited state, is capable of generating singlet oxygen; and (2) a plurality of acceptor particles, each of the plurality of acceptor particles comprising a chemiluminescent compound and having coupled thereto a second antigen-binding agent that binds to the analyte, wherein the chemiluminescent compound is capable of reacting with singlet oxygen to emit luminescence. In some embodiments, the first and the second analyte-binding agents are antigen-binding agents (e.g., antibodies). In some embodiments, the first and the second antigen-binding agents bind to the same epitope of the analyte (e.g., a protein). In some embodiments, the first and the second antigen-binding agents bind to separate epitopes of the analyte (e.g., a protein) that spatially overlap. In some embodiments, the first and the second antigen-binding agents bind to separate epitopes of the analyte (e.g., a protein) that do not spatially overlap.

In some embodiments, this disclosure provides an ingestible device for detecting an analyte in a sample, the ingestible device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition comprising: (1) a plurality of donor particles, each of the plurality of donor particles comprising a photosensitizer and having coupled thereto a first antigen-binding agent that binds to the analyte, wherein the photosensitizer, in its excited state, is capable of generating singlet oxygen; and (2) a plurality of acceptor particles, each of the plurality of acceptor particles comprising a chemiluminescent compound and having coupled thereto a second antigen-binding agent that binds to the analyte, wherein the chemiluminescent compound is capable of reacting with singlet oxygen to emit luminescence. In some embodiments, the first and the second analyte-binding agents are antigen-binding agents (e.g., antibodies). In some embodiments, the first and the second antigen-binding agents bind to the same epitope of the analyte (e.g., a protein). In some embodiments, the first and the second antigen-binding agents bind to separate epitopes of the analyte (e.g., a protein) that spatially overlap. In some embodiments, the first and the second antigen-binding agents bind to the separate epitopes of the analyte (e.g., a protein) that do not spatially overlap.
In certain embodiments, the disclosure provides a kit comprising an ingestible device as described herein. In some embodiments, the kit further comprises instructions, e.g., for detecting or quantifying an analyte in a sample.

In some embodiments, the disclosure provides methods for determining an analyte in a sample. In certain embodiments, this disclosure provides a method of detecting an analyte in a fluid sample of a subject, comprising: (1) providing an ingestible device; (2) transferring the fluid sample of the subject into the sampling chamber of the ingestible device in vivo; (3) irradiating the composition held in the sampling chamber of the ingestible device with light to excite the photosensitizer; and (4) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time, thereby determining the level of the analyte in the fluid sample. In some embodiments, the method further comprises comparing the level of the analyte in the fluid sample with the level of analyte in a reference sample (e.g., a reference sample obtained from a healthy subject). In some embodiments, the level of the analyte in the sample is used to diagnose and/or monitor a disease or disorder in the subject.

In some embodiments, the disclosure provides a method of detecting an analyte in a fluid sample of a subject, comprising: (1) providing an ingestible device, the device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition, as described herein; (2) transferring the fluid sample of the subject into the sampling chamber of the ingestible device in vivo; (3) fully or partially saturating the absorbable material held in the sampling chamber of the ingestible device with the fluid sample; (4) irradiating the absorbable material held in the sampling chamber of the ingestible device with light to excite the photosensitizer; and (5) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time, thereby determining the level of the analyte in the fluid sample. In some embodiments, the method further comprises comparing the level of the analyte in the fluid sample with the level of analyte in a reference sample (e.g., a reference sample obtained from a healthy subject). In some embodiments, the level of the analyte in the sample is used to diagnose and/or monitor a disease or disorder in the subject.

In some embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal (GI) tract, comprising: (1) providing an ingestible device for detecting an
analyte; (2) transferring a fluid sample from the GI tract of the subject into the sampling chamber of the ingestible device \textit{in vivo}; (3) irradiating the composition held in the sampling chamber of the ingestible device with light to excite the photosensitizer; (4) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time; (5) correlating the total luminescence or the rate of change of luminescence as a function of time measured in step (4) to the amount of the analyte in the fluid sample; and (6) correlating the amount of the analyte in the fluid sample to the number of viable bacterial cells in the fluid sample. In some embodiments, a number of viable bacterial cells determined in step (6) greater than a control number of viable bacterial cells, indicates a need for treatment (e.g., with an antibiotic agent described herein). In some embodiments, the control number of viable bacterial cells is 10^3, 10^4, 10^5, 10^6, 10^7, 10^8, 10^9, or more. For example, in some embodiments, a number of viable bacterial cells determined in step (6) greater that about 10^3 CFU/mL indicates a need for treatment. In some embodiments, a number of viable bacterial cells determined in step (6) greater that about 10^4 CFU/mL indicates a need for treatment. In some embodiments, a number of the viable bacterial cells determined in step (6) greater than about 10^5 CFU/mL indicates a need for treatment, \textit{e.g.}, with an antibiotic agent as described herein. In some embodiments, a number of viable bacterial cells determined in step (6) greater that about 10^6 or more CFU/mL indicates a need for treatment.

In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of the sponge is measured over multiple time points for an extended period of time in step (4). For instance, in some embodiments, the total luminescence or rate of change of luminescence as a function of time of the sample is measured continuously for a period of 0-1800 minutes, 0-1600 minutes, 0-1500 minutes, 0-1440 minutes, 0-1320 minutes, 0-1000 minutes, 0-900 minutes, 0-800 minutes, 0-700 minutes, 0-600 minutes, 0-500 minutes, 0-400 minutes, 0-350 minutes, 0-330 minutes, 0-300 minutes, 0-270 minutes, or 0-220 minutes. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of said sample is measured continuously for a period of 0-330 minutes. In some embodiments, the method is performed \textit{in vivo}. In some embodiments, the method includes communicating the results of the onboard assay(s) to an \textit{ex vivo} receiver. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of the sponge is measured over multiple time points for an extended period of time in step (5). For instance, in some embodiments, the total luminescence or rate of
change of luminescence as a function of time of the sample is measured continuously for a period of 0-1800 minutes, 0-1600 minutes, 0-1500 minutes, 0-1440 minutes, 0-1320 minutes, 0-1000 minutes, 0-900 minutes, 0-800 minutes, 0-700 minutes, 0-600 minutes, 0-500 minutes, 0-400 minutes, 0-350 minutes, 0-330 minutes, 0-300 minutes, 0-270 minutes, or 0-220 minutes. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of said sample is measured continuously for a period of 0-330 minutes. In some embodiments, the method is performed in vivo. In some embodiments, the method includes communicating the results of the onboard assay(s) to an ex vivo receiver.

In some embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, comprising: (1) providing an ingestible device for detecting an analyte, the device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition, as described herein; (2) transferring a fluid sample from the GI tract of the subject into the sampling chamber of the ingestible device in vivo; (3) fully or partially saturating the absorbable material held in the sampling chamber of the ingestible device with the fluid sample; (4) irradiating the absorbable material held in the sampling chamber of the ingestible device with light to excite the photosensitizer; (5) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time; (6) correlating the total luminescence or the rate of change of luminescence as a function of time measured in step (5) to the amount of the analyte in the fluid sample; and (7) correlating the amount of the analyte in the fluid sample to the number of viable bacterial cells in the fluid sample. In some embodiments, a number of viable bacterial cells determined in step (7) greater than a control number of viable bacterial cells indicates a need for treatment (e.g., with an antibiotic agent described herein). In some embodiments, the control number of viable bacterial cells is \(10^3, 10^4, 10^5, 10^6, 10^7, 10^8, 10^9\), or more. For example, in some embodiments, a number of viable bacterial cells determined in step (7) greater that about \(10^3\) CFU/mL indicates a need for treatment. In some embodiments, a number of viable bacterial cells determined in step (7) greater that about \(10^4\) CFU/mL indicates a need for treatment. In some embodiments, a number of the viable bacterial cells determined in step (7) greater than about \(10^5\) CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a number
of viable bacterial cells determined in step (7) greater than about 10^6 or more CFU/mL indicates a need for treatment.

In some embodiments, the disclosure, provides a method of measuring the presence, absence or amount of one or more analytes from one or more samples in the gastrointestinal tract. In some embodiments the one or more analytes are measured multiple times, for example, at different time points or at different locations. In one embodiment, a single device measures one or more analytes or more time points or locations; thereby creating a "molecular map" of a physiological region. Measurements can be taken at any location in the gastrointestinal tract. For example, in one aspect, analytes from samples from one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon can be measured to create a molecular map of the small and large intestine. In one aspect, the sample is from the duodenum. In one aspect, the sample is from the jejunum. In one aspect, the sample is from the ileum. In one aspect, the sample is from the ascending colon. In one aspect, the sample is from the transverse colon. In one aspect, the sample is from the descending colon.

In another aspect, a series of measurements can be taken over a shorter distance of the gastrointestinal tract (e.g., the ileum) to create a higher resolution molecular map. In some embodiments, previous endoscopic imaging may identify a diseased area for molecular mapping. For example, a gastroenterologist may use imaging (e.g., an endoscope equipped with a camera) to identify the presence of Crohn's Disease in the ileum and cecum of a patient, and the methods and techniques herein may be used to measure inflammation-associated analytes in this diseased area of the patient. In a related embodiment, the inflammation-associated analytes, or any analyte, may be measured every one or more days to monitor disease flare-ups, or response to therapeutics.

Analytes

The compositions and methods described herein can be used to detect, analyze, and/or quantitate a variety of analytes in a human subject. "Analyte" as used herein refers to a compound or composition to be detected in a sample. Exemplary analytes suitable for use herein include those described in U.S. Patent 6,251,581, which is incorporated by reference herein in its entirety. Broadly speaking, an analyte can be any substance (e.g., a substance with one or more antigens) capable of being detected. An exemplary and non-limiting list of analytes includes ligands, proteins, blood clotting factors, hormones, cytokines,
polysaccharides, mucopolysaccharides, microorganisms (e.g., bacteria), microbial antigens,
and therapeutic agents (including fragments and metabolites thereof).

For instance, the analyte may be a ligand, which is monovalent (monoepitopic) or
polyvalent (polyepitopic), usually antigenic or haptenic, and is a single compound or plurality
of compounds which share at least one common epitopic or determinant site. The analyte can
be a part of a cell such as bacteria or a cell bearing a blood group antigen such as A, B, D,
etc., a human leukocyte antigen (HLA), or other cell surface antigen, or a microorganism,
e.g., bacterium (e.g. a pathogenic bacterium), a fungus, protozoan, or a virus (e.g., a protein, a
nucleic acid, a lipid, or a hormone). In some embodiments, the analyte can be a part of an
exosome (e.g., a bacterial exosome). In some embodiments, the analyte is derived from a
subject (e.g., a human subject). In some embodiments, the analyte is derived from a
microorganism present in the subject. In some embodiments, the analyte is a nucleic acid
(e.g., a DNA molecule or a RNA molecule), a protein (e.g., a soluble protein, a cell surface
protein), or a fragment thereof, that can be detected using any of the devices and methods
provided herein.

The polyvalent ligand analytes will normally be poly(amino acids), *i.e.*, a polypeptide
(*i.e.*, protein) or a peptide, polysaccharides, nucleic acids (e.g., DNA or RNA), and
combinations thereof. Such combinations include components of bacteria, viruses,
chromosomes, genes, mitochondria, nuclei, cell membranes, and the like.

In some embodiments, the polyepitopic ligand analytes have a molecular weight of at
least about 5,000 Da, more usually at least about 10,000 Da. In the poly(amino acid)
category, the poly(amino acids) of interest may generally have a molecular weight from about
5,000 Da to about 5,000,000 Da, more usually from about 20,000 Da to 1,000,000 Da; among
the hormones of interest, the molecular weights will usually range from about 5,000 Da to
60,000 Da.

In some embodiments, the monoepitopic ligand analytes generally have a molecular
weight of from about 100 to 2,000 Da, more usually from 125 to 1,000 Da.

A wide variety of proteins may be considered as to the family of proteins having
similar structural features, proteins having particular biological functions, proteins related to
specific microorganisms, particularly disease causing microorganisms, etc. Such proteins
include, for example, immunoglobulins, cytokines, enzymes, hormones, cancer antigens,
nutritional markers, tissue specific antigens, etc.
In some embodiments, the analyte is a protein. In some embodiments, the analyte is a protein, e.g., an enzyme (e.g., a hemolysin, a protease, a phospholipase), a soluble protein, an exotoxin. In some embodiments, the analyte is a fragment of a protein, a peptide, or an antigen. In some embodiments, the analyte is a peptide of at least 5 amino acids (e.g., at least 6, at least 7, at least 8, at least 9, at least 10, at least 25, at least 50, or at least 100 amino acids). Exemplary lengths include 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 75, or 100 amino acids. Exemplary classes of protein analytes include, but are not limited to: protamines, histones, albumins, globulins, scleroproteins, phosphoproteins, mucoproteins, chromoproteins, lipoproteins, nucleoproteins, glycoproteins, T-cell receptors, proteoglycans, cell surface receptors, membrane-anchored proteins, transmembrane proteins, secreted proteins, HLA, and unclassified proteins.

In some embodiments, the analyte is an affimer (see, e.g., Tiede et al. (2017) eLife 6: e24903, which is expressly incorporated herein by reference).

Exemplary analytes include: Prealbumin, Albumin, ai-Lipoprotein, ai-Antitrypsin, ai-Glycoprotein, Transcoritin, 4.6S-Postalbumin, ai-glycoprotein, aix-Glycoprotein, Thyroxin-binding globulin, Inter-a-trypsin-inhibitor, Gc-globulin (Gc 1-1, Gc 2-1, Gc 2-2), Haptoglobin (Hp 1-1, Hp 2-1, Hp 2-2), Ceruloplasmin, Cholinesterase, a2-Lipoprotein(s), Myoglobin, C-Reactive Protein, a2-Macroglobulin, a2-HS-glycoprotein, Zn-a2-glycoprotein, a2-Neuramino-glycoprotein, Erythropoietin, β-lipoprotein, Transferrin, Hemopexin, Fibrinogen, Plasminogen, P2-glycoprotein I, P2-glycoprotein II, Immunoglobulin G (IgG) or γG-globulin, Immunoglobulin A (IgA) or γA-globulin, Immunoglobulin M (IgM) or γM-globulin, Immunoglobulin D (IgD) or γD-Globulin (γD), Immunoglobulin E (IgE) or γE-Globulin (γE), Free κ and λ light chains, and Complement factors: C'1, (Clq, C'1r, C'1s, C'2, C'3 (βTα, a,βD), C'4, C'5, C'6, C'7, C'8, C'9.

Additional examples of analytes include tumor necrosis factor-a (TNFa), interleukin-12 (IL-12), IL-23, IL-6, α2β1 integrin, αβ1 integrin, integrin α4β7 integrin, integrin α4β1 (VLA-4), E-selectin, ICAM-1, α5β1 integrin, α4β1 integrin, VLA-4, α2β1 integrin, α5β3 integrin, α5β5 integrin, αβ1β3 integrin, MadCAM-1, SMAD7, JAK1, JAK2, JAK3, TYK-2, CHST15, IL-1, IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-13, CD40L, CD40, CD3y, CD36, CD38, CD3C, TCR, TCRα, TCRβ, TCR6, TCRy, CD14, CD20, CD25, IL-2, IL-2 β chain, IL-2 γ chain, CD28, CD80, CD86, CD49, MMP1, CD89, IgA, CXCL10, CCL11, an ELR chemokine, CCR2, CCR9, CXC3, CCR3, CCR5, CCL2, CCL8, CCL16, CCL25.
CXCR1m, CXCR2m, CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, and CXCL8, and a nucleic acid (e.g., mRNA) encoding any of the same.

In some embodiments, the analyte is a blood clotting factor. Exemplary blood clotting factors include, but are not limited to:

<table>
<thead>
<tr>
<th>International Designation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>Tissue thromboplastin</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>Proconvertin</td>
</tr>
<tr>
<td>Ⅳ and Ⅵ</td>
<td>Proaccelerin, accelerator globulin</td>
</tr>
<tr>
<td>ⅧⅡ</td>
<td>Antithrombic globulin (AHG)</td>
</tr>
<tr>
<td>Ⅸ</td>
<td>Christmas factor</td>
</tr>
<tr>
<td>Ⅹ</td>
<td>Stuart-Prower factor, autopotein thrombin ill</td>
</tr>
<tr>
<td>ⅩⅠ</td>
<td>Piss ma thromboplastin component (FICO)</td>
</tr>
<tr>
<td>ⅩⅡ</td>
<td>Hagemman factor</td>
</tr>
<tr>
<td>ⅩⅢ</td>
<td>Fibrin-Sibilium factor</td>
</tr>
</tbody>
</table>

In some embodiments, the analyte is a hormone. Exemplary hormones include, but are not limited to: Peptide and Protein Hormones, Parathyroid Hormone, (parathormone), Thyrocalcitonin, Insulin, Glucagon, Relaxin, Erythropoietin, Melanotropin (melancyte-stimulating hormone; intermedin), Somatotropin (growth hormone), Corticotropin (adrenocorticotropic hormone), Thyrotropin, Follicle-stimulating hormone, Luteinizing hormone (interstitial cell-stimulating hormone), Luteomammotropic hormone (luteotropin, prolactin), Gonadotropin (chorionic gonadotropin), Secretin, Gastrin, Angiotensin I and II, Bradykinin, and Human placental lactogen, thyroxine, Cortisol, triiodothyronine, testosterone, estradiol, estrone, progesterone, luteinizing hormone-releasing hormone (LHRH), and immunosuppressants such as cyclosporin, FK506, mycophenolic acid, and so forth.

In some embodiments, the analyte is a peptide hormone (e.g., a peptide hormone from the neurohypophysis). Exemplary peptide hormones from the neurohypophysis include, but are not limited to: Oxytocin, Vasopressin, and releasing factors (RF) (e.g., corticotrophin releasing factor (CRF), luteinizing hormone releasing factor (LRF), thyrotropin releasing factor (TRF), Somatotropin-RF, growth hormone releasing factor (GRF), follicle stimulating hormone-releasing factor (FSH-RF), prolactin inhibiting factor (PIF), and melanocyte stimulating hormone inhibiting factor (MIF)).
In some embodiments, the analyte is a cytokine or a chemokine. Exemplary cytokines include, but are not limited to: interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), epidermal growth factor (EGF), tumor necrosis factor (TNF, e.g., TNF-a or TNF-b), and nerve growth factor (NGF).

In some embodiments, the analyte is a cancer antigen. Exemplary cancer antigens include, but are not limited to: prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), a-fetoprotein, Acid phosphatase, CA19.9, and CA125.

In some embodiments, the analyte is a tissue-specific antigen. Exemplary tissue specific antigens include, but are not limited to: alkaline phosphatase, myoglobin, CPK-MB, calcitonin, and myelin basic protein.

In some embodiments, the analyte is a mucopolysaccharide or a polysaccharide.

In some embodiments, the analyte is a microorganism, or a molecule derived from or produced by a microorganism (e.g., a bacteria, a virus, prion, or a protozoan). For example, in some embodiments, the analyte is a molecule (e.g., an protein or a nucleic acid) that is specific for a particular microbial genus, species, or strain (e.g., a specific bacterial genus, species, or strain). In some embodiments, the microorganism is pathogenic (i.e., causes disease). In some embodiments, the microorganism is non-pathogenic (e.g., a commensal microorganism). Exemplary microorganisms include, but are not limited to:

\[
\begin{align*}
\text{Corynebacteria} \\
\text{Corynebacterium diphtheria} \\
Pneumococci \\
\text{Diplococcus pneumoniae} \\
\text{Streptococci} \\
\text{Streptococcus pyogenes} \\
\text{Streptococcus salivarus} \\
\text{Staphylococci} \\
\text{Staphylococcus aureus} \\
\text{Staphylococcus albus} \\
\text{Neisseria} \\
\text{Neisseria meningitidis} \\
\text{Neisseria gonorrhea} \\
\text{Enterobacteriaceae} \\
\text{Escherichia coli} \\
\text{Aerobacter aerogenes} & \text{ The coliform} \\
\text{Klebsiella pneumoniae} & \text{ bacteria} \\
\text{Salmonella typhosa} &
\end{align*}
\]
<table>
<thead>
<tr>
<th>Salmonella choleraesuis</th>
<th>The Salmonellae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella typhimurium</td>
<td></td>
</tr>
<tr>
<td>Shigella dysenteria</td>
<td></td>
</tr>
<tr>
<td>Shigella schmitzii</td>
<td></td>
</tr>
<tr>
<td>Shigella arabinotarda</td>
<td></td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>The Shigellae</td>
</tr>
<tr>
<td>Shigella hodyii</td>
<td></td>
</tr>
<tr>
<td>Shigella sonnet</td>
<td></td>
</tr>
<tr>
<td>Other enteric bacilli</td>
<td></td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>Proteus species</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td></td>
</tr>
<tr>
<td>Proteus morgani</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>Alcaligenes faecalis</td>
<td></td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td></td>
</tr>
<tr>
<td>Hemophilus-Bordetella group</td>
<td>Rhizopus oryzae</td>
</tr>
<tr>
<td>Hemophilus influenza, H. ducryi</td>
<td>Rhizopus arrhizua</td>
</tr>
<tr>
<td>Hemophilus</td>
<td>Phycycomycetes</td>
</tr>
<tr>
<td>Hemophilus aegypticus</td>
<td></td>
</tr>
<tr>
<td>Hemophilus parainfluenza</td>
<td></td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td></td>
</tr>
<tr>
<td>Pasteurellae</td>
<td></td>
</tr>
<tr>
<td>Pasteurella pestis</td>
<td></td>
</tr>
<tr>
<td>Pasteurella tulareusis</td>
<td></td>
</tr>
<tr>
<td>Brucellae</td>
<td></td>
</tr>
<tr>
<td>Brucella melitensis</td>
<td></td>
</tr>
<tr>
<td>Brucella abortus</td>
<td></td>
</tr>
<tr>
<td>Brucella suis</td>
<td></td>
</tr>
<tr>
<td>Aerobic Spore-forming Bacilli</td>
<td>Phialophora jeanealmei</td>
</tr>
<tr>
<td>Bacillus anthracis</td>
<td>Microsporum gypseum</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Trichophyton mentagrophytes</td>
</tr>
<tr>
<td>Bacillus megatherium</td>
<td>Keratinomyces ajelloi</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Microsporum canis</td>
</tr>
<tr>
<td>Anaerobic Spore-forming Bacilli</td>
<td>Trichophyton rubrum</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td></td>
</tr>
<tr>
<td>Clostridium tetani</td>
<td></td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td></td>
</tr>
<tr>
<td>Clostridium novyi</td>
<td></td>
</tr>
<tr>
<td>Clostridium septicum</td>
<td></td>
</tr>
</tbody>
</table>
Clostridium histolyticum Varicella (Chicken pox)
Clostridium tertium Herpes Zoster (Shingles)
Clostridium bifermentans Virus B
Clostridium sporogenes Cytomegalovirus
Mycobacteria Pox Viruses
Mycobacterium tuberculosis hominis Variola (smallpox)
Mycobacterium bovis Vaccinia
Mycobacterium avium Poxvirus bovis
Mycobacterium leprae Paravaccinia
Mycobacterium paratuberculosis Molluscum contagiosum
Actinomycetes (fungus-like bacteria) Picornaviruses
Actinomyces Isaeli Poliovirus
Actinomyces bovis Coxsackievirus
Actinomyces naeslundii Echoviruses
Nocardia asteroides Rhinoviruses
Nocardia brasiliensis Myxoviruses
The Spirochetes Influenza(A, B, and C)
Treponema pallidum Parainfluenza (1-4)
Treponemapartentenue Mumps Virus
Spirillum minus Newcastle Disease Virus
Streptobacillus moniliformis Measles Virus
Treponema carateum Rinderpest Virus
Borrelia recurrentis Canine Distemper Virus
Leptospira icterohemorrhagiae Respiratory Syncytial Virus
Leptospira canicola Rubella Virus
Trypanosomes Arboviruses
Mycoplasmas Arboviruses
Mycoplasma pneumoniae Eastern Equine Encephalitis Virus
Other pathogens Western Equine Encephalitis Virus
Listeria monocytogenes Sindbis Virus
Erysipheothrix rhusiopathiae Chikugunya Virus
Streptobacillus moniliformis Semliki Forest Virus
Donvania granulomatis Mayora Virus
Entamoeba histolytica St. Louis Encephalitis
Plasmodium falciparum California Encephalitis Virus
Plasmodium japonicum Colorado Tick Fever Virus
Bartonella bacilliformis Yellow Fever Virus
Rickettsia (bacteria-like parasites) Dengue Virus
Rickettsia prowazekii Reoviruses
Rickettsia mooseri Reovirus Types 1-3
Rickettsia rickettsii
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rickettsia conori</td>
<td>Retroviruses</td>
</tr>
<tr>
<td>Rickettsia australis</td>
<td>Human Immunodeficiency</td>
</tr>
<tr>
<td>Rickettsia sibiricus</td>
<td>Viruses I and II (HTLV)</td>
</tr>
<tr>
<td>Rickettsia akari</td>
<td>Human T-cell Lymphotrophic</td>
</tr>
<tr>
<td>Rickettsia tsutsugamushi</td>
<td>Virus I & II (HIV)</td>
</tr>
<tr>
<td>Rickettsia burnetii</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Rickettsia quintana</td>
<td>Hepatitis A Virus</td>
</tr>
<tr>
<td>Chlamydia (unclassifiable parasites)</td>
<td>Hepatitis B Virus</td>
</tr>
<tr>
<td>bacterial/viral</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>Chlamydia agents (naming uncertain)</td>
<td>Tumor Viruses</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Rauscher Leukemia Virus</td>
</tr>
<tr>
<td>Fungi</td>
<td>Gross Virus</td>
</tr>
<tr>
<td>Cryptococcus neoformans</td>
<td>Maloney Leukemia Virus</td>
</tr>
<tr>
<td>Blastomyces dermatitidis</td>
<td></td>
</tr>
<tr>
<td>Histoplasma capsulatum</td>
<td>Human Papilloma Virus</td>
</tr>
<tr>
<td>Coccidioides immitis</td>
<td></td>
</tr>
<tr>
<td>Paracoccidioides brasiliensis</td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td></td>
</tr>
<tr>
<td>Mucor corymbifer (Absidia corymbifera)</td>
<td></td>
</tr>
</tbody>
</table>

In some embodiments, the analyte is a bacterium. Exemplary bacteria include, but are not limited to: *Escherichia coli* (or *E. coli*), *Bacillus anthracis*, *Bacillus cereus*, *Clostridium botulinum*, *Clostridium difficile*, *Yersinia pestis*, *Yersinia enterocolitica*, *Francisella tularensis*, *Brucella species*, *Clostridium perfringens*, *Burkholderia mallei*, *Burkholderia pseudomallei*, *Staphylococcus* species, *Mycobacterium* species, Group A *Streptococcus*, Group B *Streptococcus*, *Streptococcus pneumoniae*, *Helicobacter pylori*, *Salmonella enteritidis*, *Mycoplasma hominis*, *Mycoplasma orale*, *Mycoplasma salivarium*, *Mycoplasma fermentans*, *Mycoplasma pneumoniae*, *Mycobacterium bovis*, *Mycobacterium tuberculosis*, *Mycobacterium avium*, *Mycobacterium leprae*, *Rickettsia rickettsii*, *Rickettsia akari*, *Rickettsia prowazekii*, *Rickettsia Canada*, *Bacillus subtilis*, *Bacillus subtilis niger*, *Bacillus thuringiensis*, *Coxiella burnetii*, *Faecalibacterium prausnitzii* (also known as *Bacteroides prausnitzii*), *Roseburia hominis*, *Eubacterium rectale*, *Dialister invisus*, *Ruminococcus albus*, *Ruminococcus callidus*, and *Ruminococcus bromii*. Additional exemplary bacteria include bacteria of the phyla *Firmicutes* (e.g., *Clostridium* clusters XIVa and IV), bacteria of the phyla *Bacteroidetes* (e.g., *Bacteroides fragilis* or *Bacteroides vulgatus*), and bacteria of the phyla *Actinobacteria* (e.g., *Coriobacteriaceae* or *Bifidobacterium adolescentis*).
Bacteria of the *Clostridium* cluster XIVa includes species belonging to, for example, the *Clostridium, Ruminococcus, Lachnospira, Roseburia, Eubacterium, Coprococcus, Dorea,* and *Butyrivibrio* genera. Bacteria of the *Clostridium* cluster IV includes species belonging to, for example, the *Clostridium, Ruminococcus, Eubacterium* and *Anaerofilum* genera. In some embodiments, the analyte is *Candida,* e.g., *Candida albicans.* In some embodiments, the analyte is a byproduct from a bacterium or other microorganism, e.g., helminth ova, enterotoxin (*Clostridium difficile* toxin A; TcdA) or cytotoxin (*Clostridium difficile* toxin B; TcdB).

In some embodiments, the bacterium is a pathogenic bacterium. Non-limiting examples of pathogenic bacteria belong to the genera *Bacillus, Bordetella, Borrelia, Brucella, Campylobacter, Chlamydia, Chlamydophila, Clostridium, Corynebacterium, Enterobacter, Enterococcus, Escherichia, Francisella, Haemophilus, Helicobacter, Legionella, Leptospira, Listeria, Mycobacterium, Mycoplasma, Neisseria, Pseudomonas, Rickettsia, Salmonella, Shigella, Staphylococcus, Streptococcus, Treponema, Vibrio,* and *Yersinia.* Non-limiting examples of specific pathogenic bacterial species include a strain of *Bacillus anthracis,* a strain of a strain of *Bordetella pertussis,* a strain of a strain of *Borrelia burgdorferi,* a strain of a strain of *Brucella abortus,* a strain of a strain of *Brucella canis,* a strain of a strain of *Brucella melitensis,* a strain of a strain of *Brucella suis,* a strain of a strain of *Campylobacter jejuni,* a strain of *Chlamydia pneumoniae,* a strain of *Chlamydia trachomatis,* a strain of *Chlamydophila psittaci,* a strain of *Clostridium botulinum,* a strain of *Clostridium difficile,* a strain of *Clostridium perfringens,* a strain of *Clostridium tetani,* a strain of *Corynebacterium diphtheria,* a strain of *Enterobacter sakazakii,* a strain of *Enterococcus faecalis,* a strain of *Enterococcus faecium,* a strain of *Escherichia coli* (e.g., *E. coli* 0157 H7), a strain of *Francisella tularensis,* a strain of *Haemophilus influenza,* a strain of *Helicobacter pylori,* a strain of *Legionella pneumophila,* a strain of *Leptospira interrogans,* a strain of *Listeria monocytogenes,* a strain of *Mycobacterium leprae,* a strain of *Mycobacterium tuberculosis,* a strain of *Mycobacterium ulcerans,* a strain of *Mycoplasma pneumoniae,* a strain of *Neisseria gonorrhoeae,* a strain of *Neisseria meningitides,* a strain of *Pseudomonas aeruginosa,* a strain of *Rickettsia rickettsia,* a strain of *Salmonella typhi* and *Salmonella typhimurium,* a strain of *Shigella sonnei,* a strain of *Staphylococcus aureus,* a strain of *Staphylococcus epidermidis,* a strain of *Staphylococcus saprophyticus,* a strain of *Streptococcus agalactiae,* a strain of *Streptococcus pneumoniae,* a strain of *Streptococcus
pyogenes, a strain of *Treponema pallidum*, a strain of *Vibrio cholera*, a strain of *Yersinia enterocolitica*, and, a strain of *Yersinia pestis*.

In some embodiments, the bacterium is a commensal bacterium (e.g., a probiotic). In some embodiments, the bacterium has been previously administered to a subject, e.g., as a live biotherapeutic agent. Exemplary commensal bacteria include, but are not limited to, *Faecalibacterium prausnitzii* (also referred to as *Bacteroides prausnitzii*), *Roseburia hominis*, *Eubacterium rectale*, *Dialister invisus*, *Ruminococcus albus*, *Ruminococcus gnavus*, *Ruminococcus torques*, *Ruminococcus callidus*, and *Ruminococcus bromii*.

In some embodiments, the analyte is a virus. In some embodiments, the virus is a pathogenic virus. Non-limiting examples of pathogenic viruses belong to the families *Adenoviridae*, *Picornaviridae*, *Herpesviridae*, *Hepadnaviridae*, *Flaviviridae*, *Retroviridae*, *Orthomyxoviridae*, *Paramyxoviridae*, *Papovaviridae*, *Polyomavirus*, *Rhabdoviridae*, and *Togaviridae*.

In some embodiments, the analyte is a fungus. In some embodiments, the fungi is a pathogenic fungus. Non-limiting examples of pathogenic fungi belong to the genera *Aspergillus*, *Canidia*, *Cryptococcus*, *Histoplasma*, *Pneumocystis*, and *Stachybotrys*. Non-limiting examples of pathogenic fungi species include a strain of *Aspergillus clavatus*, *Aspergillus fumigatus*, *Aspergillus flavus*, *Canidia albicans*, *Cryptococcus albidus*, *Cryptococcus gattii*, *Cryptococcus laurentii*, *Cryptococcus neoformans*, *Histoplasma capsulatum*, *Pneumocystis jirovecii*, *Pneumocystis carinii*, and *Stachybotrys chartarum*.

In some embodiments, the analyte is a protozoan. In some embodiments, the protozoan is a pathogenic protozoan. Non-limiting examples of pathogenic protozoa belong to the genera *Acanthamoeba*, *Balamuthia*, *Cryptosporidium*, *Dientamoeba*, *Endolimax*, *Entamoeba*, *Giardia*, *Iodamoeba*, *Leishmania*, *Naegleria*, *Plasmodium*, *Sappinia*, *Toxoplasma*, *Trichomonas*, and *Trypanosoma*. Non-limiting examples of specific pathogenic protozoa species include a strain of *Acanthamoeba* spp., *Balamuthia mandrillaris*, *Cryptosporidium canis*, *Cryptosporidium felis*, *Cryptosporidium hominis*, *Cryptosporidium meleagridis*, *Cryptosporidium muris*, *Cryptosporidium parvum*, *Dientamoeba fragilis*, *Endolimax nana*, *Entamoeba dispar*, *Entamoeba hartmanni*, *Entamoeba histolytica*, *Entamoeba coli*, *Entamoeba moshkovskii*, *Giardia lamblia*, *Iodamoeba butschlii*, *Leishmania aethiopica*, *Leishmania braziliensis*, *Leishmania chagasi*, *Leishmania donovani*, *Leishmania infantum*, *Leishmania major*, *Leishmania mexicana*, *Leishmania tropica*, *Naegleria fowleri*, *Plasmodium falciparum*, *Plasmodium knowlesi*, *Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium vivax*, *Plasmodium yoelii*, *Plasmodium yoelii nigeriensis*, and *Plasmodium yoelii yoelii*.
Plasmodium vivax, Sappinia diploidea, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei, and Trypanosoma cruzi.

In some embodiments, the analyte is secreted by or expressed on the cell surface of a microorganism (e.g., a bacterium, a colonic bacterium, a viable bacterium, a dead bacterium, a parasite (e.g., Giardia lamblia, Cryptosporidium, Cystoisosporiasis belli, and Balantidium coli), a virus (e.g., a herpes virus, a cytomegalovirus, a herpes simplex virus, an Epstein-Barr virus, a human papilloma virus, a rotavirus, a human herpesvirus-8; Goodgame (1999) Curr. Gastroenterol. Rep. 1(4): 292-300). In some embodiments, the analyte is secreted by or expressed on the cell surface of a bacterium o r another microorganism, e.g., helminth ova, enterotoxin (Clostridium difficile toxin A; TcdA), perfringens, pylori). In some embodiments, the analyte is secreted by or expressed on the cell surface (e.g., a bacterial surface epitope) of a Gram-positive bacterium (e.g., Staphylococcus aureus, Clostridium botulinum, Clostridium difficile).

In some embodiments, the analyte is a molecule expressed on the surface of a bacterial cell (e.g., a bacterial cell surface protein). In some embodiments, the analyte is a bacterial toxin (e.g., TcdA and/or TcdB from Clostridium difficile). In some embodiments, the analyte is CFA/I fimbriae, flagella, lipopolysaccharide (LPS), lipoteichoic acid, or a peptidoglycan. Non-limiting examples of bacterium that may express an analyte that can be detected using any of the devices and methods described herein include: Bacillus anthracis, Bacillus cereus, Clostridium botulinum, Clostridium difficile, Escherichia coli, Yersinia pestis, Yersinia enterocolitica, Francisella tularensis, Brucella species, Clostridium perfringens, Burkholderia mallei, Burkholderia pseudomallei, Helicobacter pylori, Staphylococcus species, Mycobacterium species, Group A Streptococcus, Group B Streptococcus, Streptococcus pneumoniae, Francisella tularensis, Salmonella enteritidis, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma pneumoniae, Mycobacterium bovis, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium leprae, Rickettsia rickettsii, Rickettsia akari, Rickettsia prowazekii, Rickettsia Canada, Bacillus subtilis, Bacillus subtilis niger, Bacillus thuringiensis, Coxiella burnetii, Candida albicans, Bacteroides fragilis, Leptospira interrogans, Listeria monocytogenes, Pasteurella multocida, Salmonella typhi, Salmonella typhimurium, Shigella dysenteriae, Shigella flexneria, Shigella sonnei, Vibrio cholera, and Vibrio parahaemolyticus.

In some embodiments, the analyte is a byproduct from a bacterium or another microorganism, e.g., helminth ova, enterotoxin (Clostridium difficile toxin A; TcdA),
cytotoxin (Clostridium difficile toxin B; TcdB), ammonia. In some embodiments, the analyte is an antigen from a microorganism (e.g., a bacteria, virus, prion, fungus, protozoan or a parasite).

In some embodiments, the analytes include drugs, metabolites, pesticides, pollutants, and the like. Included among drugs of interest are the alkaloids. Among the alkaloids are morphine alkaloids, which includes morphine, codeine, heroin, dextromethorphan, their derivatives and metabolites; cocaine alkaloids, which include cocaine and benzyl ecgonine, their derivatives and metabolites; ergot alkaloids, which include the diethylamide of lysergic acid; steroid alkaloids; iminazoyl alkaloids; quinazoline alkaloids; isoquinoline alkaloids; quinoline alkaloids, which include quinine and quinidine; diterpene alkaloids, their derivatives and metabolites.

In some embodiments, the analyte is a steroid selected from the estrogens, androgens, andreocortical steroids, bile acids, cardiotonic glycosides and aglycones, which includes digoxin and digoxigenin, saponins and sapogenins, their derivatives and metabolites. Also included are the steroid mimetic substances, such as diethylstilbestrol.

In some embodiments, the analyte is a bile acid. In some embodiments, the presence, absence, and/or a specific level of one or more bile acids in the GI tract of a subject is indicative of a condition or disease state (e.g., a GI disorder and/or a non-GI disorder (e.g., a systemic disorder). For example, in some embodiments, the compositions and methods described herein may be used to detect and/or quantify a bile acid in the GI tract of the subject to diagnose a condition such as bile acid malabsorption (also known as bile acid diarrhea). In some embodiments, the analyte is a metabolite in the serotonin, tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid, anthranilic acid, and combinations thereof. 5-HT is a molecule that plays a role in the regulation of gastrointestinal motility, secretion, and sensation. Imbalances in the levels of 5-HT are associated with several diseases including inflammatory bowel syndrome (IBS), autism, gastric ulcer formation, non-cardiac chest pain, and functional dyspepsia (see, e.g., Faure et al. (2010) Gastroenterology 139(1): 249-58 and Muller et al. (2016) Neuroscience 321: 24-41, and International Publication No. WO 2014/188377, each of which are incorporated herein by reference). Conversion of metabolites within the serotonin, tryptophan and/or kynurenine pathways affects the levels of 5-HT in a subject. Therefore,
measuring the levels of one or more of the metabolites in this pathway may be used for the
diagnosis, management and treatment of a disease or disorder associated with 5-HT imbalance including but not limited to IBS, autism, carcinoid syndrome, depression, hypertension, Alzheimer's disease, constipation, migraine, and serotonin syndrome. One or
more analytes in the serotonin, tryptophan and/or kynurenine pathways can be detected
and/or quantitated using, for example, methods and analyte-binding agents that bind to these
metabolites including, e.g., antibodies, known in the art (see, e.g., International Publication
No. WO2014/188377, the entire contents of which are expressly incorporated herein by
reference).

In some embodiments, the analyte is a lactam having from 5 to 6 annular members
selected from barbituates, e.g., phenobarbital and secobarbital, diphenylhydantoin, primidone, ethosuximide, and metabolites thereof.

In some embodiments, the analyte is an aminoalkylbenzene, with alkyl of from 2 to 3
carbon atoms, selected from the amphetamines; catecholamines, which includes ephedrine,
L-dopa, epinephrine; narceine; papaverine; and metabolites thereof.

In some embodiments, the analyte is a benzhetocyclic selected from oxazepam,
chlorpromazine, tegretol, their derivatives and metabolites, the heterocyclic rings being
azepines, diazepines and phenothiazines.

In some embodiments, the analyte is a purine selected from theophylline, caffeine,
their metabolites and derivatives.

In some embodiments, the analyte is marijuana, cannabinoil or tetrahydrocannabinol.
In some embodiments, the analyte is a vitamin such as vitamin A, vitamin B, e.g.
vitamin B 12, vitamin C, vitamin D, vitamin E and vitamin K, folic acid, thiamine.

In some embodiments, the analyte is selected from prostaglandins, which differ by the
degree and sites of hydroxylation and unsaturation.

In some embodiments, the analyte is a tricyclic antidepressant selected from
imipramine, dismethylimipramine, amitriptyline, nortriptyline, protriptyline, trimipramine,
chlomipramine, doxepine, and desmethylldoxepin.

In some embodiments, the analyte is selected from anti-neoplastics, including
methotrexate.

In some embodiments, the analyte is an antibiotic as described herein, including, but
not limited to, penicillin, Chloromycetin, actinomycetin, tetracycline, terramycin, and
metabolites and derivatives.
In some embodiments, the analyte is a nucleoside and nucleotide selected from ATP, NAD, FMN, adenosine, guanosine, thymidine, and cytidine with their appropriate sugar and phosphate substituents.

In some embodiments, the analyte is selected from methadone, meprobamate, serotonin, meperidine, lidocaine, procainamide, acetylprocainamide, propranolol, griseofulvin, valproic acid, butyrophenones, antihistamines, chloramphenicol, anticholinergic drugs, such as atropine, their metabolites and derivatives.

In some embodiments, the analyte is a metabolite related to a diseased state. Such metabolites include, but are not limited to spermine, galactose, phenylpyruvic acid, and porphyrin Type 1.

In some embodiments, the analyte is an aminoglycoside, such as gentamicin, kanamicin, tobramycin, or amikacin.

In some embodiments, the analyte is a pesticide. Among pesticides of interest are polyhalogenated biphenyls, phosphate esters, thiophosphates, carbamates, polyhalogenated sulfonamides, their metabolites and derivatives.

In some embodiments, the analyte has a molecular weight of about 500 Da to about 1,000,000 Da (e.g., about 500 to about 500,000 Da, about 1,000 to about 100,000 Da).

In some embodiments, the analyte is a receptor, with a molecular weight ranging from 10,000 to 2×10^8 Da, more usually from 10,000 to 10^6 Da. For immunoglobulins, IgA, IgG, IgE and IgM, the molecular weights will generally vary from about 160,000 Da to about 10^6 Da. Enzymes will normally range in molecular weight from about 10,000 Da to about 1,000,000 Da. Natural receptors vary widely, generally having a molecular weight of at least about 25,000 Da and may be 10^6 or higher Da, including such materials as avidin, DNA, RNA, thyroxine binding globulin, thyroxine binding prealbumin, transcortin, etc.

In some embodiments, the term "analyte" further includes polynucleotide analytes such as those polynucleotides defined below. These include m-RNA, r-RNA, t-RNA, DNA, DNA-RNA duplexes, etc. The term analyte also includes polynucleotide-binding agents, such as, for example, restriction enzymes, transcription factors, transcription activators, transcription repressors, nucleases, polymerases, histones, DNA repair enzymes, intercalating agents, chemotherapeutic agents, and the like.

In some embodiments, the analyte may be a molecule found directly in a sample such as a body fluid from a host. The sample can be examined directly or may be pretreated to render the analyte more readily detectible. Furthermore, the analyte of interest may be
determined by detecting an agent probative of the analyte of interest (i.e., an analyte-binding agent), such as a specific binding pair member complementary to the analyte of interest, whose presence will be detected only when the analyte of interest is present in a sample. Thus, the agent probative of the analyte becomes the analyte that is detected in an assay.

In some embodiments, the analyte a nucleic acid (e.g., a bacterial DNA molecule or a bacterial RNA molecule (e.g., a bacterial tRNA, a transfer-messenger RNA (tmRNA)). See, e.g., Sjostrom et al. (2015) Scientific Reports 5: 15329; Ghosal (2017) Microbial Pathogenesis 104: 161-163; Shen et al. (2012) Cell Host Microbe. 12(4): 509-520.

In some embodiments, the analyte is G-CSF, which can stimulate the bone marrow to produce granulocytes and stem cells and release them into the bloodstream.

In some embodiments, the analyte is an enzyme such as glutathione S-transferase. For example, the ingestible device can include P28GST, a 28 kDa helminth protein from Schistosoma with potent immunogenic and antioxidant properties. P28GST prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils and can be recombinantly produced (e.g., in S. cerevisiae). See, for example, U.S. Patent No. 9,593,313, Driss et al., Mucosal Immunology, 2016 9, 322-335; and Capron et al, Gastroenterology, 146(5):S-638.

In some embodiments, the analyte is a metabolite in the serotonin, tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid, anthranilic acid, and combinations thereof.

In some embodiments, analytes are therapeutic agents or drugs. In some embodiments, analytes are biomarkers. The therapeutic agents disclosed herein are can also be analytes. Examples of biomarkers are provided herein.

In some embodiments, analytes are therapeutic agents, fragments thereof, and metabolites thereof (e.g., antibiotics). In some embodiments, the analytes are antibodies. In
some embodiments, the analytes are antibiotics. Additional exemplary analytes (e.g.,
antibodies and antibiotics) are provided below.

Antibodies

In some embodiments, the analyte or the analyte-binding agent is an antibody. An
"antibody" is an immunoglobulin molecule capable of specific binding to a target, such as a
carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition
site, located in the variable region of the immunoglobulin molecule. As used herein, the term
encompasses not only intact polyclonal or monoclonal antibodies, but also fragments thereof
(such as Fab, Fab', F(ab')2, Fv), single chain (ScFv) and domain antibodies), and fusion
proteins including an antibody portion, and any other modified configuration of the
immunoglobulin molecule that includes an antigen recognition site. The term antibody
includes antibody fragments (e.g., antigen-binding fragments) such as an Fv fragment, a Fab
fragment, a F(ab')2 fragment, and a Fab' fragment. Additional examples of antigen-binding
fragments include an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment
of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized
IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of
an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding
fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an
antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or
humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment
of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-
binding fragment of a human or humanized IgM). An antibody includes an antibody of any
class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any
particular class. Depending on the antibody amino acid sequence of the constant domain of
its heavy chains, immunoglobulins can be assigned to different classes. There are five major
classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be
further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. The
heavy-chain constant domains that correspond to the different classes of immunoglobulins
are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and
three-dimensional configurations of different classes of immunoglobulins are well known.

As used herein, "monoclonal antibody" refers to an antibody obtained from a
population of substantially homogeneous antibodies, i.e., the individual antibodies including
the population are identical except for possible naturally-occurring mutations that may be
Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, 1975, Nature 256:495, or may be made by recombinant DNA methods such as described in U.S. Patent No. 4,816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990, Nature 348:552-554, for example.

A "variable region" of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination. As known in the art, the variable regions of the heavy and light chain each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs) that contain hypervariable regions. The CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies. There are at least two techniques for determining CDRs: (1) an approach based on cross-species sequence variability (i.e., Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda MD)); and (2) an approach based on crystallographic studies of antigen-antibody complexes (Al-Lazikani et al, 1997, J. Molec. Biol. 273:927-948). As used herein, a CDR may refer to CDRs defined by either approach or by a combination of both approaches.

As known in the art, a "constant region" of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.

A "derivative" refers to any polypeptide (e.g., an antibody) having a substantially identical amino acid sequence to the naturally occurring polypeptide, in which one or more amino acids have been modified at side groups of the amino acids (e.g., an biotinylated protein or antibody). The term "derivative" shall also include any polypeptide (e.g., an antibody) which has one or more amino acids deleted from, added to, or substituted from the
natural polypeptide sequence, but which retains a substantial amino acid sequence homology to the natural sequence. A substantial sequence homology is any homology greater than 50 percent.

minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab')2-scFV2, scFv-KIH, Fab-
scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4): 127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, DrugDiscov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-
PEG-scFv2.

In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/2701; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-
J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC
Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab'scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a
camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal
antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody
(e.g., U.S. Patent No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10: 1057-
1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem
immunoglobulin (WO 15/103072), or a humanized camelid antibody.

In some embodiments, the antibody binds specifically to a metabolite in the serotonin,
tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-
hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K),
kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA),
quinalinic acid, anthranilic acid. Exemplary antibodies that bind to metabolites in these
pathways are disclosed, for example, in International Publication No. WO2014/188377, the
entire contents of which are incorporated herein by reference.

In some embodiments, the antibody is specific for a particular genus, species, or strain
of a microorganism, and may therefore be used for the detection, analysis and/or quantitation
of the microorganism using the detection methods described below. In some embodiments,
the antibody specifically binds to a surface-specific biomolecule (e.g., a pilus subunit or a
flagella protein) present in a particular genus, species or strain of microorganism, and does
not cross-react with other microorganisms. In some embodiments, these antibodies may be
used in the methods described herein to diagnose a subject with a particular infection or
disease, or to monitor an infection (e.g., during or after treatment). In some embodiments, the antibody specifically binds to an antigen present in a particular genera, species or strain of a microorganism. Exemplary antigens, the corresponding microorganism that can be detected, and the disease caused by the microorganism (in parentheticals) include: outer membrane protein A OmpA (Acinetobacter baumannii, Acinetobacter infections)); HIV p24 antigen, HIV E Envelope proteins (Gpl20, Gp41, Gpl60) (HIV (Human immunodeficiency virus), AIDS (Acquired immunodeficiency syndrome)); galactose-inhibitable adherence protein GIAP, 29 kDa antigen Eh29, GaVGalNAc lectin, protein CRT, 125 kDa immunodominant antigen, protein M17, adhesin ADHI 12, protein STIRP (Entamoeba histolytica, Amoebiasis); protective Antigen PA, edema factor EF, lethal facotor LF, the S-layer homology proteins SLH (Bacillus anthracis, Anthrax); nucleocapsid protein NP, glycoprotein precursor GPC, glycoprotein GP1, glycoprotein GP2 (Junin virus, Argentine hemorrhagic fever); 41 kDa allergen Asp vl3, allergen Asp f3, major conidial surface protein rodlet A, protease Peplp, GPI-anchored protein Gellp, GPI-anchored protein Crflp (Aspergillus genus, Aspergillosis); outer surface protein A OspA, outer surface protein OspB, outer surface protein OspC, decorin binding protein A DbpA, flagellar filament 41 kDa core protein Fla, basic membrane protein A precursor BmpA (Immunodominant antigen P39), outer surface 22 kDa lipoprotein precursor (antigen IPLA7), variable surface lipoprotein vIsE (Borrelia genus, Borrelia infection); OmpA-like transmembrane domain-containing protein Omp31, immunogenic 39-kDa protein M5 P39, 25 kDa outer-membrane immunogenic protein precursor Omp25, outer membrane protein MotY Ompl6, conserved outer membrane protein D15, malate dehydrogenase Mdh, component of the Type-IV secretion system (T4SS) VirJ, lipoprotein of unknown function BABl—0187 (Brucella genus, Brucellosis); major outer membrane protein PorA, flagellin FlaA, surface antigen CjaA, fibronectin binding protein CadF, aspartate/glutamate-binding ABC transporter protein PeblA, protein FspAl, protein FspA2 (Campylobacter genus, Campylobacteriosis); glycolytic enzyme enolase, secreted aspartyl proteinases SAPI-10, glycoprophatidylinositol (GPI)-linked cell wall protein, adhesin Als3p, cell surface hydrophobicity protein CSH (usually Candida albicans and other Candida species, Candidiasis); envelope glycoproteins (dB, dC, dE, dH, dL, gK, gL) (Varicella zoster virus (VZV), Chickenpox); major outer membrane protein MOMP, probable outer membrane protein PMPC, outer membrane complex protein B OmcB (Chlamydia trachomatis, Chlamydia); major outer membrane protein MOMP, outer membrane protein 2 Omp2, (Chlamydiaphilapneumoniae, Chlamydia pneumoniae)
infection); outer membrane protein U Porin ompU, (Vibrio cholerae, Cholera); surface layer proteins SLPs, Cell Wall Protein CwpV, flagellar protein FliC, flagellar protein FliD (Clostridium difficile, Clostridium difficile infection); acidic ribosomal protein P2 CpP2, mucin antigens Mucl, Mucl2, Mucl3 Muc4, Muc5, Muc6, Muc7, surface adherence protein CP20, surface adherence protein CP23, surface protein CP12, surface protein CP21, surface protein CP40, surface protein CP60, surface protein CP15, surface-associated glycopeptides gp40, surface-associated glycopeptides gp15, oocyst wall protein AB, profilin PRF, apyrase (Cryptosporidium genus, Cryptosporidiosis); membrane protein ppl5, capsid-proximal tegument protein ppl50 (Cytomegalovirus, Cytomegalovirus infection); prion protein (vCJD prion, Variant Creutzfeldt-Jakob disease (vCJD, nvCJD)); cyst wall proteins CWP1, CWP2, CWP3, variant surface protein VSP, VSP1, VSP2, VSP3, VSP4, VSP5, VSP6, 56 kDa antigen (Giardia intestinalis, Giardiasis); minor pilin-associated subunit pilC, major pilin subunit and variants pilE, pilS (Neisseria gonorrhoeae, Gonorrhea); outer membrane protein A OmpA, outer membrane protein C OmpC, outer membrane protein K17 OmpK17 (Klebsiella granulomatis, Granuloma inguinale (Donovanosis)); fibronectin-binding protein Sfb (Streptococcus pyogenes, Group A streptococcal infection); outer membrane protein P6 (Haemophilus influenzae, Haemophilus influenzae infection); integral membrane proteins, aggregation-prone proteins, O-antigen, toxin-antigens Stx2B, toxin-antigen Stx1B, adhesion-antigen fragment Int28, protein EspA, protein EspB, Intimin, protein Tir, protein IntC300, protein Eae (Escherichia coli O157:H7, 0 111 and O104:H4, Hemolytic-uremic syndrome (HUS)); hepatitis A surface antigen HBsAg (Hepatitis A Virus, Hepatitis A); hepatitis B surface antigen HBsAg (Hepatitis B Virus, Hepatitis B); envelope glycoprotein E1 gp32 gp35, envelope glycoprotein E2 NS1 gp68 gp70, capsid protein C, (Hepatitis C Virus, Hepatitis C); type IV pilin PilE, outer membrane protein MIP, major outer membrane protein MompS (Legionella pneumophila, Legionellosis (Legionnaires’ disease, Pontiac fever)); minor pilin-associated subunit pilC, major pilin subunit and variants pilE, pilS (Neisseria meningitidis, Meningococcal disease); adhesin Pl, adhesion P30 (Mycoplasma pneumoniae, Mycoplasma pneumonia); F1 capsule antigen, outer membrane protease Pla, (Yersinia pestis, Plague); surface adhesin PsA, cell wall surface anchored protein pspP (Streptococcus pneumoniae, Pneumococcal infection); flagellin FliC, invasion protein SipC, glycoprotein gp43, outer membrane protein LamB, outer membrane protein PagC, outer membrane protein TolC, outer membrane protein NmpC, outer membrane protein FadL, transport protein SadA (Salmonella genus, Salmonellosis); collagen adhesin Cna, fibronectin-binding protein A

In some embodiments, a plurality of antibodies (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, or more antibodies) are used as analyte-binding agents in any of the methods described herein (e.g., to detect the presence of one or more analytes in a sample). In some embodiments, the plurality of antibodies bind to the same analyte (e.g., an antigen). In some embodiments, the plurality of antibodies bind to the same epitope present on the analyte (e.g., an antigen). In some embodiments, the plurality of antibodies bind to different epitopes present on the same analyte. In some embodiments, the plurality of antibodies bind to overlapping epitopes present on the same analyte. In some embodiments, the plurality of antibodies bind to non-overlapping epitopes present on the same analyte.

\textbf{Antibiotics}

In some embodiments, the analyte or analyte-binding agent is an antibiotic. An "antibiotic" or "antibiotic agent" refers to a substance that has the capacity to inhibit or slow down the growth of, or to destroy bacteria and/or other microorganisms. In some embodiments, the antibiotic agent is a bacteriostatic antibiotic agent. In some embodiments, the antibiotic is a bactericidal antibiotic agent. Exemplary antibiotic agents are set forth in the U.S. Patent Publication US 2006/0269485, which is hereby incorporated by reference herein in its entirety.

In some embodiments, the antibiotic agent is selected from the classes consisting of beta-lactam antibiotics, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroids, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium...
compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds. In some embodiments, the antibiotic is rifaximin.

Beta-lactam antibiotics include, but are not limited to, 2-(3-alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl-thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carinetimycin, cefacetril, cefaloridine, cefalexin, cefazolin, cefazopran, cefpodoxime, cefprozil, cefquinome, cefradine, cefoxadine, cefsulodin, cephalosporin, cephamycin, chitinovorin, ciclacillin, clavulanic acid, clometocillin, cloxacillin, cycloserine, deoxy pluracidomycin, dicloxacillin, dihydro pluracidomycin, epicillin, epithienamycin, ertapenem, faropenem, flomoxef, flucloxacillin, hetacillin, imipenem, lenampicillin, loracarbef, mecinillin, meropenem, metampicillin, mezlocillin, moxalactam, nafcillin, northienamycin, oxacillin, panipenem, penamecillin, penicillin, phenethicillin, piperacillin, tazobactam, pivampicillin, pivcefalexin, pivmecillinam, pivmecillinam hydrochloride, pluracidomycin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, talampicillin, temocillin, terconazole, thienamycin, ticarcillin and analogs, salts and derivatives thereof.

Aminoglycosides include, but are not limited to, 1,2'-N-DL-isoseryl-3',4'-dideoxykanamycin B, 1,2'-N-DL-isoseryl-kanamycin B, 1,2'-N-[(S)-4-amino-2-hydroxybutyryl]-3',4'-dideoxykanamycin B, 1,2'-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B, 1-N-(2-Aminobutanesulfonfyl) kanamycin A, 1-N-(2-aminoethanesulfonfyl)3',4'-dideoxyribostamycin, 1-N-(2-Aminoethanesulfonfyl)3'-deoxyribostamycin, 1-N-(2-Aminoethanesulfonfyl)3'-deoxykanamycin B, 1-N-(2-aminoethanesulfonfyl)kanamycin A, 1-N-(2-aminoethanesulfonfyl)kanamycin B, 1-N-(2-aminoethanesulfonfyl)ribostamycin, 1-N-(2-aminopropanesulfonfyl)3'-deoxykanamycin B, 1-
myomycin, N-demethyl-7-O-demethylcelesticetin, demethylcelesticetin, methanesulfonic acid derivative of istamycin, nebramycin, nebramycin, neomycin, netilmicin, oligostatin, paromomycin, quinomycin, ribostamycin, saccharocin, seldomycin, sisomicin, sorbistin, spectinomycin, streptomycin, tobramycin, trehalosmaine, trestatin, validamycin, verdamycin, xylostasin, zymogycin and analogs, salts and derivatives thereof.

Ansa-type antibiotics include, but are not limited to, 21-hydroxy-25-demethyl-25-methyllothioprostreptovaricin, 3-methylthiorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin (e.g., Xifaxan®), rubradirin, streptovaricin, tolypomycin and analogs, salts and derivatives thereof.

Antibiotic anthraquinones include, but are not limited to, auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin and analogs, salts and derivatives thereof.

Antibiotic azoles include, but are not limited to, azanidazole, bifenazole, butoconazol, clorimidazole, clorimidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, ornidazole, oxiconazole, oxiconazole nitrate, propenidazole, secnidazol, sertaconazole, sertaconazole nitrate, sulconazole, sulconazole nitrate, tinidazole, toconazole, voriconazol and analogs, salts and derivatives thereof.

Antibiotic glycopeptides include, but are not limited to, acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N-nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin and analogs, salts and derivatives thereof.

Macrolides include, but are not limited to, acetylleucomycin, acetylkitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O-methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin,
foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacuminic, lankavacidin, lankavamycin, leucomycin, machein, maridomycin, megalomicin, methyleucomycin, methymycin, midecamycin, miocamycin, mycaminosyltylactone, mycinomycin, neutramycin, niddamycin, nonactin, oleandomycin, phenylacetyideltamycin, pamamycin, picromycin, rokitamycin, rosaramicin, roxithromycin, sedecamycin, shincomycin, spiramycin, swalpamycin, tacrolimus, telithromycin, tiacumicin, tilmicosin, treponemycin, troleandomycin, tylosin, venturicidin and analogs, salts and derivatives thereof.

Antibiotic nucleosides include, but are not limited to, amicetin, angustmycin, azathymidine, blasticidin S, epiroprim, flucytosine, gougerotin, mildiomycin, nikkomyacin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinfungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, vengicide and analogs, salts and derivatives thereof.

Antibiotic peptides include, but are not limited to, actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillopeptin, bacitracin, bagacidin, beminamycin, beta-alanyl-L-tyrosine, bottomycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymuldocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferrimycin, ferrimycin, ficellomycin, fluorocathiacin, fusaricidin, gardimycin, gatavalin, globopeptin, glyphomycin, gramicidin, herbicolin, iomycin, iturin, iyomycin, izupeptin, janiymycin, janthinocin, jolipeptin, katanosin, killertoxin, lipopeptide antibiotic, lipopeptide from Zalerion sp., lysobactin, lysozyme, macromomycin, magainin, melittin, mersacidin, mikamycin, mureidomycin, mycoplanecin, mycosubtilin, neopeptifluorin, neoviridogrisein, netropsin, nisin, nocihactin, nocihactin 6-deoxyglycoside, nosiheptide, octapeptin, pacidamycin, pentadecapeptide, peptifluorin, permetin, phytoactin, phytostreptin, planothiocin, plusbacin, polcillin, polymyxin antibiotic complex, polymyxin B, polymyxin Bl, polymyxin F, preneocarzinostatin, quinomycin, quinupristin-dalfopristin, safracin, salmycin, salmycin, salmcyin, sandramycin, saramycetin, siomycin, sperabillin, sporamycin, a Streptomyces compound, subtilin, teicoplanin aglycone, telomycin, thermothiocin, thiopeptin, thioestrepton, tridecaptin, tsushimycin, tuberactinomycin, tuberactinomycin, tyrothricin, valinomycin, viomycin, virginiamycin, zervacin and analogs, salts and derivatives thereof.
In some embodiments, the antibiotic peptide is a naturally-occurring peptide that possesses an antibacterial and/or an antifungal activity. Such peptide can be obtained from an herbal or a vertebrate source.

Polyenes include, but are not limited to, amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candidicidin, candidicidin methyl ester, candimycin, candimycin methyl ester, chinoprinic, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimaricin, primycin, proticin, rimocidin, sistomycosin, sorangicin, trichomycin and analogs, salts and derivatives thereof.

Polyethers include, but are not limited to, 20-deoxy-epi-narasin, 20-deoxysalinomycin, carriomycin, dianemycin, dihydroolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, lonomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin and analogs, salts and derivatives thereof.

Quinolones include, but are not limited to, an alkyl-methylendioxy-4(lH)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomeflloxacin, hydrochloride, miloxacin, moxifloxacin, nabidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacin, pefloxacin, pefloxacin mesylate, pipemidic acid, piromidic acid, premafloxacin, rosoxacin, rufloxacin, sparflaxacin, temafloxacin, tosufloxacin, trovafloxacin and analogs, salts and derivatives thereof.

Antibiotic steroids include, but are not limited to, aminosterol, ascosteroside, cladosporide A, dihydrofusidic acid, dehydro-dihydrofusidic acid, dehydrofusidic acid, fusidic acid, squalamine and analogs, salts and derivatives thereof.

Sulfonamides include, but are not limited to, chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenamide, sulfacetamide, sulfachloropyridazine, sulfadiazone, sulfadiazone silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfapyridine, sulfaquinoxaline,
sulfasuccinamide, sulfathiazole, sulfathioncurea, sulfatolamide, sulfatriazin, sulfisomidine, sulfisoxazole, sulfisoxazole acetyl, sulfacarbamide and analogs, salts and derivatives thereof.

Tetracyclines include, but are not limited to, dihydrostefimycin, demethyltetracline, aclacinomycin, akrobonycin, baumycin, bromotetracline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, mecloycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracline, rhodirubin, rolitetracycline, rubomycin, serirubinc, steffimycin, tetracycline and analogs, salts and derivatives thereof.

Dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton are particularly useful in the treatment of disorders of the skin and mucosal membranes that involve microbial. Suitable dicarboxylic acid moieties include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,1-undecanedioic acid, 1,12-dodecanedioic acid, 1,13-tridecanedioic acid and 1,14-tetradecanedioic acid. Thus, in one or more embodiments of the present disclosure, dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton, as well as their salts and derivatives (e.g., esters, amides, mercapto-derivatives, anhydrides), are useful immunomodulators in the treatment of disorders of the skin and mucosal membranes that involve inflammation. Azelaic acid and its salts and derivatives are preferred. It has antibacterial effects on both aerobic and anaerobic organisms, particularly Propionibacterium acnes and Staphylococcus epidermidis, normalizes keratinization, and has a cytotoxic effect on malignant or hyperactive melanocytes. In a preferred embodiment, the dicarboxylic acid is azelaic acid in a concentration greater than 10%. Preferably, the concentration of azelaic acid is between about 10% and about 25%. In such concentrates, azelaic acid is suitable for the treatment of a variety of skin disorders, such as acne, rosacea and hyperpigmentation.

In some embodiments, the antibiotic agent is an antibiotic metal. A number of metals ions have been shown to possess antibiotic activity, including silver, copper, zinc, mercury, tin, lead, bismuthin, cadmium, chromium and ions thereof. It has been theorized that these antibiotic metal ions exert their effects by disrupting respiration and electron transport systems upon absorption into bacterial or fungal cells. Anti-microbial metal ions of silver, copper, zinc, and gold, in particular, are considered safe for in vivo use. Anti-microbial silver and silver ions are particularly useful due to the fact that they are not substantially absorbed.
into the body. Thus, in one or more embodiment, the antibiotic metal consists of an
elemental metal, selected from the group consisting of silver, copper, zinc, mercury, tin, lead,
bismuthin, cadmium, chromium and gold, which is suspended in the composition as particles,
microparticles, nanoparticles or colloidal particles. The antibiotic metal can further be
intcalated in a chelating substrate.

In further embodiments, the antibiotic metal is ionic. The ionic antibiotic metal can
be presented as an inorganic or organic salt (coupled with a counterion), an organometallic
complex or an intercalate. Non-binding examples of counter inorganic and organic ions are
sulfadiazine, acetate, benzoate, carbonate, iodate, iodide, lactate, laurate, nitrate, oxide, and
palmitate, a negatively charged protein. In preferred embodiments, the antibiotic metal salt is
a silver salt, such as silver acetate, silver benzoate, silver carbonate, silver iodate, silver
iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein,
and silver sulfadiazine.

In one or more embodiments, the antibiotic metal or metal ion is embedded into a
substrate, such as a polymer, or a mineral (such as zeolite, clay and silica).

In one or more embodiments, the antibiotic agent includes strong oxidants and free
radical liberating compounds, such as oxygen, hydrogen peroxide, benzoyl peroxide,
elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g.,
sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate,
and benzoyl peroxide. Organic oxidizing agents, such as quinones, are also included. Such
agents possess a potent broad-spectrum activity.

In one or more embodiments, the antibiotic agent is a cationic antimicrobial agent.
The outermost surface of bacterial cells universally carries a net negative charge, making
them sensitive to cationic substances. Examples of cationic antibiotic agents include:

quaternary ammonium compounds (QAC’s)—QAC’s are surfactants, generally containing
one quaternary nitrogen associated with at least one major hydrophobic moiety;
alkyltrimethyl ammonium bromides are mixtures of where the alkyl group is between 8 and
18 carbons long, such as cetrimide (tetradecyltrimethylammonium bromide); benzalkonium
chloride, which is a mixture of n-alkylhalidemethylbenzyl ammonium chloride where the alkyl
groups (the hydrophobic moiety) can be of variable length; dialkylmethyl ammonium halides;
dialkylbenzyl ammonium halides; and QAC dimmers, which bear bi-polar positive charges in
conjunction with interstitial hydrophobic regions.
In one or more embodiments, the cationic antimicrobial agent is a polymer. Cationic antimicrobial polymers include, for example, guanide polymers, biguanide polymers, or polymers having side chains containing biguanide moieties or other cationic functional groups, such as benzalkonium groups or quarternium groups (e.g., quarternary amine groups).

It is understood that the term "polymer" as used herein includes any organic material including three or more repeating units, and includes oligomers, polymers, copolymers, block copolymers, terpolymers, etc. The polymer backbone may be, for example a polyethylene, polypropylene or polysilane polymer.

In one or more embodiments, the cationic antimicrobial polymer is a polymeric biguanide compound. When applied to a substrate, such a polymer is known to form a barrier film that can engage and disrupt a microorganism. An exemplary polymeric biguanide compound is polyhexamethylene biguanide (PHMB) salts. Other exemplary biguanide polymers include, but are not limited to poly(hexamethylenebiguanide), poly(hexamethylenebiguanide) hydrochloride, poly(hexamethylenebiguanide) gluconate, poly(hexamethylenebiguanide) stearate, or a derivative thereof. In one or more embodiments, the antimicrobial material is substantially water-insoluble.

In some embodiments, the antibiotic agent is selected from the group of biguanides, triguanides, bisbiguanides and analogs thereof.

Guanides, biguanides, biguanidines and triguanides are unsaturated nitrogen containing molecules that readily obtain one or more positive charges, which make them effective antimicrobial agents. The basic structures a guanide, a biguanide, a biguanidine and a triguanide are provided below.

![Guanide](image)

In some embodiments, the guanide, biguanide, biguanidine or triguanide, provide bi-polar configurations of cationic and hydrophobic domains within a single molecule.
Examples of guanides, biguanides, biguanidines and triguanides that are currently been used as antibacterial agents include chlorhexidine and chlorohexidine salts, analogs and derivatives, such as chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxidine, alexidine and polihexanide. Other examples of guanides, biguanides, biguanidines and triguanides that are conceivably be used according to the present disclosure are chlorproguanil hydrochloride, proguanil hydrochloride (currently used as antimalarial agents), mefformin hydrochloride, phenformin and buformin hydrochloride (currently used as antidiabetic agents).

Yet, in one or more embodiments, the antibiotic is a non-classified antibiotic agent, including, without limitation, aabomycin, acetomycin, acetoxy cycloheximide, acetylnanaomycin, an Actinoplanes sp. compound, actinopyrone, aflastatin, albacarcin, albacarcin, albofungin, albofungin, alisamycin, alpha-R,S-methoxycarbonylbenzylmonate, altromycin, amicetin, amincin, amycin, amycin demanoyl compound, amycine, amycomycin, anandimycin, anisomycin, anthramycin, anti-syphilis immune substance, anti-tuberculosis immune substance, an antibiotic from Escherichia coli, an antibiotic from Streptomyces refuineus, anticapsin, antimycin, aplasmomycin, aranorosin, aranorosinol, argumycin, ascofuranone, ascomycin, ascosin, Aspergillusflavus antibiotic, asukamycin, aurantin, an Aureolic acid antibiotic substance, aurodox, avilamycin, azidamfenicol, azidimycin, bacillaene, a Bacillus larvae antibiotic, bacterol, benanomycin, benzantrin, benzylmonate, bicozamycin, bravomicin, brodimoprim, butalactin, calcimycin, calvatic acid, candiplanecin, carumonam, carzinophilin, celesticetin, cepacin, cerulenin, cervinomycin, chartreusin, chorlamphenicol, chloramphenicol palmitate, chloramphenicol succinate sodium, chlorflavonin, chlorobiocin, chlorocarcin, chromomycin, ciclopirox, ciclopirox olamine, citreamicin, cladosporin, clazamycin, clecarmycin, clindamycin, coliformin, collimycin, corallopyronin, corynecandin, coumermycin, culpin, cupidymycin, cyclamidomycin, cycloheximide, dactylomycin, danomycin, danubomycin, delaminomycin, demethoxyrapamycin, demethylscytophycin, dermadin, desdamethine, dextrosylbenanomycin, pseudoaglycone, dihydrocorticin, dihydronancimycin, diumycin, dnacin, doorrisquin, dynemycin, dynemycin triacetate, ecteinascidin, efrotomycin, endomycin, ensanchomycin, equisetin, ericamycin, esperamicin, ethylmonate, everinomicin, feldamycin, flambamycin, flavensomycin, florfenicol, fluvoxomycin, fosfomycin, fosfonochlorin, fredericamycin, frenolicin, fumagillin, funginon, funginon, fusacandin, fusafungin, gelbecidine, glibodactin, grahamimycin, granaticin, griseofulvin, griseoviridin, grisonomycin,
In one or more embodiments, the antibiotic agent is a naturally occurring antibiotic compound. As used herein, the term "naturally-occurring antibiotic agent" includes all antibiotics that are obtained, derived or extracted from plant or vertebrate sources. Non-limiting examples of families of naturally-occurring antibiotic agents include phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone,
humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine.

Ciclopirox and ciclopiroxolamine possess fungicidal, fungistatic and sporicidal activity. They are active against a broad spectrum of dermatophytes, yeasts, moulds and other fungi, such as Trichophytons species, Microsporum species, Epidermophytont species and yeasts (Candida albicans, Candida glabrata, other Candida species and Cryptococcus neoformans). Some Aspergillus species are sensitive to ciclopirox as are some Penicillium. Likewise, ciclopirox is effective against many Gram-positive and Gram-negative bacteria (e.g., Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus and Streptococcus species), as well as Mycoplasma species, Trichomonas vaginalis and Actinomyces.

Plant oils and extracts which contain antibiotic agents are also useful. Non-limiting examples of plants that contain agents include thyme, Perilla, lavender, tea tree, Terfezia clayeryi, Micromonospora, Putterlickia verrucosa, Putterlickia pyracaantha, Putterlickia retrospinosa, Maytenus ilicifolia, Maytenus evonymoides, Maytenus aquifolia, Faenia interjecta, Cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic, and St. John's wort. Mixtures of the antibiotic agents as described herein may also be employed.

Combination Detection

Any combination of the analytes disclosed herein can be detected using any of the methods described herein. In particular, any combination disclosed herein can be detected using any of the methods described herein.

A "photosensitizer" as used herein refers to a sensitizer for generation of singlet oxygen usually by excitation with light. Exemplary photosensitizers suitable for use include those described in U.S. Patent Nos. 6,251,581, 5,516,636, 8,907,081, 6,545,012, 6,331,530, 8,247,180, 5,763,602, 5,705,622, 5,516,636, 7,217,531, and U.S. Patent Publication No. 2007/0059316, all of which are herein expressly incorporated by reference in their entireties. The photosensitizer can be photoactivatable (e.g., dyes and aromatic compounds) or chemiactivated (e.g., enzymes and metal salts). When excited by light the photosensitizer is usually a compound comprised of covalently bonded atoms, usually with multiple conjugated double or triple bonds. The compound should absorb light in the wavelength range of 200-1100 nm, usually 300-1000 nm, e.g., 450-950 nm, with an extinction coefficient at its
absorbance maximum greater than 500 M$^{-1}$cm$^{-1}$, e.g., at least 5000 M$^{-1}$cm$^{-1}$, or at least 50,000 M$^{-1}$cm$^{-1}$ at the excitation wavelength. The lifetime of an excited state produced following absorption of light in the absence of oxygen will usually be at least 100 nsec, e.g., at least 1 μsec. In general, the lifetime must be sufficiently long to permit energy transfer to oxygen, which will normally be present at concentrations in the range of 10$^{-5}$ to 1031 M depending on the medium. The sensitizer excited state will usually have a different spin quantum number (S) than its ground state and will usually be a triplet (S=1) when, as is usually the case, the ground state is a singlet (S=0). In some embodiments, the sensitizer will have a high intersystem crossing yield. That is, photoexcitation of a sensitizer will produce the long lived state (usually triplet) with an efficiency of at least 10%, at least 40%, e.g., greater than 80%. The photosensitizer will usually be at most weakly fluorescent under the assay conditions (quantum yield usually less than 0.5, or less than 0.1).

Photosensitizers that are to be excited by light will be relatively photostable and will not react efficiently with singlet oxygen. Several structural features are present in most useful sensitzers. Most sensitzers have at least one and frequently three or more conjugated double or triple bonds held in a rigid, frequently aromatic structure. They will frequently contain at least one group that accelerates intersystem crossing such as a carbonyl or imine group or a heavy atom selected from rows 3-6 of the periodic table, especially iodine or bromine, or they may have extended aromatic structures. Typical sensitzers include acetone, benzophenone, 9-thioxanthone, eosin, 9,10-dibromoanthracene, methylene blue, metalloporphyrins, such as hematoporphyrin, phthalocyanines, chlorophylls, rose bengal, buckminsterfullerene, etc., and derivatives of these compounds having substituents of 1 to 50 atoms for rendering such compounds more lipophilic or more hydrophilic and/or as attaching groups for attachment. Examples of other photosensitzers that may be utilized are those that have the above properties and are enumerated in N. J. Turro, "Molecular Photochemistry," page 132, W. A. Benjamin Inc., N.Y. 1965.

In some embodiments, the photosensitzers are relatively non-polar to assure dissolution into a lipophilic member when the photosensitizer is incorporated in an oil droplet, liposome, latex particle, etc.

In some embodiments, the photosensitzers suitable for use herein include other substances and compositions that can produce singlet oxygen with or without activation by an external light source. Thus, for example, molybdate (M0O4 =) salts and chloroperoxidase and myeloperoxidase plus bromide or chloride ion (Kanofsky, J. Biol. Chem. (1983) 259 5596)
have been shown to catalyze the conversion of hydrogen peroxide to singlet oxygen and water. Either of these compositions can, for example, be included in particles and used in the assay method wherein hydrogen peroxide is included as an ancillary reagent, chloroperoxidase is bound to a surface and molybdate is incorporated in the aqueous phase of a liposome. Also included within the scope of the invention as photosensitizers are compounds that are not true sensitizers but which on excitation by heat, light, or chemical activation will release a molecule of singlet oxygen. The best known members of this class of compounds includes the endoperoxides such as 1,4-biscarboxyethyl-1,4-naphthalene endoperoxide, 9,10-diphenylanthracene-9,10-endoperoxide and 5,6,11,12-tetraphenyl naphthalene 5,12-endoperoxide. Heating or direct absorption of light by these compounds releases singlet oxygen.

A "chemiluminescent compound" as used herein refers to a substance that undergoes a chemical reaction with singlet oxygen to form a metastable intermediate that can decompose with the simultaneous or subsequent emission of light within the wavelength range of 250 to 1200 nm. Exemplary chemiluminescent compounds suitable for use include those described in U.S. Patent Nos. 6,251,581 and 7,709,273, and Patent Cooperation Treaty (PCT) International Application Publication No. WO 1999/042838. Exemplary chemiluminescent compound includes the following:

<table>
<thead>
<tr>
<th>Chemiluminescer</th>
<th>Half-Life</th>
<th>Emission Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thioxene + Diphenyl anthracene:</td>
<td>0.6 seconds</td>
<td>430 nm</td>
</tr>
<tr>
<td>Thioxene + Umbelliferone derivative</td>
<td>0.6 seconds</td>
<td>500 nm</td>
</tr>
<tr>
<td>Thioxene + Europium chelate</td>
<td>0.6 seconds</td>
<td>615 nm</td>
</tr>
<tr>
<td>Thioxene + Samarium Chelate</td>
<td>0.6 seconds</td>
<td>648 nm</td>
</tr>
<tr>
<td>Thioxene + terbium Chelate</td>
<td>0.6 seconds</td>
<td>540 nm</td>
</tr>
<tr>
<td>N-Phenyl Oxazine + Umbelliferone derivative</td>
<td>30 seconds</td>
<td>500 nm</td>
</tr>
<tr>
<td>N-Phenyl Oxazine + Europium chelate</td>
<td>30 seconds</td>
<td>613 nm</td>
</tr>
<tr>
<td>N-phenyl Oxazine + Samarium Chelate</td>
<td>30 seconds</td>
<td>648 nm</td>
</tr>
<tr>
<td>N-phenyl Oxazine + terbium Chelate</td>
<td>30 seconds</td>
<td>540 nm</td>
</tr>
<tr>
<td>Dioxene + Umbelliferone derivative</td>
<td>300 seconds</td>
<td>500 nm</td>
</tr>
<tr>
<td>Dioxene + Europium chelate</td>
<td>300 seconds</td>
<td>613 nm</td>
</tr>
<tr>
<td>Dioxene + Samarium Chelate</td>
<td>300 seconds</td>
<td>648 nm</td>
</tr>
<tr>
<td>N-phenyl Oxazine + terbium Chelate</td>
<td>300 seconds</td>
<td>540 nm</td>
</tr>
</tbody>
</table>
All of the above mentioned applications are hereby expressly incorporated by reference herein in their entireties. Emission will usually occur without the presence of an energy acceptor or catalyst to cause decomposition and light emission. In some embodiments, the intermediate decomposes spontaneously without heating or addition of ancillary reagents following its formation. However, addition of a reagent after formation of the intermediate or the use of elevated temperature to accelerate decomposition will be required for some chemiluminescent compounds. The chemiluminescent compounds are usually electron rich compounds that react with singlet oxygen, frequently with formation of dioxetanes or dioxetanones. Exemplary of such compounds are enol ethers, enamines, 9-alkyldenexanthans, 9-alkylidene-N-alkylacridans, aryl vinyl ethers, dioxenes, arylimidazoles and lucigenin. Other chemiluminescent compounds give intermediates upon reaction with singlet oxygen, which subsequently react with another reagent with light emission. Exemplary compounds are hydrazides such as luminol and oxalate esters.

The chemiluminescent compounds of interest will generally emit at wavelengths above 300 nanometers and usually above 400 nm. Compounds that alone or together with a fluorescent molecule emit light at wavelengths beyond the region where serum components absorb light will be of particular use. The fluorescence of serum drops off rapidly above 500 nm and becomes relatively unimportant above 550 nm. Therefore, when the analyte is in serum, chemiluminescent compounds that emit light above 550 nm, e.g., above 600 nm may be suitable for use. In order to avoid autosensitization of the chemiluminescent compound, in some embodiments, the chemiluminescent compounds do not absorb light used to excite the photosensitizer. In some embodiments, the sensitizer is excited with light wavelengths longer than 500 nm, it will therefore be desirable that light absorption by the chemiluminescent compound be very low above 500 nm.

Where long wavelength emission from the chemiluminescent compound is desired, a long wavelength emitter such as a pyrene, bound to the chemiluminescent compound can be used. Alternatively, a fluorescent molecule can be included in the medium containing the chemiluminescent compound. In some embodiments, fluorescent molecules will be excited by the activated chemiluminescent compound and emit at a wavelength longer than the emission wavelength of the chemiluminescent compound, usually greater than 550 nm. It is usually also desirable that the fluorescent molecules do not absorb at the wavelengths of light used to activate the photosensitizer. Examples of useful dyes include rhodamine, ethidium, dansyl, Eu(fod)₃, Eu(TTA)₃, Ru(bpy)₃⁺⁺ (wherein bpy=2,2'-dipyridyl, etc. In general, these
dyes act as acceptors in energy transfer processes and in some embodiments, have high fluorescent quantum yields and do not react rapidly with singlet oxygen. They can be incorporated into particles simultaneously with the incorporation of the chemiluminescent compound into the particles.

In some embodiments, the disclosure provides diffractive optics detection technology that can be used with, for example, ingestible device technology. In certain embodiments, an ingestible device includes the diffractive optics technology (e.g., diffractive optics detection system). In certain embodiments, the disclosure provides diffractive optics technology (e.g., diffractive optics detection systems) that are used outside the body of subject. As an example, an ingestible device can be used to obtain one more samples in the body (e.g., in the gastrointestinal tract) of a subject, and the diffractive optics technology can be used to analyze the sample(s). Such analysis can be performed in vivo (e.g., when the ingestible device contains the diffractive optics).

Diffraction is a phenomenon that occurs due to the wave nature of light. When light hits an edge or passes through a small aperture, it is scattered in different directions. But light waves can interfere to add (constructively) and subtract (destructively) from each other, so that if light hits a non-random pattern of obstacles, the subsequent constructive and destructive interference will result in a clear and distinct diffraction pattern. A specific example is that of a diffraction grating, which is of uniformly spaced lines, typically prepared by ruling straight, parallel grooves on a surface. Light incident on such a surface produces a pattern of evenly spaced spots of high light intensity. This is called Bragg scattering, and the distance between spots (or 'Bragg scattering peaks') is a unique function of the diffraction pattern and the wavelength of the light source. Diffraction gratings, like focusing optics, can be operated in both transmission and reflection modes.

In general, the light used in the diffractive optics can be of any appropriate wavelength. Exemplary wavelengths include visible light, infrared red (IR) and ultraviolet (UV). Optionally, the light can be monochromatic or polychromatic. The light can be coherent or incoherent. The light can be collimated or non-collimated. In some embodiments, the light is coherent and collimated. Generally, any appropriate light source may be used, such as, for example, a laser (e.g., a laser diode) or a light emitting diode. In some embodiments, the light source is a laser diode operating at 670 nm wavelength, e.g., at 3 mWatts power. Optionally, an operating wavelength of a laser diode can be 780 nm, e.g., when larger grating periods are used. In certain embodiments, the light source is a laser, such
as, for example, a He-Ne laser, a Nd:YV04 laser, or an argon-ion laser. In some embodiments, the light source is a low power, continuous wave laser.

The diffracted light can be detected using any appropriate light detector(s). Examples of light detectors include photodetectors, such as, for example, position sensitive photodiodes, photomultiplier tubes (PMTs), photodiodes (PDs), avalanche photodiodes (APDs), charged-coupled device (CCD) arrays, and CMOS detectors. In some embodiments, the diffracted light is detected via one or more individual photodiodes.

In general, the diffraction grating is made of a material that is transparent in the wavelength of the radiation used to illuminate the sensor. Any appropriate material may be used for the diffraction grating substrate, such as glass or a polymer. Exemplary polymers include polystyrene polymers (PSEs), cyclo-olefin polymers (COPs), polycarbonate polymers, polymethyl methacrylates, and methyl methacrylate styrene copolymers. Exemplary COPs include Zeonex (e.g., Zeonex E48R, Zeonex F52R).

The light may be incident on the diffraction grating at any appropriate angle. In some embodiments, the light is incident on the diffraction grating with an angle of incidence of from 30° to 80° (e.g., from 40° to 80°, from 50° to 70°, from 55° to 65°, 60°). Optionally, the system is configured so that that diffractive grating and light source can move relative to each other.

In general, the light detector can be positioned with respect to the diffractive grating so that the diffraction grating can be illuminated at a desired angle of incidence and/or so that diffracted light can be detected at a desired angle and/or so that diffracted light of a desired order can be detected.

The period \(P \) of the diffraction grating can be selected as desired. In some embodiments, the period \(P \) is from 0.5 microns to 50 microns (e.g., from one micron to 15 microns, from one micron to five microns). In some embodiments, the grating is a repeating pattern of 1.5 micron and 4.5 micron lines with a period of 15 microns.

The height \(h \) of the diffraction grating can be selected as desired. In certain embodiments, the height \(h \) is from one nanometer to about 1000 nanometers (e.g., from about five nanometers to about 250 nanometers, from five nanometers to 100 nanometers).

In general, the diffractive optics can be prepared using any appropriate method, such as, for example, surface ablation, photolithograph (e.g., UV photolithography), laser etching, electron beam etching, nano-imprint molding, or microcontact printing.
Optionally, the diffractive optics system can include one or more additional optical elements, such as, for example, one or more mirrors, filters and/or lenses. Such optical elements can, for example, be arranged between the light source and the diffractive grating and/or between the diffractive grating and the detector.

In some of the embodiments of the devices described herein, a primary binding partner specifically binds to a secondary binding partner through non-covalent interactions (e.g., electrostatic, van der Waals, hydrophobic effect). In some embodiments, a primary binding partner specifically binds to a secondary binding partner via a covalent bond (e.g., a polar covalent bond or a non-polar covalent bond). In some embodiments of any of the devices described herein, the primary and the secondary binding partner can be interchanged. For example, the primary binding partner can be biotin, or a derivative thereof, and the secondary binding partner is avidin, or a derivative thereof. In other examples, the primary binding partner can be avidin, or a derivative thereof, and the secondary binding partner is biotin.

In some embodiments, the binding of the primary and the secondary binding partner is essentially irreversible. In some embodiments, the binding of the primary and the secondary binding partner is reversible. In some embodiments, the primary binding partner is CaptAvidin™ biotin-binding protein and the secondary binding partner is biotin, or vice versa. In some embodiments, the primary binding partner is DSB-X™ biotin and the secondary binding partner is avidin, or vice versa. In some embodiments, the primary binding partner is desthiobiotin and the secondary binding partner is avidin, or vice versa (Hirsch et al., Anal Biochem. 308(2):343-357, 2002). In some embodiments, the primary binding partner is glutathione (GSH) or a derivative thereof, and the secondary binding partner is glutathione-S-transferase (GST).

In some embodiments, the primary binding partner can bind to a target analyte that is a nucleic acid (e.g., a DNA molecule, a RNA molecule). In some embodiments, the primary binding partner comprises a portion of a nucleic acid that is complementary to the nucleic acid sequence of the target analyte.

In some embodiments of any of the devices described herein, the device can include a label that binds to the target analyte and does not prevent binding of the target analyte to the primary binding partner. In some embodiments, the label can amplify the diffraction signal of the target analyte.
In some embodiments, the label is from about 1 nm to 200 nm (e.g., about 50 nm to about 200 nm).

In some embodiments, the label (e.g., any of the labels described herein) includes one or more antibodies (e.g., any of the antibodies and/or antibody fragments described herein).

5 In some embodiments, the label is a nanoparticle (e.g., a gold nanoparticle) that includes the primary binding partner that has a nucleic acid sequence that is complementary to the target analyte, and is covalently linked to the nanoparticle.

One or more additional steps can be performed in any of the methods described herein. In some embodiments, the one or more additional steps are performed: prior to the binding of the primary binding partner to the secondary binding partner, after the binding of the primary binding partner to the secondary binding partner, prior to the binding of the primary binding partner to the target analyte, or after the binding of the primary binding partner to the target analyte.

In some embodiments of any of the methods described herein, the determining step (during which the primary binding partner binds to the target analyte is detected) can occur in at least 15 seconds. In some embodiments, the binding of the primary binding partner to the target analyte can occur during a period of time of, for example, five at least seconds.

In some embodiments, the one or more additional steps can include: a blocking of the sensors step, at least one wash step, a capturing step, and/or a filtering step. In some embodiments, the blocking step can include blocking a sensor within the ingestible device with a solution comprising at least 1% bovine serum albumin (BSA) in a buffered solution (e.g., phosphate buffered saline (PBS), Tris buffered saline (TBS)). In some embodiments, the at least one wash step can include washing with a buffered solution (e.g., phosphate buffered saline (PBS), Tris buffered saline (TBS)). In general, blocking is performed during capsule manufacture, rather than in vivo.

In some embodiments, the capturing step includes enriching the target analyte. In some embodiments, the capturing step includes physically separating the target analyte from the remaining sample using a filter, a pore, or a magnetic bead. In some embodiments, the target analyte is captured by size exclusion.

In some embodiments, the disclosure provides methods of obtaining, culturing, and/or detecting target cells and/or target analytes in vivo within the gastrointestinal (GI) tract or reproductive tract of a subject. Associated devices are also disclosed. The methods and devices described provide a number of advantages for obtaining and/or analyzing fluid
samples from a subject. In some embodiments, diluting the fluid sample increases the dynamic range of analyte detection and/or reduces background signals or interference within the sample. For example, interference may be caused by the presence of non-target analytes or non-specific binding of a dye or label within the sample. In some embodiments, culturing the sample increases the concentration of target cells and/or target analytes produced by the target cells thereby facilitating their detection and/or characterization.

In certain embodiments, the methods and devices described herein may be used to obtain information regarding bacteria populations in the GI tract of a subject. This has a number of advantages and is less invasive than surgical procedures such as intubation or endoscopy to obtain fluid samples from the GI tract. The use of an ingestible device as described herein also allows for fluid samples to be obtained and data to be generated on bacterial populations from specific regions of the GI tract.

In some embodiments, the methods and devices described herein may be used to generate data such as by analyzing the fluid sample, dilutions thereof or cultured samples for one or more target cells and/or target analytes. The data may include, but is not limited to, the types of bacteria present in the fluid sample or the concentration of bacteria in specific regions of the GI tract. Such data may be used to determine whether a subject has an infection, such as Small Intestinal Bacterial Overgrowth (SIBO), or to characterize bacterial populations within the GI tract for diagnostic or other purposes. Thus, in some embodiments, analytes disclosed herein are indicative of disorders of the gastrointestinal tract associated with anomalous bacterial populations.

For example, in one aspect, the data may include, but is not limited to, the concentration of bacteria in a specific region of the GI tract that is one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon. In one aspect, the specific region of the GI tract is the duodenum. In one aspect, the specific region of the GI tract is the jejunum. In one aspect, the specific region of the GI tract is the ileum. In one aspect, the specific region of the GI tract is the ascending colon. In one aspect, the specific region of the GI tract is the transverse colon. In one aspect, the specific region of the GI tract is the descending colon. In a related embodiment, the data may be generated every one or more days to monitor disease flare-ups, or response to the therapeutic agents disclosed herein.

Data may be generated after the device has exited the subject, or the data may be generated in vivo and stored on the device and recovered ex vivo. Alternatively, the data can
be transmitted wirelessly from the device while the device is passing through the GI tract of
the subject or in place within the reproductive tract of the subject.

In some embodiments, a method comprises: providing a device comprising one or
more dilution chambers and dilution fluid; transferring all or part of a fluid sample obtained
from the GI tract or reproductive tract of the subject into the one or more dilution chambers
in vivo; and combining the fluid sample and the dilution fluid to produce one or more diluted
samples in the one or more dilution chambers.

In certain embodiments, a method comprises: providing an ingestible device
comprising one or more dilution chambers; transferring all or part of a fluid sample obtained
from the GI tract into the one or more dilution chambers comprising sterile media; culturing
the sample in vivo within the one or more dilution chambers to produce one or more cultured
samples; and detecting bacteria in the one or more cultured samples.

In some embodiments, a method comprises: providing a device comprising one or
more dilution chambers; transferring all or part of a fluid sample obtained from the GI tract or
reproductive tract into the one or more dilution chambers; combining all or part of the fluid
sample with a dilution fluid in the one or more dilution chambers; and detecting the target
analyte in the one or more diluted samples.

In certain embodiments, a device comprises: one or more dilution chambers for
diluting a fluid sample obtained from the GI tract or reproductive tract; and dilution fluid for
diluting the sample within the one or more dilution chambers.

In some embodiments, the device comprises: one or more dilution chambers for
culturing a fluid sample obtained from the GI tract; sterile media for culturing the sample
within the one or more dilution chambers; and a detection system for detecting bacteria.

In certain embodiments, a device comprises: one or more dilution chambers for
culturing a fluid sample obtained from the GI tract; sterile media for culturing the sample
within the one or more dilution chambers; and a detection system for detecting bacteria.

Also provided is the use of a device as described herein for diluting one or more
samples obtained from the GI tract or reproductive tract of a subject. In one embodiment,
there is provided the use of an ingestible device as described herein for detecting target cells
and/or target analytes in vivo within the gastrointestinal (GI) tract of a subject.

Further provided is a system comprising a device as described herein and a base
station. In one embodiment, the device transmits data to the base station, such as data
indicative of the concentration and/or types of bacteria in the GI tract of the subject. In one
embodiment, the device receives operating parameters from the base station. Some
embodiments described herein provide an ingestible device for obtaining one or more
samples from the GI tract or reproductive tract of a subject and diluting and/or culturing all or
part of the one or more samples. The ingestible device includes a cylindrical rotatable
element having a port on the wall of the cylindrical rotatable element. The ingestible device
further includes a shell element wrapping around the cylindrical rotatable element to form a
first dilution chamber between the cylindrical rotatable element and the shell element. The
shell element has an aperture that exposes a portion of the wall of the cylindrical rotatable
element to an exterior of the ingestible device.

In certain embodiments, the medical device comprises one or more dilution chambers
for receiving a fluid sample from the GI tract or reproductive tract of a subject or a dilution
thereof. In some embodiments, one or more dilutions of the fluid sample are cultured in one
or more dilution chambers. In certain embodiments, the dilution chambers each define a
known volume, optionally the same volume or different volumes. In some embodiments, the
dilution chambers define a fluid volume ranging from about 10 µL to about 1 mL. The
dilution chambers may define a fluid volume less than or equal to about 500 µL, less than or
equal to about 250 µL, less than or equal to about 100 µL, or less than or equal to about 50
µL. In certain embodiments, the dilution chambers define a fluid volume of greater than or
equal to about 10 µL, greater than or equal to about 20 µL, greater than or equal to about 30
µL, or greater than or equal to about 50 µL. In some embodiments, the dilution chambers
define a fluid volume between about 10 µL and 500 µL, between about 20 µL and 250 µL,
between about 30 µL and 100 µL, or about 50 µL.

In some embodiments, dilution fluid in the device is combined with all or part of the
fluid sample, or dilution thereof, to produce one or more dilutions. In certain embodiments,
the dilution fluid is sterile media suitable for culturing one or more target cells within the
dilution chambers.

In certain embodiments, the one or more dilution chambers may be filled with the
dilution fluid prior to a patient ingesting the ingestible device. In some embodiments, the
dilution fluid may be added into the one or more dilution chambers \textit{in vivo} from a reservoir of
the ingestible device. Sampling and dilution of the GI fluid sample may take place \textit{in vivo}.
For example, an actuator of the ingestible device may pump the dilution fluid from the
reservoir into a dilution chamber when it is determined that the ingestible device is located at
a predetermined location within the GI tract. In some embodiments, the dilution chambers
each contain a volume of sterile media suitable for culturing a fluid sample from the GI tract or reproductive tract. In certain embodiments, the dilution chambers are at least 95%, at least 97%, at least 98%, or at least 99% full of sterile media. In some embodiments, the dilution chambers each contain oxygen to facilitate aerobic bacteria growth. In certain embodiments, a non-dilution chamber comprises oxygen and is added to one or more of the dilution chambers to facilitate aerobic bacteria growth.

In some embodiments, the culturing may take place in vivo immediately after the GI fluid sample has been diluted. Or alternatively, the culturing may take place ex vivo, e.g., when the ingestible device has been evacuated and recovered such that the dilution chamber containing the diluted GI fluid sample may be extracted and the culturing may be performed in a laboratory. The recovery of the ingestible device may be performed in a similar manner as embodiments described in U.S. Provisional Application No. 62/434,188, filed on December 14, 2016, which is herein expressly incorporated by reference in its entirety.

As used herein "culturing" refers to maintaining target cells in an environment that allows a population of one or more target cells to increase in number through cell division. For example, in some embodiments, "culturing" may include combining the cells with media in a dilution chamber at a temperature that permits cell growth, optionally a temperature found in vivo within the GI tract or reproductive tract of a subject. In certain embodiments, the cells are cultured at a temperature between about 35 °C and 42 °C.

As used herein "dilution fluid" refers to a fluid within the device for diluting a fluid sample from the GI tract or reproductive tract. In some embodiments, the dilution fluid is an aqueous solution. In certain embodiments, the dilution fluid comprises one or more agents that promote or inhibit the growth of an organism, such as a fungus or bacteria. In some embodiments, the dilution fluid comprises one or more agents that facilitate the detection of a target analyte, such as dyes or binding agents for target analytes.

In some embodiments, the dilution fluid is a sterile media. As used herein, "sterile media" refers to media that does not contain any viable bacteria or other cells that would grow and increase in number through cell division. Media may be rendered sterile by various techniques known in the art such as, but not limited to, autoclaving and/or preparing the media using aseptic techniques. In certain embodiments, the media is a liquid media.

Examples of media suitable for culturing bacteria include nutrient broth, Lysogeny Broth (LB) (also known as Luria Broth), Wilkins chalgren, and Tryptic Soy Broth (TSB). Other growth or culture media known in the art may also be used in the methods and devices.
described herein. In some embodiments, the media has a carbon source, such as glucose or glycerol, a nitrogen source such as ammonium salts or nitrates or amino acids, as well as salts and/or trace elements and vitamins required for microbial growth. In certain embodiments, the media is suitable for maintaining eukaryotic cells. In some embodiments, the media comprises one or more agents that promote or inhibit the growth of bacteria, optionally agents that promote or inhibit the growth of specific types of bacteria.

In certain embodiments, the media is a selective media. As used herein, "selective media" refers to a media that allows certain types of target cells to grow and inhibits the growth of other organisms. Accordingly, the growth of cells in a selective media indicates the presence of certain types of cells within the cultured sample. For example, in some embodiments, the media is selective for gram-positive or gram-negative bacteria. In certain embodiments, the media contains crystal violet and bile salts (such as found in MacConkey agar) that inhibit the growth of gram-positive organisms and allows for the selection and isolation of gram-negative bacteria. In some embodiments, the media contains a high concentration of salt (NaCl) (such as found in Mannitol salt agar) and is selective for Gram-positive bacteria. In some embodiments, the media selectively kills eukaryotic cells or only grows prokaryotic cells, for example, using a media comprising Triton™ X-100. In certain embodiments, the media selectively kills prokaryotic cells (or alternatively only grows eukaryotic cells), for example, using a media that comprises antibiotics.

In some embodiments, the media is an indicator media. As used herein, "indicator media" refers to a media that contains specific nutrients or indicators (such as, but not limited to neutral red, phenol red, eosin y, or methylene blue) that produce a detectable signal when a certain type of cell is cultured in the indicator media.

In some embodiments, the disclosure provides a composition comprising a dye and optionally a reagent for selective lysis of eukaryotic cells. In certain embodiments, the composition comprises both a dye and a reagent for selective lysis of eukaryotic cells. In some embodiments, the composition further comprises one or more reagents independently selected from the group consisting of: a second reagent for selective lysis of eukaryotic cells (e.g., Triton X-100), an electrolyte (e.g., MgCh), an anti-fungi reagent (e.g., amphotericin-B), and an antibiotic. In some embodiments, the composition comprises water and is in the form of an aqueous solution. In some embodiments, the composition is a solid or semi-solid. In some embodiments, the compositions described here are suitable for use in a kit or device for detecting or quantifying viable bacterial cells in a sample. In some embodiments, such a
device is an ingestible device for detecting or quantifying viable bacterial cells in vivo (e.g., in the GI tract). In some embodiments, viable bacterial cells in a sample are detected or quantified in the presence of one or more antibiotics to determine antibiotic resistance of the bacteria in the sample. In some embodiments, anomalous bacterial populations in a sample may be detected or quantified, for example through the use of one a composition comprising a dye as disclosed herein, to determine whether a subject has an infection, such as Small Intestinal Bacterial Overgrowth (SIBO), or to characterize bacterial populations within the GI tract for diagnostic or other purposes.

In some embodiments, a method comprises: (a) contacting the sample with a composition as described herein; and (b) measuring total fluorescence or rate of change of fluorescence as a function of time of said sample, thereby detecting viable bacterial cells in said sample. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the sample is measured over multiple time points for an extended period of time in step (b), thereby detecting viable bacterial cells in said sample. In some embodiments, the method further comprises correlating the total fluorescence or the rate of change of fluorescence as a function of time determined in step (b) to the number of viable bacterial cells in the sample. In some embodiments, the rate of change of fluorescence as a function of time of the sample measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver.

In certain embodiments, a kit comprises a composition as described herein and instructions, e.g., for detecting or quantifying viable bacterial cells in a sample. In some embodiments, a device comprises a composition as described herein, e.g., for detecting or quantifying viable bacterial cells in a sample. The detection of live cells, as opposed to the detection of bacterial components (such as endotoxins) which can be present in the sample environment and lead to conflicting results, is the gold standard of viable plate counting and represents one of the advantages of the compositions and methods described herein.
The systems employ methods, compositions and detection systems found to accurately and reliably correlate fluorescence to total bacteria count (TBC) in an autonomous, ingestible device, or other similarly-sized device. The compositions include novel combinations of dyes, buffers and detergents that allow for the selective staining of viable bacterial cells in samples that comprise non-bacterial cells and other components that otherwise make detecting or quantifying live bacterial cells challenging. In some embodiments, the systems allow for bacteria to be quantified in near real-time and the results to be shared telemetrically outside of the device.

In certain embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, which comprises: (a) obtaining a sample from the gastrointestinal tract of said subject; (b) contacting the sample with a composition as described herein; (c) measuring total fluorescence or rate of change of fluorescence as a function of time of said sample; and (d) correlating the total fluorescence or the rate of change of fluorescence as a function of time measured in step (c) to the number of viable bacterial cells in the sample, wherein the number of the viable bacterial cells determined in step (e) greater than about 105 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the sample is measured over multiple time points for an extended period of time in step (c). In some embodiments, the rate of change of fluorescence as a function of time of the sample measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the
GI tract of the subject post-treatment. In some embodiments, the method may be used to
detect infection with antibiotic-resistant strains of bacteria in a subject. For instance, such
infection may be indicated where the number of viable bacterial cells in a sample from the GI
tract of the subject does not substantially decrease after antibiotic treatment.

In some embodiments, the disclosure provides an absorbable material, (e.g.,
absorbable sponge), having absorbed therein a composition as described herein. In some
embodiments, the absorbable sponge is Ahlstrom Grade 6613H (Lot 150191) or Porex PSU-
567, having absorbed therein a composition as described herein. In some embodiments, the
absorbable sponge may be prepared by injecting into the absorbable sponge an aqueous
solution comprising a composition as described herein, and optionally further comprising a
step of drying the resulting absorbable sponge.

In certain embodiments, the disclosure provides a method for detecting the presence
of viable bacterial cells in a sample, which comprises: (a) fully or partially saturating an
absorbable sponge as described herein, or an absorbable sponge prepared as described herein,
with the sample; and (b) measuring total fluorescence or rate of change of fluorescence as a
function of time of the fully or partially saturated sponge prepared in step (a), thereby
detecting viable bacterial cells. In some embodiments, a control as described herein may be
employed in the method. In some embodiments, the total fluorescence or the rate of change
of fluorescence as a function of time of the fully or partially saturated sponge is measured
over multiple time points for an extended period of time in step (b), thereby detecting viable
bacterial cells in said sample. In some embodiments, the method further comprises
correlating the total fluorescence or the rate of change of fluorescence as a function of time
measured in step (b) to the number of viable bacterial cells in the sample. In some
embodiments, the rate of change of fluorescence as a function of time of the fully or partially
saturated sponge measured over multiple time points is determined and compared to the rate
of change of fluorescence as a function of time of a control measured over the same time
points to determine the number of viable bacterial cells in the sample. In some embodiments,
the method does not require ex vivo plating or culturing. In some embodiments, the method
does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in
an ingestible device in vivo). In some embodiments, the method comprises communicating
the results of the onboard assay(s) to an ex vivo receiver.

In one aspect, provided herein is a kit comprising an absorbable sponge as described herein
and instructions, e.g., for detecting or quantifying viable bacterial cells in a sample. In
another aspect, provided herein is a device comprising an absorbable sponge as described herein, e.g., for detecting or quantifying viable bacterial cells in a sample.

In certain embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, which comprises: (a) obtaining a sample from the gastrointestinal tract of said subject; (b) fully or partially saturating an absorbable sponge described herein, or an absorbable sponge prepared as described herein, with the sample; (c) measuring total fluorescence or rate of change of fluorescence as a function of time of the fully or partially saturated sponge prepared in step (b); (d) correlating the total fluorescence or the rate of change of fluorescence as a function of time measured in step (c) to the number of viable bacterial cells in the sample, wherein the number of the viable bacterial cells as determined in step (e) greater than about 10^5 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the fully or partially saturated sponge is measured over multiple time points for an extended period of time in step (c). In some embodiments, the rate of change of fluorescence as a function of time of the fully or partially saturated sponge measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. In some embodiments, the method may be used to detect infection with antibiotic-resistant strains of bacteria in a subject. For instance, such infection may be indicated where the number of viable bacterial cells in a sample from the GI tract of the subject does not substantially decrease after antibiotic treatment.
In certain embodiments, the disclosure provides an ingestible device comprising a housing; a first opening in the wall of the housing; a second opening in the first end of the housing; and a chamber connecting the first opening and the second opening, wherein at least a portion of the chamber forms a sampling chamber within the ingestible device. In some embodiments, the sampling chamber is configured to hold an absorbable sponge described herein. In some embodiments, the sampling chamber is configured to hold a sample obtained from a gastrointestinal (GI) tract of a body. In some embodiments, the ingestible device is individually calibrated (for example, by comparing to a positive or negative control as described herein), wherein the fluorescent properties of the absorbable sponge held in the sampling chamber of the device are determined prior to the introduction of the sample. The ingestible device as described herein is useful for detecting or quantifying viable bacterial cells in vivo. In some embodiments, provided herein is a method for detecting or quantifying viable bacterial cells in a GI tract sample in vivo using an ingestible device as described herein. In some embodiments, provided herein is a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the GI tract in vivo using an ingestible device as described herein. In some embodiments, provided herein is a method of altering the treatment regimen of a subject suffering from or at risk of overgrowth of bacterial cells in the GI tract in vivo using an ingestible device as described herein. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the duodenum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the jejunum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the ileum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the ascending colon. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the transverse colon. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the descending colon. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. In some embodiments, the method may be used to detect infection with antibiotic-resistant strains of
bacteria in a subject. For instance, such infection may be indicated where the number of viable bacterial cells in a sample from the GI tract of the subject does not substantially decrease after antibiotic treatment. In some embodiments, the method is performed autonomously and does not require instructions, triggers or other inputs from outside the body after the device has been ingested.

"Eukaryotic" as recited herein relates to any type of eukaryotic organism excluding fungi, such as animals, in particular animals containing blood, and comprises invertebrate animals such as crustaceans and vertebrates. Vertebrates comprise both cold-blooded (fish, reptiles, amphibians) and warm-blooded animal (birds and mammals). Mammals comprise in particular primates and more particularly humans.

"Selective lysis" as used herein is obtained in a sample when the percentage of bacterial cells in that sample that remain intact is significantly higher (e.g. 2, 5, 10, 20, 50, 100, 250, 500, or 1,000 times more) than the percentage of the eukaryotic cells in that sample that remain intact, upon treatment of or contact with a composition or device as described herein.

In some embodiments, the dye suitable for use herein is a dye that is capable of being internalized by a viable cell, binding to or reacting with a target component of the viable cell, and having fluorescence properties that are measurably altered when the dye is bound to or reacted with the target component of the viable cell. In some embodiments, the dye herein is actively internalized by penetrating viable cells through a process other than possible diffusion across cell membranes. Such internalization includes, but is not limited to, internalization through cell receptors on cell surfaces or through channels in cell membranes. In some embodiments, the target component of a viable cell to which the dye is bound to or reacted with is selected from the group consisting of: nucleic acids, actin, tubulin, enzymes, nucleotide-binding proteins, ion-transport proteins, mitochondria, cytoplasmic components, and membrane components. In some embodiments, the dye suitable for use herein is a fluorogenic dye that is capable of being internalized and metabolized by a viable cell, and wherein said dye fluoresces when metabolized by the viable cell. In some embodiments, the dye is a chemiluminescent dye that is capable of being internalized and metabolized by a viable cell, and wherein said dye becomes chemiluminescent when metabolized by the viable cell.

In some embodiments, the composition comprises a dye that fluoresces when bond to nucleic acids. Examples of such dyes include, but are not limited to, acridine orange (U.S.
Pat. No. 4,190,328); calcein-AM (U.S. Pat. No. 5,314,805); DAPI; Hoechst 33342; Hoechst 33258; PicoGreen™; SYTO® 16; SYBR® Green I; Texas Red®; Redmond Red™; Bodipy® Dyes; Oregon Green™; ethidium bromide; and propidium iodide.

In some embodiments, the composition comprises a lipophilic dye that fluoresces when metabolized by a cell. In some embodiments, the dye fluoresces when reduced by a cell or a cell component. Examples of dyes that fluoresce when reduced include, but are not limited to, resazurin; C12-resazurin; 7-hydroxy-9H-(1,3 dichloro-9,9-dimethylacridin-2-ol) N-oxide; 6-chloro-9-nitro-5-oxo-5H-benzo[a]phenoxazine; and tetrazolium salts. In some embodiment, the dye fluoresces when oxidized by a cell or a cell component. Examples of such dyes include, but are not limited to, dihydrocalcein AM; dihydrorhodamine 123; dihydrothidium; 2,3,4,5,6-pentafluorotetramethylidihydrorosamine; and 3’-(p-aminophenyl) fluorescein.

In some embodiments, the composition comprises a dye that becomes chemiluminescent when oxidized by a cell or a cell component, such as luminol.

In some embodiments, the composition comprises a dye that fluoresces when deacetylated and/or oxidized by a cell or a cell component. Examples of such dyes include, but are not limited to, dihydrorhodamines; dihydrofluoroscins; 2’,7’-dichlorodihydrofluorescein diacetate; 5-(and 6-)carboxy-2’,7’-dichlorodihydrofluorescein diacetate; and chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate acetyl ester.

In some embodiments, the composition comprises a dye that fluoresces when reacted with a peptidase. Examples of such dyes include, but are not limited to, (CBZ-Ala-Ala-Ala-Ala)2-R1 10 elastase 2; (CBZ-Ala-Ala-Asp)2-R110 granzyme B; and 7-amino-4-methylcoumarin, N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L-aspartic acid amide.

In some embodiments, the composition comprises a dye selected from the group consisting of resazurin, FDA, Calcein AM, and SYTO® 9. In some embodiments, the dye is FDA or SYTO® 9.

FDA is a non-polar, non-fluorescent compound that can cross the membranes of mammalian and bacterial cells. The acetyl esterases (present only within viable cells)

Resazurin (also known as Alamar Blue) is a blue compound that can be reduced to pink resorufin which is fluorescent. This dye is mainly used in viability assays for mammalian cells. C₁₂-resazurin has better cell permeability than resazurin. When lipophilic C₁₂-resazurin crosses the cell membranes, it is subsequently reduced by living cells to make a red fluorescent resorufin. The adsorption/emission of C₁₂-resazurin is 563/587 nm. See, e.g., Appl Environ Microbiol 56, 3785 (1990); J Dairy Res 57, 239 (1990); J Neurosci Methods 70, 195 (1996); J Immunol Methods 210, 25 (1997); J Immunol Methods 213, 157 (1998); Antimicrob Agents Chemother 41, 1004 (1997).

In some embodiments, the composition optionally further comprises a reagent for selective lysis of eukaryotic cells. In some embodiments, the composition comprises a dye as described herein and a reagent for selective lysis of eukaryotic cells. In some embodiments, the reagent for selective lysis of eukaryotic cells is a detergent, such as a non-ionic or an ionic detergent. Examples of the reagent for selective lysis of eukaryotic cells include, but are not limited to, alkylglycosides, Brij 35 (C12E23 Polyoxyethylene glycol dodecyl ether), Brij 58 (C16E20 Polyoxyethylene glycol dodecyl ether), Genapol, glucanids such as MEGA-8, -9, -
10, octylglucoside, Pluronic F127, Triton X-100 (Ci4H220(C2H40)n), Triton X-1 14
(C24H42O6), Tween 20 (Polysorbate 20) and Tween 80 (Polysorbate 80), Nonidet P40,
deoxycholate, reduced Triton X-100 and/or Igepal CA 630. In some embodiments, the
composition comprises a dye as described herein and deoxycholate (e.g., sodium
deoxycholate) as a reagent for selective lysis of eukaryotic cells. In some embodiments, the
composition comprises deoxycholate at a concentration selected from 0.0001% to 1 wt%.
In some embodiments, the composition comprises deoxycholate at a concentration of 0.005
wt%. In some embodiments, the composition may comprise more than one reagent for
selective lysis of eukaryotic cells.

In some embodiments, the composition may comprise two different reagents for
selective lysis of eukaryotic cells. In some instances, when more than one selective lysis
reagents are used, more effective and/or complete selective lysis of eukaryotic cells in a
sample may be achieved. For example, the composition may comprise deoxycholate (e.g.,
sodium deoxycholate) and Triton X-100 as two different reagents for selective lysis of
eukaryotic cells. In some embodiments, the composition comprises deoxycholate (e.g.,
sodium deoxycholate) at a concentration selected from 0.0001% to 1 wt% (e.g., 0.005 wt%)
and Triton X-100 at a concentration selected from 0.1 to 0.05 wt%.

In some embodiments, after a sample (e.g., a biological sample) is treated or
contacted with a composition comprising a dye and one or more reagents for selective lysis of
eukaryotic cells as described herein, the eukaryotic cells (e.g., animal cells) in the sample are
selectively lysed whereby a substantial percentage (e.g., more than 20%, 40%, 60%, 80%,
90%, or even more that 95%) of the bacterial cells in the same sample remains intact or alive.

In some embodiments, the composition does not comprise a reagent for selective lysis of
eukaryotic cells, and such a composition is useful for detecting or quantifying viable
bacterial cells in a sample (e.g., an environmental sample such as a water sample) that does
not contain any eukaryotic cells.

In some embodiments, the composition further comprises an electrolyte, such as a
divalent electrolyte (e.g., MgCh). In some embodiments, the composition comprises MgCh
at a concentration selected from 0.1 mM to 100 mM (e.g., a concentration selected from 0.5
mM to 50 mM).

In some embodiments, the composition further comprises water and is in a form of an
aqueous solution. In some embodiments, the composition has a pH selected from 5-8 (e.g., a
pH selected from 6-7.8, such as pH being 6.0). In some embodiments, the composition is a solid or a semi-solid.

In some embodiments, the composition further comprises an anti-fungal agent. Suitable anti-fungal agents for use herein include, but are not limited to, fungicidal and fungistatic agents including terbinafine, itraconazole, micronazole nitrate, thiapendazole, tolnaftate, clotrimazole and griseofulvin. In some embodiments, the anti-fungal agent is a polyene anti-fungal agent, such as amphotericin-B, nystatin, and pimaricin.

In some embodiments, the composition does not contain any anti-fungal agent. In some embodiments, the composition contains broad spectrum antibiotics but not any anti-fungal agent. Such compositions that do not contain anti-fungal agents but contain broad spectrum antibiotics may be useful in detecting or quantifying fungi (e.g., yeast) in a sample.

In some embodiments, the composition does not contain any anti-fungal agent, any antibiotics or any anti-mammalian agent. Such compositions that do not selectively lyse mammalian cells may be useful in detecting or quantifying mammalian cells (e.g., cells from the GI tract) in a sample since many dyes have a higher affinity for mammalian as compared to bacteria or fungi cells. In some embodiments, the composition contains broad spectrum antibiotics and one or more anti-fungal agents. Such compositions that contain anti-fungal agents and broad spectrum antibiotics may be useful in detecting or quantifying mammalian cells (e.g., cells from the GI tract) in a sample. The detection or quantification of mammalian cells may be useful for determining cell turnover in a subject. High cell turnover is sometimes associated with a GI injury (e.g., lesion), the presence of a tumor(s), or radiation-induced colitis or radiation enteropathy.

In some embodiments, the composition further comprises an antibiotic agent as described herein. Such a composition may be useful in detecting or quantifying antibiotic-resistant strains of bacteria in a sample.

In certain embodiments, the composition comprises Triton X-100, deoxycholate, resazurin, and MgCh. In some embodiments, the composition comprises Triton X-100, deoxycholate, resazurin, amphotericin-B and MgCh. In some embodiments, the composition comprises 0.1 wt% or 0.05 wt% Triton X-100; 0.005 wt% deoxycholate; 10 mM resazurin; 2.5 mg/L amphotericin-B and 50 mM MgCh. In some embodiments, the composition has a pH of 6.0.

In certain embodiments, the compositions are suitable for use in a kit or device, e.g., for detecting or quantifying viable bacterial cells in a sample. In some embodiments, such a
device is an ingestible device for detecting or quantifying viable bacterial cells in vivo (e.g., in the GI tract).

FIG. 62 illustrates a nonlimiting example of a system for collecting, communicating and/or analyzing data about a subject, using an ingestible device as disclosed herein. For example, an ingestible device may be configured to communicate with an external base station. As an example, an ingestible device can have a communications unit that communicates with an external base station which itself has a communications unit. FIG. 62 illustrates exemplary implementation of such an ingestible device. As shown in FIG. 62, a subject ingests an ingestible device as disclosed herein. Certain data about the subject (e.g., based on a collected sample) and/or the location of the ingestible device in the GI tract of the subject is collected or otherwise available and provided to a mobile device, which then forwards the data via the internet and a server/data store to a physician's office computer. The information collected by the ingestible device is communicated to a receiver, such as, for example, a watch or other object worn by the subject. The information is then communicated from the receiver to the mobile device which then forwards the data via the internet and a server/data store to a physician's office computer. The physician is then able to analyze some or all of the data about the subject to provide recommendations, such as, for example, delivery a therapeutic agent. While FIG. 62 shows a particular approach to collecting and transferring data about a subject, the disclosure is not limited. As an example, one or more of the receiver, mobile device, internet, and/or server/data store can be excluded from the data communication channel. For example, a mobile device can be used as the receiver of the device data, e.g., by using a dongle. In such embodiments, the item worn by the subject need not be part of the communication chain. As another example, one or more of the items in the data communication channel can be replaced with an alternative item. For example, rather than be provided to a physician's office computer, data may be provided to a service provider network, such as a hospital network, an HMO network, or the like. In some embodiments, subject data may be collected and/or stored in one location (e.g., a server/data store) while device data may be collected and/or stored in a different location (e.g., a different server/data store).

Locations of treatment

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the large intestine of the subject. In
some embodiments, the location is in the proximal portion of the large intestine. In some embodiments, the location is in the distal portion of the large intestine.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ascending colon of the subject. In some embodiments, the location is in the proximal portion of the ascending colon. In some embodiments, the location is in the distal portion of the ascending colon.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the cecum of the subject. In some embodiments, the location is in the proximal portion of the cecum. In some embodiments, the location is in the distal portion of the cecum.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the sigmoid colon of the subject. In some embodiments, the location is in the proximal portion of the sigmoid colon. In some embodiments, the location is in the distal portion of the sigmoid colon.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the transverse colon of the subject. In some embodiments, the location is in the proximal portion of the transverse colon. In some embodiments, the location is in the distal portion of the transverse colon.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the descending colon of the subject. In some embodiments, the location is in the proximal portion of the descending colon. In some embodiments, the location is in the distal portion of the descending colon.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the small intestine of the subject. In some embodiments, the location is in the proximal portion of the small intestine. In some embodiments, the location is in the distal portion of the small intestine.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the duodenum of the subject. In some embodiments, the location is in the proximal portion of the duodenum. In some embodiments, the location is in the distal portion of the duodenum.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the jejunum of the subject. In some
embodiments, the location is in the proximal portion of the jejunum. In some embodiments, the location is in the distal portion of the jejunum.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the duodenum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the duodenum and a second site of disease is in the stomach and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the duodenum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the duodenum and a second site of disease is in the stomach and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the jejunum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a
location in the jejunum of the subject and is not delivered at other locations in the
gastrointestinal tract, wherein a first site of disease is in the jejunum and a second site of
disease is in the ileum and no site of disease is present at other locations in the
gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) is delivered at a location in the proximal portion of the jejunum
of the subject and is not delivered at other locations in the gastrointestinal tract. In some
embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) is delivered at a location in the proximal portion of the jejunum of
the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of
disease is in the jejunum and no site of disease is present at other locations in the

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) is delivered at a location in the distal portion of the jejunum of
the subject and is not delivered at other locations in the gastrointestinal tract. In some
embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) is delivered at a location in the distal portion of the jejunum of the
subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the jejunum and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) is delivered at a location in the distal portion of the jejunum of the
subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the jejunum and a second site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) is delivered at a location in the ileum of the subject. In some
embodiments, the location is in the proximal portion of the ileum. In some embodiments, the
location is in the distal portion of the ileum.
In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.
In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the ileum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the ileum and a second site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the cecum of the subject and is not delivered at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the cecum of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a site of disease is in the cecum and/or ascending colon, and no site of disease is present at other locations in the gastrointestinal tract. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the distal portion of the ileum or the proximal portion of the ascending colon of the subject and is not delivered at other locations in the gastrointestinal tract, wherein a first site of disease is in the cecum and a second site of disease is in the ascending colon, and no site of disease is present at other locations in the gastrointestinal tract.

In some embodiments, a site of disease is in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the colon, such as in the cecum. In some embodiments, a site of disease is in the ascending colon...
and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the ascending colon, such as in the cecum. In some embodiments, a site of disease is in the ileum and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the ileum.

In some embodiments the subject is diagnosed with ileal Crohn's disease and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the ileum.

In some embodiments the subject is diagnosed with ileal colonic Crohn's disease and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in both the ileum and the colon. In some more particular embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in both the ileum and the colon from the same ingestible device. In some more particular embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the ileum from a first ingestible device and in the colon from a second ingestible device, wherein the first ingestible device and the second ingestible device are ingested at substantially the same time or at different times.

In some embodiments the subject is diagnosed with colitis throughout the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released (a) in the cecum, (b) in the cecum and in the transverse colon, and/or release (c) in the descending colon.

In some embodiments the subject is diagnosed with right sided colitis and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the transverse colon or in the descending colon.

In some embodiments the subject is diagnosed with rectosigmoidal colitis and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released in the descending colon.

In some embodiments, the location at which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered is proximate to a site of disease. The site of disease may be, for example, an injury, inflamed tissue, or one or more lesions. In some embodiments, the location at which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered is proximate to one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 150 cm or less from the one or more
sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 125 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 100 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 50 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 40 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 30 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 20 cm or less from the one or more sites of disease. In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 10 cm or less from the one or more sites of disease. In some embodiments, the method further comprises using an ingestible device to deliver glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and using localization methods disclosed herein (e.g., such as discussed in Example 14 below) to determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease). In some embodiments, the method further comprises using an ingestible device to deliver glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and determining the period of time since the ingestible device was ingested to determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease). In some embodiments, the method further comprises identifying the one or more sites of disease by a method comprising imaging of the gastrointestinal tract. In some embodiments, imaging of the gastrointestinal tract comprises video imaging. In some embodiments, imaging of the gastrointestinal tract comprises thermal imaging. In some embodiments, imaging of the gastrointestinal tract comprises ultrasound imaging. In some embodiments, imaging of the gastrointestinal tract comprises Doppler imaging.
In some embodiments the method does not comprise releasing more than 20% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 10% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 5% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 4% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 3% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease. In some embodiments the method does not comprise releasing more than 2% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease.

In some embodiments the method comprises releasing at least 80% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments, the method comprises releasing at least 90% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 95% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 96% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 97% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 98% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location proximate to a site of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98%, of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 150 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at
least 98% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 125 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98%, of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 100 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98%, of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 40 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98%, of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 20 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98%, of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered 10 cm or less from the one or more sites of disease. In some embodiments, the method further comprises using an ingestible device to deliver glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and using localization methods disclosed herein (e.g., such as discussed in Example 14 below) to determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease). In some embodiments, the method further comprises using an ingestible device to deliver glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and determining the period of time since the ingestible device was ingested to
determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease).

In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is delivered is a Human Equivalent Dose.

In some embodiments the method comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is proximate to a site of disease, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and, if applicable, any carriers, excipients or stabilizers admixed with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), are substantially unchanged, at the time of release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location, relatively to the time of administration of the composition to the subject.

In some embodiments the method comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is proximate to a site of disease, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and, if applicable, any carriers, excipients or stabilizers admixed with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), are substantially unchanged by any physiological process (such as, but not limited to, degradation in the stomach), at the time of release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location, relatively to the time of administration of the composition to the subject.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered to the location by mucosal contact.

In some embodiments, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a site of disease or a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease. In some examples, a method of treatment as described herein can include determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a site of disease or a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease within a time period of about 10 minutes to about 10 hours following administration of the device.

In some examples, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer
acetate) at a site of disease or a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease at a time point following administration of the device that is elevated as compared to a level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the same site of disease or location at substantially the same time point in a subject following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some examples, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in plasma in a subject at a time point following administration of the device that is decreased as compared to a level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in plasma in a subject at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

As used herein, "GI tissue" refers to tissue in the gastrointestinal (GI) tract, such as tissue in one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. In one particular embodiment, GI tissue refers to tissue in the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. In one particular embodiment, GI tissue refers to tissue in the distal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. The GI tissue may be, for example, GI tissue proximate to one or more sites of disease. Accordingly, in some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the duodenum tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the jejunum tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the ileum tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the cecum tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the ascending colon tissue proximate to one or more sites of disease.
acceptable salt thereof (for example, glatiramer acetate) can penetrate the transverse colon tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the descending colon tissue proximate to one or more sites of disease. In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate the sigmoid colon tissue proximate to one or more sites of disease. For example, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can penetrate one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa.

In some examples, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein results in penetration (e.g., a detectable level of penetration) of GI tissue (e.g., one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa) within a time period of about 10 minutes to about 10 hours, about 10 minutes to about 9 hours, about 10 minutes to about 8 hours, about 10 minutes to about 7 hours, about 10 minutes to about 6 hours, about 10 minutes to about 5 hours, about 10 minutes to about 4.5 hours, about 10 minutes to about 4 hours, about 10 minutes to about 3.5 hours, about 10 minutes to about 3 hours, about 10 minutes to about 2.5 hours, about 10 minutes to about 2 hours, about 10 minutes to about 1.5 hours, about 10 minutes to about 1 hour, about 10 minutes to about 55 minutes, about 10 minutes to about 50 minutes, about 10 minutes to about 45 minutes, about 10 minutes to about 40 minutes, about 10 minutes to about 35 minutes, about 10 minutes to about 30 minutes, about 10 minutes to about 25 minutes, about 10 minutes to about 20 minutes, about 10 minutes to about 15 minutes, about 15 minutes to about 10 hours, about 15 minutes to about 9 hours, about 15 minutes to about 8 hours, about 15 minutes to about 7 hours, about 15 minutes to about 6 hours, about 15 minutes to about 5 hours, about 15 minutes to about 4.5 hours, about 15 minutes to about 4 hours, about 15 minutes to about 3.5 hours, about 15 minutes to about 3 hours, about 15 minutes to about 2.5 hours, about 15 minutes to about 2 hours, about 15 minutes to about 1.5 hours, about 15 minutes to about 1 hour, about 15 minutes to about 55 minutes, about 15 minutes to about 50 minutes, about 15 minutes to about 45 minutes, about 15 minutes to about 40 minutes, about 15 minutes to about 35 minutes, about 15 minutes to about 30 minutes, about 15 minutes to about 25 minutes, about 15 minutes to about 20 minutes, about 15 minutes to about 10 hours, about 15 minutes to about 9 hours, about 20 minutes, about 20 minutes to about 10 hours, about 20 minutes to about 9 hours, about 20
minutes to about 8 hours, about 20 minutes to about 7 hours, about 20 minutes to about 6
hours, about 20 minutes to about 5 hours, about 20 minutes to about 4.5 hours, about 20
minutes to about 4 hours, about 20 minutes to about 3.5 hours, about 20 minutes to about 3
hours, about 20 minutes to about 2.5 hours, about 20 minutes to about 2 hours, about 20
minutes to about 1.5 hours, about 20 minutes to about 1 hour, about 20 minutes to about 55
minutes, about 20 minutes to about 50 minutes, about 20 minutes to about 45 minutes, about
20 minutes to about 40 minutes, about 20 minutes to about 35 minutes, about 20 minutes to
about 30 minutes, about 20 minutes to about 25 minutes, about 25 minutes to about 10 hours,
about 25 minutes to about 9 hours, about 25 minutes to about 8 hours, about 25 minutes to
about 7 hours, about 25 minutes to about 6 hours, about 25 minutes to about 5 hours, about
25 minutes to about 4.5 hours, about 25 minutes to about 4 hours, about 25 minutes to about
3.5 hours, about 25 minutes to about 3 hours, about 25 minutes to about 2.5 hours, about 25
minutes to about 2 hours, about 25 minutes to about 1.5 hours, about 25 minutes to about 1
hour, about 25 minutes to about 55 minutes, about 25 minutes to about 50 minutes, about 25
minutes to about 45 minutes, about 25 minutes to about 40 minutes, about 25 minutes to
about 35 minutes, about 25 minutes to about 30 minutes, about 30 minutes to about 10 hours,
about 30 minutes to about 9 hours, about 30 minutes to about 8 hours, about 30 minutes to
about 7 hours, about 30 minutes to about 6 hours, about 30 minutes to about 5 hours, about
30 minutes to about 4.5 hours, about 30 minutes to about 4 hours, about 30 minutes to about
3.5 hours, about 30 minutes to about 3 hours, about 30 minutes to about 2.5 hours, about 30
minutes to about 2 hours, about 30 minutes to about 1.5 hours, about 30 minutes to about 1
hour, about 30 minutes to about 55 minutes, about 30 minutes to about 50 minutes, about 30
minutes to about 45 minutes, about 30 minutes to about 40 minutes, about 30 minutes to
about 35 minutes, about 35 minutes to about 10 hours, about 35 minutes to about 9 hours,
about 35 minutes to about 8 hours, about 35 minutes to about 7 hours, about 35 minutes to
about 6 hours, about 35 minutes to about 5 hours, about 35 minutes to about 4.5 hours, about
35 minutes to about 4 hours, about 35 minutes to about 3.5 hours, about 35 minutes to about
3 hours, about 35 minutes to about 2.5 hours, about 35 minutes to about 2 hours, about 35
minutes to about 1.5 hours, about 35 minutes to about 1 hour, about 35 minutes to about 55
minutes, about 35 minutes to about 50 minutes, about 35 minutes to about 45 minutes, about
35 minutes to about 40 minutes, about 40 minutes to about 10 hours, about 40 minutes to
about 9 hours, about 40 minutes to about 8 hours, about 40 minutes to about 7 hours, about
40 minutes to about 6 hours, about 40 minutes to about 5 hours, about 40 minutes to about
4.5 hours, about 40 minutes to about 4 hours, about 40 minutes to about 3.5 hours, about 40
minutes to about 3 hours, about 40 minutes to about 2.5 hours, about 40 minutes to about 2
hours, about 40 minutes to about 1.5 hours, about 40 minutes to about 1 hour, about 40
minutes to about 0.5 hours, about 40 minutes to about 0.25 hours, about 40 minutes to
about 0.1667 hours, about 40 minutes to about 0.125 hours, about 40 minutes to about
0.0833 hours, about 40 minutes to about 0.0417 hours, about 40 minutes to about 0.0250
hours, about 40 minutes to about 0.0125 hours, about 40 minutes to about 0.0063 hours, about
40 minutes to about 0.0032 hours, about 40 minutes to about 0.0017 hours, about 40 minutes to
about 0.0008 hours, about 40 minutes to about 0.0004 hours, about 40 minutes to about
0.0002 hours, about 40 minutes to about 0.0001 hours, about 40 minutes to about 0.00005
hours, about 40 minutes to about 0.00003 hours, about 40 minutes to about 0.00001 hours, about
40 minutes to about 0.000005 hours, about 40 minutes to about 0.000003 hours, about 40 minutes
to about 0.000001 hours, about 40 minutes to about 0.0000005 hours, about 40 minutes to about
0.0000003 hours, about 40 minutes to about 0.0000001 hours, about 40 minutes to about
0.00000005 hours, about 40 minutes to about 0.00000003 hours, about 40 minutes to about
0.00000001 hours, about 40 minutes to about 0.000000005 hours, about 40 minutes to about
0.000000003 hours, about 40 minutes to about 0.000000001 hours, about 40 minutes to about
0.0000000005 hours, about 40 minutes to about 0.0000000003 hours, about 40 minutes to about
0.0000000001 hours, about 40 minutes to about 0.00000000005 hours, about 40 minutes to about
0.00000000003 hours, about 40 minutes to about 0.00000000001 hours, about 40 minutes to about
0.000000000005 hours, about 40 minutes to about 0.000000000003 hours, about 40 minutes to about
0.000000000001 hours.
5 hours, about 2 hours to about 4.5 hours, about 2 hours to about 4 hours, about 2 hours to about 3.5 hours, about 2 hours to about 3 hours, about 2 hours to about 2.5 hours, about 2.5 hours to about 10 hours, about 2.5 hours to about 9 hours, about 2.5 hours to about 8 hours, about 2.5 hours to about 7 hours, about 2.5 hours to about 6 hours, about 2.5 hours to about 5 hours, about 2.5 hours to about 4.5 hours, about 2.5 hours to about 4 hours, about 2.5 hours to about 3.5 hours, about 2.5 hours to about 3 hours, about 3 hours to about 10 hours, about 3 hours to about 9 hours, about 3 hours to about 8 hours, about 3 hours to about 7 hours, about 3 hours to about 6 hours, about 3 hours to about 5 hours, about 3 hours to about 4.5 hours, about 3 hours to about 4 hours, about 3 hours to about 3.5 hours, about 3.5 hours to about 10 hours, about 3.5 hours to about 9 hours, about 3.5 hours to about 8 hours, about 3.5 hours to about 7 hours, about 3.5 hours to about 6 hours, about 3.5 hours to about 5 hours, about 3.5 hours to about 4.5 hours, about 3.5 hours to about 4 hours, about 4 hours to about 10 hours, about 4 hours to about 9 hours, about 4 hours to about 8 hours, about 4 hours to about 7 hours, about 4 hours to about 6 hours, about 4 hours to about 5 hours, about 4 hours to about 4.5 hours, about 4.5 hours to about 10 hours, about 4.5 hours to about 9 hours, about 4.5 hours to about 8 hours, about 4.5 hours to about 7 hours, about 4.5 hours to about 6 hours, about 4.5 hours to about 5 hours, about 5 hours to about 10 hours, about 5 hours to about 9 hours, about 5 hours to about 8 hours, about 5 hours to about 7 hours, about 5 hours to about 6 hours, about 6 hours to about 10 hours, about 6 hours to about 9 hours, about 6 hours to about 8 hours, about 6 hours to about 7 hours, about 7 hours to about 10 hours, about 7 hours to about 9 hours, about 7 hours to about 8 hours, about 8 hours to about 10 hours, about 8 hours to about 9 hours, or about 9 hours to about 10 hours. Penetration of GI tissue by glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be detected by administering a labeled glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and performing imaging on the subject (e.g., ultrasound, computed tomography, or magnetic resonance imaging). For example, the label can be a radioisotope, a heavy metal, a fluorophore, or a luminescent agent (e.g., any suitable radioisotopes, heavy metals, fluorophores, or luminescent agents used for imaging known in the art).

While not wishing to be bound to a particular theory, the inventors contemplate that at or near the site of release a concentration gradient of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is generated in the mucosa, and that administration of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) using a device as described herein advantageously results in a "reverse" concentration gradient when compared to the concentration gradient resulting from systemic administration. In such "reverse" concentration gradient, the drug concentration is highest from superficial to deep with respect to the mucosal surface. Systemic administration instead typically results in concentrations of the drug being highest from deep to superficial. A "reverse" concentration gradient as described above aligns more favorably with the pathophysiology of IBD.

In some embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can provide for treatment (e.g., a reduction in the number, severity, and/or duration of one or more symptoms of any of the disorders described herein in a subject) for a time period of between about 1 hour to about 30 days, about 1 hour to about 28 days, about 1 hour to about 26 days, about 1 hour to about 24 days, about 1 hour to about 22 days, about 1 hour to about 20 days, about 1 hour to about 18 days, about 1 hour to about 16 days, about 1 hour to about 14 days, about 1 hour to about 12 days, about 1 hour to about 10 days, about 1 hour to about 8 days, about 1 hour to about 6 days, about 1 hour to about 5 days, about 1 hour to about 4 days, about 1 hour to about 3 days, about 1 hour to about 2 days, about 1 hour to about 1 day, about 1 hour to about 12 hours, about 1 hour to about 6 hours, about 1 hour to about 3 hours, about 3 hours to about 30 days, about 3 hours to about 26 days, about 3 hours to about 24 days, about 3 hours to about 22 days, about 3 hours to about 20 days, about 3 hours to about 18 days, about 3 hours to about 16 days, about 3 hours to about 14 days, about 3 hours to about 12 days, about 3 hours to about 10 days, about 3 hours to about 8 days, about 3 hours to about 6 days, about 3 hours to about 5 days, about 3 hours to about 4 days, about 3 hours to about 3 days, about 3 hours to about 2 days, about 3 hours to about 1 day, about 3 hours to about 12 hours, about 3 hours to about 6 hours, about 6 hours to about 30 days, about 6 hours to about 28 days, about 6 hours to about 26 days, about 6 hours to about 24 days, about 6 hours to about 22 days, about 6 hours to about 20 days, about 6 hours to about 18 days, about 6 hours to about 16 days, about 6 hours to about 14 days, about 6 hours to about 12 days, about 6 hours to about 10 days, about 6 hours to about 8 days, about 6 hours to about 6 days, about 6 hours to about 5 days, about 6 hours to about 4 days, about 6 hours to about 3 days, about 6 hours to about 2 days, about 6 hours to about 1 day, about 6 hours to about 12 hours, about 12 hours to about 30 days, about 12 hours to about 28 days, about 12 hours to about 26 days, about 12 hours to about 24 days, about 12 hours to about 22 days, about 12 hours to about 20 days, about 12 hours to about 18 days, about 12 hours to about 16 days, about 12 hours to about 14 days, about 12 hours to about 12 days, about 12 hours to about 10 days, about 12 hours to about 8 days, about 12 hours to about 6 days, about 12 hours to about 5 days, about 12 hours to about 4 days, about 12 hours to about 3 days, about 12 hours to about 2 days, about 12 hours to about 1 day, about 12 hours to about 12 hours.
about 20 days, about 12 hours to about 18 days, about 12 hours to about 16 days, about 12
hours to about 14 days, about 12 hours to about 12 days, about 12 hours to about 10 days,
about 12 hours to about 8 days, about 12 hours to about 6 days, about 12 hours to about 5
days, about 12 hours to about 4 days, about 12 hours to about 3 days, about 12 hours to about
2 days, about 12 hours to about 1 day, about 1 day to about 30 days, about 1 day to about 28
days, about 1 day to about 26 days, about 1 day to about 24 days, about 1 day to about 22
days, about 1 day to about 20 days, about 1 day to about 18 days, about 1 day to about 16
days, about 1 day to about 14 days, about 1 day to about 12 days, about 1 day to about 10
days, about 1 day to about 8 days, about 1 day to about 6 days, about 1 day to about 5 days,
about 1 day to about 4 days, about 1 day to about 3 days, about 1 day to about 2 days, about 2
days to about 30 days, about 2 days to about 28 days, about 2 days to about 26 days, about 2
days to about 24 days, about 2 days to about 22 days, about 2 days to about 20 days, about 2
days to about 18 days, about 2 days to about 16 days, about 2 days to about 14 days, about 2
days to about 12 days, about 2 days to about 10 days, about 2 days to about 8 days, about 2
days to about 6 days, about 2 days to about 5 days, about 2 days to about 4 days, about 2 days
to about 3 days, about 3 days to about 30 days, about 3 days to about 28 days, about 3 days to
about 26 days, about 3 days to about 24 days, about 3 days to about 22 days, about 3 days to
about 20 days, about 3 days to about 18 days, about 3 days to about 16 days, about 3 days to
about 14 days, about 3 days to about 12 days, about 3 days to about 10 days, about 3 days to
about 8 days, about 3 days to about 6 days, about 3 days to about 5 days, about 3 days to
about 4 days, about 4 days to about 30 days, about 4 days to about 28 days, about 4 days to
about 26 days, about 4 days to about 24 days, about 4 days to about 22 days, about 4 days to
about 20 days, about 4 days to about 18 days, about 4 days to about 16 days, about 4 days to
about 14 days, about 4 days to about 12 days, about 4 days to about 10 days, about 4 days to
about 8 days, about 4 days to about 6 days, about 4 days to about 5 days, about 5 days to
about 30 days, about 5 days to about 28 days, about 5 days to about 26 days, about 5 days to
about 24 days, about 5 days to about 22 days, about 5 days to about 20 days, about 5 days to
about 18 days, about 5 days to about 16 days, about 5 days to about 14 days, about 5 days to
about 12 days, about 5 days to about 10 days, about 5 days to about 8 days, about 5 days to
about 6 days, about 6 days to about 30 days, about 6 days to about 28 days, about 6 days to
about 26 days, about 6 days to about 24 days, about 6 days to about 22 days, about 6 days to
about 20 days, about 6 days to about 18 days, about 6 days to about 16 days, about 6 days to
about 14 days, about 6 days to about 12 days, about 6 days to about 10 days, about 6 days to
about 8 days, about 8 days to about 30 days, about 8 days to about 28 days, about 8 days to about 26 days, about 8 days to about 24 days, about 8 days to about 22 days, about 8 days to about 20 days, about 8 days to about 18 days, about 8 days to about 16 days, about 8 days to about 14 days, about 8 days to about 12 days, about 8 days to about 10 days, about 10 days to about 30 days, about 10 days to about 28 days, about 10 days to about 26 days, about 10 days to about 24 days, about 10 days to about 22 days, about 10 days to about 20 days, about 10 days to about 18 days, about 10 days to about 16 days, about 10 days to about 14 days, about 10 days to about 12 days, about 12 days to about 30 days, about 12 days to about 28 days, about 12 days to about 26 days, about 12 days to about 24 days, about 12 days to about 22 days, about 12 days to about 20 days, about 12 days to about 18 days, about 12 days to about 16 days, about 12 days to about 14 days, about 14 days to about 30 days, about 14 days to about 28 days, about 14 days to about 26 days, about 14 days to about 24 days, about 14 days to about 22 days, about 14 days to about 20 days, about 14 days to about 18 days, about 14 days to about 16 days, about 16 days to about 30 days, about 16 days to about 28 days, about 16 days to about 26 days, about 16 days to about 24 days, about 16 days to about 22 days, about 16 days to about 20 days, about 16 days to about 18 days, about 18 days to about 30 days, about 18 days to about 28 days, about 18 days to about 26 days, about 18 days to about 24 days, about 18 days to about 22 days, about 18 days to about 20 days, about 20 days to about 30 days, about 20 days to about 28 days, about 20 days to about 26 days, about 20 days to about 24 days, about 20 days to about 22 days, about 22 days to about 30 days, about 22 days to about 28 days, about 22 days to about 26 days, about 22 days to about 24 days, about 24 days to about 30 days, about 24 days to about 28 days, about 24 days to about 26 days, about 26 days to about 30 days, about 26 days to about 28 days, or about 28 days to about 30 days in a subject following first administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein. Non-limiting examples of symptoms of a disease described herein are described below.

For example, treatment can result in a decrease (e.g., about 1% to about 99% decrease, about 1% to about 95% decrease, about 1% to about 90% decrease, about 1% to about 85% decrease, about 1% to about 80% decrease, about 1% to about 75% decrease, about 1% to about 70% decrease, about 1% to about 65% decrease, about 1% to about 60% decrease, about 1% to about 55% decrease, about 1% to about 50% decrease, about 1% to about 45% decrease, about 1% to about 40% decrease, about 1% to about 35% decrease,
about 1% to about 30% decrease, about 1% to about 25% decrease, about 1% to about 20% decrease, about 1% to about 15% decrease, about 1% to about 10% decrease, about 1% to about 5% decrease, about 5% to about 99% decrease, about 5% to about 95% decrease, about 5% to about 90% decrease, about 5% to about 85% decrease, about 5% to about 80% decrease, about 5% to about 75% decrease, about 5% to about 70% decrease, about 5% to about 65% decrease, about 5% to about 60% decrease, about 5% to about 55% decrease, about 5% to about 50% decrease, about 5% to about 45% decrease, about 5% to about 40% decrease, about 5% to about 35% decrease, about 5% to about 30% decrease, about 5% to about 25% decrease, about 5% to about 20% decrease, about 5% to about 15% decrease, about 5% to about 10% decrease, about 10% to about 99% decrease, about 10% to about 95% decrease, about 10% to about 90% decrease, about 10% to about 85% decrease, about 10% to about 80% decrease, about 10% to about 75% decrease, about 10% to about 70% decrease, about 10% to about 65% decrease, about 10% to about 60% decrease, about 10% to about 55% decrease, about 10% to about 50% decrease, about 10% to about 45% decrease, about 10% to about 40% decrease, about 10% to about 35% decrease, about 10% to about 30% decrease, about 10% to about 25% decrease, about 10% to about 20% decrease, about 10% to about 15% decrease, about 10% to about 10% decrease, about 15% to about 99% decrease, about 15% to about 95% decrease, about 15% to about 90% decrease, about 15% to about 85% decrease, about 15% to about 80% decrease, about 15% to about 75% decrease, about 15% to about 70% decrease, about 15% to about 65% decrease, about 15% to about 60% decrease, about 15% to about 55% decrease, about 15% to about 50% decrease, about 15% to about 45% decrease, about 15% to about 40% decrease, about 15% to about 35% decrease, about 15% to about 30% decrease, about 15% to about 25% decrease, about 15% to about 20% decrease, about 15% to about 15% decrease, about 15% to about 10% decrease, about 20% to about 95% decrease, about 20% to about 90% decrease, about 20% to about 85% decrease, about 20% to about 80% decrease, about 20% to about 75% decrease, about 20% to about 70% decrease, about 20% to about 65% decrease, about 20% to about 60% decrease, about 20% to about 55% decrease, about 20% to about 50% decrease, about 20% to about 45% decrease, about 20% to about 40% decrease, about 20% to about 35% decrease, about 20% to about 30% decrease, about 20% to about 25% decrease, about 20% to about 20% decrease, about 20% to about 15% decrease, about 20% to about 10% decrease, about 25% to about 99% decrease, about 25% to about 95% decrease, about 25% to about 90% decrease, about 25% to about 85% decrease, about 25% to about 80% decrease, about 25% to about 75% decrease, about 25% to about 70% decrease, about 25% to about 65% decrease, about 25% to about 60% decrease, about 25% to about 55% decrease, about 25% to about 50% decrease, about 25% to about 45% decrease, about 25% to about 40% decrease, about 25% to about 35% decrease, about 25% to about 30% decrease, about 25% to about 25% decrease, about 25% to about 20% decrease, about 25% to about 15% decrease, about 25% to about 10% decrease.
50% decrease, about 25% to about 45% decrease, about 25% to about 40% decrease, about 25% to about 35% decrease, about 30% to about 95% decrease, about 30% to about 90% decrease, about 30% to about 80% decrease, about 30% to about 75% decrease, about 30% to about 70% decrease, about 30% to about 65% decrease, about 30% to about 60% decrease, about 30% to about 55% decrease, about 30% to about 50% decrease, about 30% to about 45% decrease, about 30% to about 40% decrease, about 30% to about 35% decrease, about 35% to about 99% decrease, about 35% to about 95% decrease, about 35% to about 90% decrease, about 35% to about 85% decrease, about 35% to about 80% decrease, about 35% to about 75% decrease, about 35% to about 70% decrease, about 35% to about 65% decrease, about 35% to about 60% decrease, about 35% to about 55% decrease, about 35% to about 50% decrease, about 35% to about 45% decrease, about 40% to about 99% decrease, about 40% to about 95% decrease, about 40% to about 90% decrease, about 40% to about 85% decrease, about 40% to about 80% decrease, about 40% to about 75% decrease, about 40% to about 70% decrease, about 40% to about 65% decrease, about 40% to about 60% decrease, about 40% to about 55% decrease, about 40% to about 50% decrease, about 40% to about 45% decrease, about 40% to about 40% decrease, about 45% to about 99% decrease, about 45% to about 95% decrease, about 45% to about 90% decrease, about 45% to about 85% decrease, about 45% to about 80% decrease, about 45% to about 75% decrease, about 45% to about 70% decrease, about 45% to about 65% decrease, about 45% to about 60% decrease, about 45% to about 55% decrease, about 45% to about 50% decrease, about 45% to about 45% decrease, about 50% to about 99% decrease, about 50% to about 95% decrease, about 50% to about 90% decrease, about 50% to about 85% decrease, about 50% to about 80% decrease, about 50% to about 75% decrease, about 50% to about 70% decrease, about 50% to about 65% decrease, about 50% to about 60% decrease, about 50% to about 55% decrease, about 50% to about 50% decrease, about 55% to about 99% decrease, about 55% to about 95% decrease, about 55% to about 90% decrease, about 55% to about 85% decrease, about 55% to about 80% decrease, about 55% to about 75% decrease, about 55% to about 70% decrease, about 55% to about 65% decrease, about 55% to about 60% decrease, about 55% to about 55% decrease, about 60% to about 99% decrease, about 60% to about 95% decrease, about 60% to about 90% decrease, about 60% to about 85% decrease, about 60% to about 80% decrease, about 60% to about 75% decrease, about 60% to about 70% decrease, about 60% to about 65% decrease, about 60% to about 60% decrease, about 60% to about 55% decrease, about 60% to about 50% decrease, about 60% to about 45% decrease, about 60% to about 40% decrease, about 60% to about 35% decrease, about 60% to about 30% decrease, about 60% to about 25% decrease, about 60% to about 20% decrease, about 60% to about 15% decrease, about 60% to about 10% decrease, about 60% to about 5% decrease, about 60% to about 0% decrease,
about 80% decrease, about 65% to about 75% decrease, about 65% to about 70% decrease, about 70% to about 99% decrease, about 70% to about 95% decrease, about 70% to about 90% decrease, about 70% to about 85% decrease, about 70% to about 80% decrease, about 70% to about 75% decrease, about 75% to about 99% decrease, about 75% to about 95% decrease, about 75% to about 90% decrease, about 75% to about 85% decrease, about 75% to about 80% decrease, about 80% to about 99% decrease, about 80% to about 95% decrease, about 80% to about 90% decrease, about 80% to about 85% decrease, about 85% to about 95% decrease, about 85% to about 90% decrease, about 85% to about 75% decrease, about 90% to about 99% decrease, about 90% to about 95% decrease, or about 95% to about 99% decrease) in one or more (e.g., two, three, four, five, six, seven, eight, or nine) of: the level of interferon-\(\gamma \) in GI tissue, the level of IL-1\(\beta \) in GI tissue, the level of IL-6 in GI tissue, the level of IL-22 in GI tissue, the level of IL-17A in the GI tissue, the level of TNF\(\alpha \) in GI tissue, the level of IL-2 in GI tissue, and endoscopy score in a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein. Exemplary methods for determining the endoscopy score are described herein and other methods for determining the endoscopy score are known in the art. Exemplary methods for determining the levels of interferon-\(\gamma \), IL-1\(\beta \), IL-6, IL-22, IL-17A, TNF\(\alpha \), and IL-2 are described herein. Additional methods for determining the levels of these cytokines are known in the art.

In some examples, treatment can result in an increase (e.g., about 1% to about 500% increase, about 1% to about 400% increase, about 1% to about 300% increase, about 1% to about 200% increase, about 1% to about 150% increase, about 1% to about 100% increase, about 1% to about 90% increase, about 1% to about 80% increase, about 1% to about 70% increase, about 1% to about 60% increase, about 1% to about 50% increase, about 1% to about 40% increase, about 1% to about 30% increase, about 1% to about 20% increase, about 1% to about 10% increase, a 10% to about 500% increase, about 10% to about 400% increase, about 10% to about 300% increase, about 10% to about 200% increase, about 10% to about 150% increase, about 10% to about 100% increase, about 10% to about 90% increase, about 10% to about 80% increase, about 10% to about 70% increase, about 10% to
about 60% increase, about 10% to about 50% increase, about 10% to about 40% increase, about 10% to about 30% increase, about 10% to about 20% increase, about 20% to about 100% increase, about 20% to about 100% increase, about 20% to about 150% increase, about 20% to about 100% increase, about 20% to about 90% increase, about 20% to about 80% increase, about 20% to about 70% increase, about 20% to about 60% increase, about 20% to about 50% increase, about 20% to about 40% increase, about 20% to about 30% increase, about 30% to about 200% increase, about 30% to about 150% increase, about 30% to about 100% increase, about 30% to about 90% increase, about 30% to about 80% increase, about 30% to about 70% increase, about 30% to about 60% increase, about 30% to about 50% increase, about 30% to about 40% increase, about 40% to about 100% increase, about 40% to about 90% increase, about 40% to about 80% increase, about 40% to about 70% increase, about 40% to about 60% increase, about 40% to about 50% increase, about 40% to about 30% increase, about 40% to about 20% increase, about 50% to about 200% increase, about 50% to about 150% increase, about 50% to about 100% increase, about 50% to about 90% increase, about 50% to about 80% increase, about 50% to about 70% increase, about 50% to about 60% increase, about 50% to about 50% increase, about 50% to about 40% increase, about 50% to about 30% increase, about 50% to about 20% increase, about 100% to about 500% increase, about 100% to about 400% increase, about 100% to about 300% increase, about 100% to about 200% increase, about 100% to about 150% increase, about 100% to about 100% increase, about 100% to about 90% increase, about 100% to about 80% increase, about 100% to about 70% increase, about 100% to about 60% increase, about 100% to about 50% increase, about 100% to about 40% increase, about 100% to about 30% increase, about 100% to about 20% increase, about 200% to about 500% increase, about 200% to about 400% increase, about 200% to about 300% increase, about 200% to about 200% increase, about 200% to about 150% increase, about 200% to about 100% increase, about 200% to about 90% increase, about 200% to about 80% increase, about 200% to about 70% increase, about 200% to about 60% increase, about 200% to about 50% increase, about 200% to about 40% increase, about 200% to about 30% increase, about 200% to about 20% increase, about 300% to about 500% increase, about 300% to about 400% increase, about 300% to about 300% increase, about 300% to about 200% increase, about 300% to about 150% increase, about 300% to about 100% increase, about 300% to about 90% increase, about 300% to about 80% increase, about 300% to about 70% increase, about 300% to about 60% increase, about 300% to about 50% increase, about 300% to about 40% increase, about 300% to about 30% increase, about 300% to about 20% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 50% increase, about 400% to about 40% increase, about 400% to about 30% increase, about 400% to about 20% increase, about 500% to about 500% increase, about 500% to about 400% increase, about 500% to about 300% increase, about 500% to about 200% increase, about 500% to about 150% increase, about 500% to about 100% increase, about 500% to about 90% increase, about 500% to about 80% increase, about 500% to about 70% increase, about 500% to about 60% increase, about 500% to about 50% increase, about 500% to about 40% increase, about 500% to about 30% increase, about 500% to about 20% increase, about 600% to about 600% increase, about 600% to about 500% increase, about 600% to about 400% increase, about 600% to about 300% increase, about 600% to about 200% increase, about 600% to about 150% increase, about 600% to about 100% increase, about 600% to about 90% increase, about 600% to about 80% increase, about 600% to about 70% increase, about 600% to about 60% increase, about 600% to about 50% increase, about 600% to about 40% increase, about 600% to about 30% increase, about 600% to about 20% increase, about 700% to about 500% increase, about 700% to about 400% increase, about 700% to about 300% increase, about 700% to about 200% increase, about 700% to about 150% increase, about 700% to about 100% increase, about 700% to about 90% increase, about 700% to about 80% increase, about 700% to about 70% increase, about 700% to about 60% increase, about 700% to about 50% increase, about 700% to about 40% increase, about 700% to about 30% increase, about 700% to about 20% increase, about 800% to about 500% increase, about 800% to about 400% increase, about 800% to about 300% increase, about 800% to about 200% increase, about 800% to about 150% increase, about 800% to about 100% increase, about 800% to about 90% increase, about 800% to about 80% increase, about 800% to about 70% increase, about 800% to about 60% increase, about 800% to about 50% increase, about 800% to about 40% increase, about 800% to about 30% increase, about 800% to about 20% increase, about 900% to about 500% increase, about 900% to about 400% increase, about 900% to about 300% increase, about 900% to about 200% increase, about 900% to about 150% increase, about 900% to about 100% increase, about 900% to about 90% increase, about 900% to about 80% increase, about 900% to about 70% increase, about 900% to about 60% increase, about 900% to about 50% increase, about 900% to about 40% increase, about 900% to about 30% increase, about 900% to about 20% increase, about 1000% to about 500% increase, about 1000% to about 400% increase, about 1000% to about 300% increase, about 1000% to about 200% increase, about 1000% to about 150% increase, about 1000% to about 100% increase, about 1000% to about 90% increase, about 1000% to about 80% increase, about 1000% to about 70% increase, about 1000% to about 60% increase, about 1000% to about 50% increase, about 1000% to about 40% increase, about 1000% to about 30% increase, about 1000% to about 20% increase.
150% increase, about 150% to about 500% increase, about 150% to about 400% increase, about 150% to about 300% increase, about 150% to about 200% increase, about 200% to about 500% increase, about 200% to about 400% increase, about 200% to about 300% increase, about 300% to about 500% increase, about 300% to about 400% increase, about 300% to about 300% increase, or about 400% to about 500% increase) in one or both of stool consistency score and weight of a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein. Exemplary methods for determining stool consistency score are described herein. Additional methods for determining a stool consistency score are known in the art.

In some embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can result in a ratio of GI tissue concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is higher than the same ratio when the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered by traditional means (e.g., systemically or orally). Examples of a ratio of GI tissue concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) include about 2 to about 600, about 2 to about 580, about 2 to about 560, about 2 to about 540, about 2 to about 520, about 2 to about 500, about 2 to about 480, about 2 to about 460, about 2 to about 440, about 2 to about 420, about 2 to about 400, about 2 to about 380, about 2 to about 360, about 2 to about 340, about 2 to about 320, about 2 to about 300, about 2 to about 280, about 2 to about 260, about 2 to about 240, about 2 to about 220, about 2 to about 200, about 2 to about 190, about 2 to about 180, about 2 to about 170, about 2 to about 160, about 2 to about 150, about 2 to about 140, about 2 to about 130, about 2 to about 120, about 2 to about 110, about 2 to about 100, about 2 to about 90, about 2 to about 80, about 2 to about 70, about 2 to about 60, about 2 to about 50, about 2 to about 40, about 2 to about 30, about 2 to about 20, about 2 to about 15,
about 2 to about 10, about 2 to about 5, about 5 to about 600, about 5 to about 580, about 5 to about 560, about 5 to about 540, about 5 to about 520, about 5 to about 500, about 5 to about 480, about 5 to about 460, about 5 to about 440, about 5 to about 420, about 5 to about 400, about 5 to about 380, about 5 to about 360, about 5 to about 340, about 5 to about 320, about 5 to about 300, about 5 to about 280, about 5 to about 260, about 5 to about 240, about 5 to about 220, about 5 to about 200, about 5 to about 190, about 5 to about 180, about 5 to about 170, about 5 to about 160, about 5 to about 150, about 5 to about 140, about 5 to about 130, about 5 to about 120, about 5 to about 110, about 5 to about 100, about 5 to about 90, about 5 to about 80, about 5 to about 70, about 5 to about 60, about 5 to about 50, about 5 to about 40, about 5 to about 30, about 5 to about 20, about 5 to about 15, about 5 to about 10, about 10 to about 600, about 10 to about 580, about 10 to about 560, about 10 to about 540, about 10 to about 520, about 10 to about 500, about 10 to about 480, about 10 to about 460, about 10 to about 440, about 10 to about 420, about 10 to about 400, about 10 to about 380, about 10 to about 360, about 10 to about 340, about 10 to about 320, about 10 to about 300, about 10 to about 280, about 10 to about 260, about 10 to about 240, about 10 to about 220, about 10 to about 200, about 10 to about 190, about 10 to about 180, about 10 to about 170, about 10 to about 160, about 10 to about 150, about 10 to about 140, about 10 to about 130, about 10 to about 120, about 10 to about 110, about 10 to about 100, about 10 to about 90, about 10 to about 80, about 10 to about 70, about 10 to about 60, about 10 to about 50, about 10 to about 40, about 10 to about 30, about 10 to about 20, about 10 to about 15, about 15 to about 600, about 15 to about 580, about 15 to about 560, about 15 to about 540, about 15 to about 520, about 15 to about 500, about 15 to about 480, about 15 to about 460, about 15 to about 440, about 15 to about 420, about 15 to about 400, about 15 to about 380, about 15 to about 360, about 15 to about 340, about 15 to about 320, about 15 to about 300, about 15 to about 280, about 15 to about 260, about 15 to about 240, about 15 to about 220, about 15 to about 200, about 15 to about 190, about 15 to about 180, about 15 to about 170, about 15 to about 160, about 15 to about 150, about 15 to about 140, about 15 to about 130, about 15 to about 120, about 15 to about 110, about 15 to about 100, about 15 to about 90, about 15 to about 80, about 15 to about 70, about 15 to about 60, about 15 to about 50, about 15 to about 40, about 15 to about 30, about 15 to about 20, about 20 to about 600, about 20 to about 580, about 20 to about 560, about 20 to about 540, about 20 to about 520, about 20 to about 500, about 20 to about 480, about 20 to about 460, about 20 to about 440, about 20 to about 420, about 20 to about 400, about 20 to about 380, about 20 to about 360, about 20 to about 340,
about 20 to about 320, about 20 to about 300, about 20 to about 280, about 20 to about 260,
about 20 to about 240, about 20 to about 220, about 20 to about 200, about 20 to about 190,
about 20 to about 180, about 20 to about 170, about 20 to about 160, about 20 to about 150,
about 20 to about 140, about 20 to about 130, about 20 to about 120, about 20 to about 110,
about 20 to about 100, about 20 to about 90, about 20 to about 80, about 20 to about 70, about
20 to about 60, about 20 to about 50, about 20 to about 40, about 20 to about 30, about 30 to
about 600, about 30 to about 580, about 30 to about 560, about 30 to about 540, about 30 to
about 520, about 30 to about 500, about 30 to about 480, about 30 to about 460, about 30 to
about 440, about 30 to about 420, about 30 to about 400, about 30 to about 380, about 30 to
about 360, about 30 to about 340, about 30 to about 320, about 30 to about 300, about 30 to
about 280, about 30 to about 260, about 30 to about 240, about 30 to about 220, about 30 to
about 200, about 30 to about 190, about 30 to about 180, about 30 to about 170, about 30 to
about 160, about 30 to about 150, about 30 to about 140, about 30 to about 130, about 30 to
about 120, about 30 to about 110, about 30 to about 100, about 30 to about 90, about 30 to
about 80, about 30 to about 70, about 30 to about 60, about 30 to about 50, about 30 to about
40, about 40 to about 600, about 40 to about 580, about 40 to about 560, about 40 to about
540, about 40 to about 520, about 40 to about 500, about 40 to about 480, about 40 to about
460, about 40 to about 440, about 40 to about 420, about 40 to about 400, about 40 to about
380, about 40 to about 360, about 40 to about 340, about 40 to about 320, about 40 to about
300, about 40 to about 280, about 40 to about 260, about 40 to about 240, about 40 to about
220, about 40 to about 200, about 40 to about 190, about 40 to about 180, about 40 to about
170, about 40 to about 160, about 40 to about 150, about 40 to about 140, about 40 to about
130, about 40 to about 120, about 40 to about 110, about 40 to about 100, about 40 to about
90, about 40 to about 80, about 40 to about 70, about 40 to about 60, about 40 to about 50,
about 50 to about 600, about 50 to about 580, about 50 to about 560, about 50 to about 540,
about 50 to about 520, about 50 to about 500, about 50 to about 480, about 50 to about 460,
about 50 to about 440, about 50 to about 420, about 50 to about 400, about 50 to about 380,
about 50 to about 360, about 50 to about 340, about 50 to about 320, about 50 to about 300,
about 50 to about 280, about 50 to about 260, about 50 to about 240, about 50 to about 220,
about 50 to about 200, about 50 to about 190, about 50 to about 180, about 50 to about 170,
about 50 to about 160, about 50 to about 150, about 50 to about 140, about 50 to about 130,
about 50 to about 120, about 50 to about 110, about 50 to about 100, about 50 to about 90,
about 50 to about 80, about 50 to about 70, about 50 to about 60, about 60 to about 600, about
60 to about 580, about 60 to about 560, about 60 to about 540, about 60 to about 520, about
60 to about 500, about 60 to about 480, about 60 to about 460, about 60 to about 440, about
60 to about 420, about 60 to about 400, about 60 to about 380, about 60 to about 360, about
60 to about 340, about 60 to about 320, about 60 to about 300, about 60 to about 280, about
60 to about 260, about 60 to about 240, about 60 to about 220, about 60 to about 200, about
60 to about 190, about 60 to about 180, about 60 to about 170, about 60 to about 160, about
60 to about 150, about 60 to about 140, about 60 to about 130, about 60 to about 120, about
60 to about 110, about 60 to about 100, about 60 to about 90, about 60 to about 80, about 60
to about 70, about 70 to about 600, about 70 to about 580, about 70 to about 560, about 70 to
5 about 540, about 70 to about 520, about 70 to about 500, about 70 to about 480, about 70 to
about 460, about 70 to about 440, about 70 to about 420, about 70 to about 400, about 70 to
about 380, about 70 to about 360, about 70 to about 340, about 70 to about 320, about 70 to
about 300, about 70 to about 280, about 70 to about 260, about 70 to about 240, about 70 to
about 220, about 70 to about 200, about 70 to about 190, about 70 to about 180, about 70 to
about 170, about 70 to about 160, about 70 to about 150, about 70 to about 140, about 70 to
about 130, about 70 to about 120, about 70 to about 110, about 70 to about 100, about 70 to
about 90, about 70 to about 80, about 80 to about 600, about 80 to about 580, about 80 to
about 560, about 80 to about 540, about 80 to about 520, about 80 to about 500, about 80 to
about 480, about 80 to about 460, about 80 to about 440, about 80 to about 420, about 80 to
about 400, about 80 to about 380, about 80 to about 360, about 80 to about 340, about 80 to
about 320, about 80 to about 300, about 80 to about 280, about 80 to about 260, about 80 to
about 240, about 80 to about 220, about 80 to about 200, about 80 to about 190, about 80 to
about 180, about 80 to about 170, about 80 to about 160, about 80 to about 150, about 80 to
about 140, about 80 to about 130, about 80 to about 120, about 80 to about 110, about 80 to
about 100, about 80 to about 90, about 90 to about 600, about 90 to about 580, about 90 to
about 560, about 90 to about 540, about 90 to about 520, about 90 to about 500, about 90 to
about 480, about 90 to about 460, about 90 to about 440, about 90 to about 420, about 90 to
about 400, about 90 to about 380, about 90 to about 360, about 90 to about 340, about 90 to
about 320, about 90 to about 300, about 90 to about 280, about 90 to about 260, about 90 to
about 240, about 90 to about 220, about 90 to about 200, about 90 to about 190, about 90 to
about 180, about 90 to about 170, about 90 to about 160, about 90 to about 150, about 90 to
about 140, about 90 to about 130, about 90 to about 120, about 90 to about 110, about 90 to
about 100, about 100 to about 600, about 100 to about 580, about 100 to about 560, about 100
to about 540, about 100 to about 520, about 100 to about 500, about 100 to about 480, about 100 to about 460, about 100 to about 440, about 100 to about 420, about 100 to about 400, about 100 to about 380, about 100 to about 360, about 100 to about 340, about 100 to about 320, about 100 to about 300, about 100 to about 280, about 100 to about 260, about 100 to about 240, about 100 to about 220, about 100 to about 200, about 100 to about 190, about 100
to about 180, about 100 to about 170, about 100 to about 160, about 100 to about 150, about 100 to about 140, about 100 to about 130, about 100 to about 120, about 100 to about 110, about 110 to about 600, about 110 to about 580, about 110 to about 560, about 110 to about 540, about 110 to about 520, about 110 to about 500, about 110 to about 480, about 110 to about 460, about 110 to about 440, about 110 to about 420, about 110 to about 400, about 110
to about 380, about 110 to about 360, about 110 to about 340, about 110 to about 320, about 110 to about 300, about 110 to about 280, about 110 to about 260, about 110 to about 240, about 110 to about 220, about 110 to about 200, about 110 to about 190, about 110 to about 180, about 110 to about 170, about 110 to about 160, about 110 to about 150, about 110 to about 140, about 110 to about 130, about 110 to about 120, about 120 to about 600, about 120 to about 580, about 120 to about 560, about 120 to about 540, about 120 to about 520, about 120 to about 500, about 120 to about 480, about 120 to about 460, about 120 to about 440, about 120 to about 420, about 120 to about 400, about 120 to about 380, about 120 to about 360, about 120 to about 340, about 120 to about 320, about 120 to about 300, about 120 to about 280, about 120 to about 260, about 120 to about 240, about 120 to about 220, about 120 to about 200, about 120 to about 190, about 120 to about 180, about 120 to about 170, about 120 to about 160, about 120 to about 150, about 120 to about 140, about 120 to about 130, about 130 to about 600, about 130 to about 580, about 130 to about 560, about 130 to about 540, about 130 to about 520, about 130 to about 500, about 130 to about 480, about 130 to about 460, about 130 to about 440, about 130 to about 420, about 130 to about 400, about 130 to about 380, about 130 to about 360, about 130 to about 340, about 130 to about 320, about 130 to about 300, about 130 to about 280, about 130 to about 260, about 130 to about 240, about 130 to about 220, about 130 to about 200, about 130 to about 190, about 130 to about 180, about 130 to about 170, about 130 to about 160, about 130 to about 150, about 130 to about 140, about 140 to about 600, about 140 to about 580, about 140 to about 560, about 140 to about 540, about 140 to about 520, about 140 to about 500, about 140 to about 480, about 140 to about 460, about 140 to about 440, about 140 to about 420, about 140 to about 400, about 140 to about 380, about 140 to about 360, about 140 to about 340, about 140 to about
320, about 140 to about 300, about 140 to about 280, about 140 to about 260, about 140 to
about 240, about 140 to about 220, about 140 to about 200, about 140 to about 190, about 140
to about 180, about 140 to about 170, about 140 to about 160, about 140 to about 150, about
150 to about 600, about 150 to about 580, about 150 to about 560, about 150 to about 540,
about 150 to about 520, about 150 to about 500, about 150 to about 480, about 150 to about
460, about 150 to about 440, about 150 to about 420, about 150 to about 400, about 150 to
about 380, about 150 to about 360, about 150 to about 340, about 150 to about 320, about 150
to about 300, about 150 to about 280, about 150 to about 260, about 150 to about 240, about
150 to about 220, about 150 to about 200, about 150 to about 190, about 150 to about 180,
about 150 to about 170, about 150 to about 160, about 160 to about 600, about 160 to about
580, about 160 to about 560, about 160 to about 540, about 160 to about 520, about 160 to
about 500, about 160 to about 480, about 160 to about 460, about 160 to about 440, about 160
to about 420, about 160 to about 400, about 160 to about 380, about 160 to about 360, about 160
to about 340, about 160 to about 320, about 160 to about 300, about 160 to about 280,
about 160 to about 260, about 160 to about 240, about 160 to about 220, about 160 to about
200, about 160 to about 190, about 160 to about 180, about 160 to about 170, about 170 to
about 600, about 170 to about 580, about 170 to about 560, about 170 to about 540, about 170
to about 520, about 170 to about 500, about 170 to about 480, about 170 to about 460, about
170 to about 440, about 170 to about 420, about 170 to about 400, about 170 to about 380,
about 170 to about 360, about 170 to about 340, about 170 to about 320, about 170 to about
300, about 170 to about 280, about 170 to about 260, about 170 to about 240, about 170 to
about 220, about 170 to about 200, about 170 to about 190, about 170 to about 180, about 180
to about 600, about 180 to about 580, about 180 to about 560, about 180 to about 540, about
180 to about 520, about 180 to about 500, about 180 to about 480, about 180 to about 460,
about 180 to about 440, about 180 to about 420, about 180 to about 400, about 180 to about
380, about 180 to about 360, about 180 to about 340, about 180 to about 320, about 180 to
about 300, about 180 to about 280, about 180 to about 260, about 180 to about 240, about 180
to about 220, about 180 to about 200, about 180 to about 190, about 190 to about 600, about
190 to about 580, about 190 to about 560, about 190 to about 540, about 190 to about 520,
about 190 to about 500, about 190 to about 480, about 190 to about 460, about 190 to about
440, about 190 to about 420, about 190 to about 400, about 190 to about 380, about 190 to
about 360, about 190 to about 340, about 190 to about 320, about 190 to about 300, about 190
to about 280, about 190 to about 260, about 190 to about 240, about 190 to about 220, about
190 to about 200, about 200 to about 600, about 200 to about 580, about 200 to about 560,
about 200 to about 540, about 200 to about 520, about 200 to about 500, about 200 to about
480, about 200 to about 460, about 200 to about 440, about 200 to about 420, about 200 to
about 400, about 200 to about 380, about 200 to about 360, about 200 to about 340, about 200
to about 320, about 200 to about 300, about 200 to about 280, about 200 to about 260, about
200 to about 240, about 200 to about 220, about 220 to about 600, about 220 to about 580,
about 220 to about 560, about 220 to about 540, about 220 to about 520, about 220 to about
500, about 220 to about 480, about 220 to about 460, about 220 to about 440, about 220 to
about 420, about 220 to about 400, about 220 to about 380, about 220 to about 360, about 220
to about 340, about 220 to about 320, about 220 to about 300, about 220 to about 280, about
220 to about 260, about 220 to about 240, about 240 to about 600, about 240 to about 580,
about 240 to about 560, about 240 to about 540, about 240 to about 520, about 240 to about
500, about 240 to about 480, about 240 to about 460, about 240 to about 440, about 240 to
about 420, about 240 to about 400, about 240 to about 380, about 240 to about 360, about 240
to about 340, about 240 to about 320, about 240 to about 300, about 240 to about 280, about
240 to about 260, about 260 to about 600, about 260 to about 580, about 260 to about 560,
about 260 to about 540, about 260 to about 520, about 260 to about 500, about 260 to about
480, about 260 to about 460, about 260 to about 440, about 260 to about 420, about 260 to
about 400, about 260 to about 380, about 260 to about 360, about 260 to about 340, about 260
to about 320, about 260 to about 300, about 260 to about 280, about 280 to about 600, about
280 to about 580, about 280 to about 560, about 280 to about 540, about 280 to about 520,
about 280 to about 500, about 280 to about 480, about 280 to about 460, about 280 to about
440, about 280 to about 420, about 280 to about 400, about 280 to about 380, about 280 to
about 360, about 280 to about 340, about 280 to about 320, about 280 to about 300, about 300
to about 600, about 300 to about 580, about 300 to about 560, about 300 to about 540, about
300 to about 520, about 300 to about 500, about 300 to about 480, about 300 to about 460,
about 300 to about 440, about 300 to about 420, about 300 to about 400, about 300 to about
380, about 300 to about 360, about 300 to about 340, about 300 to about 320, about 300 to
about 600, about 300 to about 580, about 300 to about 560, about 300 to about 540, about
300 to about 520, about 300 to about 500, about 300 to about 480, about 300 to about 460,
about 300 to about 440, about 300 to about 420, about 300 to about 400, about 300 to about
380, about 300 to about 360, about 300 to about 340, about 300 to about 320, about 300 to
about 600, about 300 to about 580, about 300 to about 560, about 300 to about 540, about
300 to about 520, about 300 to about 500, about 300 to about 480, about 300 to about 460,
about 500, about 340 to about 480, about 340 to about 460, about 340 to about 440, about 340 to about 420, about 340 to about 400, about 340 to about 380, about 340 to about 360, about 360 to about 600, about 360 to about 580, about 360 to about 560, about 360 to about 540, about 360 to about 520, about 360 to about 500, about 360 to about 480, about 360 to about 460, about 360 to about 440, about 360 to about 420, about 360 to about 400, about 360 to about 380, about 380 to about 600, about 380 to about 580, about 380 to about 560, about 380 to about 540, about 380 to about 520, about 380 to about 500, about 380 to about 480, about 380 to about 460, about 380 to about 440, about 380 to about 420, about 380 to about 400, about 400 to about 600, about 400 to about 580, about 400 to about 560, about 400 to about 540, about 400 to about 520, about 400 to about 500, about 400 to about 480, about 400 to about 460, about 400 to about 440, about 400 to about 420, about 420 to about 600, about 420 to about 580, about 420 to about 560, about 420 to about 540, about 420 to about 520, about 420 to about 500, about 420 to about 480, about 420 to about 460, about 420 to about 440, about 440 to about 600, about 440 to about 580, about 440 to about 560, about 440 to about 540, about 440 to about 520, about 440 to about 500, about 440 to about 480, about 440 to about 460, about 460 to about 600, about 460 to about 580, about 460 to about 560, about 460 to about 540, about 460 to about 520, about 460 to about 500, about 460 to about 480, about 480 to about 600, about 480 to about 580, about 480 to about 560, about 480 to about 540, about 480 to about 520, about 480 to about 500, about 480 to about 600, about 500 to about 600, about 500 to about 580, about 500 to about 560, about 500 to about 540, about 500 to about 520, about 500 to about 500, about 500 to about 480, about 500 to about 460, about 520 to about 600, about 520 to about 580, about 520 to about 560, about 520 to about 540, about 520 to about 500, about 520 to about 480, about 520 to about 460, about 520 to about 440, about 540 to about 560, about 540 to about 500, about 540 to about 600, about 560 to about 600, about 560 to about 580, or about 580 to about 600.

Additional examples of a ratio of GI tissue concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) include to 1.1 to 600, 1.2 to 600, 1.3 to 600, 1.4 to 600, 1.5 to 600, 1.6 to 600, 1.7 to 600, 1.8 to 600, or 1.9 to 600, such as 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9.

In some examples, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can result in a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma
concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of, e.g., about 2.8 to about 6.0, about 2.8 to about 5.8, about 2.8 to about 5.6, about 2.8 to about 5.4, about 2.8 to about 5.2, about 2.8 to about 5.0, about 2.8 to about 4.8, about 2.8 to about 4.6, about 2.8 to about 4.4, about 2.8 to about 4.2, about 2.8 to about 4.0, about 2.8 to about 3.8, about 2.8 to about 3.6, about 2.8 to about 3.4, about 2.8 to about 3.2, about 2.8 to about 3.0, about 3.0 to about 6.0, about 3.0 to about 5.8, about 3.0 to about 5.6, about 3.0 to about 5.4, about 3.0 to about 5.2, about 3.0 to about 5.0, about 3.0 to about 4.8, about 3.0 to about 4.6, about 3.0 to about 4.4, about 3.0 to about 4.2, about 3.0 to about 4.0, about 3.0 to about 3.8, about 3.0 to about 3.6, about 3.0 to about 3.4, about 3.0 to about 3.2, about 3.2 to about 6.0, about 3.2 to about 5.8, about 3.2 to about 5.6, about 3.2 to about 5.4, about 3.2 to about 5.2, about 3.2 to about 5.0, about 3.2 to about 4.8, about 3.2 to about 4.6, about 3.2 to about 4.4, about 3.2 to about 4.2, about 3.2 to about 4.0, about 3.2 to about 3.8, about 3.2 to about 3.6, about 3.2 to about 3.4, about 3.2 to about 3.0, about 3.0 to about 6.0, about 3.0 to about 5.8, about 3.0 to about 5.6, about 3.0 to about 5.4, about 3.0 to about 5.2, about 3.0 to about 5.0, about 3.0 to about 4.8, about 3.0 to about 4.6, about 3.0 to about 4.4, about 3.0 to about 4.2, about 3.0 to about 4.0, about 3.0 to about 3.8, about 3.0 to about 3.6, about 3.0 to about 3.4, about 3.0 to about 3.2; about 3.8 to about 5.8, about 3.8 to about 5.6, about 3.8 to about 5.4, about 3.8 to about 5.2, about 3.8 to about 5.0, about 3.8 to about 4.8, about 3.8 to about 4.6, about 3.8 to about 4.4, about 3.8 to about 4.2, about 3.8 to about 4.0, about 3.8 to about 3.6, about 3.8 to about 3.4, about 3.8 to about 3.2; about 4.2 to about 6.0, about 4.2 to about 5.8, about 4.2 to about 5.6, about 4.2 to about 5.4, about 4.2 to about 5.2, about 4.2 to about 5.0, about 4.2 to about 4.8, about 4.2 to about 4.6, about 4.2 to about 4.4, about 4.2 to about 4.2, about 4.2 to about 4.0, about 4.2 to about 3.8, about 4.2 to about 3.6, about 4.2 to about 3.4, about 4.2 to about 3.2; about 4.4 to about 6.0, about 4.4 to about 5.8, about 4.4 to about 5.6, about 4.4 to about 5.4, about 4.4 to about 5.2, about 4.4 to about 5.0, about 4.4 to about 4.8, about 4.4 to about 4.6, about 4.4 to about 4.4, about 4.4 to about 4.2, about 4.4 to about 4.0, about 4.4 to about 3.8, about 4.4 to about 3.6, about 4.4 to about 3.4, about 4.4 to about 3.2; about 4.6 to about 6.0, about 4.6 to about 5.8, about 4.6 to about 5.6, about 4.6 to about 5.4, about 4.6 to about 5.2, about 4.6 to about 5.0, about 4.6 to about 4.8, about 4.6 to about 4.6, about 4.6 to about 4.4, about 4.6 to about 4.2, about 4.6 to about 4.0, about 4.6 to about 3.8, about 4.6 to about 3.6, about 4.6 to about 3.4, about 4.6 to about 3.2; about 4.8 to about 6.0, about 4.8 to about 5.8, about 4.8 to about 5.6, about 4.8 to about 5.4, about 4.8 to about 5.2, about 4.8 to about 5.0, about 4.8 to about 4.8, about 4.8 to about 4.6, about 4.8 to about 4.4, about 4.8 to about 4.2, about 4.8 to about 4.0, about 4.8 to about 3.8, about 4.8 to about 3.6, about 4.8 to about 3.4, about 4.8 to about 3.2; about 5.0 to about 6.0, about 5.0 to about 5.8, about 5.0 to about 5.6, about 5.0 to about 5.4, about 5.0 to about 5.2, about 5.0 to about 5.0, about 5.0 to about 4.8, about 5.0 to about 4.6, about 5.0 to about 4.4, about 5.0 to about 4.2, about 5.0 to about 4.0, about 5.0 to about 3.8, about 5.0 to about 3.6, about 5.0 to about 3.4, about 5.0 to about 3.2; about 5.2 to about 6.0, about 5.2 to about 5.8, about 5.2 to about 5.6, about 5.2 to about 5.4, about 5.2 to about 5.2, about 5.2 to about 5.0, about 5.2 to about 4.8, about 5.2 to about 4.6, about 5.2 to about 4.4, about 5.2 to about 4.2, about 5.2 to about 4.0, about 5.2 to about 3.8, about 5.2 to about 3.6, about 5.2 to about 3.4, about 5.2 to about 3.2; about 5.4 to about 6.0, about 5.4 to about 5.8, about 5.4 to about 5.6, about 5.4 to about 5.4, about 5.4 to about 5.2, about 5.4 to about 5.0, about 5.4 to about 4.8, about 5.4 to about 4.6, about 5.4 to about 4.4, about 5.4 to about 4.2, about 5.4 to about 4.0, about 5.4 to about 3.8, about 5.4 to about 3.6, about 5.4 to about 3.4, about 5.4 to about 3.2; about 5.6 to about 6.0, about 5.6 to about 5.8, about 5.6 to about 5.6, about 5.6 to about 5.4, about 5.6 to about 5.2, about 5.6 to about 5.0, about 5.6 to about 4.8, about 5.6 to about 4.6, about 5.6 to about 4.4, about 5.6 to about 4.2, about 5.6 to about 4.0, about 5.6 to about 3.8, about 5.6 to about 3.6, about 5.6 to about 3.4, about 5.6 to about 3.2; about 5.8 to about 6.0, about 5.8 to about 5.8, about 5.8 to about 5.6, about 5.8 to about 5.4, about 5.8 to about 5.2, about 5.8 to about 5.0, about 5.8 to about 4.8, about 5.8 to about 4.6, about 5.8 to about 4.4, about 5.8 to about 4.2, about 5.8 to about 4.0, about 5.8 to about 3.8, about 5.8 to about 3.6, about 5.8 to about 3.4, about 5.8 to about 3.2; and about 6.0 to about 6.0, about 6.0 to about 5.8, about 6.0 to about 5.6, about 6.0 to about 5.4, about 6.0 to about 5.2, about 6.0 to about 5.0, about 6.0 to about 4.8, about 6.0 to about 4.6, about 6.0 to about 4.4, about 6.0 to about 4.2, about 6.0 to about 4.0, about 6.0 to about 3.8, about 6.0 to about 3.6, about 6.0 to about 3.4, about 6.0 to about 3.2.
6.0, about 5.2 to about 5.8, about 5.2 to about 5.6, about 5.2 to about 5.4, about 5.4 to about 6.0, about 5.4 to about 5.8, about 5.4 to about 5.6, about 5.6 to about 6.0, about 5.6 to about 5.8, or about 5.8 to about 6.0. Accordingly, in some embodiments, a method of treatment disclosed herein can include determining the ratio of the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the GI tissue to the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the blood, serum, or plasma of a subject at substantially the same time point following administration of the device is about 2.8 to about 6.0. Exemplary methods for measuring the concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma or the GI tissue of a subject are described herein. Additional methods for measuring the concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma or the GI tissue of a subject are known in the art.

Accordingly, in some embodiments, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the GI tissue (e.g., one or more of any of the exemplary GI tissues described herein). In some embodiments, a method of treatment disclosed herein can include determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa.

In some embodiments, a method of treatment disclosed herein includes determining that the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the GI tissue (e.g., one or more of any of the exemplary types of GI tissues described herein) at a time point following administration of the device is higher than the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the GI tissue at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, a method of treatment disclosed herein can include determining that the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa at a time point following administration of the device is higher than the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).
acetate) in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the feces of the subject. In some embodiments, a method of treatment disclosed herein includes determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the GI tissue, e.g., in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa within a time period of about 10 minutes to about 10 hours following administration of the device.

In some embodiments, a method of treatment as disclosed herein comprises determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location of disease following administration of the device.

In some embodiments, a method of treatment as disclosed herein comprises determining that the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location of disease at a time point following administration of the device is higher than the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, a method of treatment as disclosed herein comprises determining that the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in plasma in a subject at a time point following administration of the device is lower than the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in plasma in a subject at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, a method of treatment as disclosed herein comprises determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the tissue of the subject within a time period of about 10 minutes to 10 hours following administration of the device.
Some examples of any of the methods described herein can, e.g., result in a selective suppression of a local inflammatory response (e.g., an inflammatory response in local GI tissue), while maintaining the systemic immune response (e.g., blood). The GI tissue may be, for example, GI tissue proximate to one or more sites of disease. FAs used herein, "GI content" refers to the content of the gastrointestinal (GI) tract, such as the content of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum, more particularly of the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, or of the distal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. Accordingly, in some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the duodenum tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the jejunum tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the ileum tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the cecum tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the ascending colon tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the transverse colon tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a selective suppression of the inflammatory response in the descending colon tissue proximate to one or more sites of disease, while maintaining the systemic immune response. In some embodiments, the methods described herein can result in a 1% increase to 500% increase (e.g., a 1% increase to 450% increase, a 1% increase to 400%
increase, a 1% increase to 350% increase, a 1% increase to 300% increase, a 1% increase to 250% increase, a 1% increase to 200% increase, a 1% increase to 190% increase, a 1% increase to 180% increase, a 1% increase to 170% increase, a 1% increase to 160% increase, a 1% increase to 150% increase, a 1% increase to 140% increase, a 1% increase to 130% increase, a 1% increase to 120% increase, a 1% increase to 110% increase, a 1% increase to 100% increase, a 1% increase to 90% increase, a 1% increase to 80% increase, a 1% increase to 70% increase, a 1% increase to 60% increase, a 1% increase to 50% increase, a 1% increase to 40% increase, a 1% increase to 30% increase, a 1% increase to 25% increase, a 1% increase to 20% increase, a 1% increase to 15% increase, a 1% increase to 10% increase, a 1% increase to 5% increase, a 5% increase to 500% increase, a 5% increase to 450% increase, a 5% increase to 400% increase, a 5% increase to 350% increase, a 5% increase to 300% increase, a 5% increase to 250% increase, a 5% increase to 200% increase, a 5% increase to 190% increase, a 5% increase to 180% increase, a 5% increase to 170% increase, a 5% increase to 160% increase, a 5% increase to 150% increase, a 5% increase to 140% increase, a 5% increase to 130% increase, a 5% increase to 120% increase, a 5% increase to 110% increase, a 5% increase to 100% increase, a 5% increase to 90% increase, a 5% increase to 80% increase, a 5% increase to 70% increase, a 5% increase to 60% increase, a 5% increase to 50% increase, a 5% increase to 40% increase, a 5% increase to 30% increase, a 5% increase to 25% increase, a 5% increase to 20% increase, a 5% increase to 15% increase, a 5% increase to 10% increase, a 10% increase to 500% increase, a 10% increase to 450% increase, a 10% increase to 400% increase, a 10% increase to 350% increase, a 10% increase to 300% increase, a 10% increase to 250% increase, a 10% increase to 200% increase, a 10% increase to 190% increase, a 10% increase to 180% increase, a 10% increase to 170% increase, a 10% increase to 160% increase, a 10% increase to 150% increase, a 10% increase to 140% increase, a 10% increase to 130% increase, a 10% increase to 120% increase, a 10% increase to 110% increase, a 10% increase to 100% increase, a 10% increase to 90% increase, a 10% increase to 80% increase, a 10% increase to 70% increase, a 10% increase to 60% increase, a 10% increase to 50% increase, a 10% increase to 40% increase, a 10% increase to 30% increase, a 10% increase to 25% increase, a 10% increase to 20% increase, a 10% increase to 15% increase, a 15% increase to 500% increase, a 15% increase to 450% increase, a 15% increase to 400% increase, a 15% increase to 350% increase, a 15% increase to 300% increase, a 15% increase to 250% increase, a 15% increase to 200% increase, a 15% increase to 190% increase, a 15% increase to 180% increase, a 15% increase to 170% increase, a 15% increase to 160% increase, a 15% increase to 150% increase, a 15% increase to 140% increase, a 15% increase to 130% increase, a 15% increase to 120% increase, a 15% increase to 110% increase, a 15% increase to 100% increase, a 15% increase to 90% increase, a 15% increase to 80% increase, a 15% increase to 70% increase, a 15% increase to 60% increase, a 15% increase to 50% increase, a 15% increase to 40% increase, a 15% increase to 30% increase, a 15% increase to 25% increase, a 15% increase to 20% increase, a 15% increase to 15% increase, a 15% increase to 10% increase, a 15% increase to 5% increase, a 15% increase to 4% increase, a 15% increase to 3% increase, a 15% increase to 2% increase, a 15% increase to 1% increase, a 15% increase to 0% increase.
to 170% increase, a 15% increase to 160% increase, a 15% increase to 150% increase, a 15% increase to 140% increase, a 15% increase to 130% increase, a 15% increase to 120% increase, a 15% increase to 110% increase, a 15% increase to 100% increase, a 15% increase to 90% increase, a 15% increase to 80% increase, a 15% increase to 70% increase, a 15% increase to 60% increase, a 15% increase to 50% increase, a 15% increase to 40% increase, a 15% increase to 30% increase, a 15% increase to 25% increase, a 15% increase to 20% increase, a 20% increase to 500% increase, a 20% increase to 450% increase, a 20% increase to 400% increase, a 20% increase to 350% increase, a 20% increase to 300% increase, a 20% increase to 250% increase, a 20% increase to 200% increase, a 20% increase to 190% increase, a 20% increase to 180% increase, a 20% increase to 170% increase, a 20% increase to 160% increase, a 20% increase to 150% increase, a 20% increase to 140% increase, a 20% increase to 130% increase, a 20% increase to 120% increase, a 20% increase to 110% increase, a 20% increase to 100% increase, a 20% increase to 90% increase, a 20% increase to 80% increase, a 20% increase to 70% increase, a 20% increase to 60% increase, a 20% increase to 50% increase, a 20% increase to 40% increase, a 20% increase to 30% increase, a 20% increase to 25% increase, a 25% increase to 500% increase, a 25% increase to 450% increase, a 25% increase to 400% increase, a 25% increase to 350% increase, a 25% increase to 300% increase, a 25% increase to 250% increase, a 25% increase to 200% increase, a 25% increase to 190% increase, a 25% increase to 180% increase, a 25% increase to 170% increase, a 25% increase to 160% increase, a 25% increase to 150% increase, a 25% increase to 140% increase, a 25% increase to 130% increase, a 25% increase to 120% increase, a 25% increase to 110% increase, a 25% increase to 100% increase, a 25% increase to 90% increase, a 25% increase to 80% increase, a 25% increase to 70% increase, a 25% increase to 60% increase, a 25% increase to 50% increase, a 25% increase to 40% increase, a 25% increase to 30% increase, a 30% increase to 500% increase, a 30% increase to 450% increase, a 30% increase to 400% increase, a 30% increase to 350% increase, a 30% increase to 300% increase, a 30% increase to 250% increase, a 30% increase to 200% increase, a 30% increase to 190% increase, a 30% increase to 180% increase, a 30% increase to 170% increase, a 30% increase to 160% increase, a 30% increase to 150% increase, a 30% increase to 140% increase, a 30% increase to 130% increase, a 30% increase to 120% increase, a 30% increase to 110% increase, a 30% increase to 100% increase, a 30% increase to 90% increase, a 30% increase to 80% increase, a 30% increase to 70% increase, a 30% increase to 60% increase, a 30% increase to 50% increase, a 30% increase to 40% increase, a 40% increase to 500% increase.
increase, a 40% increase to 450% increase, a 40% increase to 400% increase, a 40% increase to 350% increase, a 40% increase to 300% increase, a 40% increase to 250% increase, a 40% increase to 200% increase, a 40% increase to 190% increase, a 40% increase to 180% increase, a 40% increase to 170% increase, a 40% increase to 160% increase, a 40% increase to 150% increase, a 40% increase to 140% increase, a 40% increase to 130% increase, a 40% increase to 120% increase, a 40% increase to 110% increase, a 40% increase to 100% increase, a 40% increase to 90% increase, a 40% increase to 80% increase, a 40% increase to 70% increase, a 40% increase to 60% increase, a 40% increase to 50% increase, a 50% increase to 450% increase, a 50% increase to 400% increase, a 50% increase to 350% increase, a 50% increase to 300% increase, a 50% increase to 250% increase, a 50% increase to 200% increase, a 50% increase to 190% increase, a 50% increase to 180% increase, a 50% increase to 170% increase, a 50% increase to 160% increase, a 50% increase to 150% increase, a 50% increase to 140% increase, a 50% increase to 130% increase, a 50% increase to 120% increase, a 50% increase to 110% increase, a 50% increase to 100% increase, a 50% increase to 90% increase, a 50% increase to 80% increase, a 50% increase to 70% increase, a 50% increase to 60% increase, a 60% increase to 500% increase, a 60% increase to 450% increase, a 60% increase to 400% increase, a 60% increase to 350% increase, a 60% increase to 300% increase, a 60% increase to 250% increase, a 60% increase to 200% increase, a 60% increase to 190% increase, a 60% increase to 180% increase, a 60% increase to 170% increase, a 60% increase to 160% increase, a 60% increase to 150% increase, a 60% increase to 140% increase, a 60% increase to 130% increase, a 60% increase to 120% increase, a 60% increase to 110% increase, a 60% increase to 100% increase, a 60% increase to 90% increase, a 60% increase to 80% increase, a 60% increase to 70% increase, a 70% increase to 500% increase, a 70% increase to 450% increase, a 70% increase to 400% increase, a 70% increase to 350% increase, a 70% increase to 300% increase, a 70% increase to 250% increase, a 70% increase to 200% increase, a 70% increase to 190% increase, a 70% increase to 180% increase, a 70% increase to 170% increase, a 70% increase to 160% increase, a 70% increase to 150% increase, a 70% increase to 140% increase, a 70% increase to 130% increase, a 70% increase to 120% increase, a 70% increase to 110% increase, a 70% increase to 100% increase, a 70% increase to 90% increase, a 70% increase to 80% increase, a 80% increase to 500% increase, a 80% increase to 450% increase, a 80% increase to 400% increase, a 80% increase to 350% increase, a 80% increase to 300% increase, a 80% increase to 250% increase, a 80% increase to 200% increase, a 80% increase
to 190% increase, a 80% increase to 180% increase, a 80% increase to 170% increase, a 80% increase to 160% increase, a 80% increase to 150% increase, a 80% increase to 140% increase, a 80% increase to 130% increase, a 80% increase to 120% increase, a 80% increase to 110% increase, a 80% increase to 100% increase, a 80% increase to 90% increase, a 80% increase to 80% increase, a 80% increase to 70% increase, a 80% increase to 60% increase, a 80% increase to 50% increase, a 80% increase to 40% increase, a 80% increase to 30% increase, a 80% increase to 20% increase, a 80% increase to 10% increase, a 80% increase to 0% increase, a 80% increase to -10% decrease, a 80% increase to -20% decrease, a 80% increase to -30% decrease, a 80% increase to -40% decrease, a 80% increase to -50% decrease, a 80% increase to -60% decrease, a 80% increase to -70% decrease, a 80% increase to -80% decrease, a 80% increase to -90% decrease, a 80% increase to -100% decrease, a 80% increase to -110% decrease, a 80% increase to -120% decrease, a 80% increase to -130% decrease, a 80% increase to -140% decrease, a 80% increase to -150% decrease, a 80% increase to -160% decrease, a 80% increase to -170% decrease, a 80% increase to -180% decrease, a 80% increase to -190% decrease, a 80% increase to -200% decrease, a 80% increase to -210% decrease, a 80% increase to -220% decrease, a 80% increase to -230% decrease, a 80% increase to -240% decrease, a 80% increase to -250% decrease, a 80% increase to -260% decrease, a 80% increase to -270% decrease, a 80% increase to -280% decrease, a 80% increase to -290% decrease, a 80% increase to -300% decrease, a 80% increase to -310% decrease, a 80% increase to -320% decrease, a 80% increase to -330% decrease, a 80% increase to -340% decrease, a 80% increase to -350% decrease, a 80% increase to -360% decrease, a 80% increase to -370% decrease, a 80% increase to -380% decrease, a 80% increase to -390% decrease, a 80% increase to -400% decrease, a 80% increase to -450% decrease, a 80% increase to -500% decrease, a 80% increase to -550% decrease, a 80% increase to -600% decrease, a 80% increase to -650% decrease, a 80% increase to -700% decrease, a 80% increase to -750% decrease, a 80% increase to -800% decrease, a 80% increase to -850% decrease, a 80% increase to -900% decrease, a 80% increase to -950% decrease, a 80% increase to -1000% decrease.
increase, a 130% increase to 140% increase, a 140% increase to 500% increase, a 140% increase to 450% increase, a 140% increase to 400% increase, a 140% increase to 350% increase, a 140% increase to 300% increase, a 140% increase to 250% increase, a 140% increase to 200% increase, a 140% increase to 190% increase, a 140% increase to 180% increase, a 140% increase to 170% increase, a 140% increase to 160% increase, a 140% increase to 150% increase, a 150% increase to 500% increase, a 150% increase to 450% increase, a 150% increase to 400% increase, a 150% increase to 350% increase, a 150% increase to 300% increase, a 150% increase to 250% increase, a 150% increase to 200% increase, a 150% increase to 190% increase, a 150% increase to 180% increase, a 150% increase to 170% increase, a 150% increase to 160% increase, a 160% increase to 500% increase, a 160% increase to 450% increase, a 160% increase to 400% increase, a 160% increase to 350% increase, a 160% increase to 300% increase, a 160% increase to 250% increase, a 160% increase to 200% increase, a 160% increase to 190% increase, a 160% increase to 180% increase, a 160% increase to 170% increase, a 170% increase to 500% increase, a 170% increase to 450% increase, a 170% increase to 400% increase, a 170% increase to 350% increase, a 170% increase to 300% increase, a 170% increase to 250% increase, a 170% increase to 200% increase, a 170% increase to 190% increase, a 170% increase to 180% increase, a 170% increase to 160% increase, a 180% increase to 500% increase, a 180% increase to 450% increase, a 180% increase to 400% increase, a 180% increase to 350% increase, a 180% increase to 300% increase, a 180% increase to 250% increase, a 180% increase to 200% increase, a 180% increase to 190% increase, a 180% increase to 180% increase, a 180% increase to 170% increase, a 200% increase to 500% increase, a 200% increase to 450% increase, a 200% increase to 400% increase, a 200% increase to 350% increase, a 200% increase to 300% increase, a 200% increase to 250% increase, a 200% increase to 200% increase, a 200% increase to 190% increase, a 200% increase to 180% increase, a 200% increase to 170% increase, a 200% increase to 160% increase, a 200% increase to 150% increase, a 200% increase to 140% increase, a 200% increase to 130% increase, a 250% increase to 500% increase, a 250% increase to 450% increase, a 250% increase to 400% increase, a 250% increase to 350% increase, a 250% increase to 300% increase, a 250% increase to 200% increase, a 250% increase to 190% increase, a 250% increase to 180% increase, a 250% increase to 170% increase, a 250% increase to 160% increase, a 250% increase to 150% increase, a 250% increase to 140% increase, a 250% increase to 130% increase, a 300% increase to 500% increase, a 300% increase to 450% increase, a 300% increase to 400% increase, a 300% increase to 350% increase, a 300% increase to 300% increase, a 300% increase to 250% increase, a 300% increase to 200% increase, a 300% increase to 190% increase, a 300% increase to 180% increase, a 300% increase to 170% increase, a 300% increase to 160% increase, a 300% increase to 150% increase, a 300% increase to 140% increase, a 300% increase to 130% increase, a 350% increase to 500% increase, a 350% increase to 450% increase, a 350% increase to 400% increase, a 350% increase to 350% increase, a 350% increase to 300% increase, a 350% increase to 250% increase, a 350% increase to 200% increase, a 350% increase to 190% increase, a 350% increase to 180% increase, a 350% increase to 170% increase, a 350% increase to 160% increase, a 350% increase to 150% increase, a 350% increase to 140% increase, a 350% increase to 130% increase, a 400% increase to 500% increase, a 400% increase to 450% increase, a 400% increase to 400% increase, a 400% increase to 350% increase, a 400% increase to 300% increase, a 400% increase to 250% increase, a 400% increase to 200% increase, a 400% increase to 190% increase, a 400% increase to 180% increase, a 400% increase to 170% increase, a 400% increase to 160% increase, a 400% increase to 150% increase, a 400% increase to 140% increase, a 400% increase to 130% increase, or a 450% increase to 500% increase) in one or more (e.g., two, three, four, five, six, seven, eight, nine, or ten) of: the plasma, serum, or blood level of IL-6;
the plasma, serum, or blood level of IL-2; the plasma, serum, or blood level of IL-1β; the plasma, serum, or blood level of TNFa; the plasma, serum, or blood level of IL-17A; the plasma, serum, or blood level of IL-22; the plasma, serum, or blood level of interferon-γ; the level of blood Th memory cells (CD44+CD45RB+CD4+ cells); and the level of α4β7 expression in blood cells; e.g., each as compared to the corresponding level in a subject systemically administered the same dose of the same formulation of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). Methods for determining the plasma, serum, or blood level of IL-6; the plasma, serum, or blood level of IL-2; the plasma, serum, or blood level of IL-1β; the plasma, serum, or blood level of TNFa; the plasma, serum, or blood level of IL-17A; the plasma, serum, or blood level of IL-22; the plasma, serum, or blood level of interferon-γ; the level of blood Th memory cells (CD44+CD45RB+CD4+ cells); and the level of α4β7 expression in blood cells are known in the art.

In some examples of any of the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of: the level of interferon-γ in GI tissue or GI content; the level of IL-1β in GI tissue or GI content; the level of IL-6 in GI tissue or GI content; the level of IL-22 in GI tissue or GI content; the level of IL-17A in GI tissue or GI content; the level of TNFa in GI tissue or GI content; and the level of IL-2 in GI tissue or GI content, e.g., as compared to the corresponding level in a subject not administered a treatment, or not administered glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) locally as disclosed herein. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFa; and the level of IL-2, in the duodenum tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFa; and the level of IL-2, in the ileum tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four,
five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFα; and the level of IL-2, in the jejunum tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFα; and the level of IL-2, in the ascending colon tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFα; and the level of IL-2, in the transverse colon tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFα; and the level of IL-2, in the descending colon tissue proximate to one or more sites of disease. Accordingly, in some embodiments, the methods described herein can result, e.g., in a 1% to 99% decrease (or any of the subranges of this range described herein) in one or more (e.g., two, three, four, five, six, or seven) of the level of interferon-γ; the level of IL-1β; the level of IL-6; the level of IL-22; the level of IL-17A; the level of TNFα; and the level of IL-2, in the sigmoid colon tissue proximate to one or more sites of disease.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered to the location by a process that does not comprise systemic transport of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 1 mg to about 500...
mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 1 mg to about 100 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 5 mg to about 40 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is about 160 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 80 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is about 40 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 40 mg to about 80 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is about 80 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered as an induction dose is about 160 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered as a maintenance dose is about 80 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered as a maintenance dose is about 40 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered as an escalating dose of 10 mg, followed by 20 mg, followed by 30 mg; or an escalating dose of 20 mg, followed by 30 mg, followed by 50 mg. In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered as a maintenance dose is about 40 mg to about 80 mg.

In some embodiments, the amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered in a dose of, e.g., about 1 mg to about 300 mg, about 1 mg to about 250 mg, about 1 mg to about 200 mg, about 1 mg to about 195 mg, about 1 mg to about 190 mg, about 1 mg to about 185 mg, about 1 mg to about 180 mg, about 1 mg to about 175 mg, about 1 mg to about 170 mg, about 1 mg to about 165 mg, about 1 mg to about 160 mg, about 1 mg to about 155 mg, about 1 mg to about 150 mg, about 1 mg to about 145 mg, about 1 mg to about 140 mg, about 1 mg to about 135 mg, about 1 mg to about 130 mg, about 1 mg to about 125 mg, about 1 mg to about 120 mg, about 1 mg to about 115 mg, about 1 mg to about 110 mg, about 1 mg to about 105 mg, about 1 mg to about 100 mg, about 1 mg to about 95 mg, about 1 mg to about 90 mg, about 1 mg to about 85 mg,
about 1 mg to about 80 mg, about 1 mg to about 75 mg, about 1 mg to about 70 mg, about 1 mg to about 65 mg, about 1 mg to about 60 mg, about 1 mg to about 55 mg, about 1 mg to about 50 mg, about 1 mg to about 45 mg, about 1 mg to about 40 mg, about 1 mg to about 35 mg, about 1 mg to about 30 mg, about 1 mg to about 25 mg, about 1 mg to about 20 mg, about 1 mg to about 15 mg, about 1 mg to about 10 mg, about 1 mg to about 5 mg, about 5 mg to about 200 mg, about 5 mg to about 195 mg, about 5 mg to about 190 mg, about 5 mg to about 185 mg, about 5 mg to about 180 mg, about 5 mg to about 175 mg, about 5 mg to about 170 mg, about 5 mg to about 165 mg, about 5 mg to about 160 mg, about 5 mg to about 155 mg, about 5 mg to about 150 mg, about 5 mg to about 145 mg, about 5 mg to about 140 mg, about 5 mg to about 135 mg, about 5 mg to about 130 mg, about 5 mg to about 125 mg, about 5 mg to about 120 mg, about 5 mg to about 115 mg, about 5 mg to about 110 mg, about 5 mg to about 105 mg, about 5 mg to about 100 mg, about 5 mg to about 95 mg, about 5 mg to about 90 mg, about 5 mg to about 85 mg, about 5 mg to about 80 mg, about 5 mg to about 75 mg, about 5 mg to about 70 mg, about 5 mg to about 65 mg, about 5 mg to about 60 mg, about 5 mg to about 55 mg, about 5 mg to about 50 mg, about 5 mg to about 45 mg, about 5 mg to about 40 mg, about 5 mg to about 35 mg, about 5 mg to about 30 mg, about 5 mg to about 25 mg, about 5 mg to about 20 mg, about 5 mg to about 15 mg, about 5 mg to about 10 mg, about 5 mg to about 5 mg, about 10 mg to about 200 mg, about 10 mg to about 195 mg, about 10 mg to about 190 mg, about 10 mg to about 185 mg, about 10 mg to about 180 mg, about 10 mg to about 175 mg, about 10 mg to about 170 mg, about 10 mg to about 165 mg, about 10 mg to about 160 mg, about 10 mg to about 155 mg, about 10 mg to about 150 mg, about 10 mg to about 145 mg, about 10 mg to about 140 mg, about 10 mg to about 135 mg, about 10 mg to about 130 mg, about 10 mg to about 125 mg, about 10 mg to about 120 mg, about 10 mg to about 115 mg, about 10 mg to about 110 mg, about 10 mg to about 105 mg, about 10 mg to about 100 mg, about 10 mg to about 95 mg, about 10 mg to about 90 mg, about 10 mg to about 85 mg, about 10 mg to about 80 mg, about 10 mg to about 75 mg, about 10 mg to about 70 mg, about 10 mg to about 65 mg, about 10 mg to about 60 mg, about 10 mg to about 55 mg, about 10 mg to about 50 mg, about 10 mg to about 45 mg, about 10 mg to about 40 mg, about 10 mg to about 35 mg, about 10 mg to about 30 mg, about 10 mg to about 25 mg, about 10 mg to about 20 mg, about 10 mg to about 15 mg, about 15 mg to about 200 mg, about 15 mg to about 195 mg, about 15 mg to about 190 mg, about 15 mg to about 185 mg, about 15 mg to about 180 mg, about 15 mg to about 175 mg, about 15 mg to about 170 mg, about 15 mg to about 165 mg, about 15 mg to about 160 mg, about 15 mg to about 155 mg, about 15 mg to about 150 mg, about 15 mg to about 145 mg, about 15 mg to about 140 mg, about 15 mg to about 135 mg, about 15 mg to about 130 mg, about 15 mg to about 125 mg, about 15 mg to about 120 mg, about 15 mg to about 115 mg, about 15 mg to about 110 mg, about 15 mg to about 105 mg, about 15 mg to about 100 mg, about 15 mg to about 95 mg, about 15 mg to about 90 mg, about 15 mg to about 85 mg, about 15 mg to about 80 mg, about 15 mg to about 75 mg, about 15 mg to about 70 mg, about 15 mg to about 65 mg, about 15 mg to about 60 mg, about 15 mg to about 55 mg, about 15 mg to about 50 mg, about 15 mg to about 45 mg, about 15 mg to about 40 mg, about 15 mg to about 35 mg, about 15 mg to about 30 mg, about 15 mg to about 25 mg, about 15 mg to about 20 mg, about 15 mg to about 15 mg.
about 150 mg, about 15 mg to about 145 mg, about 15 mg to about 140 mg, about 15 mg to about 135 mg, about 15 mg to about 130 mg, about 15 mg to about 125 mg, about 15 mg to about 120 mg, about 15 mg to about 115 mg, about 15 mg to about 110 mg, about 15 mg to about 105 mg, about 15 mg to about 100 mg, about 15 mg to about 95 mg, about 15 mg to about 90 mg, about 15 mg to about 85 mg, about 15 mg to about 80 mg, about 15 mg to about 75 mg, about 15 mg to about 70 mg, about 15 mg to about 65 mg, about 15 mg to about 60 mg, about 15 mg to about 55 mg, about 15 mg to about 50 mg, about 15 mg to about 45 mg, about 15 mg to about 40 mg, about 15 mg to about 35 mg, about 15 mg to about 30 mg, about 15 mg to about 25 mg, about 15 mg to about 20 mg, about 20 mg to about 200 mg, about 20 mg to about 195 mg, about 20 mg to about 190 mg, about 20 mg to about 185 mg, about 20 mg to about 180 mg, about 20 mg to about 175 mg, about 20 mg to about 170 mg, about 20 mg to about 165 mg, about 20 mg to about 160 mg, about 20 mg to about 155 mg, about 20 mg to about 150 mg, about 20 mg to about 145 mg, about 20 mg to about 140 mg, about 20 mg to about 135 mg, about 20 mg to about 130 mg, about 20 mg to about 125 mg, about 20 mg to about 120 mg, about 20 mg to about 115 mg, about 20 mg to about 110 mg, about 20 mg to about 105 mg, about 20 mg to about 100 mg, about 20 mg to about 95 mg, about 20 mg to about 90 mg, about 20 mg to about 85 mg, about 20 mg to about 80 mg, about 20 mg to about 75 mg, about 20 mg to about 70 mg, about 20 mg to about 65 mg, about 20 mg to about 60 mg, about 20 mg to about 55 mg, about 20 mg to about 50 mg, about 20 mg to about 45 mg, about 20 mg to about 40 mg, about 20 mg to about 35 mg, about 20 mg to about 30 mg, about 20 mg to about 25 mg, about 20 mg to about 20 mg, about 20 mg to about 15 mg, about 20 mg to about 10 mg, about 20 mg to about 5 mg, about 20 mg to about 1 mg.
about 185 mg, about 30 mg to about 180 mg, about 30 mg to about 175 mg, about 30 mg to about 170 mg, about 30 mg to about 165 mg, about 30 mg to about 160 mg, about 30 mg to about 155 mg, about 30 mg to about 150 mg, about 30 mg to about 145 mg, about 30 mg to about 140 mg, about 30 mg to about 135 mg, about 30 mg to about 130 mg, about 30 mg to about 125 mg, about 30 mg to about 120 mg, about 30 mg to about 115 mg, about 30 mg to about 110 mg, about 30 mg to about 105 mg, about 30 mg to about 100 mg, about 30 mg to about 95 mg, about 30 mg to about 90 mg, about 30 mg to about 85 mg, about 30 mg to about 80 mg, about 30 mg to about 75 mg, about 30 mg to about 70 mg, about 30 mg to about 65 mg, about 30 mg to about 60 mg, about 30 mg to about 55 mg, about 30 mg to about 50 mg, about 30 mg to about 45 mg, about 30 mg to about 40 mg, about 30 mg to about 35 mg, about 35 mg to about 200 mg, about 35 mg to about 195 mg, about 35 mg to about 190 mg, about 35 mg to about 185 mg, about 35 mg to about 180 mg, about 35 mg to about 175 mg, about 35 mg to about 170 mg, about 35 mg to about 165 mg, about 35 mg to about 160 mg, about 35 mg to about 155 mg, about 35 mg to about 150 mg, about 35 mg to about 145 mg, about 35 mg to about 140 mg, about 35 mg to about 135 mg, about 35 mg to about 130 mg, about 35 mg to about 125 mg, about 35 mg to about 120 mg, about 35 mg to about 115 mg, about 35 mg to about 110 mg, about 35 mg to about 105 mg, about 35 mg to about 100 mg, about 35 mg to about 95 mg, about 35 mg to about 90 mg, about 35 mg to about 85 mg, about 35 mg to about 80 mg, about 35 mg to about 75 mg, about 35 mg to about 70 mg, about 35 mg to about 65 mg, about 35 mg to about 60 mg, about 35 mg to about 55 mg, about 35 mg to about 50 mg, about 35 mg to about 45 mg, about 35 mg to about 40 mg, about 35 mg to about 35 mg, about 40 mg to about 200 mg, about 40 mg to about 195 mg, about 40 mg to about 190 mg, about 40 mg to about 185 mg, about 40 mg to about 180 mg, about 40 mg to about 175 mg, about 40 mg to about 170 mg, about 40 mg to about 165 mg, about 40 mg to about 160 mg, about 40 mg to about 155 mg, about 40 mg to about 150 mg, about 40 mg to about 145 mg, about 40 mg to about 140 mg, about 40 mg to about 135 mg, about 40 mg to about 130 mg, about 40 mg to about 125 mg, about 40 mg to about 120 mg, about 40 mg to about 115 mg, about 40 mg to about 110 mg, about 40 mg to about 105 mg, about 40 mg to about 100 mg, about 40 mg to about 95 mg, about 40 mg to about 90 mg, about 40 mg to about 85 mg, about 40 mg to about 80 mg, about 40 mg to about 75 mg, about 40 mg to about 70 mg, about 40 mg to about 65 mg, about 40 mg to about 60 mg, about 40 mg to about 55 mg, about 40 mg to about 50 mg, about 40 mg to about 45 mg, about 45 mg to about 200 mg, about 45 mg to about 195 mg, about 45 mg to about 190 mg, about 45 mg to about 185 mg, about 45 mg to about 180 mg, about 45 mg to about 175 mg, about 45 mg to about 170 mg, about 45 mg to about 165 mg, about 45 mg to about 160 mg, about 45 mg to about 155 mg, about 45 mg to about 150 mg, about 45 mg to about 145 mg, about 45 mg to about 140 mg, about 45 mg to about 135 mg, about 45 mg to about 130 mg, about 45 mg to about 125 mg, about 45 mg to about 120 mg, about 45 mg to about 115 mg, about 45 mg to about 110 mg, about 45 mg to about 105 mg, about 45 mg to about 100 mg, about 45 mg to about 95 mg, about 45 mg to about 90 mg, about 45 mg to about 85 mg, about 45 mg to about 80 mg, about 45 mg to about 75 mg, about 45 mg to about 70 mg, about 45 mg to about 65 mg, about 45 mg to about 60 mg, about 45 mg to about 55 mg, about 45 mg to about 50 mg, about 45 mg to about 45 mg.
mg to about 175 mg, about 45 mg to about 170 mg, about 45 mg to about 165 mg, about 45 mg to about 160 mg, about 45 mg to about 155 mg, about 45 mg to about 150 mg, about 45 mg to about 145 mg, about 45 mg to about 140 mg, about 45 mg to about 135 mg, about 45 mg to about 130 mg, about 45 mg to about 125 mg, about 45 mg to about 120 mg, about 45 mg to about 115 mg, about 45 mg to about 110 mg, about 45 mg to about 105 mg, about 45 mg to about 100 mg, about 45 mg to about 95 mg, about 45 mg to about 90 mg, about 45 mg to about 85 mg, about 45 mg to about 80 mg, about 45 mg to about 75 mg, about 45 mg to about 70 mg, about 45 mg to about 65 mg, about 45 mg to about 60 mg, about 45 mg to about 55 mg, about 45 mg to about 50 mg, about 50 mg to about 200 mg, about 50 mg to about 195 mg, about 50 mg to about 190 mg, about 50 mg to about 185 mg, about 50 mg to about 180 mg, about 50 mg to about 175 mg, about 50 mg to about 170 mg, about 50 mg to about 165 mg, about 50 mg to about 160 mg, about 50 mg to about 155 mg, about 50 mg to about 150 mg, about 50 mg to about 145 mg, about 50 mg to about 140 mg, about 50 mg to about 135 mg, about 50 mg to about 130 mg, about 50 mg to about 125 mg, about 50 mg to about 120 mg, about 50 mg to about 115 mg, about 50 mg to about 110 mg, about 50 mg to about 105 mg, about 50 mg to about 100 mg, about 50 mg to about 95 mg, about 50 mg to about 90 mg, about 50 mg to about 85 mg, about 50 mg to about 80 mg, about 50 mg to about 75 mg, about 50 mg to about 70 mg, about 50 mg to about 65 mg, about 50 mg to about 60 mg, about 50 mg to about 55 mg, about 55 mg to about 200 mg, about 55 mg to about 195 mg, about 55 mg to about 190 mg, about 55 mg to about 185 mg, about 55 mg to about 180 mg, about 55 mg to about 175 mg, about 55 mg to about 170 mg, about 55 mg to about 165 mg, about 55 mg to about 160 mg, about 55 mg to about 155 mg, about 55 mg to about 150 mg, about 55 mg to about 145 mg, about 55 mg to about 140 mg, about 55 mg to about 135 mg, about 55 mg to about 130 mg, about 55 mg to about 125 mg, about 55 mg to about 120 mg, about 55 mg to about 115 mg, about 55 mg to about 110 mg, about 55 mg to about 105 mg, about 55 mg to about 100 mg, about 55 mg to about 95 mg, about 55 mg to about 90 mg, about 55 mg to about 85 mg, about 55 mg to about 80 mg, about 55 mg to about 75 mg, about 55 mg to about 70 mg, about 55 mg to about 65 mg, about 55 mg to about 60 mg, about 55 mg to about 200 mg, about 60 mg to about 195 mg, about 60 mg to about 190 mg, about 60 mg to about 185 mg, about 60 mg to about 180 mg, about 60 mg to about 175 mg, about 60 mg to about 170 mg, about 60 mg to about 165 mg, about 60 mg to about 160 mg, about 60 mg to about 155 mg, about 60 mg to about 150 mg, about 60 mg to about 145 mg, about 60 mg to about 140 mg, about 60 mg to about 135 mg, about 60 mg to about 130 mg, about 60 mg to about
125 mg, about 60 mg to about 120 mg, about 60 mg to about 115 mg, about 60 mg to about 110 mg, about 60 mg to about 105 mg, about 60 mg to about 100 mg, about 60 mg to about 95 mg, about 60 mg to about 90 mg, about 60 mg to about 85 mg, about 60 mg to about 80 mg, about 60 mg to about 75 mg, about 60 mg to about 70 mg, about 60 mg to about 65 mg, about 65 mg to about 200 mg, about 65 mg to about 195 mg, about 65 mg to about 190 mg, about 65 mg to about 185 mg, about 65 mg to about 180 mg, about 65 mg to about 175 mg, about 65 mg to about 170 mg, about 65 mg to about 165 mg, about 65 mg to about 160 mg, about 65 mg to about 155 mg, about 65 mg to about 150 mg, about 65 mg to about 145 mg, about 65 mg to about 140 mg, about 65 mg to about 135 mg, about 65 mg to about 130 mg, about 65 mg to about 125 mg, about 65 mg to about 120 mg, about 65 mg to about 115 mg, about 65 mg to about 110 mg, about 65 mg to about 105 mg, about 65 mg to about 100 mg, about 65 mg to about 95 mg, about 65 mg to about 90 mg, about 65 mg to about 85 mg, about 65 mg to about 80 mg, about 65 mg to about 75 mg, about 65 mg to about 70 mg, about 70 mg to about 200 mg, about 70 mg to about 195 mg, about 70 mg to about 190 mg, about 70 mg to about 185 mg, about 70 mg to about 180 mg, about 70 mg to about 175 mg, about 70 mg to about 170 mg, about 70 mg to about 165 mg, about 70 mg to about 160 mg, about 70 mg to about 155 mg, about 70 mg to about 150 mg, about 70 mg to about 145 mg, about 70 mg to about 140 mg, about 70 mg to about 135 mg, about 70 mg to about 130 mg, about 70 mg to about 125 mg, about 70 mg to about 120 mg, about 70 mg to about 115 mg, about 70 mg to about 110 mg, about 70 mg to about 105 mg, about 70 mg to about 100 mg, about 70 mg to about 95 mg, about 70 mg to about 90 mg, about 70 mg to about 85 mg, about 70 mg to about 80 mg, about 70 mg to about 75 mg, about 75 mg to about 200 mg, about 75 mg to about 195 mg, about 75 mg to about 190 mg, about 75 mg to about 185 mg, about 75 mg to about 180 mg, about 75 mg to about 175 mg, about 75 mg to about 170 mg, about 75 mg to about 165 mg, about 75 mg to about 160 mg, about 75 mg to about 155 mg, about 75 mg to about 150 mg, about 75 mg to about 145 mg, about 75 mg to about 140 mg, about 75 mg to about 135 mg, about 75 mg to about 130 mg, about 75 mg to about 125 mg, about 75 mg to about 120 mg, about 75 mg to about 115 mg, about 75 mg to about 110 mg, about 75 mg to about 105 mg, about 75 mg to about 100 mg, about 75 mg to about 95 mg, about 75 mg to about 90 mg, about 75 mg to about 85 mg, about 75 mg to about 80 mg, about 75 mg to about 75 mg to about 200 mg, about 80 mg to about 195 mg, about 80 mg to about 190 mg, about 80 mg to about 185 mg, about 80 mg to about 180 mg, about 80 mg to about 175 mg, about 80 mg to about 170 mg, about 80 mg to about 165 mg, about 80 mg to about 160 mg, about 80 mg to about
155 mg, about 80 mg to about 150 mg, about 80 mg to about 145 mg, about 80 mg to about 140 mg, about 80 mg to about 135 mg, about 80 mg to about 130 mg, about 80 mg to about 125 mg, about 80 mg to about 120 mg, about 80 mg to about 115 mg, about 80 mg to about 110 mg, about 80 mg to about 105 mg, about 80 mg to about 100 mg, about 80 mg to about 95 mg, about 80 mg to about 90 mg, about 80 mg to about 85 mg, about 85 mg to about 200 mg, about 85 mg to about 195 mg, about 85 mg to about 190 mg, about 85 mg to about 185 mg, about 85 mg to about 180 mg, about 85 mg to about 175 mg, about 85 mg to about 170 mg, about 85 mg to about 165 mg, about 85 mg to about 160 mg, about 85 mg to about 155 mg, about 85 mg to about 150 mg, about 85 mg to about 145 mg, about 85 mg to about 140 mg, about 85 mg to about 135 mg, about 85 mg to about 130 mg, about 85 mg to about 125 mg, about 85 mg to about 120 mg, about 85 mg to about 115 mg, about 85 mg to about 110 mg, about 85 mg to about 105 mg, about 85 mg to about 100 mg, about 90 mg to about 200 mg, about 90 mg to about 195 mg, about 90 mg to about 190 mg, about 90 mg to about 185 mg, about 90 mg to about 180 mg, about 90 mg to about 175 mg, about 90 mg to about 170 mg, about 90 mg to about 165 mg, about 90 mg to about 160 mg, about 90 mg to about 155 mg, about 90 mg to about 150 mg, about 90 mg to about 145 mg, about 90 mg to about 140 mg, about 90 mg to about 135 mg, about 90 mg to about 130 mg, about 90 mg to about 125 mg, about 90 mg to about 120 mg, about 90 mg to about 115 mg, about 90 mg to about 110 mg, about 90 mg to about 105 mg, about 90 mg to about 100 mg, about 90 mg to about 95 mg, about 95 mg to about 200 mg, about 95 mg to about 195 mg, about 95 mg to about 190 mg, about 95 mg to about 185 mg, about 95 mg to about 180 mg, about 95 mg to about 175 mg, about 95 mg to about 170 mg, about 95 mg to about 165 mg, about 95 mg to about 160 mg, about 95 mg to about 155 mg, about 95 mg to about 150 mg, about 95 mg to about 145 mg, about 95 mg to about 140 mg, about 95 mg to about 135 mg, about 95 mg to about 130 mg, about 95 mg to about 125 mg, about 95 mg to about 120 mg, about 95 mg to about 115 mg, about 95 mg to about 110 mg, about 95 mg to about 105 mg, about 95 mg to about 100 mg, about 95 mg to about 100 mg, about 100 mg to about 200 mg, about 100 mg to about 195 mg, about 100 mg to about 190 mg, about 100 mg to about 185 mg, about 100 mg to about 180 mg, about 100 mg to about 175 mg, about 100 mg to about 170 mg, about 100 mg to about 165 mg, about 100 mg to about 160 mg, about 100 mg to about 155 mg, about 100 mg to about 150 mg, about 100 mg to about 145 mg, about 100 mg to about 140 mg, about 100 mg to about 135 mg, about 100 mg to about 130 mg, about 100 mg to about 125 mg, about 100 mg to about 120 mg, about 100 mg to about 115 mg.
about 100 mg to about 110 mg, about 100 mg to about 105 mg, about 105 mg to about 200 mg, about 105 mg to about 195 mg, about 105 mg to about 190 mg, about 105 mg to about 185 mg, about 105 mg to about 180 mg, about 105 mg to about 175 mg, about 105 mg to about 170 mg, about 105 mg to about 165 mg, about 105 mg to about 160 mg, about 105 mg to about 155 mg, about 105 mg to about 150 mg, about 105 mg to about 145 mg, about 105 mg to about 140 mg, about 105 mg to about 135 mg, about 105 mg to about 130 mg, about 105 mg to about 125 mg, about 105 mg to about 120 mg, about 105 mg to about 115 mg, about 105 mg to about 110 mg, about 105 mg to about 100 mg, about 105 mg to about 95 mg, about 105 mg to about 90 mg, about 105 mg to about 85 mg, about 105 mg to about 80 mg, about 105 mg to about 75 mg, about 105 mg to about 70 mg, about 105 mg to about 65 mg, about 105 mg to about 60 mg, about 105 mg to about 55 mg, about 105 mg to about 50 mg, about 105 mg to about 45 mg, about 105 mg to about 40 mg, about 105 mg to about 35 mg, about 105 mg to about 30 mg, about 105 mg to about 25 mg, about 105 mg to about 20 mg, about 105 mg to about 15 mg, about 105 mg to about 10 mg, about 105 mg to about 5 mg, about 105 mg to about 0 mg.
mg to about 165 mg, about 130 mg to about 160 mg, about 130 mg to about 155 mg, about 130 mg to about 150 mg, about 130 mg to about 145 mg, about 130 mg to about 140 mg, about 135 mg to about 135 mg to about 200 mg, about 135 mg to about 195 mg, about 135 mg to about 190 mg, about 135 mg to about 185 mg, about 135 mg to about 180 mg, about 135 mg to about 175 mg, about 135 mg to about 170 mg, about 135 mg to about 165 mg, about 135 mg to about 160 mg, about 135 mg to about 155 mg, about 135 mg to about 150 mg, about 140 mg to about 145 mg, about 140 mg to about 140 mg to about 200 mg, about 145 mg to about 195 mg, about 145 mg to about 190 mg, about 145 mg to about 185 mg, about 145 mg to about 180 mg, about 145 mg to about 175 mg, about 145 mg to about 170 mg, about 145 mg to about 165 mg, about 145 mg to about 160 mg, about 145 mg to about 155 mg, about 145 mg to about 150 mg, about 150 mg to about 200 mg, about 150 mg to about 195 mg, about 150 mg to about 190 mg, about 150 mg to about 185 mg, about 150 mg to about 180 mg, about 150 mg to about 175 mg, about 150 mg to about 170 mg, about 150 mg to about 165 mg, about 150 mg to about 160 mg, about 150 mg to about 155 mg, about 150 mg to about 150 mg, about 150 mg to about 145 mg, about 150 mg to about 140 mg, about 150 mg to about 145 mg, about 150 mg to about 140 mg to about 200 mg, about 150 mg to about 145 mg, about 150 mg to about 140 mg to about 195 mg, about 150 mg to about 145 mg, about 150 mg to about 140 mg to about 190 mg, about 150 mg to about 145 mg, about 10
about 190 mg, about 190 mg to about 200 mg, about 190 mg to about 195 mg, or about 195 mg to about 200 mg.

In some embodiments, the subject is administered the dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) once a day. In some embodiments, the subject is administered the dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) once every two days.

In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is less than an amount that is effective when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered systemically.

In some embodiments, the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is an induction dose. In some embodiments, such induction dose is effective to induce remission of the TNF and cytokine storm and healing of acute inflammation and lesions. In some embodiments, the induction dose is administered once a day. In some embodiments, the induction dose is administered once every two days. In some embodiments, the induction dose is administered once every three days. In some embodiments, the induction dose is administered once a week. In some embodiments, the induction dose is administered once a day, once every three days, or once a week, over a period of about 6-8 weeks.

In some embodiments, the method comprises administering (i) an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is an induction dose, and (ii) an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is a maintenance dose, in this order. In some embodiments, step (ii) is repeated one or more times. In some embodiments, the induction dose is equal to the maintenance dose. In some embodiments, the induction dose is greater than the maintenance dose. In some embodiments, the induction dose is five times greater than the maintenance dose. In some embodiments, the induction dose is two times greater than the maintenance dose.

In some embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject. In more particular embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject, and the maintenance dose is lower than the maintenance dose administered systemically for treatment.
of the same disorder to a subject. In some embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject, and the maintenance dose is higher than the maintenance dose administered systemically for treatment of the same disorder to a subject.

In some embodiments an induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and a maintenance dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) are each administered to the subject by administering a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the pharmaceutical composition is a device. In some embodiments an induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered to the subject in a different manner from the maintenance dose. As an example, the induction dose may be administered systemically. In some embodiments, the induction dose may be administered other than orally. As an example, the induction dose may be administered rectally. As an example, the induction dose may be administered intravenously. As an example, the induction dose may be administered subcutaneously. In some embodiments, the induction dose may be administered by spray catheter.

In some embodiments, the concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivered at the location in the gastrointestinal tract is 10%, 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500%, 1000%, 2000% greater than the concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in plasma.

In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not a site of disease or proximate to a site of disease.

In some embodiments, the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as a single bolus.

In some embodiments, the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as more than one bolus.
In some embodiments, the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract in a continuous manner.

In some embodiments, the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract over a time period of 20 or more minutes.

In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 10 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 1 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.1 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 10 μg/mL, such as less than 1 μg/mL, such as less than 0.1 μg/mL. In some embodiments, the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 5 μg/mL, such as less than 0.5 μg/mL, such as less than 0.05 μg/mL. In some embodiments, the values of the concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject provided herein refer to C_{t,rough}, that is, the lowest value of the concentration prior to administration of the next dose.

In some embodiments, the method provides a concentration of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is, e.g., about 1 ng/L to about 100 ng/mL, about 1 ng/mL to about 95 ng/mL,
about 1 ng/mL to about 90 ng/mL, about 1 ng/mL to about 85 ng/mL, about 1 ng/mL to about 80 ng/mL, about 1 ng/mL to about 75 ng/mL, about 1 ng/mL to about 70 ng/mL, about 1 ng/mL to about 65 ng/mL, about 1 ng/mL to about 60 ng/mL, about 1 ng/mL to about 55 ng/mL, about 1 ng/mL to about 50 ng/mL, about 1 ng/mL to about 45 ng/mL, about 1 ng/mL to about 40 ng/mL, about 1 ng/mL to about 35 ng/mL, about 1 ng/mL to about 30 ng/mL, about 1 ng/mL to about 25 ng/mL, about 1 ng/mL to about 20 ng/mL, about 1 ng/mL to about 15 ng/mL, about 1 ng/mL to about 10 ng/mL, about 1 ng/mL to about 5 ng/mL, about 2 ng/L to about 100 ng/mL, about 2 ng/mL to about 95 ng/mL, about 2 ng/mL to about 90 ng/mL, about 2 ng/mL to about 85 ng/mL, about 2 ng/mL to about 80 ng/mL, about 2 ng/mL to about 75 ng/mL, about 2 ng/mL to about 70 ng/mL, about 2 ng/mL to about 65 ng/mL, about 2 ng/mL to about 60 ng/mL, about 2 ng/mL to about 55 ng/mL, about 2 ng/mL to about 50 ng/mL, about 2 ng/mL to about 45 ng/mL, about 2 ng/mL to about 40 ng/mL, about 2 ng/mL to about 35 ng/mL, about 2 ng/mL to about 30 ng/mL, about 2 ng/mL to about 25 ng/mL, about 2 ng/mL to about 20 ng/mL, about 2 ng/mL to about 15 ng/mL, about 2 ng/mL to about 10 ng/mL, about 2 ng/mL to about 5 ng/mL, about 5 ng/L to about 100 ng/mL, about 5 ng/mL to about 95 ng/mL, about 5 ng/mL to about 90 ng/mL, about 5 ng/mL to about 85 ng/mL, about 5 ng/mL to about 80 ng/mL, about 5 ng/mL to about 75 ng/mL, about 5 ng/mL to about 70 ng/mL, about 5 ng/mL to about 65 ng/mL, about 5 ng/mL to about 60 ng/mL, about 5 ng/mL to about 55 ng/mL, about 5 ng/mL to about 50 ng/mL, about 5 ng/mL to about 45 ng/mL, about 5 ng/mL to about 40 ng/mL, about 5 ng/mL to about 35 ng/mL, about 5 ng/mL to about 30 ng/mL, about 5 ng/mL to about 25 ng/mL, about 5 ng/mL to about 20 ng/mL, about 5 ng/mL to about 15 ng/mL, about 5 ng/mL to about 10 ng/mL, about 10 ng/mL to about 85 ng/mL, about 10 ng/mL to about 80 ng/mL, about 10 ng/mL to about 75 ng/mL, about 10 ng/mL to about 70 ng/mL, about 10 ng/mL to about 65 ng/mL, about 10 ng/mL to about 60 ng/mL, about 10 ng/mL to about 55 ng/mL, about 10 ng/mL to about 50 ng/mL, about 10 ng/mL to about 45 ng/mL, about 10 ng/mL to about 40 ng/mL, about 10 ng/mL to about 35 ng/mL, about 10 ng/mL to about 30 ng/mL, about 10 ng/mL to about 25 ng/mL, about 10 ng/mL to about 20 ng/mL, about 10 ng/mL to about 15 ng/mL, about 10 ng/mL to about 10 ng/mL, about 15 ng/mL to about 100 ng/mL, about 15 ng/mL to about 95 ng/mL, about 15 ng/mL to about 90 ng/mL, about 15 ng/mL to about 85 ng/mL, about 15 ng/mL to about 80 ng/mL, about 15 ng/mL to about 75 ng/mL, about 15 ng/mL to about 70 ng/mL, about 15 ng/mL to about 65 ng/mL, about 15 ng/mL to about 60 ng/mL, about 15 ng/mL to about 55 ng/mL,
about 15 ng/mL to about 50 ng/mL, about 15 ng/mL to about 45 ng/mL, about 15 ng/mL to
about 40 ng/mL, about 15 ng/mL to about 35 ng/mL, about 15 ng/mL to about 30 ng/mL,
about 15 ng/mL to about 25 ng/mL, about 15 ng/mL to about 20 ng/mL, about 20 ng/L to
about 100 ng/mL, about 20 ng/mL to about 95 ng/mL, about 20 ng/mL to about 90 ng/mL,
about 20 ng/mL to about 85 ng/mL, about 20 ng/mL to about 80 ng/mL, about 20 ng/mL to
about 75 ng/mL, about 20 ng/mL to about 70 ng/mL, about 20 ng/mL to about 65 ng/mL,
about 20 ng/mL to about 60 ng/mL, about 20 ng/mL to about 55 ng/mL, about 20 ng/mL to
about 50 ng/mL, about 20 ng/mL to about 45 ng/mL, about 20 ng/mL to about 40 ng/mL,
about 20 ng/mL to about 35 ng/mL, about 20 ng/mL to about 30 ng/mL, about 20 ng/mL to
about 25 ng/mL, about 25 ng/mL to about 100 ng/mL, about 25 ng/mL to about 95 ng/mL,
about 25 ng/mL to about 90 ng/mL, about 25 ng/mL to about 85 ng/mL, about 25 ng/mL to
about 80 ng/mL, about 25 ng/mL to about 75 ng/mL, about 25 ng/mL to about 70 ng/mL,
about 25 ng/mL to about 65 ng/mL, about 25 ng/mL to about 60 ng/mL, about 25 ng/mL to
about 55 ng/mL, about 25 ng/mL to about 50 ng/mL, about 25 ng/mL to about 45 ng/mL,
about 25 ng/mL to about 40 ng/mL, about 25 ng/mL to about 35 ng/mL, about 25 ng/mL to
about 30 ng/mL, about 30 ng/mL to about 100 ng/mL, about 30 ng/mL to about 95 ng/mL,
about 30 ng/mL to about 90 ng/mL, about 30 ng/mL to about 85 ng/mL, about 30 ng/mL to
about 80 ng/mL, about 30 ng/mL to about 75 ng/mL, about 30 ng/mL to about 70 ng/mL,
about 30 ng/mL to about 65 ng/mL, about 30 ng/mL to about 60 ng/mL, about 30 ng/mL to
about 55 ng/mL, about 30 ng/mL to about 50 ng/mL, about 30 ng/mL to about 45 ng/mL,
about 30 ng/mL to about 40 ng/mL, about 30 ng/mL to about 35 ng/mL, about 35 ng/mL to
about 100 ng/mL, about 35 ng/mL to about 95 ng/mL, about 35 ng/mL to about 90 ng/mL,
about 35 ng/mL to about 85 ng/mL, about 35 ng/mL to about 80 ng/mL, about 35 ng/mL to
about 75 ng/mL, about 35 ng/mL to about 70 ng/mL, about 35 ng/mL to about 65 ng/mL,
about 35 ng/mL to about 60 ng/mL, about 35 ng/mL to about 55 ng/mL, about 35 ng/mL to
about 50 ng/mL, about 35 ng/mL to about 45 ng/mL, about 35 ng/mL to about 40 ng/mL,
about 40 ng/L to about 100 ng/mL, about 40 ng/mL to about 95 ng/mL, about 40 ng/mL to
about 90 ng/mL, about 40 ng/mL to about 85 ng/mL, about 40 ng/mL to about 80 ng/mL,
about 40 ng/mL to about 75 ng/mL, about 40 ng/mL to about 70 ng/mL, about 40 ng/mL to
about 65 ng/mL, about 40 ng/mL to about 60 ng/mL, about 40 ng/mL to about 55 ng/mL,
about 40 ng/mL to about 50 ng/mL, about 40 ng/mL to about 45 ng/mL, about 45 ng/L to
about 100 ng/mL, about 45 ng/mL to about 95 ng/mL, about 45 ng/mL to about 90 ng/mL,
about 45 ng/mL to about 85 ng/mL, about 45 ng/mL to about 80 ng/mL, about 45 ng/mL to
about 75 ng/mL, about 45 ng/mL to about 70 ng/mL, about 45 ng/mL to about 65 ng/mL,
about 45 ng/mL to about 60 ng/mL, about 45 ng/mL to about 55 ng/mL, about 45 ng/mL to
about 50 ng/mL, about 50 ng/mL to about 100 ng/mL, about 50 ng/mL to about 95 ng/mL,
about 50 ng/mL to about 90 ng/mL, about 50 ng/mL to about 85 ng/mL, about 50 ng/mL to
about 80 ng/mL, about 50 ng/mL to about 75 ng/mL, about 50 ng/mL to about 70 ng/mL,
about 50 ng/mL to about 65 ng/mL, about 50 ng/mL to about 60 ng/mL, about 50 ng/mL to
about 55 ng/mL, about 55 ng/mL to about 100 ng/mL, about 55 ng/mL to about 95 ng/mL,
about 55 ng/mL to about 90 ng/mL, about 55 ng/mL to about 85 ng/mL, about 55 ng/mL to
about 80 ng/mL, about 55 ng/mL to about 75 ng/mL, about 55 ng/mL to about 70 ng/mL,
about 55 ng/mL to about 65 ng/mL, about 55 ng/mL to about 60 ng/mL, about 60 ng/mL to
about 100 ng/mL, about 60 ng/mL to about 95 ng/mL, about 60 ng/mL to about 90 ng/mL,
about 60 ng/mL to about 85 ng/mL, about 60 ng/mL to about 80 ng/mL, about 60 ng/mL to
about 75 ng/mL, about 60 ng/mL to about 70 ng/mL, about 60 ng/mL to about 65 ng/mL,
about 65 ng/L to about 100 ng/mL, about 65 ng/mL to about 95 ng/mL, about 65 ng/mL to
about 90 ng/mL, about 65 ng/mL to about 85 ng/mL, about 65 ng/mL to about 80 ng/mL,
about 65 ng/mL to about 75 ng/mL, about 65 ng/mL to about 70 ng/mL, about 70 ng/L to
about 100 ng/mL, about 70 ng/mL to about 95 ng/mL, about 70 ng/mL to about 90 ng/mL,
about 70 ng/mL to about 85 ng/mL, about 70 ng/mL to about 80 ng/mL, about 70 ng/mL to
about 75 ng/mL, about 75 ng/L to about 100 ng/mL, about 75 ng/mL to about 95 ng/mL,
about 75 ng/mL to about 90 ng/mL, about 75 ng/mL to about 85 ng/mL, about 75 ng/mL to
about 80 ng/mL, about 80 ng/L to about 100 ng/mL, about 80 ng/mL to about 95 ng/mL,
about 80 ng/mL to about 90 ng/mL, about 80 ng/mL to about 85 ng/mL, about 85 ng/L to
about 100 ng/mL, about 85 ng/mL to about 95 ng/mL, about 85 ng/mL to about 90 ng/mL,
about 90 ng/L to about 100 ng/mL, about 90 ng/mL to about 95 ng/mL, or about 95 ng/mL to
about 100 ng/mL.

In some embodiments, the method provides a concentration C_{max} of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the
subject that is less than 10 μg/mL. In some embodiments, the method provides a
concentration C_{max} of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) in the plasma of the subject that is less than 3 μg/mL. In some
embodiments, the method provides a concentration C_{max} of glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is
less than 1 μg/mL. In some embodiments, the method provides a concentration C_{max} of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in
the plasma of the subject that is less than 0.3 μg/mL. In some embodiments, the method
provides a concentration C_{max} of glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) in the plasma of the subject that is less than 0.1 μg/mL. In some
embodiments, the method provides a concentration C_{max} of glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is
less than 0.01 μg/mL.

In some more particular embodiments, a method of treating a disease or condition of
the gastrointestinal tract of a subject comprises administering an induction dose and
subsequently a maintenance dose of the glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate). In some more particular embodiments, the total
induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times,
at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater
than a systemic induction dose for the same period of time. In some more particular
embodiments, the total induction dose for a 2 week period is at least 1.5 times, at least 2
times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at
least 10 times greater than a systemic induction dose for the same period of time. In some
more particular embodiments, the total induction dose for a 4 week period is at least 1.5
times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at
least 8 times or at least 10 times greater than a systemic induction dose for the same period of
time. In some more particular embodiments, the total induction dose for a 6 week period is at
least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6
times, at least 8 times or at least 10 times greater than a systemic induction dose for the same
period of time. In some more particular embodiments, the total induction dose for a 8 week
period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at
least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for
the same period of time.

In some more particular embodiments, an ingestible device comprising glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be
administered once per day or more than once per day, for example, 1, 2, 3, 4 or more times
per day. In some more particular embodiments, two or more ingestible devices may be
administered at the same time. In some more particular embodiments, two or more ingestible
devices may be administered 1 minute apart, 2 minutes apart, 3 minutes apart, 4 minutes
apart, 5 minutes apart, 10 minutes apart, 15 minutes apart, 30 minutes apart, or 60 minutes apart. In some more particular embodiments, two or more ingestible devices may be administered 1 hour apart, 2 hours apart, 3 hours apart, 4 hours apart, 5 hours apart, 6 hours apart, 7 hours apart, 8 hours apart, 9 hours apart, 10 hours apart, 11 hours apart, or 12 hours apart.

In some more particular embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can provide a reduction in TH memory cell count in the mesenteric lymph nodes of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 10% reduction, at least a 20% reduction, at least a 30% reduction, at least a 40% reduction or at least a 50% reduction.

In some more particular embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can provide a reduction in TH memory cell count in the Peyer's Patches of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 10% reduction.

In some more particular embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can provide an increase in TH memory cell count in the blood of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 1% increase, at least a 5% increase, at least 10% increase or at least a 15% increase.

In some embodiments, the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) rectally to the subject.

In some embodiments, the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via an enema to the subject.
In some embodiments, the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via suppository to the subject.

In some embodiments, the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via instillation to the rectum of a subject.

In some embodiments, the methods disclosed herein comprise producing a therapeutically effective degradation product of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the gastrointestinal tract. In some embodiments, the degradation product is a therapeutic antibody fragment. In some embodiments, a therapeutically effective amount of the degradation product is produced.

In some embodiments, the methods comprising administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the manner disclosed herein disclosed herein result in a reduced immunosuppressive properties relative to methods of administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) systemically.

In some embodiments, the methods comprising administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the manner disclosed herein disclosed herein result in reduced immunogenicity relative to methods of administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) systemically.

Methods for treating colitis in subjects in immune-oncology therapy

In some embodiments, provided herein is a method for treating colitis as disclosed herein in a subject, comprising releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the colitis is associated with treatment of the subject with one or more immuno-oncology agents. In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible
device and the method comprises administering orally to the subject the pharmaceutical composition.

In some embodiments, at least one of the one or more immuno-oncology agents is a chemotherapeutic agent. In some embodiments, the chemotherapeutic agent is a chemotherapeutic immunomodulator. In some embodiments, the chemotherapeutic immunomodulator is an immune checkpoint inhibitor.

In some embodiments, the immune checkpoint inhibitor targets an immune checkpoint protein or decreases an activity of an immune checkpoint protein selected from the group of CTLA-4, PD-1, PD-L1, PD-1 - PD-L1, PD-1 - PD-L2, interleukin 2 (IL 2), indoleamine 2,3-dioxygenase (IDO), IL 10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9 - TEV13, Phosphatidylserine - TEV13, lymphocyte activation gene 3 protein (LAG3), MHC class II - LAG3, 4 1BB-4 1BB ligand, OX40-OX40 ligand, GITR, GITR ligand - GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM - BTLA, HVEM - CD160, HVEM - LIGHT, HVEM-BTLD-C 160, CD80, CD80 - PDL-1, PDL2 - CD80, CD244, CD48 - CD244, CD244, ICOS, ICOS-ICOS ligand, B7 H3, B7 H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTN12, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86 - CD28, CD86 - CTLA, CD80 - CD28, CD39, CD73

In some examples, the immune checkpoint inhibitor is selected from the group consisting of: Urelumab, PF 05082566, MEDI6469, TRX518, Varilumab, CP 870893, Pembrolizumab (PDI), Nivolumab (PDI), Atezolizumab (formerly MPDL3280A) (PDL1), MEDI4736 (PDL1), Avelumab (PD-L1), PDR001 (PDI), BMS 986016, MGA271, Lirilumab, IPH2201, Emactuzumab, INCB024360, Galunisertib, Ulocuplumab, BKT140, Bavituximab, CC 90002, Bevacizumab, and MNRP1685A, and MGA271.

In some examples, the immune checkpoint inhibitor targets or decreases an activity of CTLA-4. In some embodiments, the immune checkpoint inhibitor is an antibody. In some embodiments, the antibody is ipilimumab or tremelimumab.

In some examples, the immune checkpoint inhibitor targets PDI or PD-L1. In some examples, the immune checkpoint inhibitor is selected from nivolumab, lambroizumab, and BMS-936559.
In some embodiments, at least one of the one or more immuno-oncology agents is a T-cell capable of expressing a chimeric antigen receptor (CAR). In some embodiments, at least one of the one or more immuno-oncology agents is a PI-3-kinase inhibitor.

In some embodiments, the treatment of the subject with one or more immuno-oncology agents further comprises treatment of the subject with an immunosuppressant.

In some embodiments, provided herein is a method for reducing the development of colitis in a subject administered an immuno-oncology agent, comprising releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

In some embodiments of these methods, a subject is administered at least one dose of an immuno-oncology agent prior to administering a pharmaceutical composition comprising any of the devices described herein as described herein to the subject. In some embodiments of these methods, a subject is first administered any of the devices as described herein, prior to administration of the first dose of the immuno-oncology agent. In some embodiments of these methods, the immuno-oncology agent is administered at substantially the same time as the device described herein.

Also provided herein are methods of treating a subject having a cancer that include: administering a first dose of an immuno-oncology agent to the subject; monitoring one or more biomarkers, markers, or symptoms of colitis (e.g., any of the biomarkers, markers, or symptoms of colitis described herein or known in the art); identifying a subject having a level of a biomarker or marker, or having a symptom of colitis; and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible device.
device and the method comprises administering orally to the subject the pharmaceutical composition.

Also provided herein are methods of reducing the severity of colitis in a subject having a cancer and administered an immuno-oncology agent that include administering to the subject any of the devices described herein.

In some embodiments, provided herein is a method for treating colitis in a subject comprising:

determining that the subject has colitis associated with treatment of the subject with one or more immuno-oncology agents; and

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of colitis, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

In some embodiments, provided herein is a method for treating colitis in a subject comprising:

determining that the subject has colitis associated with treatment of the subject with one or more immuno-oncology agents; and

administering to the subject an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), to treat the colitis.

In some embodiments, provided herein is a method for treating colitis, comprising releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of a subject who has been determined to have colitis associated with treatment of the subject with one or more immuno-oncology agents, wherein the location is proximate to one or more sites of colitis, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible
device and the method comprises administering orally to the subject the pharmaceutical composition.

In some embodiments, provided herein is a method for treating colitis, comprising administering an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to a subject who has been determined to have colitis associated with treatment of the subject with one or more immuno-oncology agents.

In some embodiments, provided herein is an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for treating colitis associated with treatment of a subject with one or more immuno-oncology agents.

Monitoring Progress of Disease

In some embodiments, the methods provided herein comprise monitoring the progress of the disease. In some embodiments, monitoring the progress of the disease comprises measuring the levels of IBD serological markers. In some embodiments, monitoring the progress of the disease comprises determining mucosal healing at the location of release. In some embodiments, monitoring the progress of the disease comprises determining the Crohn’s Disease Activity Index (CDAI) over a period of about 6-8 weeks, or over a period of about 52 weeks, following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, monitoring the progress of the disease comprises determining the Harvey-Bradshaw Index (HBI) following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). Possible markers may include the following: anti-glycan antibodies: anti-Saccharomyces cerevisiae (ASCA); anti-laminaribioside (ALCA); anti-chitobioside (ACCA); anti-mannobioside (AMCA); anti-laminarin (anti-L); anti-chitin (anti-C) antibodies: anti-outer membrane porin C (anti-OmpC), anti-Cbiral flagellin; anti-12 antibody; autoantibodies targeting the exocrine pancreas (PAB); perinuclear anti-neutrophil antibody (pANCA). In some embodiments, monitoring the progress of the disease comprises measuring glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) levels in serum over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 6-8 week time point. In some embodiments, monitoring the progress of the disease comprises measuring glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) levels in serum over a period of about 52 weeks following...
administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 52 week time point.

Patients condition, diagnosis and treatment

5 In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises one or more of the following:

a) identifying a subject having a disease of the gastrointestinal tract, for example by endoscopy or colonoscopy;

b) determination of the severity of the disease, for example with reference to the Mayo Clinic Score, the Crohn's Disease Activity Index (CDAI), the Harvey-Bradshaw Index (HBI), or a combination of the above;

c) determination of the location of the disease, for example as determined by the presence of lesions indicative of the disease;

d) evaluating the subject for suitability to treatment, for example by determining the patency of the subject's GI tract, for example if the indication is small intestinal diseases, pancolitis, Crohn's disease, or if the patient has strictures or fistulae;

e) administration of an induction dose or of a maintenance dose of a drug, such as glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or such as another drug that is effective in the treatment of IBD conditions;

f) monitoring the progress of the disease, for example with reference to the Mayo Clinic Score, the Crohn's Disease Activity Index (CDAI), the Harvey-Bradshaw Index (HBI), the PRO, PR02 or PR03 tools, or a combination of the above; and/or

g) optionally repeating steps e) and f) one or more times, for example over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 6-8 week time point, or over a period of about 52 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 52 week time point.

As used herein, an induction dose is a dose of drug that may be administered, for example, at the beginning of a course of treatment, and that is higher than the maintenance
dose administered during treatment. An induction dose may also be administered during treatment, for example if the condition of the patients becomes worse.

As used herein, a maintenance dose is a dose of drug that is provided on a repetitive basis, for example at regular dosing intervals.

In some embodiments glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from an ingestible device.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises e) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises f) hereinabove.
example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises g) hereinabove.

In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and b) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and c) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises a) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and c) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises b) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and d) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises c) and g) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and e) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and f) hereinabove. In some embodiments herein, the method of treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more sites of disease comprises d) and g) hereinabove.
thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract that is
proximate to one or more sites of disease comprises d) and g) hereinabove. In some
embodiments herein, the method of treating a disease of the gastrointestinal tract that
comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) at a location in the gastrointestinal tract that is proximate to one or more
sites of disease comprises e) and f) hereinabove. In some embodiments herein, the method of
treating a disease of the gastrointestinal tract that comprises releasing glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the
gastrointestinal tract that is proximate to one or more sites of disease comprises g)
hereinabove.

In some embodiments, one or more steps a) to e) herein comprise endoscopy of the
gastrointestinal tract. In some embodiments, one or more steps a) to e) herein comprise
colonoscopy of the gastrointestinal tract. In some embodiments, one or more steps a) to e)
herein is performed one or more times. In some embodiments, such one or more of such one
or more steps a) to e) is performed after releasing glatiramer or a pharmaceutically acceptable
salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract that is
proximate to one or more sites of disease.

In some embodiments, the method comprises administering one or more maintenance
doses following administration of the induction dose in step e). In some embodiments an
induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) and a maintenance dose of glatiramer or a pharmaceutically acceptable
salt thereof (for example, glatiramer acetate) are each administered to the subject by
administering a pharmaceutical composition comprising a therapeutically effective amount of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In
some embodiments an induction dose of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) is administered to the subject in a different manner
from the maintenance dose. As an example, the maintenance dose may be administered
systemically, while the maintenance dose is administered locally using a device. In one
embodiment, a maintenance dose is administered systemically, and an induction dose is
administered using a device every 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30, 35, 40, or 45 days. In
another embodiment, a maintenance dose is administered systemically, and an induction dose
is administered when a disease flare up is detected or suspected.
In some embodiments, the induction dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein.

In some embodiments, the induction dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein.

In some embodiments, the induction dose is a dose of a second agent as disclosed herein delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein.

In one embodiment of the methods provided herein, the patient is not previously treated with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In one embodiment, the gastrointestinal inflammatory disorder is an inflammatory bowel disease. In one embodiment, the inflammatory bowel disease is ulcerative colitis or Crohn's disease. In one embodiment, the inflammatory bowel disease is ulcerative colitis and the response is selected from clinical response, mucosal healing and remission. In certain
embodiments, remission in the patient is determined to be induced when the Mayo Clinic Score < 2 and no individual subscore > 1, which is also referred to as clinical remission. In certain embodiments, mucosal healing is determined to have occurred when the patient is determined to have an endoscopy subscore of 0 or 1 as assessed by flexible sigmoidoscopy.

In certain such embodiments, patients who experience mucosal healing are determined to have an endoscopy subscore of 0. In certain embodiments, clinical response is determined to have occurred when the patient experiences a 3-point decrease and 30% reduction from baseline in MCS and > 1-point decrease in rectal bleeding subscore or absolute rectal bleeding score of 0 or 1.

In some embodiments, the method comprises identifying the disease site substantially at the same time as releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the method comprises monitoring the progress of the disease. In some embodiments, monitoring the progress of the disease comprises measuring the weight of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 6-8 week time point, or over a period of about 52 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 52 week time point. In some embodiments, monitoring the progress of the disease comprises measuring the food intake of the subject; measuring the level of blood in the feces of the subject; measuring the level of abdominal pain of the subject; and/or a combination of the above, for example over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 6-8 week time point, or over a period of about 52 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), including at the 52 week time point.

In some embodiments, the method comprises administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with a spray catheter. For example, administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with a spray catheter may be performed in step (e) hereinabove.
In some embodiments, the method does not comprise administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with a spray catheter.

In some embodiments, data obtained from cell culture assays and animal studies can be used in formulating an appropriate dosage of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). The effectiveness and dosing of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be determined by a health care professional or veterinary professional using methods known in the art, as well as by the observation of one or more disease symptoms in a subject (e.g., a human).

Certain factors may influence the dosage and timing required to effectively treat a subject (e.g., the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and the presence of other diseases).

In some embodiments, the subject is further administered an additional therapeutic agent (e.g., any of the additional therapeutic agents described herein). The additional therapeutic agent can be administered to the subject at substantially the same time as glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or pharmaceutical composition comprising it is administered and/or at one or more other time points. In some embodiments, the additional therapeutic agent is formulated together with glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) (e.g., using any of the examples of formulations described herein).

In some embodiments, the subject is administered a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at least once a month (e.g., at least twice a month, at least three times a month, at least four times a month, at least once a week, at least twice a week, three times a week, once a day, or twice a day).

Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be administered to a subject chronically. Chronic treatments include any form of repeated administration for an extended period of time, such as repeated administrations for one or more months, between a month and a year, one or more years, more than five years, more than 10 years, more than 15 years, more than 20 years, more than 25 years, more than 30 years, more than 35 years, more than 40 years, more than 45 years, or longer.

Alternatively or in addition, chronic treatments may be administered. Chronic treatments can involve regular administrations, for example one or more times a day, one or more times a week, or one or more times a month. For example, chronic treatment can include
administration (e.g., intravenous administration) about every two weeks (e.g., between about every 10 to 18 days).

A suitable dose may be the amount that is the lowest dose effective to produce a desired therapeutic effect. Such an effective dose will generally depend upon the factors described herein. If desired, an effective daily dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) can be administered as two, three, four, five, or six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.

In some examples, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein can result in the onset of treatment (e.g., a reduction in the number, severity, or duration of one or more symptoms and/or markers of any of the diseases described herein) or drug-target engagement in a subject within a time period of about 10 minutes to about 10 hours, about 10 minutes to about 9 hours, about 10 minutes to about 8 hours, about 10 minutes to about 7 hours, about 10 minutes to about 6 hours, about 10 minutes to about 5 hours, about 10 minutes to about 4.5 hours, about 10 minutes to about 4 hours, about 10 minutes to about 3.5 hours, about 10 minutes to about 3 hours, about 10 minutes to about 2.5 hours, about 10 minutes to about 2 hours, about 10 minutes to about 1.5 hours, about 10 minutes to about 1 hour, about 10 minutes to about 55 minutes, about 10 minutes to about 50 minutes, about 10 minutes to about 45 minutes, about 10 minutes to about 40 minutes, about 10 minutes to about 35 minutes, about 10 minutes to about 30 minutes, about 10 minutes to about 25 minutes, about 10 minutes to about 20 minutes, about 10 minutes to about 15 minutes, about 15 minutes to about 10 hours, about 15 minutes to about 9 hours, about 15 minutes to about 8 hours, about 15 minutes to about 7 hours, about 15 minutes to about 6 hours, about 15 minutes to about 5 hours, about 15 minutes to about 4.5 hours, about 15 minutes to about 4 hours, about 15 minutes to about 3.5 hours, about 15 minutes to about 3 hours, about 15 minutes to about 2.5 hours, about 15 minutes to about 2 hours, about 15 minutes to about 1.5 hours, about 15 minutes to about 1 hour, about 15 minutes to about 55 minutes, about 15 minutes to about 50 minutes, about 15 minutes to about 45 minutes, about 15 minutes to about 40 minutes, about 15 minutes to about 35 minutes, about 15 minutes to about 30 minutes, about 15 minutes to about 25 minutes, about 15 minutes to about 20 minutes, about 20 minutes to about 10 hours, about 20 minutes to about 9 hours, about 20 minutes to about 8 hours, about 20 minutes to about 7 hours, about 20 minutes to about 6
hours, about 20 minutes to about 5 hours, about 20 minutes to about 4.5 hours, about 20
minutes to about 4 hours, about 20 minutes to about 3.5 hours, about 20 minutes to about 3
hours, about 20 minutes to about 2.5 hours, about 20 minutes to about 2 hours, about 20
minutes to about 1.5 hours, about 20 minutes to about 1 hour, about 20 minutes to about 55
minutes, about 20 minutes to about 50 minutes, about 20 minutes to about 45 minutes, about
20 minutes to about 40 minutes, about 20 minutes to about 35 minutes, about 20 minutes to
about 30 minutes, about 20 minutes to about 25 minutes, about 25 minutes to about 10 hours,
about 25 minutes to about 9 hours, about 25 minutes to about 8 hours, about 25 minutes to
about 7 hours, about 25 minutes to about 6 hours, about 25 minutes to about 5 hours, about
25 minutes to about 4.5 hours, about 25 minutes to about 4 hours, about 25 minutes to about
3.5 hours, about 25 minutes to about 3 hours, about 25 minutes to about 2.5 hours, about 25
minutes to about 2 hours, about 25 minutes to about 1.5 hours, about 25 minutes to about 1
hour, about 25 minutes to about 55 minutes, about 25 minutes to about 50 minutes, about 25
minutes to about 45 minutes, about 25 minutes to about 40 minutes, about 25 minutes to
about 35 minutes, about 25 minutes to about 30 minutes, about 30 minutes to about 10 hours,
about 30 minutes to about 9 hours, about 30 minutes to about 8 hours, about 30 minutes to
about 7 hours, about 30 minutes to about 6 hours, about 30 minutes to about 5 hours, about
30 minutes to about 4.5 hours, about 30 minutes to about 4 hours, about 30 minutes to about
3.5 hours, about 30 minutes to about 3 hours, about 30 minutes to about 2.5 hours, about 30
minutes to about 2 hours, about 30 minutes to about 1.5 hours, about 30 minutes to about 1
hour, about 30 minutes to about 55 minutes, about 30 minutes to about 50 minutes, about 30
minutes to about 45 minutes, about 30 minutes to about 40 minutes, about 30 minutes to
about 35 minutes, about 35 minutes to about 10 hours, about 35 minutes to about 9 hours,
about 35 minutes to about 8 hours, about 35 minutes to about 7 hours, about 35 minutes to
about 6 hours, about 35 minutes to about 5 hours, about 35 minutes to about 4.5 hours, about
35 minutes to about 4 hours, about 35 minutes to about 3.5 hours, about 35 minutes to about
3 hours, about 35 minutes to about 2.5 hours, about 35 minutes to about 2 hours, about 35
minutes to about 1.5 hours, about 35 minutes to about 1 hour, about 35 minutes to about 55
minutes, about 35 minutes to about 50 minutes, about 35 minutes to about 45 minutes, about
35 minutes to about 40 minutes, about 40 minutes to about 10 hours, about 40 minutes to
about 9 hours, about 40 minutes to about 8 hours, about 40 minutes to about 7 hours, about
40 minutes to about 6 hours, about 40 minutes to about 5 hours, about 40 minutes to about
4.5 hours, about 40 minutes to about 4 hours, about 40 minutes to about 3.5 hours, about 40
minutes to about 3 hours, about 40 minutes to about 2.5 hours, about 40 minutes to about 2
hours, about 40 minutes to about 1.5 hours, about 40 minutes to about 1 hour, about 40
minutes to about 55 minutes, about 40 minutes to about 50 minutes, about 40 minutes to
about 45 minutes, about 45 minutes to about 10 hours, about 45 minutes to about 9 hours,
about 45 minutes to about 8 hours, about 45 minutes to about 7 hours, about 45 minutes to
about 6 hours, about 45 minutes to about 5 hours, about 45 minutes to about 4.5 hours, about
45 minutes to about 4 hours, about 45 minutes to about 3.5 hours, about 45 minutes to about
3 hours, about 45 minutes to about 2.5 hours, about 45 minutes to about 2 hours, about 45
minutes to about 1.5 hours, about 45 minutes to about 1 hour, about 45 minutes to about 55
minutes, about 45 minutes to about 50 minutes, about 50 minutes to about 10 hours, about 50
minutes to about 9 hours, about 50 minutes to about 8 hours, about 50 minutes to about 7
hours, about 50 minutes to about 6 hours, about 50 minutes to about 5 hours, about 50
minutes to about 4.5 hours, about 50 minutes to about 4 hours, about 50 minutes to about 3.5
hours, about 50 minutes to about 3 hours, about 50 minutes to about 2.5 hours, about 50
minutes to about 2 hours, about 50 minutes to about 1.5 hours, about 50 minutes to about 1
hour, about 50 minutes to about 55 minutes, about 55 minutes to about 10 hours, about 55
minutes to about 9 hours, about 55 minutes to about 8 hours, about 55 minutes to about 7
hours, about 55 minutes to about 6 hours, about 55 minutes to about 5 hours, about 55
minutes to about 4.5 hours, about 55 minutes to about 4 hours, about 55 minutes to about 3.5
hours, about 55 minutes to about 3 hours, about 55 minutes to about 2.5 hours, about 55
minutes to about 2 hours, about 55 minutes to about 1.5 hours, about 55 minutes to about 1
hour, about 1 hour to about 10 hours, about 1 hour to about 9 hours, about 1 hour to about 8
hours, about 1 hour to about 7 hours, about 1 hour to about 6 hours, about 1 hour to about 5
hours, about 1 hour to about 4.5 hours, about 1 hour to about 4 hours, about 1 hour to about
3.5 hours, about 1 hour to about 3 hours, about 1 hour to about 2.5 hours, about 1 hour to
about 2 hours, about 1 hour to about 1.5 hours, about 1.5 hours to about 10 hours, about 1.5
hours to about 9 hours, about 1.5 hours to about 8 hours, about 1.5 hours to about 7 hours,
about 1.5 hours to about 6 hours, about 1.5 hours to about 5 hours, about 1.5 hours to about
4.5 hours, about 1.5 hours to about 4 hours, about 1.5 hours to about 3.5 hours, about 1.5
hours to about 3 hours, about 1.5 hours to about 2.5 hours, about 1.5 hours to about 2 hours,
about 2 hours to about 10 hours, about 2 hours to about 9 hours, about 2 hours to about 8
hours, about 2 hours to about 7 hours, about 2 hours to about 6 hours, about 2 hours to about
5 hours, about 2 hours to about 4.5 hours, about 2 hours to about 4 hours, about 2 hours to
about 3.5 hours, about 2 hours to about 3 hours, about 2 hours to about 2.5 hours, about 2.5 hours to about 10 hours, about 2.5 hours to about 9 hours, about 2.5 hours to about 8 hours, about 2.5 hours to about 7 hours, about 2.5 hours to about 6 hours, about 2.5 hours to about 5 hours, about 2.5 hours to about 4.5 hours, about 2.5 hours to about 4 hours, about 2.5 hours to about 3.5 hours, about 2.5 hours to about 3 hours, about 3 hours to about 10 hours, about 3 hours to about 9 hours, about 3 hours to about 8 hours, about 3 hours to about 7 hours, about 3 hours to about 6 hours, about 3 hours to about 5 hours, about 3 hours to about 4.5 hours, about 3 hours to about 4 hours, about 3 hours to about 3.5 hours, about 3.5 hours to about 10 hours, about 3.5 hours to about 9 hours, about 3.5 hours to about 8 hours, about 3.5 hours to about 7 hours, about 3.5 hours to about 6 hours, about 3.5 hours to about 5 hours, about 3.5 hours to about 4.5 hours, about 3.5 hours to about 4 hours, about 4 hours to about 10 hours, about 4 hours to about 9 hours, about 4 hours to about 8 hours, about 4 hours to about 7 hours, about 4 hours to about 6 hours, about 4 hours to about 5 hours, about 4 hours to about 4.5 hours, about 4.5 hours to about 10 hours, about 4.5 hours to about 9 hours, about 4.5 hours to about 8 hours, about 4.5 hours to about 7 hours, about 4.5 hours to about 6 hours, about 4.5 hours to about 5 hours, about 5 hours to about 10 hours, about 5 hours to about 9 hours, about 5 hours to about 8 hours, about 5 hours to about 7 hours, about 5 hours to about 6 hours, about 6 hours to about 10 hours, about 6 hours to about 9 hours, about 6 hours to about 8 hours, about 6 hours to about 7 hours, about 7 hours to about 10 hours, about 7 hours to about 9 hours, about 7 hours to about 8 hours, about 8 hours to about 10 hours, about 8 hours to about 9 hours, or about 9 hours to about 10 hours of administration of a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein. Drug-target engagement may be determined, for example, as disclosed in Simon GM, Niphakis MJ, Cravatt BF, Nature chemical biology. 2013; 9(4):200-205, incorporated by reference herein in its entirety.

In some embodiments, administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the devices or compositions described herein can provide for treatment (e.g., a reduction in the number, severity, and/or duration of one or more symptoms and/or markers of any of the disorders described herein in a subject) for a time period of between about 1 hour to about 30 days, about 1 hour to about 28 days, about 1 hour to about 26 days, about 1 hour to about 24 days, about 1 hour to about 22 days, about 1 hour to about 20 days, about 1 hour to about 18 days, about 1 hour to about 16 days, about 1 hour to about 14 days, about 1 hour to about 12 days, about 1 hour to about
10 days, about 1 hour to about 8 days, about 1 hour to about 6 days, about 1 hour to about 5
days, about 1 hour to about 4 days, about 1 hour to about 3 days, about 1 hour to about 2
days, about 1 hour to about 1 day, about 1 hour to about 12 hours, about 1 hour to about 6
hours, about 1 hour to about 3 hours, about 3 hours to about 30 days, about 3 hours to about
28 days, about 3 hours to about 26 days, about 3 hours to about 24 days, about 3 hours to
about 22 days, about 3 hours to about 20 days, about 3 hours to about 18 days, about 3 hours
to about 16 days, about 3 hours to about 14 days, about 3 hours to about 12 days, about 3
hours to about 10 days, about 3 hours to about 8 days, about 3 hours to about 6 days, about 3
hours to about 5 days, about 3 hours to about 4 days, about 3 hours to about 3 days, about 3
hours to about 2 days, about 3 hours to about 1 day, about 3 hours to about 12 hours, about 3
hours to about 6 hours, about 6 hours to about 30 days, about 6 hours to about 28 days, about
6 hours to about 26 days, about 6 hours to about 24 days, about 6 hours to about 22 days,
about 6 hours to about 20 days, about 6 hours to about 18 days, about 6 hours to about 16
days, about 6 hours to about 14 days, about 6 hours to about 12 days, about 6 hours to about
10 days, about 6 hours to about 8 days, about 6 hours to about 6 days, about 6 hours to about
5 days, about 6 hours to about 4 days, about 6 hours to about 3 days, about 6 hours to about 2
days, about 6 hours to about 1 day, about 6 hours to about 12 hours, about 12 hours to about
30 days, about 12 hours to about 28 days, about 12 hours to about 26 days, about 12 hours to
about 24 days, about 12 hours to about 22 days, about 12 hours to about 20 days, about 12
hours to about 18 days, about 12 hours to about 16 days, about 12 hours to about 14 days,
about 12 hours to about 10 days, about 12 hours to about 8 days, about 12 hours to about 6
days, about 12 hours to about 5 days, about 12 hours to about 4 days, about 12 hours to about
3 days, about 12 hours to about 2 days, about 12 hours to about 1 day, about 1 day to about
30 days, about 1 day to about 28 days, about 1 day to about 26 days, about 1 day to about 24
days, about 1 day to about 22 days, about 1 day to about 20 days, about 1 day to about 18
days, about 1 day to about 16 days, about 1 day to about 14 days, about 1 day to about 12
days, about 1 day to about 10 days, about 1 day to about 8 days, about 1 day to about 6
days, about 1 day to about 5 days, about 1 day to about 4 days, about 1 day to about 3
days, about 1 day to about 2 days, about 2 days to about 30 days, about 2 days to about
28 days, about 2 days to about 26 days, about 2 days to about 24 days, about 2 days to about
22 days, about 2 days to about 20 days, about 2 days to about 18 days, about 2 days to about
16 days, about 2 days to about 14 days, about 2 days to about 12 days, about 2 days to about
10 days, about 2 days to about 8 days, about 2 days to about 6 days, about 2 days to
about 5 days, about 2 days to about 4 days, about 2 days to about 3 days, about 3 days to about 30 days, about 3 days to about 28 days, about 3 days to about 26 days, about 3 days to about 24 days, about 3 days to about 22 days, about 3 days to about 20 days, about 3 days to about 18 days, about 3 days to about 16 days, about 3 days to about 14 days, about 3 days to about 12 days, about 3 days to about 10 days, about 3 days to about 8 days, about 3 days to about 6 days, about 3 days to about 5 days, about 3 days to about 4 days, about 4 days to about 30 days, about 4 days to about 28 days, about 4 days to about 26 days, about 4 days to about 24 days, about 4 days to about 22 days, about 4 days to about 20 days, about 4 days to about 18 days, about 4 days to about 16 days, about 4 days to about 14 days, about 4 days to about 12 days, about 4 days to about 10 days, about 4 days to about 8 days, about 4 days to about 6 days, about 4 days to about 5 days, about 5 days to about 30 days, about 5 days to about 28 days, about 5 days to about 26 days, about 5 days to about 24 days, about 5 days to about 22 days, about 5 days to about 20 days, about 5 days to about 18 days, about 5 days to about 16 days, about 5 days to about 14 days, about 5 days to about 12 days, about 5 days to about 10 days, about 5 days to about 8 days, about 5 days to about 6 days, about 6 days to about 30 days, about 6 days to about 28 days, about 6 days to about 26 days, about 6 days to about 24 days, about 6 days to about 22 days, about 6 days to about 20 days, about 6 days to about 18 days, about 6 days to about 16 days, about 6 days to about 14 days, about 6 days to about 12 days, about 6 days to about 10 days, about 6 days to about 8 days, about 6 days to about 30 days, about 6 days to about 28 days, about 6 days to about 26 days, about 6 days to about 24 days, about 6 days to about 22 days, about 6 days to about 20 days, about 6 days to about 18 days, about 6 days to about 16 days, about 6 days to about 14 days, about 6 days to about 12 days, about 6 days to about 10 days, about 6 days to about 8 days, about 8 days to about 30 days, about 8 days to about 28 days, about 8 days to about 26 days, about 8 days to about 24 days, about 8 days to about 22 days, about 8 days to about 20 days, about 8 days to about 18 days, about 8 days to about 16 days, about 8 days to about 14 days, about 8 days to about 12 days, about 8 days to about 10 days, about 10 days to about 30 days, about 10 days to about 28 days, about 10 days to about 26 days, about 10 days to about 24 days, about 10 days to about 22 days, about 10 days to about 20 days, about 10 days to about 18 days, about 10 days to about 16 days, about 10 days to about 14 days, about 10 days to about 12 days, about 12 days to about 30 days, about 12 days to about 28 days, about 12 days to about 26 days, about 12 days to about 24 days, about 12 days to about 22 days, about 12 days to about 20 days, about 12 days to about 18 days, about 12 days to about 16 days, about 12 days to about 14 days, about 14 days to about 30 days, about 14 days to about 28 days, about 14 days to about 26 days, about 14 days to about 24 days, about 14 days to about 22 days, about 14 days to about 20 days, about 14 days to about 18 days, about 14 days to about 16 days, about 16 days to about 30 days, about 16 days to about 28 days, about 16 days to about 26 days,
about 16 days to about 24 days, about 16 days to about 22 days, about 16 days to about 20
days, about 16 days to about 18 days, about 18 days to about 30 days, about 18 days to about
28 days, about 18 days to about 26 days, about 18 days to about 24 days, about 18 days to
about 22 days, about 18 days to about 20 days, about 20 days to about 30 days, about 20 days
to about 28 days, about 20 days to about 26 days, about 20 days to about 24 days, about 20
days to about 22 days, about 22 days to about 30 days, about 22 days to about 28 days, about
22 days to about 26 days, about 22 days to about 24 days, about 24 days to about 30 days,
about 24 days to about 28 days, about 24 days to about 26 days, about 26 days to about 30
days, about 26 days to about 28 days, or about 28 days to about 30 days in a subject

following first administration of glatiramer or a pharmaceutically acceptable salt thereof (for
eexample, glatiramer acetate) using any of the compositions or devices described herein. Non-
limiting examples of symptoms and/or markers of a disease described herein are described
below.

For example, treatment can result in a decrease (e.g., about 1% to about 99%
decrease, about 1% to about 95% decrease, about 1% to about 90% decrease, about 1% to
about 85% decrease, about 1% to about 80% decrease, about 1% to about 75% decrease,
about 1% to about 70% decrease, about 1% to about 65% decrease, about 1% to about 60%
decrease, about 1% to about 55% decrease, about 1% to about 50% decrease, about 1% to
about 45% decrease, about 1% to about 40% decrease, about 1% to about 35% decrease,
about 1% to about 30% decrease, about 1% to about 25% decrease, about 1% to about 20%
decrease, about 1% to about 15% decrease, about 1% to about 10% decrease, about 1% to
about 5% decrease, about 5% to about 99% decrease, about 5% to about 95% decrease, about
5% to about 90% decrease, about 5% to about 85% decrease, about 5% to about 80%
decrease, about 5% to about 75% decrease, about 5% to about 70% decrease, about 5% to
about 65% decrease, about 5% to about 60% decrease, about 5% to about 55% decrease,
about 5% to about 50% decrease, about 5% to about 45% decrease, about 5% to about 40%
decrease, about 5% to about 35% decrease, about 5% to about 30% decrease, about 5% to
about 25% decrease, about 5% to about 20% decrease, about 5% to about 15% decrease, about
5% to about 10% decrease, about 10% to about 99% decrease, about 10% to about 95%
decrease, about 10% to about 90% decrease, about 10% to about 85% decrease, about 10% to
about 80% decrease, about 10% to about 75% decrease, about 10% to about 70% decrease,
10% to about 40% decrease, about 10% to about 35% decrease, about 10% to about 30% decrease, about 10% to about 25% decrease, about 10% to about 20% decrease, about 10% to about 15% decrease, about 15% to about 99% decrease, about 15% to about 95% decrease, about 15% to about 90% decrease, about 15% to about 85% decrease, about 15% to about 80% decrease, about 15% to about 75% decrease, about 15% to about 70% decrease, about 15% to about 65% decrease, about 15% to about 60% decrease, about 15% to about 55% decrease, about 15% to about 50% decrease, about 15% to about 45% decrease, about 15% to about 40% decrease, about 15% to about 35% decrease, about 15% to about 30% decrease, about 15% to about 25% decrease, about 15% to about 20% decrease, about 20% to about 95% decrease, about 20% to about 90% decrease, about 20% to about 85% decrease, about 20% to about 80% decrease, about 20% to about 75% decrease, about 20% to about 70% decrease, about 20% to about 65% decrease, about 20% to about 60% decrease, about 20% to about 55% decrease, about 20% to about 50% decrease, about 20% to about 45% decrease, about 20% to about 40% decrease, about 20% to about 35% decrease, about 20% to about 30% decrease, about 20% to about 25% decrease, about 25% to about 99% decrease, about 25% to about 95% decrease, about 25% to about 90% decrease, about 25% to about 85% decrease, about 25% to about 80% decrease, about 25% to about 75% decrease, about 25% to about 70% decrease, about 25% to about 65% decrease, about 25% to about 60% decrease, about 25% to about 55% decrease, about 25% to about 50% decrease, about 25% to about 45% decrease, about 25% to about 40% decrease, about 25% to about 35% decrease, about 25% to about 30% decrease, about 25% to about 25% decrease, about 30% to about 99% decrease, about 30% to about 95% decrease, about 30% to about 90% decrease, about 30% to about 85% decrease, about 30% to about 80% decrease, about 30% to about 75% decrease, about 30% to about 70% decrease, about 30% to about 65% decrease, about 30% to about 60% decrease, about 30% to about 55% decrease, about 30% to about 50% decrease, about 30% to about 45% decrease, about 30% to about 40% decrease, about 30% to about 35% decrease, about 35% to about 99% decrease, about 35% to about 95% decrease, about 35% to about 90% decrease, about 35% to about 85% decrease, about 35% to about 80% decrease, about 35% to about 75% decrease, about 35% to about 70% decrease, about 35% to about 65% decrease, about 30% to about 60% decrease, about 35% to about 55% decrease, about 35% to about 50% decrease, about 35% to about 45% decrease, about 35% to about 40% decrease, about 40% to about 99% decrease, about 40% to about 95% decrease, about 40% to about 90% decrease, about 40% to about 85% decrease, about 40% to about 80% decrease,
about 40% to about 75% decrease, about 40% to about 70% decrease, about 40% to about
65% decrease, about 40% to about 60% decrease, about 40% to about 55% decrease, about
40% to about 50% decrease, about 40% to about 45% decrease, about 45% to about 99%
decrease, about 45% to about 95% decrease, about 45% to about 90% decrease, about 45% to
about 85% decrease, about 45% to about 80% decrease, about 45% to about 75% decrease,
about 45% to about 70% decrease, about 45% to about 65% decrease, about 45% to about
60% decrease, about 45% to about 55% decrease, about 45% to about 50% decrease, about
50% to about 99%, decrease, about 50% to about 95% decrease, about 50% to about 90%
decrease, about 50% to about 85% decrease, about 50% to about 80% decrease, about 50% to
about 75% decrease, about 50% to about 70% decrease, about 50% to about 65% decrease,
about 50% to about 60% decrease, about 50% to about 55% decrease, about 55% to about
99% decrease, about 55% to about 95% decrease, about 55% to about 90% decrease, about
55% to about 85% decrease, about 55% to about 80% decrease, about 55% to about 75%
decrease, about 55% to about 70% decrease, about 55% to about 65% decrease, about 55% to
about 60% decrease, about 60% to about 99% decrease, about 60% to about 95% decrease,
about 60% to about 90% decrease, about 60% to about 85% decrease, about 60% to about
80% decrease, about 60% to about 75% decrease, about 60% to about 70% decrease, about
60% to about 65% decrease, about 65% to about 99% decrease, about 65% to about 95%
decrease, about 65% to about 90% decrease, about 65% to about 85% decrease, about 65% to
about 80% decrease, about 65% to about 75% decrease, about 65% to about 70% decrease,
about 70% to about 99% decrease, about 70% to about 95% decrease, about 70% to about
90% decrease, about 70% to about 85% decrease, about 70% to about 80% decrease, about
70% to about 75% decrease, about 75% to about 99% decrease, about 75% to about 95%
decrease, about 75% to about 90% decrease, about 75% to about 85% decrease, about 75% to
about 80% decrease, about 80% to about 99% decrease, about 80% to about 95% decrease,
about 80% to about 90% decrease, about 80% to about 85% decrease, about 85% to about
99% decrease, about 85% to about 95% decrease, about 85% to about 90% decrease, about
90% to about 99% decrease, about 90% to about 95% decrease, or about 95% to about 99%
decrease) in one or more (e.g., two, three, four, five, six, seven, eight, or nine) of: the level of
interferon-γ in GI tissue, the level of IL-1β in GI tissue, the level of IL-6 in GI tissue, the
level of IL-22 in GI tissue, the level of IL-17A in the GI tissue, the level of TNFα in GI
tissue, the level of IL-2 in GI tissue, and endoscopy score in a subject (e.g., as compared to
the level in the subject prior to treatment or compared to a subject or population of subjects
having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the compositions or devices described herein.

As used herein, "GI tissue" refers to tissue in the gastrointestinal (GI) tract, such as tissue in one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum, more particularly in the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, or in the distal portion of one or more of duodenum, jejunum, ileum, ascending colon, transverse colon, descending colon, and sigmoid colon. The GI tissue may be, for example, GI tissue proximate to one or more sites of disease. Exemplary methods for determining the endoscopy score are described herein and other methods for determining the endoscopy score are known in the art. Exemplary methods for determining the levels of interferon-γ, IL-1β, IL-6, IL-22, IL-17A, TNFa, and IL-2 are described herein. Additional methods for determining the levels of these cytokines are known in the art.

In some examples, treatment can result in an increase (e.g., about 1% to about 500% increase, about 1% to about 400% increase, about 1% to about 300% increase, about 1% to about 200% increase, about 1% to about 150% increase, about 1% to about 100% increase, about 1% to about 90% increase, about 1% to about 80% increase, about 1% to about 70% increase, about 1% to about 60% increase, about 1% to about 50% increase, about 1% to about 40% increase, about 1% to about 30% increase, about 1% to about 20% increase, about 1% to about 10% increase, a 10% to about 50% increase, about 10% to about 400% increase, about 10% to about 300% increase, about 10% to about 200% increase, about 10% to about 150% increase, about 10% to about 100% increase, about 10% to about 90% increase, about 10% to about 80% increase, about 10% to about 70% increase, about 10% to about 60% increase, about 10% to about 50% increase, about 10% to about 40% increase, about 10% to about 30% increase, about 10% to about 20% increase, about 20% to about 500% increase, about 20% to about 400% increase, about 20% to about 300% increase, about 20% to about 200% increase, about 20% to about 150% increase, about 20% to about 100% increase, about 20% to about 90% increase, about 20% to about 80% increase, about 20% to about 70% increase, about 20% to about 60% increase, about 20% to about 50% increase, about 20% to about 40% increase, about 20% to about 30% increase, about 30% to about 50% increase, about 30% to about 40% increase, about 30% to about 70% increase, about 30% to about 60% increase, about 30% to about 50% increase, about 30% to about 40% increase, about 30% to about 30% increase, about 30% to about 20% increase.
500% increase, about 30% to about 400% increase, about 30% to about 300% increase, about 30% to about 200% increase, about 30% to about 150% increase, about 30% to about 100% increase, about 30% to about 90% increase, about 30% to about 80% increase, about 30% to about 70% increase, about 30% to about 60% increase, about 30% to about 50% increase, about 30% to about 40% increase, about 40% to about 500% increase, about 40% to about 300% increase, about 40% to about 200% increase, about 40% to about 150% increase, about 40% to about 100% increase, about 40% to about 90% increase, about 40% to about 80% increase, about 40% to about 70% increase, about 40% to about 60% increase, about 60% to about 500% increase, about 60% to about 300% increase, about 60% to about 200% increase, about 60% to about 150% increase, about 60% to about 100% increase, about 60% to about 90% increase, about 60% to about 80% increase, about 60% to about 70% increase, about 60% to about 60% increase, about 60% to about 400% increase, about 60% to about 400% increase, about 60% to about 300% increase, about 60% to about 200% increase, about 60% to about 150% increase, about 60% to about 100% increase, about 60% to about 90% increase, about 60% to about 80% increase, about 60% to about 70% increase, about 60% to about 60% increase, about 80% to about 500% increase, about 80% to about 400% increase, about 80% to about 300% increase, about 80% to about 200% increase, about 80% to about 150% increase, about 80% to about 100% increase, about 80% to about 90% increase, about 80% to about 80% increase, about 80% to about 70% increase, about 80% to about 60% increase, about 300% to about 500% increase, about 300% to about 400% increase, about 300% to about 300% increase, about 300% to about 200% increase, about 300% to about 150% increase, about 300% to about 100% increase, about 300% to about 90% increase, about 300% to about 80% increase, about 300% to about 70% increase, about 300% to about 60% increase, about 200% to about 500% increase, about 200% to about 300% increase, about 200% to about 200% increase, about 200% to about 150% increase, about 200% to about 100% increase, about 200% to about 90% increase, about 200% to about 80% increase, about 200% to about 70% increase, about 200% to about 60% increase, about 100% to about 500% increase, about 100% to about 300% increase, about 100% to about 200% increase, about 100% to about 150% increase, about 100% to about 100% increase, about 100% to about 90% increase, about 100% to about 80% increase, about 100% to about 70% increase, about 100% to about 60% increase, about 100% to about 500% increase, about 100% to about 400% increase, about 100% to about 300% increase, about 100% to about 200% increase, about 100% to about 150% increase, about 100% to about 100% increase, about 100% to about 90% increase, about 100% to about 80% increase, about 100% to about 70% increase, about 100% to about 60% increase, about 200% to about 500% increase, about 200% to about 300% increase, about 200% to about 200% increase, about 200% to about 150% increase, about 200% to about 100% increase, about 200% to about 90% increase, about 200% to about 80% increase, about 200% to about 70% increase, about 200% to about 60% increase, about 400% to about 500% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase, about 400% to about 150% increase, about 400% to about 100% increase, about 400% to about 90% increase, about 400% to about 80% increase, about 400% to about 70% increase, about 400% to about 60% increase, about 400% to about 500% increase, about 400% to about 400% increase, about 400% to about 300% increase, about 400% to about 200% increase.

in one or both of stool consistency score and weight of a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a
different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or
any of the subranges herein) following the first administration of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) using any of the
compositions or devices described herein. Exemplary methods for determining stool
consistency score are described herein. Additional methods for determining a stool
consistency score are known in the art.

Accordingly, in some embodiments, a method of treatment disclosed herein includes
determining the level of a marker at the location of disease in a subject (e.g., either before
and/or after administration of the device). In some embodiments, the marker is a biomarker
and the method of treatment disclosed herein comprises determining that the level of a
biomarker at the location of disease is a subject following administration of the device is
decreased as compared to the level of the biomarker at the same location of disease in a
subject either before administration or at the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate). In some examples, the level of the biomarker at the same
location of disease following administration of the device is 1% decreased to 99% decreased
as compared to the level of the biomarker at the same location of disease in a subject either
before administration or at the same time point following systemic administration of an equal
amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer
acetate). In some embodiments, the level of the marker is one or more of: the level of
interferon-γ in GI tissue, the level of IL-17A in the GI tissue, the level of TNFa in the GI
tissue, the level of IL-2 in the GI tissue, and the endoscopy score in a subject.

In some embodiments, the method of treatment disclosed herein includes determining
that the level of a marker at a time point following administration of a device is lower than
the level of the marker at a time point following administration of the device is lower than the
level of the marker in a subject prior to administration of the device or in a subject at
substantially the same time point following systemic administration of an equal amount of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In
some examples, the level of the marker following administration of the device is 1%
decreased to 99% decreased as compared to the level of the marker in a subject prior to
administration of the device or in a subject at the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate). In some examples, a method of treatment disclosed herein
includes determining the level of the biomarker at the location of disease in a subject within a
time period of about 10 minutes to 10 hours following administration of the device.

In some embodiments, a method of treatment described herein includes: (i)
determining the ratio RB of the level LIB of a biomarker at the location of disease at a first
point following administration of the device and the level L₂B of the biomarker at the
same location of disease in a subject at substantially the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate); (ii) determining the ratio of RD of the level of LIB of

glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at
the same location and the substantially the same time point as in (i) and the level L₂D of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at
the same location of disease in a subject at substantially the same time point following
systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable
salt thereof (for example, glatiramer acetate); and (iii) determining the ratio of RB/RD.

In some embodiments, a method of treatment disclosed herein can include: (i)
determining the ratio RB of the level LIB of a biomarker at the location of disease at a time
point following administration of the device and the level L₂B of the biomarker at the same
location of disease in a subject at substantially the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate); (ii) determining the ratio of RD of the level LID of glatiramer
or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the same
location and at substantially the time point as in (i) and the level L₂D of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in a subject at the
same location of disease at substantially the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate); and (iii) determining the product RB X RD.

In some embodiments, a method of treatment disclosed herein can include
determining that the level of a marker in a subject at a time point following administration of
the device is elevated as compared to a level of the marker in a subject prior to administration
of the device or a level at substantially the same time point in a subject following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate). In some examples, the level of the marker at a time point
following administration of the device is 1% increased or 400% increased as compared to the
level of the marker in a subject prior to administration of the device or a level at substantially
the same time point in a subject following systemic administration of an equal amount of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In
some examples, the level of the marker is one or more of subject weight and stool
consistency (e.g., stool consistency score). In some examples, a method of treatment
disclosed herein includes determining the level of the marker in a subject within a period of
about 10 minutes to about 10 hours following administration of the device.

In some embodiments, a method of treatment disclosed herein can include
determining the level of a marker in a subject's blood, serum or plasma.

An illustrative list of examples of biomarkers for GI disorders includes interferon-γ,
IL-1β, IL-6, IL-22, IL-17A, TNFa, IL-2, memory cells (CD44+CD45RB-CD4+ cells); α4β7;
VEGF; ICAM; VCAM; SAA; Calprotectin; lactoferrin; FGF2; TGFb; ANG-1; ANG-2;
PLGF; Biologies (Infliximab; Humira; Stelara; Vedolizumab; Simponi; Jak inhibitors;
Others); EGF;; IL12/23p40; GMCSF; A4 B7; Aeb7; CRP; SAA; ICAM; VCAM; AREG;
EREG; HB-EGF; HRG; BTC; TGFa; SCF; TWEAK; MMP-9; MMP-6; Ceacam CD66;
IL10; ADA; Madcam-1; CD 166 (AL CAM); FGF2; FGF7; FGF9; FGF19; ANCA
Antineutrophil cytoplasmic antibody; ASCAA Anti-Saccharomyces Cerevisiae Antibody
IgA; ASCAG Anti-Saccharomyces Cerevisiae Antibody IgG; CBirl Anti-Clostridium cluster
XIVA flagellin CBirl antibody; A4-Fla2 Anti-Clostridium cluster XIVa flagellin 2 antibody;
FlaX Anti-Clostridium cluster XIVa flagellin X antibody; OmpC Anti-Escherichia coli Outer
Membrane Protein C; ANCA Perinuclear AntiNeutrophil Cytoplasmic Antibody; AREG
Amphiregulin Protein; BTC Betacellulin Protein; EGF Epidermal Growth Factor EREG
Epiregulin Protein; HBEGF Heparin Binding Epidermal Growth Factors; HGF Hepatocyte
Growth Factor; HRGNeuregulin-1; TGFA Transforming Growth Factor alpha; CRP C-
Reactive Protein; SAA Serum Amyloid A; ICAM-1 Intercellular Adhesion Molecule 1;
VCAM-1 Vascular Cell Adhesion Molecule 1; fibroblasts underlying the intestinal
epithelium; and HGF.

In some embodiments, a marker is an IBD biomarker, such as, for example: anti-
glycan; anti-Saccharomices cerevisiae (ASCA); anti-laminaribioside (ALCA); anti-
chitobioside (ACCA); anti-mannobioside (AMCA); anti-laminarin (anti-L); anti-chitin (anti-
C) antibodies: anti OUTER membrane porin C (anti-OmpC), anti-Cbirl flagellin; anti-12
antibody; autoantibodies targeting the exocrine pancreas (PAB); and perinuclear anti-
neutrophil antibody (pANCA); and calprotectin.
In some embodiments, a biomarker is associated with membrane repair, fibrosis, angiogenesis. In certain embodiments, a biomarker is an inflammatory biomarker, an anti-inflammatory biomarker, an MMP biomarker, an immune marker, or a TNF pathway biomarker. In some embodiments, a biomarker is gut specific.

For tissue samples, HER2 can be used as a biomarker relating to cytotoxic T cells. Additionally, other cytokine levels can be used as biomarkers in tissue (e.g., phospho STAT 1, STAT 3 and STAT 5), in plasma (e.g., VEGF, VCAM, ICAM, IL-6), or both.

In some embodiments, the biomarkers include one or more immunoglobulins, such as, for example, immunoglobulin M (IgM), immunoglobulin D (IgD), immunoglobulin G (IgG), immunoglobulin E (IgE) and/or immunoglobulin A (IgA). In some embodiments, IgM is a biomarker of infection and/or inflammation. In some embodiments, IgD is a biomarker of autoimmune disease. In some embodiments, IgG is a biomarker of Alzheimer's disease and/or for cancer. In some embodiments, IgE is a biomarker of asthma and/or allergen immunotherapy. In some embodiments, IgA is a biomarker of kidney disease.

In some embodiments, the biomarker is High Sensitivity C-reactive Protein (hsCRP); a-hydroxy-4-cholesten-3-one (7C4); Anti-Endomysial IgA (EMA IgA); Anti-Human Tissue Transglutaminase IgA (tTG IgA); Total Serum IgA by Nephelometry; Fecal Calprotectin; or Fecal Gastrointestinal Pathogens.

In some embodiments, the biomarker is

a) an anti-gliadin IgA antibody, an anti-gliadin IgG antibody, an anti-tissue transglutaminase (tTG) antibody, an anti-endomysial antibody;

b) a serological marker that is ASCA-A, ASCA-G, ANCA, pANCA, anti-OmpC antibody, anti-CBir1 antibody, anti-FlaX antibody, or anti-A4-Fla2 antibody;

c) an inflammation marker that is VEGF, ICAM, VCAM, SAA, or CRP;

d) the genotype of the genetic markers ATG16L1, ECM1, NXX2-3, or STAT3;

e) a bacterial antigen antibody marker;

f) a mast cell marker;

g) an inflammatory cell marker;

h) a bile acid malabsorption (BAM) marker;

i) a kynurenine marker; or

j) a serotonin marker.

In some embodiments, the bacterial antigen antibody marker is selected from the group consisting of an anti-Fla1 antibody, anti-Fla2 antibody, anti-FlaA antibody, anti-FliC
antibody, anti-FHC2 antibody, anti-FHC3 antibody, anti-YBaN1 antibody, anti-ECFliC antibody, anti-EcOFliC antibody, anti-SeFijB antibody, anti-CjFlaA antibody, anti-CjFlaB antibody, anti-SfFiC antibody, anti-CjGtA antibody, anti-Cjdmh antibody, anti-CjGT-A antibody, anti-EcYidX antibody, anti-EcEra antibody, anti-EcFrvX antibody, anti-EcGabT antibody, anti-EcYedK antibody, anti-EcYbaN antibody, anti-EcYhgN antibody, anti-RtMaga antibody, anti-RbCpaF antibody, anti-RgPilD antibody, anti-LaFrc antibody, anti-LaEno antibody, anti-LjEFTu antibody, anti-BfOmpA antibody, anti-PrOmpA antibody, anti-CpOobA antibody, anti-CpSpA antibody, anti-EfSant antibody, anti-LmOsp antibody, anti-SfET-2 antibody, anti-Cpatox antibody, anti-Cptoxygen antibody, anti-EcSta2 antibody, anti-EcOSTx2A antibody, anti-CjcdtB/C antibody, anti-CdtdA/B antibody, and combinations thereof.

In some embodiments, the mast cell marker is selected from the group consisting of beta-tryptase, histamine, prostaglandin E2 (PGE2), and combinations thereof.

In some embodiments, the inflammatory marker is selected from the group consisting of CRP, ICAM, VCAM, SAA, GRO-alpha, and combinations thereof.

In some embodiments, the bile acid malabsorption marker is selected from the group consisting of 7a-hydroxy-4-cholesten-3-one, FGF19, and a combination thereof.

In some embodiments, the kynurenine marker is selected from the group consisting of kynurenine (K), kynurenic acid (KyA), anthranilic acid (AA), 3-hydroxykynurenine (3-UK), 3-hydroxyanthranilic acid (3-HAA), xanthurenic acid (XA), quinolinic acid (QA), tryptophan, 5-hydroxytryptophan (5-HTP), and combinations thereof.

In some embodiments, the serotonin marker is selected from the group consisting of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), serotonin-O-sulfate, serotonin-O-phosphate, and combinations thereof.

In some embodiments, the biomarker is a biomarker as disclosed in US 9,739,786, incorporated by reference herein in its entirety.

The following markers can be expressed by mesenchymal stem cells (MSC): CD105, CD73, CD90, CD13, CD29, CD44, CDIO, Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3, SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox11, or TM4SF1 (e.g., 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more of such markers), and lack expression of one or more of CD45, CD34, CD14, CD19, and ULA-DR (e.g., lack expression of two or more, three or more, four or more, or five or more such markers). In some embodiments, MSC can express CD105, CD73, and...
CD90. In some embodiments, MSC can express CD105, CD73, CD90, CD13, CD29, CD44, and CD10. In some embodiments, MSC can express CD105, CD73, and CD90 and one or more sternness markers such as Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3, SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox11, or TM4SF1. In some embodiments, MSC can express CD105, CD73, CD90, CD13, CD29, CD44, and CD10 and one or more sternness markers such as Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3, SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox11, or TM4SF1. See, e.g., Lv, et al., Stem Cells, 2014, 32:1408-1419.

Intestinal stem cells (ISC) can be positive for one or more markers such as Musashi-1 (Msi-1), Ascl2, Bmi-1, Doublecortin and Ca2+/calmodulin-dependent kinase-like 1 (DCAMKL1), and Leucin-rich repeat-containing G-protein-coupled receptor 5 (Lgr5). See, e.g., Mohamed, et al., Cytotechnology, 2015 67(2): 177-189.

Any of the foregoing biomarkers can be used as a biomarker for one or more of other conditions as appropriate.

In some embodiments of the methods herein, the methods comprise determining the time period of onset of treatment following administration of the device.

In some embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In some embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and

releasing the glatiramer or the pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a portion of the subject's GI tract containing one or more sites of inflammatory disease.

Preferably, the disease or condition is an inflammatory disease or condition, such as inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Localization of the device

In some more particular embodiments, the device is a self-localizing device configured to determine a device location within the subject's GI tract. In some exemplary embodiments, the method of treating a disease or condition of the gastrointestinal tract of a
subject comprises using a self-localizing device. The self-localizing device comprises at least one sensor configured to collect data, such as optical data, from the portions of the GI tract through which the device has travelled, including the portion of the GI tract in which the device is presently located. Thus, in some more particular embodiments, the device determines its location based on data collected by at least one sensor. In some more particular embodiments, the sensor comprises a light sensor and the data comprises optical data. In some more particular embodiments, the optical data is data collected by a system that includes at least one light detector. In some more particular embodiments, the light detector comprises a light sensor.

Thus, in some more particular embodiments, the device determines its location based on (a) optical data; (b) a period of elapsed time following transition of the device into a portion of the GI tract; or (c) a combination of (a) and (b). In some more particular embodiments, the device determines its location based on (a) optical data; (b) a period of elapsed time following transition of the device into the GI tract or following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract; or (c) a combination of (a) and (b). In some more particular embodiments, the device determines its location based on optical data. In some more particular embodiments, the device determines its location based on the period of elapsed time following transition of the device into the GI tract or following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract. As used herein, the time period "following transition of the device into the GI tract" refers to the time period following ingestion of the device. In some more particular embodiments, the device determines its location to the stomach about one (1) minute following transition of the device into the GI tract (i.e., following oral ingestion of the device). In some more particular embodiments, the device determines its location to the jejunum about three (3) minutes following transition of the device from the stomach to the duodenum. In some more particular embodiments, the device is also localized in response to detection of a temperature change in the GI tract or in the portion of the GI tract where the device is located, relative to a portion of the GI tract where the device was previously located. In some more particular embodiments, the device is also localized upon detection of a pH change in the GI tract or in the portion of the GI tract where the device is located, relative to a portion of the GI tract where the device was previously located. In other more particular embodiments, localizing the device does not comprise measuring the pH in the GI tract or in the portion of the GI tract where the device is or was previously located. In some
more particular embodiments, the device includes one or more machine readable hardware storage devices that store instructions that are executable by one or more processing devices to determine the location of the device. In some more particular embodiments, the device determines its location within the GI tract of the subject with an accuracy of at least 85%. In some more particular embodiments, transition of the device from one portion of the GI tract into an adjacent portion of the GI tract is determined by the device with an accuracy of at least 85%. In some more particular embodiments, transition of the device from the stomach to the duodenum is determined with an accuracy of at least 90%. In some more particular embodiments, transition of the device from the duodenum to the jejunum is determined with an accuracy of at least 90%. In some more particular embodiments, transition of the device from the jejunum to the ileum is determined with an accuracy of at least 80%>. In some more particular embodiments, transition of the device from the ileum to the cecum is determined with an accuracy of at least 80%>.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or the pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or the pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

wherein the device comprises a system that comprises at least one light source and at least one light detector, and the device is self-localized based on optical data collected by the system.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or the pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the device comprises a system that comprises at least one light source and at least one light detector, and the device is self-localized based on optical data collected by the system.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the device determines its location based on the time following transition of the device into the GI tract or following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at the location proximate to the one or more sites of disease,

wherein the device determines its location based on the time following transition of the device into the GI tract or following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of disease;

wherein the device determines its location based on the time following transition of the device into the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.
Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the device determines its location based on the time following transition of the device into the GI tract.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the device determines its location based on the time following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract, wherein at least one site of disease is in said adjacent portion of the GI tract.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the device determines its location based on the time following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract, wherein at least one site of disease is in a portion of the GI tract that is distal to said adjacent portion of the GI tract.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at the location proximate to the one or more sites of disease,

wherein the device determines its location based on optical data.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or
(ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at the location proximate to the one or more sites of disease,

wherein the device determines its location based on reflectance that is external to the device and present in the GI tract, and that is detected by a light sensor in the device.

In another more particular embodiment, the reflectance includes green light and blue light, wherein an increase in the ratio of the green to blue reflectance indicates that the device has transitioned from the stomach to the duodenum.

In other more particular embodiments, the reflectance includes red light, wherein a decrease in red light reflectance indicates that the device has transitioned from the jejunum to the ileum.

In other more particular embodiments, the reflectance includes red, green light and blue light, wherein a change in the ratio of the red to green reflectance, and/or a change in the coefficient of variation (CV) of the detected blue reflectance, indicates that the device has transitioned from the cecum further into the colon.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
wherein localizing the device in the subject's GI tract comprises detecting a device transition between the stomach and duodenum, between duodenum and jejunum, between jejunum and ileum, between ileum and cecum, between ileum and colon, or between cecum and colon, or a combination of any two or more of the foregoing device transitions.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein localizing the device in the subject's GI tract comprises detecting a device transition between the stomach and duodenum, between duodenum and jejunum, between jejunum and ileum, between ileum and cecum, between ileum and colon, or between cecum and colon, or a combination of any two or more of the foregoing device transitions.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the stomach, wherein at least one of the one or more disease sites is in the stomach;
wherein the device localization comprises monitoring elapsed time following the oral administration.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the stomach, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), from the ingestible device into the stomach,

wherein the device localization comprises monitoring elapsed time following the oral administration.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into the duodenum, wherein at least one of the one or more disease sites is in the
duodenum;

wherein the device localization comprises detecting a transition from the stomach to the
duodenum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or
condition. More preferably, the disease or condition is inflammatory bowel disease. More
preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i)
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or
(ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable
salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, wherein at least one of the one or more disease sites is in the
duodenum, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into the duodenum,

wherein the device localization comprises detecting a transition from the stomach to the
duodenum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or
condition. More preferably, the disease or condition is inflammatory bowel disease. More
preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In a more particular embodiment, the detection of the transition from the stomach to
the duodenum comprises detecting green and blue light reflectance, wherein an increase in
the ratio of the green to blue reflectance indicates that the device has transitioned from the
stomach to the duodenum.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum, wherein at least one of the one or more disease sites is in the jejunum;

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the jejunum, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum,

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In a more particular embodiment, the detection of the transition from the duodenum to the jejunum comprises (i) detecting green light and blue light, wherein an increase in the ratio
of the green to blue reflectance indicates that the device has transitioned from the stomach to the duodenum; and (ii) measuring a period of elapsed time after the transition to the duodenum; thereby determining that the device has transitioned from the duodenum to the jejunum. Preferably, the period of elapsed time is about 3 minutes. In a further embodiment, the device localization further comprises obtaining peristaltic contraction frequency data.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the ileum, wherein at least one of the one or more disease sites is in the ileum;

wherein the device localization comprises detecting a transition from the jejunum to the ileum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the ileum, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into the ileum,

wherein the device localization comprises detecting a transition from the jejunum to
the ileum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or
condition. More preferably, the disease or condition is inflammatory bowel disease. More
preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In a more particular embodiment, the detection of the transition from the jejunum to
the ileum comprises detecting red light reflectance, wherein a decrease in red light indicates
that the device has transitioned from the jejunum to the ileum.

Thus in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into the cecum, wherein at least one of the one or more disease sites is in the cecum;

wherein the device localization comprises detecting a transition from the ileum to the
cecum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or
condition. More preferably, the disease or condition is inflammatory bowel disease. More
preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i)
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or
(ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable
salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the cecum, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the cecum,

wherein the device localization comprises detecting a transition from the ileum to the cecum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In a more particular embodiment, the detection of the transition from the ileum to the cecum comprises detecting red, green and blue light reflectance, wherein a decrease in the ratio of the red to green reflectance, together with a decrease in the ratio of the green to blue reflectance, indicates that the device has transitioned from the ileum to the cecum.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the colon, wherein at least one of the one or more disease sites is in the colon;

wherein the device localization comprises detecting a transition from the cecum to the colon.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.
Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the colon, and

releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the colon,

wherein the device localization comprises detecting a transition from the cecum to the colon.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In a more particular embodiment, the detection of the transition from the cecum to the colon comprises detecting red, green and blue light reflectance, wherein a change in the ratio of the red to green reflectance, and/or a change in the coefficient of variation (CV) of the detected blue reflectance, indicates that the device has transitioned from the cecum to the colon.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into the duodenum, wherein at least one of the one or more disease sites is in the jejunum;

wherein the device localization comprises detecting a transition from the stomach to the duodenum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the jejunum, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the duodenum,

wherein the device localization comprises detecting a transition from the stomach to the duodenum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In a more particular embodiment, the detection of the transition from the stomach to the duodenum comprises detecting green and blue light reflectance, wherein an increase in the ratio of the green to blue reflectance indicates that the device has transitioned from the stomach to the duodenum.

Thus in some more particular embodiments, provided herein is a method of a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum, wherein at least one of the one or more disease sites is in the ileum and at least one of the one or more disease sites is in the colon;

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the ileum and at least one of the one or more disease sites is in the colon, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum,

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum, wherein at least one of the one or more disease sites is in the ileum;

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the ileum,

and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum,

wherein the device localization comprises detecting a transition from the duodenum to the jejunum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.
In a more particular embodiment, the detection of the transition from the duodenum to the jejunum comprises (i) detecting green light and blue light, wherein an increase in the ratio of the green to blue reflectance indicates that the device has transitioned from the stomach to the duodenum; and (ii) measuring a period of elapsed time after the transition to the duodenum; thereby determining that the device has transitioned from the duodenum to the jejunum. Preferably, the period of elapsed time is about 3 minutes. In a further embodiment, the device localization further comprises obtaining peristaltic contraction frequency data.

Thus in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the ileum, wherein at least one of the one or more disease sites is in the cecum;

wherein the device localization comprises detecting a transition from the jejunum to the ileum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the cecum, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the ileum,

wherein the device localization comprises detecting a transition from the jejunum to the ileum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In a more particular embodiment, the detection of the transition from the jejunum to the ileum comprises detecting red light reflectance, wherein a decrease in red light reflectance indicates that the device has transitioned from the jejunum to the ileum,

disease or condition of the gastrointestinal tract of a subject, comprising

orally administrating to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

locating the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the cecum, wherein at least one of the one or more disease sites is in the colon;

wherein the device localization comprises detecting a transition from the ileum to the cecum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject a self-localizing ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, wherein at least one of the one or more disease sites is in the colon, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the cecum,

wherein the device localization comprises detecting a transition from the ileum to the cecum.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In a more particular embodiment, the detection of the transition from the ileum to the cecum comprises detecting red, green and blue light reflectance, wherein a decrease in the ratio of the red to green reflectance, together with a decrease in the ratio of the green to blue reflectance, indicates that the device has transitioned from the ileum to the cecum.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Determination of site of disease

In some more particular embodiments, a site of disease is pre-determined. In some more particular embodiments, pre-determining a site of disease comprises imaging the GI tract of the subject. In some more particular embodiments, the imaging comprises still imaging, video imaging, or a combination thereof.

In some more particular embodiments, pre-determining a site of disease comprises endoscopy. In more particular embodiments, pre-determining a site of disease comprises endoscopy with imaging. In more particular embodiments, pre-determining a site of disease
comprises endoscopy with a biopsy. In more particular embodiments, pre-determining a site of disease comprises endoscopy with imaging and a biopsy.

In more particular embodiments, pre-determining a site of disease is preceded by identifying symptoms or signs indicative of Crohn's disease in a subject, for example, according to American Gastroenterology Association (AGA) clinical guidelines. In some particular embodiments such one or more symptoms or signs are selected from fever, abdominal pain, GI bleeding, localized tenderness, weight loss, joint pain, and cutaneous signs.

In more particular embodiments, the subject is further evaluated by determining the level of one or more inflammatory markers, for example, according to AGA guidelines. In some particular embodiments such one or more markers are selected from CBC, CRP, CMP, fecal calprotectin, and ESR.

In some particular embodiments, the subject, having undergone evaluation for symptoms and signs of disease and evaluation for one or more disease markers, is identified as a candidate for further evaluation, e.g., such that imaging is indicated. In some such embodiments, the subject further undergoes CT-enterography or magnetic resonance enterography to determine the location(s) of one or more sites of disease.

In more particular embodiments, pre-determining a site of disease is preceded by identifying one or more AGA clinical guideline symptoms or signs indicative of Crohn's disease, and the subject is further evaluated by determining the level of one or more AGA clinical guideline inflammatory markers. Thus, in some particular embodiments, pre-determining a site of disease is preceded by identifying one or more symptoms or signs selected from fever, abdominal pain, GI bleeding, localized tenderness, weight loss, joint pain, and cutaneous signs, and the subject is further evaluated by determining the level of one or more inflammatory markers selected from CBC, CRP, CMP, fecal protecting, and ESR.

In more particular embodiments, pre-determining a site of disease is preceded by identifying one or more AGA clinical guideline symptoms or signs indicative of Crohn's disease, the subject is identified as a candidate for further evaluation, and the subject undergoes CT-enterography or magnetic resonance enterography to determine the location(s) of one or more sites of disease. Thus, in some particular embodiments, pre-determining a site of disease is preceded by identifying one or more symptoms or signs selected from fever, abdominal pain, GI bleeding, localized tenderness, weight loss, joint pain, and cutaneous signs; the subject is identified as a candidate for further evaluation; and the subject undergoes
CT-enterography or magnetic resonance enterography to determine the location(s) of one or more sites of disease.

In more particular embodiments, pre-determining a site of disease is preceded by identifying symptoms or signs indicative of ulcerative colitis in a subject, for example, according to American Gastroenterology Association (AGA) clinical guidelines. In some particular embodiments such one or more symptoms or signs are selected from bloody diarrhea, tenesmus, urgency, fever, abdominal pain, localized abdominal tenderness, weight loss, joint swelling and/or redness, signs of anemia, and cutaneous signs.

In more particular embodiments, the subject is further evaluated by determining the level of one or more inflammatory markers, for example, according to AGA guidelines. In some particular embodiments such one or more markers are selected from CBC, CRP, CMP, difficile, ESR, and stool culture.

In some particular embodiments, the subject, having undergone evaluation for symptoms and signs of disease and evaluation for one or more disease markers, is identified as a candidate for further evaluation, e.g., such that imaging is indicated. In some such embodiments, the subject further undergoes colonoscopy and/or sigmoidoscopy to determine the location(s) of one or more sites of disease.

In more particular embodiments, pre-determining a site of disease is preceded by identifying one or more AGA clinical guideline symptoms or signs indicative of Ulcerative colitis, and the subject is further evaluated by determining the level of one or more AGA clinical guideline inflammatory markers. Thus, in some particular embodiments, pre-determining a site of disease is preceded by identifying one or more symptoms or signs selected from bloody diarrhea, tenesmus, urgency, fever, abdominal pain, localized abdominal tenderness, weight loss, joint swelling and/or redness, signs of anemia, and cutaneous signs, and the subject is further evaluated by determining the level of one or more inflammatory markers selected from CBC, CRP, CMP, difficile, ESR, and stool culture.

In more particular embodiments, pre-determining a site of disease is preceded by identifying one or more AGA clinical guideline symptoms or signs indicative of Ulcerative colitis, the subject is identified as a candidate for further evaluation, and the subject undergoes colonoscopy and/or sigmoidoscopy to determine the location(s) of one or more sites of disease. Thus, in some particular embodiments, pre-determining a site of disease is preceded by identifying one or more symptoms or signs selected from bloody diarrhea, tenesmus, urgency, fever, abdominal pain, localized abdominal tenderness, weight loss, joint
swelling and/or redness, signs of anemia, and cutaneous signs; the subject is identified as a candidate for further evaluation; and the subject undergoes colonoscopy and/or sigmoidoscopy to determine the location(s) of one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein one or more sites of inflammatory disease are pre-determined and pre-determining the one or more sites of inflammatory disease comprises imaging the GI tract of the subject.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is pre-determined and pre-determining the site of disease comprises imaging the GI tract of the subject.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

wherein one or more sites of inflammatory disease are pre-determined and pre-determining the one or more sites of inflammatory disease comprises performing an endoscopy of the GI tract of the subject.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is pre-determined and pre-determining the site of disease comprises performing an endoscopy of the GI tract of the subject.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
- localizing the device to a pre-selected location of the GI tract of the subject, and
- releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein one or more sites of inflammatory disease are pre-determined, and pre-determining the one or more sites of inflammatory disease comprises performing an endoscopy with imaging of the GI tract of the subject.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
- localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
- releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is pre-determined, and the pre-determining of the site of disease comprises performing an endoscopy with imaging of the GI tract of the subject.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease; wherein one or more sites of inflammatory disease is pre-determined, and pre-determining the one or more sites of inflammatory disease comprises performing an endoscopy and a biopsy of the GI tract of the subject.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the site of disease is pre-determined and pre-determining the site of disease comprises performing an endoscopy and a biopsy of the GI tract of the subject.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some more particular aspect of the foregoing embodiments for the determination of the site of disease, the ingestible device is configured with at least one sensor. In some more particular embodiments, the at least one sensor is at least one light sensor. In some more particular embodiments, the sensor is an imaging sensor. In some more particular embodiments, the sensor is an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract. In some more particular embodiments, the sensor is a sensor capable of detecting muscle contractions and/or peristalsis. In some more particular embodiments, the sensor is a sensor capable of detecting reflectance. In a further embodiment, the device comprises clock circuitry that measures elapsed time after oral administration of the ingestible device. Optionally, the device is further configured with at least one environmental sensor, such as, for example, at least one pH sensor and/or at least one temperature sensor. In some embodiments, the device excludes a pH sensor. In other embodiments, the device excludes both a pH sensor and a temperature sensor.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease; wherein one or more sites of inflammatory disease are determined using an ingestible device configured with an imaging.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is determined using an ingestible device configured with an imaging sensor.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some even more particular embodiments, the imaging sensor is a sensor capable of detecting inflamed tissue or lesions in the GI tract.

In some more particular embodiments, a site of disease is determined from the level of an analyte or biomarker in a sample obtained from the GI tract. The level of the analyte in the sample is determined as disclosed herein.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
wherein one or more sites of inflammatory disease are determined from the level of an analyte or biomarker in a sample obtained from the GI tract.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

5 orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

15 wherein the site of disease is determined from the level of an analyte or biomarker in a sample obtained from the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

(i) orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

25 localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;
wherein one or more sites of inflammatory disease are determined from the level of an
analyte or biomarker in a sample obtained from the GI tract, wherein the level of analyte or
biomarker is determined prior to administration of the ingestible device;

(ii) determining the level of analyte or biomarker after administration of the ingestible
device; and

(iii) determining the change in the level of analyte or biomarker from prior to
administration of the ingestible device to after administration of the ingestible device.

Thus, in some more particular embodiments, provided herein is a method of treating
a disease or condition of the gastrointestinal tract of a subject, comprising

(i) orally administering to the subject an ingestible device comprising (i) glatiramer or
a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more
sites of disease,

wherein the site of disease is determined from the level of an analyte or biomarker in
a sample obtained from the GI tract, wherein the level of analyte or biomarker is determined
prior to administration of the ingestible device;

(ii) determining the level of analyte or biomarker after administration of the ingestible
device; and

(iii) determining the change in the level of analyte or biomarker from prior to
administration of the ingestible device to after administration of the ingestible device.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or
condition. More preferably, the disease or condition is inflammatory bowel disease. More
preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some more particular embodiments, the sample is obtained from the same portion
of the GI tract in which glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) is subsequently released.
Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein one or more sites of inflammatory disease are determined from the level of an analyte or biomarker in a sample obtained from the same portion of the GI tract in which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is determined from the level of an analyte or biomarker in a sample obtained from the same portion of the GI tract in which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

(i) orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

locализing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

wherein one or more sites of inflammatory disease are determined from the level of an analyte or biomarker in a sample obtained from the same portion of the GI tract in which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released, wherein the level of analyte or biomarker is determined prior to administration of the ingestible device;

(ii) determining the level of analyte or biomarker after administration of the ingestible device; and

(iii) determining the change in the level of analyte or biomarker from prior to administration of the ingestible device to after administration of the ingestible device.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

(i) orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the site of disease is determined from the level of an analyte or biomarker in a sample obtained from the same portion of the GI tract in which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released, wherein the level of analyte or biomarker is determined prior to administration of the ingestible device;

(ii) determining the level of analyte or biomarker after administration of the ingestible device; and

(iii) determining the change in the level of analyte or biomarker from prior to administration of the ingestible device to after administration of the ingestible device.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some even more particular embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), is released from the ingestible device in the same portion of the GI tract from which the sample is obtained. In some even more particular embodiments, the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), is released from the ingestible device, in a portion of the GI tract proximal to that from which the sample is obtained.

In some even more particular embodiments, the analyte or biomarker is calprotectin, TNF-alpha, MadCAM, other cytokines, and/or lactoferrin. Another example of an analyte is blood.

In some even more particular embodiments, the analyte or biomarker is an analyte or biomarker that indicates that glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may provide a suitable therapeutic for the treatment of the one
or more disease sites. Examples of such analytes or biomarkers include pro-inflammatory cytokines that rely on the TNF-alpha family for signal transduction.

In some even more particular embodiments, the analyte or biomarker is IL-6, IL-13, IL-15, IL-23 and IFNγ. In some even more particular embodiments, the analyte or biomarker is IL-13, IL15, IL-22, IL-24 and IL-27. In some even more particular embodiments, the analyte or biomarker is IL-6, IL-13, IL-15, IL-23 and IFNγ, and the disease is ulcerative colitis. In some even more particular embodiments, the analyte or biomarker is IL-13, IL15, IL-22, IL-24 and IL-27, and the disease is Crohn's disease.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Location where drug is released

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is in the same portion of the GI tract as at least one of the one or more sites of disease. In some other embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to the at least one of one or more sites of disease. In some more particular embodiments, the at least one of one or more sites of disease is in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the cecum of the subject.

In one such embodiment, the at least one of one or more sites of disease is in the stomach, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the stomach.

In another such embodiment, the at least one of one or more sites of disease is in the duodenum, and glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the duodenum.

In another such embodiment, the at least one of one or more sites of disease is in the jejunum, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the jejunum.

In another such embodiment, the at least one of one or more sites of disease is in the ileum, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the ileum.

In another such embodiment, the at least one of one or more sites of disease is in the cecum, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the cecum.

In another such embodiment, the at least one of one or more sites of disease is in the colon, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the colon.

In another such embodiment, the at least one of one or more sites of disease is in the ascending colon, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the ascending colon.

In another such embodiment, the at least one of one or more sites of disease is in the transverse colon, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the transverse colon.
In another such embodiment, the at least one of one or more sites of disease is in the descending colon, and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device into the descending colon.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is in the same portion of the GI tract as at least one of the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is in the same portion of the GI tract as at least one of the one or more sites of disease.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to at least one of the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to at least one of the one or more sites of disease;

wherein the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the duodenum, wherein at least one of the one or more disease sites is in the jejunum;

wherein the duodenum does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the jejunum, wherein at least one of the one or more disease sites is in the ileum;

wherein the jejunum does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the ileum, wherein at least one of the one or more disease sites is in the cecum;

wherein the ileum does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into the cecum, wherein at least one of the one or more disease sites is in the colon;

wherein the cecum does not contain or has not been determined to contain a disease site.
In some more particular embodiments, at least one of the one or more sites of disease is in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the method comprises
(A) using an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to determine one or more sites of disease; and
(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximal to the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device proximal to a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
wherein the method comprises (A) using an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to determine one or more sites of disease; and

(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximal to the one or more sites of disease;

wherein the proximal location immediately precedes the section or subsection of the subject’s GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the method comprises (A) using an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to determine the site of disease;

(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximal to the one or more sites of disease.

In an even more particular embodiments the one or more sites of disease are in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the method comprises (A) pre-determining the site of disease; and (B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device proximal to the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device or proximal to a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site;

wherein the method comprises (A) pre-determining the site of disease; and (B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device.
Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the method comprises (A) pre-determining the site of disease; and (B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

pre-determining one or more sites of disease;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to at least one of the one or more sites of disease.
Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising pre-determining one or more sites of disease; orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease; wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to at least one of the one or more sites of disease; wherein the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising pre-determining one or more sites of disease; orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at a location in the gastrointestinal tract of the subject that is proximal to at least one of the one or more sites of disease.

In an even more particular embodiments, at least one of the one or more sites of disease is in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising pre-determining a site of disease with imaging;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the method comprises (A) using an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to determine the site of disease; and

(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the same portion of the GI tract as the one or more sites of disease.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising:

pre-determining a site of disease with imaging;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,
wherein the method comprises (A) using an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to determine the site of disease; and
(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the same portion of the GI tract as the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising pre-determining one or more sites of disease;
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
wherein the method comprises (A) using a first ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to pre-determine the site of disease prior to the oral administration of the ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising
pre-determining one or more sites of disease;
orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device proximal to a section or subsection of the subject's GI tract containing one or more
sites of inflammatory disease;
wherein the proximal location immediately precedes the section or subsection of the
subject's GI tract containing the one or more sites of the inflammatory disease sites and the
immediately proximal location does not contain or has not been determined to contain a
disease site;
wherein the method comprises (A) using a first ingestible device configured with an
imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to pre-determine
the site of disease prior to the oral administration of the ingestible device comprising
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or
the pharmaceutical formulation containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some even more particular embodiments, provided herein is a method of
treating a disease or condition of the gastrointestinal tract of a subject, comprising
pre-determining one or more sites of disease;
orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the method comprises (A) using a first ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract to pre-determine the site of disease prior to the oral administration of the ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);

(B) releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) proximal to the one or more sites of disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising pre-determining one or more sites of disease;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device proximal to a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the one or more sites of disease are in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject;

wherein the one or more disease sites is pre-determined by endoscopy with biopsy.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising pre-determining one or more sites of disease;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device proximal to a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site;

wherein the one or more sites of disease are in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject;

wherein the one or more disease sites is pre-determined by endoscopy with biopsy.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

pre-determining one or more sites of disease;

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the one or more disease sites is pre-determined by endoscopy with biopsy,
wherein the one or more sites of disease are in the colon and glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject.

5 **Triggersing the release of the drug**

In some embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by a processor or controller communicably coupled to one or more sensors. In some more particular embodiments, the release is triggered autonomously. In some more particular embodiments, the release is triggered based on reflectance detected by the sensor. In some more particular embodiments, the release is triggered based on one or more pre-established parameters. In some more particular embodiments, the one or more pre-established parameters are selected from reflectance in the GI tract, time following transition of the device into the GI tract, and time following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract, and a combination of two or more of the foregoing. Additional one or more pre-established parameters optionally include detected muscle contractions in the GI tract, pH in the GI tract, temperature in the GI tract, blood detected in the GI tract, and the level of analyte or biomarker determined in a sample obtained in the GI tract. In some more particular embodiments, the one or more pre-established parameters do not comprise the pH in the GI tract. In some more particular embodiments, the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) does not comprise a pH-dependent drug release mechanism.

In some more particular embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered for release from the device within a period of time of equal to or less than about 5 minutes after the device is self-localized at a location proximate to one or more sites of disease.

In some more particular embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is
released from the device within a period of time of equal to or less than about 5 minutes after the device detects or confirms transition into a portion of the GI tract that has been preselected for release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease. In some embodiments, the period of time is equal to or less than about 60 seconds, such as equal to or less than about 30 seconds, equal to or less than about 20 seconds, equal to or less than about 10 seconds, or equal to or less than about 1 second. In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered at substantially the same time as the device is self-localized at a location proximate to one or more sites of disease. In a more particular embodiment, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released as a bolus.

In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered within a period of time after the device detects or confirms transition into a portion of the GI tract pre-determined to contain one or more sites of disease. In some embodiments, the period of time is equal to or less than about 60 seconds, such as equal to or less than about 30 seconds, equal to or less than about 20 seconds, equal to or less than about 10 seconds, or equal to or less than about 1 second. In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered at substantially the same time as the device is self-localized at a location proximate to one or more sites of disease. In a more
particular embodiment, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released as a bolus.

In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease. In some embodiments, the period of time is equal to or less about than 60 seconds, such as equal to or less than about 30 seconds, equal to or less than about 20 seconds, equal to or less than about 10 seconds, equal to or less than about 5 seconds, or equal to or less than about 1 second. In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered at substantially the same time as the device is self-localized at a location proximate to one or more sites of disease. In a more particular embodiment, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the device over a pre-determined period of time, wherein the pre-determined period of time commences within at most about 5 minutes after the device is self-localized at the location. In some particular embodiments, the pre-determined period of time over which the formulation is released from the device is about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes. In more particular embodiments, the pre-determined period of time commences within at most about 1 minute, at most about 30 seconds, or at most about 1 second after the device detects or confirms a transition to the pre-selected location.

In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered within a period of time after the device detects or confirms transition into a portion of the GI tract pre-determined to contain one or more sites of disease. In some
embodiments, the period of time is equal to or less about than 60 seconds, such as equal to or less about than 30 seconds, equal to or less than about 20 seconds, equal to or less than about 10 seconds, equal to or less than about 5 seconds, or equal to or less than about 1 second. In some more particular embodiments, the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered at substantially the same time as the device is self-localized at a location proximate to one or more sites of disease. In a more particular embodiment, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the device over a pre-determined period of time, wherein the pre-determined period of time commences within at most about 5 minutes after the device detects or confirms a transition to a pre-selected location. In some particular embodiments, the pre-determined period of time over which the formulation is released from the device is about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes. In more particular embodiments, the pre-determined period of time commences within at most about 1 minute, at most about 30 seconds, or at most about 1 second after the device detects or confirms a transition to the pre-selected location.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
wherein the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by a processor or controller communicably coupled to the sensor, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by a processor or controller communicably coupled to the sensor.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered based on reflectance detected by the sensor, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered based on reflectance detected by the sensor.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered based on the time following transition of the device into the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered based on the time following transition of the device from one portion of the GI tract into an adjacent portion of the GI tract.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.
Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered autonomously based on a pre-selected device location within the subject's GI tract.

In even more particular embodiments, when the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered autonomously based on a pre-selected device location within the subject's GI tract, the device is programmed to release at the pre-selected device location.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

the method comprising (A) determining the site of disease by an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract; and (B) triggering the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) by a processor or controller communicably coupled to the sensor, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

the method comprising (A) determining the site of disease by an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract; and (B) triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) by a processor or controller communicably coupled to the sensor.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

- localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

- releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

- wherein the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered autonomously,

- the method comprising pre-determining the site of disease.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In an even more particular embodiment, pre-determining the site of disease comprises imaging the GI tract, endoscopy, or a combination thereof. In one particular aspect, pre-determining the site of disease comprises endoscopy with video imaging, still imaging, or both. In another particular aspect, predetermining the site of disease comprises endoscopy with biopsy.

Thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

the method comprising (A) determining the site of disease from the level of an analyte or biomarker in a sample obtained from the GI tract; and (B) triggering the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) based on the level of the analyte or biomarker.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet another embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Mechanism for releasing the drug

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) (or the formulation comprising it) is released by a mechanism capable of releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation from the device. In some more particular embodiments, the mechanism is a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

the method comprising (A) determining the site of disease by an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract; and (B) triggering the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) by a processor or controller communicably coupled to the light sensor, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds;

and wherein the processor or controller activates a mechanism capable of releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation containing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

the method comprising (A) determining the site of disease by an ingestible device configured with an imaging sensor capable of detecting inflamed tissue or lesions in the GI tract; and (B) triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) by a processor or controller communicably coupled to the light sensor;

and wherein the processor or controller activates a mechanism capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

the method comprising (A) pre-determining the site of disease; and (B) triggering the release of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer
acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) autonomously based on a pre-selected device location within the subject's GI tract, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds;

the triggering comprising activating a mechanism capable of releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

the method comprising (A) pre-determining the site of disease; and (B) triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) autonomously based on a pre-selected device location within the subject's GI tract,

the triggering comprising activating a mechanism capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation.
Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

the method comprising (A) determining the site of disease from the level of an analyte or biomarker in a sample obtained from the GI tract; and (B) triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) based on the level of the analyte or biomarker, wherein the release is triggered within a period of time after the device is self-localized at a location proximate to one or more sites of disease equal to or less about than 60 seconds;

the triggering comprising activating a mechanism capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation containing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

the method comprising (A) determining the site of disease from the level of an analyte or biomarker in a sample obtained from the GI tract; and (B) triggering the release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) based on the level of the analyte or biomarker, the triggering comprising activating a mechanism capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation comprising it, such as a gas-generating cell capable of generating a gas in an amount sufficient to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the formulation.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject’s GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject’s GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Embodiments directed to a reservoir containing the drug

In some embodiments, the device comprises a reservoir, and the reservoir contains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) (or a formulation comprising it). In some more particular embodiments the formulation is suitable for introduction and optionally for storage in a reservoir comprised in the device. In some more particular embodiments the reservoir is configured to fit into the device. In some more particular embodiments, the reservoir is a reservoir comprising one or more anchor
systems for anchoring the reservoir at a particular location in the GI tract proximate to the
disease site.

Thus in some more particular embodiments, provided herein is a method of treating
an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmacologically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into, or proximal to, a section or subsection of the subject's GI tract containing one or
more sites of inflammatory disease;

wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from a
reservoir comprised in the device.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmacologically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more
sites of disease,

wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from a reservoir comprised in the device.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from a reservoir configured to fit into the device.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more
sites of disease, wherein the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from a reservoir configured to fit into the device.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,
wherein the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from a reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract proximate to the disease site.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn’s disease.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject’s GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject’s GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Embodiments directed to device-related embodiments disclosed in the application.

In some embodiments, the device is a device as disclosed herein.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

wherein the ingestible device is a device as disclosed herein.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

wherein the ingestible device is a device as disclosed herein.

Preferably, the disease or condition is an inflammatory gastrointestinal disease or condition. More preferably, the disease or condition is inflammatory bowel disease. More preferably still, the disease or condition is ulcerative colitis or Crohn's disease.

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

% Amount of drug or formulation released

In some more particular embodiments, at least 80% by weight of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released proximate to the one or more disease sites.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject,
wherein the device determines its location in the gastrointestinal tract of the subject at
a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into, or proximal to, a section or subsection of the subject’s GI tract containing one or
more sites of inflammatory disease;
wherein 80% by weight of the glatiramer or pharmaceutically acceptable salt thereof
(for example, glatiramer acetate) is released from the ingestible device at the location.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
wherein the device determines its location in the gastrointestinal tract of the subject at
a location proximate to one or more sites of disease, and
80% by weight of the glatiramer or pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) is released from the ingestible device at the location in the
intestinal tract of the subject.

In some more particular embodiments, at least 80% by weight of the formulation is
released proximate to the one or more disease sites.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising a pharmaceutical
formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate),
wherein the device determines its location in the gastrointestinal tract of the subject at
a location proximate to one or more sites of disease, and
80% by weight of the pharmaceutical formulation comprising the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the
ingestible device at the location in the gastrointestinal tract of the subject.

Thus in some more particular embodiments, provided herein is a method of treating
an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject,

wherein the device determines its location in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device proximal to a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites and the immediately proximal location does not contain or has not been determined to contain a disease site;

wherein 80% by weight of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at the location.

Concentration of drug following release in plasma and/or in GI tissue

1. In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device into, or proximal to, a section or subsection of the subject's GI tract containing one or
more sites of inflammatory disease;

5 to provide a plasma concentration of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL, such as of
about 1 ng/L to about 50 ng/mL, such as of about 1 ng/L to about 30 ng/mL, such as of about
1 ng/L to about 10 ng/mL, such as of about 1 ng/L to about 5 ng/mL.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

10 orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more
sites of disease,

20 to provide a plasma concentration of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL, such as of
about 1 ng/L to about 50 ng/mL, such as of about 1 ng/L to about 30 ng/mL, such as of about
1 ng/L to about 10 ng/mL, such as of about 1 ng/L to about 5 ng/mL.

Thus in some more particular embodiments, provided herein is a method of treating
an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

25 orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

30 localizing the device to a pre-selected location of the GI tract of the subject,

the method comprising (A) determining the site of disease from the level of an analyte
or biomarker in a sample obtained from the GI tract; and (B) releasing the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the
pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a
section or subsection of the subject's GI tract containing one or more sites of inflammatory
disease, to provide a plasma concentration of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL.

Thus, in some more particular embodiments, provided herein is a method of treating a
disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more
sites of disease,

the method comprising (A) determining the site of disease from the level of an analyte
or biomarker in a sample obtained from the GI tract; and (B) releasing glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to provide a plasma
concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) of about 1 ng/L to about 100 ng/mL.

2. In some embodiments, release of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) results in a ratio of GI tissue concentration of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to
the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) of about 2:1 to 600:1.

Thus in some more particular embodiments, provided herein is a method of treating
an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

to provide a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 2:1 to 600:1.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

to provide a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 2:1 to 600:1.

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject,

the method comprising (A) determining the site of disease from the level of an analyte or biomarker in a sample obtained from the GI tract; and (B) releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease, to provide a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 2:1 to 600:1.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

comprising (A) determining the site of disease from the level of an analyte or biomarker in a sample obtained from the GI tract; and (B) releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to provide a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 2:1 to 600:1.
In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Embodiments related to T_b memory cell count blood concentration

In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a T_b memory cell count that is reduced in the GI tract and/or increased in blood, serum or plasma relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

to provide a T_b memory cell count that is reduced in the GI tract and/or increased in blood, serum or plasma relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

to provide a T_h memory cell count that is reduced in the GI tract and/or increased in blood, serum or plasma relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a T_h memory cell count that is reduced in the mesenteric lymph nodes of the subject relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;
to provide a Th memory cell count in the mesenteric lymph nodes of the subject that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
- localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
- releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

- to provide a Th memory cell count in the mesenteric lymph nodes of the subject that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some more particular embodiments, the reduction in the Th memory cell count in the mesenteric lymph nodes of the subject is at least two-fold.

In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a Th memory cell count that is reduced in the Peyer's Patches of the subject relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

 localizing the device to a pre-selected location of the GI tract of the subject, and
 releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

 to provide a Th1 memory cell count in the Peyer's Patches of the subject that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

 orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

 localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
 releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

 to provide a Th1 memory cell count in the Peyer's Patches of the subject that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some more particular embodiments, the reduction in the Th1 memory cell count in the Peyer's Patches of the subject is at least two-fold.
In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a Th memory cell count that is increased in the blood of the subject relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

to provide a T_h memory cell count in the blood of the subject that is increased relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

thus, in some even more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

to provide (i) a plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL, such as of about 1 ng/L to about 50 ng/mL, such as of about 1 ng/L to about 30 ng/mL, such as of about 1 ng/L to about 10 ng/mL, such as of about 1 ng/L to about 5 ng/mL, and (ii) a T_H memory cell count that is reduced in the GI tract and/or increased in blood, serum or plasma relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease;

to provide (i) a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) of about 2:1 to 600:1, and (ii) a T\(_h\) memory cell count that is reduced in
the GI tract and/or increased in blood, serum or plasma relative to systemic administration of
the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some even more particular embodiments, provided herein is a method of
treating a disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
- pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

- localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

- releasing the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

- to provide (i) a ratio of GI tissue concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the blood, serum, or plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 2:1 to 600:1, and (ii) a T\(_h\) memory cell count that is reduced in the GI tract and/or increased in blood, serum or plasma relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

- orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a
- pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

- localizing the device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

5 to provide a plasma concentration that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, release of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) results in a plasma concentration that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

10 orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

15 releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease,

20 to provide a plasma concentration that is reduced relative to systemic administration of the same amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or of the same amount of the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes
the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

In some more particular embodiments, the method provides a reduction in TH memory cell count in the mesenteric lymph nodes of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 10% reduction, at least a 20% reduction, at least a 30% reduction, at least a 40% reduction or at least a 50% reduction.

In some more particular embodiments, the method provides a reduction in TH memory cell count in the Peyer's Patches of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 10% reduction.

In some more particular embodiments, the method provides an increase in TH memory cell count in the blood of the subject relative to systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is at least a 1% increase, at least a 5% increase, at least at 10% increase or at least a 15% increase.

Doses and frequency of administration:

In some more particular embodiments, there is provided a method of treating a disease or condition of the gastrointestinal tract of a subject, for example, an inflammatory disease or condition of the gastrointestinal tract, the method comprising administering an induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some more particular embodiments, the total induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 2 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 4 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction
dose for a 6 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 8 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some embodiments, the method of administering the induction dose further comprises subsequently administering a maintenance dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject one or more ingestible devices comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing each said device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the administration of the one or more devices provides an induction dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and wherein the total induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time.

In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.

Optionally, the method further comprises subsequently orally administering to the subject one or more ingestible devices comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing each said device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said ingestible device into, or proximal to, a section or subsection of the subject's GI tract
containing one or more sites of inflammatory disease;
wherein the administration of the one or more devices provides a maintenance dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).
In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.
Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising
orally administering to the subject one or more ingestible devices comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing each said device in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said ingestible device at the location in the gastrointestinal tract of the subject,
wherein the administration of the one or more devices provides an induction dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
and wherein the total induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time.
In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.
Optionally, the method further comprises subsequently orally administering to the subject one or more ingestible devices comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation
that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing each said device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the administration of the one or more devices provides a maintenance dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.

In some more particular embodiments, an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) may be administered once per day or more than once per day, for example, 1, 2, 3, 4 or more times per day. In some more particular embodiments, two or more ingestible devices may be administered at the same time. In some more particular embodiments, two or more ingestible devices may be administered 1 minute apart, 2 minutes apart, 3 minutes apart, 4 minutes apart, 5 minutes apart, 10 minutes apart, 15 minutes apart, 30 minutes apart, or 60 minutes apart. In some more particular embodiments, two or more ingestible devices may be administered 1 hour apart, 2 hours apart, 3 hours apart, 4 hours apart, 5 hours apart, 6 hours apart, 7 hours apart, 8 hours apart, 9 hours apart, 10 hours apart, 11 hours apart, or 12 hours apart.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and

releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein said method provides an induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

wherein the total induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time,

and wherein administration of an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) occurs 1, 2, 3, 4 or more times per day.

Optionally, the method further comprises subsequently orally administering to the subject one or more ingestible devices comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing each said device to a pre-selected location of the GI tract of the subject, and releasing the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease;

wherein the administration of the one or more devices provides a maintenance dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising

orally administering to the subject an ingestible device comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), or a pharmaceutical composition comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
localizing the device in the gastrointestinal tract of the subject at a location proximate
to one or more sites of disease, and
releasing glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible
device at the location in the gastrointestinal tract of the subject, or a pharmaceutically
acceptable salt thereof,
the method comprising administering an induction dose of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the total
induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3
times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times
greater than a systemic induction dose for the same period of time,
and wherein administration of an ingestible device comprising glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the
pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) occurs 1, 2, 3, 4 or more times per day.

In some embodiments, the localized device, or pre-selected location, is proximal to
the section or subsection of the subject's GI tract containing the one or more sites of the
inflammatory disease. In a further embodiment, the proximal location immediately precedes
the section or subsection of the subject's GI tract containing the one or more sites of the
inflammatory disease sites. In yet a further embodiment, the immediately proximal location
does not contain or has not been determined to contain a disease site.

Optionally, the method further comprises subsequently orally administering to the
subject one or more ingestible devices comprising (i) glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation
that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate),
localizing each said device to a pre-selected location of the GI tract of the subject, and
releasing the glatiramer or pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) or the pharmaceutical formulation that comprises the glatiramer or
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from each said
ingestible device into, or proximal to, a section or subsection of the subject's GI tract
containing one or more sites of inflammatory disease;
wherein the administration of the one or more devices provides a maintenance dose of the glatiramer or pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the one or more devices are administered simultaneously. In other embodiments, one or more devices are administered sequentially.

Formulations comprising glatiramer or a pharmaceutically acceptable salt thereof

In some more particular embodiments, the device comprises a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some more particular embodiments, the formulation contains the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a concentration of at least about 5 mg/mL or 5 mg/g, for example, at least about 10 mg/mL or 10 mg/g, at least about 15 mg/mL or 15 mg/g, at least about 20 mg/mL or 20 mg/g, or even higher, such as about 40 mg/mL or 40 mg/g. In some embodiments, the formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), mannitol and water for injection (WFI). In more particular embodiments, the formulation comprises glatiramer acetate, mannitol and water for injection (WFI). In still more particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), for example, COPAXONE® 20 mg/mL Solution for Injection containing glatiramer acetate at a concentration of 20 mg/mL. In some embodiments, COPAXONE® contains glatiramer acetate at a concentration of 40 mg/mL. In some embodiments, the COPAXONE® 20 mg per mL and COPAXONE® 40 mg per mL for subcutaneous use are commercially available in prefilled syringes. In some embodiments, the COPAXONE® 20 mg per mL or the COPAXONE® 40 mg per mL solutions, as contained in such commercially available prefilled syringes, may alternatively be incorporated or loaded into a device, such as an ingestible device as disclosed herein. Said device may be administered to a subject to provide topical delivery of the COPAXONE® and/or the glatiramer acetate to the gastrointestinal tract of a subject. Optionally, the COPAXONE® 20 mg per mL or COPAXONE® 40 mg per mL solution is diluted with a pharmaceutically acceptable solvent or diluent prior to the incorporation or loading into the device. In some embodiments, the solvent or diluent is water for injection (WFI).

In some embodiments, the pharmaceutical formulation contains a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof, for example,
glatiramer acetate. In some embodiments, the therapeutically effective amount is an induction
dose. In some embodiments, the therapeutically effective amount is a maintenance dose.

In some embodiments, the glatiramer or pharmaceutically acceptable salt thereof comprises a mixture of polypeptides containing L-glutamic acid, L-alanine, L-tyrosine and L-
lysine. In some embodiments, the glatiramer or pharmaceutically acceptable salt thereof comprises L-glutamic acid, L-alanine, L-tyrosine and L-lysine in molar ratios of about 0.14
L-glutamic acid, about 0.43 L-alanine, about 0.10 L-tyrosine and about 0.34 L-lysine. In some embodiments, the glatiramer or pharmaceutically acceptable salt thereof comprises from about 15 to about 100 amino acids selected from L-glutamic acid, L-alanine, L-tyrosine
and L-lysine and combinations thereof. In some embodiments, the glatiramer or
pharmaceutically acceptable salt thereof has an average molecular weight ranging from about
4,700 to about 11,000 Daltons.

In some embodiments, the pharmaceutical formulation comprises glatiramer or a
pharmaceutically acceptable salt thereof, where the pharmaceutically acceptable salt is
selected from the group consisting of sulfate, pyrosulfate, bisulfate, sulfite, bisulfite,
phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate,
hydrochloride, hydrobromide, hydroiodide, acetate, nitrate, propionate, decanoate, caprylate,
acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate,
tocopheryl succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-
dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate,
methoxybenzoate, phthalate, terephthalate, sulfonate, xylenesulfonate, phenylacetate,
phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycollate, tartrate,
methanesulfonate, propanesulfonate, naphthalene-2-sulfonate, p-toluenesulfonate and
mandelate; and combinations of any two or more of the foregoing. In some embodiments, the
pharmaceutically acceptable salt of glatiramer is the acetate salt.

In other embodiments, the pharmaceutical formulation consists essentially of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In other embodiments, the pharmaceutical formulation consists of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the pharmaceutical formulation contains glatiramer or a
pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable
excipients or carriers.
Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), localizing the device to a pre-selected location of the GI tract of the subject, and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject’s GI tract containing one or more sites of inflammatory disease to provide a plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL, such as of about 1 ng/L to about 50 ng/mL, such as of about 1 ng/L to about 30 ng/mL, such as of about 1 ng/L to about 10 ng/mL, such as of about 1 ng/L to about 5 ng/mL;

wherein the formulation contains the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a concentration of at least about 5 mg/mL or 5 mg/g, for example, at least about 10 mg/mL or 10 mg/g, at least about 15 mg/mL or 15 mg/g, at least about 20 mg/mL or 20 mg/g, or even higher, such as about 40 mg/mL or 40 mg/g.

In some embodiments, the formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), mannitol and water for injection (WFI). In more particular embodiments, the formulation comprises glatiramer acetate, mannitol and water for injection (WFI). In still more particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), for example, COPAXONE® 20 mg/mL Solution for Injection. In some embodiments, COPAXONE® contains glatiramer acetate at a concentration of 40 mg/mL. In other embodiments, the pharmaceutical formulation consists essentially of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In other embodiments, the pharmaceutical formulation consists of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Thus, in some more particular embodiments, provided herein is a method of treating a disease or condition of the gastrointestinal tract of a subject, comprising...
orally administering to the subject an ingestible device comprising a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

wherein the device determines its location in the gastrointestinal tract of the subject at a location proximate to one or more sites of disease, and

the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released from the ingestible device at the location in the gastrointestinal tract of the subject to provide a plasma concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of about 1 ng/L to about 100 ng/mL, such as of about 1 ng/L to about 50 ng/mL, such as of about 1 ng/L to about 30 ng/mL, such as of about 1 ng/L to about 10 ng/mL, such as of about 1 ng/L to about 5 ng/mL

wherein the formulation contains the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a concentration of at least about 5 mg/mL or 5 mg/g, for example, at least about 10 mg/mL or 10 mg/g, at least about 15 mg/mL or 15 mg/g, at least about 20 mg/mL or 20 mg/g, or even higher, such as about 40 mg/mL or 40 mg/g.

In some embodiments, the formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), mannitol and water for injection (WFI). In more particular embodiments, the formulation comprises glatiramer acetate, mannitol and water for injection (WFI). In still more particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), for example, COPAXONE® 20 mg/mL Solution for Injection containing glatiramer acetate at a concentration of 20 mg/mL. In some embodiments, COPAXONE® contains glatiramer acetate at a concentration of 40 mg/mL. In other embodiments, the pharmaceutical formulation consists essentially of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In other embodiments, the pharmaceutical formulation consists of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some more particular embodiments, the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) does not comprise a pH-dependent drug release mechanism. In some more particular embodiments, the pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) does not comprise an enteric coating.
In some embodiments, the localized device, or pre-selected location, is proximal to the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease. In a further embodiment, the proximal location immediately precedes the section or subsection of the subject's GI tract containing the one or more sites of the inflammatory disease sites. In yet a further embodiment, the immediately proximal location does not contain or has not been determined to contain a disease site.

Thus, in some more particular embodiments, provided herein is a method of treating an inflammatory disease or condition of the gastrointestinal tract of a subject, comprising orally administering to the subject an ingestible device comprising (i) glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or (ii) a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),

localizing the device to a pre-selected location of the GI tract of the subject, and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) or the pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the ingestible device into, or proximal to, a section or subsection of the subject's GI tract containing one or more sites of inflammatory disease,

wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a therapeutically effective amount; optionally, the therapeutically effective amount is an induction dose or a maintenance dose;

wherein the formulation contains the glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a concentration of at least about 5 mg/mL or 5 mg/g, for example, at least about 10 mg/mL or 10 mg/g, at least about 15 mg/mL or 15 mg/g, at least about 20 mg/mL or 20 mg/g, or even higher, such as about 40 mg/mL or 40 mg/g.

In some embodiments, the formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), mannitol and water for injection (WFI). In more particular embodiments, the formulation comprises glatiramer acetate, mannitol and water for injection (WFI). In still more particular embodiments, the formulation is COPAXONE® (Teva Pharmaceuticals LTD), for example, COPAXONE® 20 mg/mL Solution for Injection containing glatiramer acetate at a concentration of 20 mg/mL. In some embodiments, COPAXONE® contains glatiramer acetate at a concentration of 40 mg/mL. In other embodiments, the pharmaceutical formulation consists essentially of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In other embodiments, the pharmaceutical formulation consists of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the formulation is provided in a prefilled syringe. In some embodiments, the formulation is COPAXONE® 20 mg/mL and is provided in a single-dose prefilled syringe. In some embodiments, the formulation is COPAXONE® 40 mg/mL and is provided in a single-dose prefilled syringe.

Combination therapy

Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) as disclosed herein may be optionally used with additional agents in the treatment of the diseases disclosed herein. Nonlimiting examples of such agents for treating or preventing inflammatory bowel disease in such adjunct therapy (e.g., Crohn's disease, ulcerative colitis) include substances that suppress cytokine production, down-regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include 2-amino-6-aryl-5 -substituted pyrimidines (see U.S. Patent No. 4,665,077); non-steroidal anti-inflammatory drugs (NSAIDs); ganciclovir; tacrolimus; glucocorticoids such as Cortisol or aldosterone; anti-inflammatory agents such as a cyclooxygenase inhibitor; a 5-lipoxygenase inhibitor; or a leukotriene receptor antagonist; purine antagonists such as azathioprine or mycophenolate mofetil (MMF); alkylating agents such as cyclophosphamide; bromocryptine; danazol; dapsone; glutaraldehyde (which masks the MHC antigens, as described in U.S. Patent No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporine; 6-mercaptopurine; steroids such as corticosteroids or glucocorticosteroids or glucocorticoid analogs, e.g., prednisone, methylprednisolone, including SOLU-MEDROL®, methylprednisolone sodium succinate, and dexamethasone; dihydrofolate reductase inhibitors such as methotrexate (oral or subcutaneous); anti-malarial agents such as chloroquine and hydroxychloroquine; sulfasalazine; leflunomide; cytokine or cytokine receptor antibodies or antagonists including anti-interferon-alpha, -beta, or -gamma antibodies, anti-tumor necrosis factor(TNF)-alpha antibodies (infliximab (REMICADE®) or adalimumab), anti-TNF- alpha immunoadhesin (etanercept), anti-TNF-beta antibodies, anti-interleukin-2 (IL-2) antibodies and anti-IL-2 receptor antibodies, and anti-interleukin-6 (IL-6) receptor antibodies and antagonists; anti-LFA-1 antibodies, including anti-CD 11a and anti-
CD 18 antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, anti-CD3 or anti-CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul. 26, 1990); streptokinase; transforming growth factor-beta (TGF-beta); streptodomase; RNA or DNA from the host; FK506; RS-61443; chlorambucil; deoxyspergualin; rapamycin; T-cell receptor (Cohen et al, U.S. Patent No. 5,114,721); T-cell receptor fragments (Offner et al, Science, 251: 430-432 (1991); WO 90/1294; Ianeway, Nature, 341:482 (1989); and WO 91/01 133); BAFF antagonists such as BAFF or BR3 antibodies or immunoconjugates and zTNF4 antagonists (for review, see Mackay and Mackay, Trends Immunol, 23: 113-5 (2002) and see also definition below); biologic agents that interfere with T-cell helper signals, such as anti-CD40 receptor or anti-CD40 ligand (CD 154), including blocking antibodies to CD40-CD40 ligand (e.g., Durie et al, Science, 261: 1328-30 (1993); Mohan et al, J. Immunol, 154: 1470-80 (1995)) and CTLA4-Ig (Finck et al, Science, 265: 1225-7 (1994)); and T-cell receptor antibodies (EP 340,109) such as T10B9. Non-limiting examples of adjunct agents also include the following: budenoside; epidermal growth factor; aminosalicylates; metronidazole; mesalazine; olsalazine; balsalazide; antioxidants; thromboxane inhibitors; IL-1 receptor antagonists; anti-IL-1 monoclonal antibodies; growth factors; elastase inhibitors; pyridinyl-imidazole compounds; TNF antagonists; IL-4, IL-10, IL-13 and/or TGF cytokines or agonists thereof (e.g., agonist antibodies); IL-11; glucuronide- or dextran-conjugated prodrugs of prednisolone, dexamethasone or budesonide; ICAM-I antisense phosphorothioate oligodeoxynucleotides (ISIS 2302; Isis Pharmaceuticals, Inc.); soluble complement receptor 1 (TP1O; T Cell Sciences, Inc.); slow-release mesalazine; antagonists of platelet activating factor (PAF); ciprofloxacin; and lignocaine. Examples of agents for UC are sulfasalazine and related salicylate-containing drugs for mild cases and corticosteroid drugs in severe cases. Topical administration of either salicylates or corticosteroids is sometimes effective, particularly when the disease is limited to the distal bowel, and is associated with decreased side effects compared with systemic use. Supportive measures such as administration of iron and antidiarrheal agents are sometimes indicated. Azathioprine, 6-mercaptopurine and methotrexate are sometimes also prescribed for use in refractory corticosteroid-dependent cases.

In other embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) as described herein can be administered with one or more of: a CHST15 inhibitor, a IL-6 receptor inhibitor, a TNF inhibitor, an integrin inhibitor, a JAK
inhibitor, a SMAD7 inhibitor, a IL-13 inhibitor, an IL-1 receptor inhibitor, a TLR agonist, an
immunosuppressant, a live biotherapeutic such as a stem cell, IL-10 or an IL-10 agonist, , a
CD40 inhibitor, an SIP-inhibitor (e.g., etrasimod or ozanimod), or a chemokine/chemokine
receptor inhibitor. In other embodiments, glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) as described herein can be administered with a
vitamin C infusion, one or more corticosteroids, and optionally thiamine.

In some embodiments, the methods disclosed herein comprise administering (i)
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and
(ii) a second agent orally, intravenously or subcutaneously, wherein the second agent in (ii) is
a different formulation of glatiramer or a pharmaceutically acceptable salt thereof (for
example, glatiramer acetate) than in (i); or an agent having a different biological target from
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the methods disclosed herein comprise administering (i)
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in
the manner disclosed herein, and (ii) a second agent orally, intravenously or subcutaneously,
wherein the second agent in (ii) is an agent suitable for treating an inflammatory bowel
disease.

In some embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for
eexample, glatiramer acetate) is administered prior to the second agent. In some
embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) is administered after the second agent. In some embodiments, glatiramer
or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second
agent are administered substantially at the same time. In some embodiments, glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered prior to
the second agent. In some embodiments, glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) is delivered after the second agent. In some
embodiments, glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) and the second agent are delivered substantially at the same time.

In some embodiments, the second agent is an agent suitable for the treatment of a
disease of the gastrointestinal tract. In some embodiments, the second agent is an agent
suitable for the treatment of an inflammatory bowel disease. In some embodiments, the
second agent is administered intravenously. In some embodiments, the second agent is
administered subcutaneously. In some embodiments, the second agent is methotrexate.
In some embodiments, delivery of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the location, such as delivery to the location by mucosal contact, results in systemic immunogenicity levels at or below systemic immunogenicity levels resulting from administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) systemically. In some embodiments comprising administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the manner disclosed herein and a second agent systemically, delivery of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to the location, such as delivery to the location by mucosal contact, results in systemic immunogenicity levels at or below systemic immunogenicity levels resulting from administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) systemically and the second agent systemically. In some embodiments, the method comprises administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the manner disclosed herein and a second agent, wherein the amount of the second agent is less than the amount of the second agent when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second agent are both administered systemically. In some aspects of these embodiments, the second agent is glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

In some embodiments, the method comprises administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the manner disclosed herein and does not comprise administering a second agent.

EXAMPLES

Example 1 - Preclinical Murine Colitis Model

Experimental Induction of Colitis

Colitis is experimentally induced to mice via the dextran sulfate sodium (DSS)-induced colitis model. This model is widely used because of its simplicity and many similarities with human ulcerative colitis. Briefly, mice are subjected to DSS via cecal catheterization, which is thought to be directly toxic to colonic epithelial cells of the basal crypts, for several days until colitis is induced.
Groups

Mice are allocated to one of seven cohorts, depending on the agent that is administered:

1. Control (no agent)
2. Adalimumab (2.5 mg/kg)
3. Adalimumab (5 mg/kg)
4. Adalimumab (10 mg/kg)

The control or agent is applied to a damaged mucosal surface of the bowel via administration through a cecal catheter at the dose levels described above.

Additionally, for each cohort, the animals are separated into two groups. One group receives a single dose of the control or agent on day 10 or 12. The other group receives daily (or similar) dosing of the control or agent.

Analysis

For each animal, efficacy is determined (e.g., by endoscopy, histology, etc.), and cytotoxic T-cell levels are determined in blood, feces, and tissue (tissue levels are determined after animal sacrifice). For tissue samples, levels FIER2 are additionally determined, and the level of cytotoxic T cells is normalized to the level of FIER2. Additionally, other cytokine levels are determined in tissue (e.g., phospho STAT 1, STAT 3 and STAT 5), in plasma (e.g., VEGF, VCAM, ICAM, IL-6), or both.

Pharmacokinetics are determined both systemically (e.g., in the plasma) and locally (e.g., in colon tissue). For systemic pharmacokinetic analysis, blood and/or feces is collected from the animals at one or more timepoints after administration (e.g., plasma samples are collected at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, and/or 8 hours after administration). Local/colon tissue samples are collected once after animal sacrifice.

Example 2a - Development of Preclinical Porcine Colitis Model

Experimental Induction of Colitis

Female swine weighing approximately 35 to 45 kg at study start are fasted at least 24 hours prior to intra-rectal administration of trinitrobenzene sulfonic acid (TNBS). Animals are lightly anesthetized during the dosing and endoscopy procedure. An enema to clean the colon is used, if necessary. One animal is administered 40 mL of 100% EtOH mixed with 5 grams of TNBS diluted in 10 mL of "water via a" enema using a ball-tipped catheter. The
enema is deposited in the proximal portion of the descending colon just past the bend of the transverse colon. The TNBS is retained at the dose site for 12 minutes by use of two Foley catheters with 60-mL balloons placed in the mid-section of the descending colon below the dose site. A second animal is similarly treated, but with a solution containing 10 grams of TNBS. An Endoscope is employed to positively identify the dose site in both animals prior to TNBS administration. Dosing and endoscopy are performed by a veterinary surgeon.

Seven (7) days after TNBS administration, after light anesthesia, the dose site and mucosal tissues above and below the dose site are evaluated by the veterinary surgeon using an endoscope. Pinch Biopsies are obtained necessary, as determined by the surgeon. Based on the endoscopy findings, the animals may be euthanized for tissue collection on that day, or may proceed on study pending the results of subsequent endoscopy exams for 1 to 4 more days. Macroscopic and microscopic alterations of colonic architecture, possible necrosis, thickening of the colon, and substantial histologic changes are observed at the proper TNBS dose.

Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded at least daily during acclimation and throughout the study. Additional pen-side observations are conducted twice daily (once-daily on weekends). Body weight is measured for both animals Days 1 and 7 (and on the day of euthanasia if after Day 7).

On the day of necropsy, the animals are euthanized via injection of a veterinarian-approved euthanasia solution. Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic findings related to TNBS-damage. Photos are taken. Tissue samples are taken from the proximal, mid, and distal transverse colon; the dose site; the distal colon; the rectum; and the anal canal. Samples are placed into NBF and evaluated by a board certified veterinary pathologist.

Example 2b - Pharmacokinetic/Pharmacodynamic and Bioavailability of Adalimumab After Topical Application

Groups

Sixteen (16) swine (approximately 35 to 45 kg at study start) are allocated to one of five groups:

1. Vehicle Control: (3.2 mL saline); intra-rectal; (n=2)
2. Treated Control: Adalimumab (40mg in 3.2mL saline); subcutaneous; (n=2)
3. Adalimumab (low): Adalimumab (40mg in 3.2mL saline); intra-rectal; (n=4)
4. Adalimumab (med): Adalimumab (80mg in 3.2 mL saline); intra-rectal; (n=4)
5. Adalimumab (high): Adalimumab (160mg in 3.2 mL saline); intra-rectal; (n=4)

On Day 0, the test article is applied to a damaged mucosal surface of the bowel via intra-rectal administration or subcutaneous injection by a veterinary surgeon at the dose levels and volume described above.

Clinical Observations and Body Weight

Clinical observations are conducted at least once daily. Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded on all appropriate animals at least daily prior to the initiation of experiment and throughout the study until termination. Additional clinical observations may be performed if deemed necessary. Animals whose health condition warrants further evaluation are examined by a Clinical Veterinarian. Body weight is measured for all animals Days -6, 0, and after the last blood collections.

Samples

Blood:

Blood is collected (cephalic, jugular, and/or catheter) into EDTA tubes during acclimation on Day-7, just prior to dose on Day 0, and 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 hours post-dose. The EDTA samples are split into two aliquots and one is centrifuged for pharmacokinetic plasma and either analyzed immediately, or stored frozen (-80°C) for later pharmacokinetic analyses. The remaining sample of whole blood is used for pharmacodynamic analyses.

Feces:

Feces is collected Day -7, 0 and 0.5, 1, 2, 4, 6, 8, 12, 24 and 48 hours post-dose, and either analyzed immediately, or flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug levels and inflammatory cytokines.

Tissue:

Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic findings related to TNBS-damage. Triplicate samples of normal and damaged tissues are either analyzed immediately, or are flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug concentration, inflammatory cytokines and histology.
Samples are analyzed for adalimumab levels (local mucosal tissue levels and systemic circulation levels), and for levels of inflammatory cytokines including TNF-alpha.

Terminal Procedures

Animals are euthanized as per the schedule in Table AA, where one animal each of Vehicle and Treated Control groups is euthanized at 6 and 48 hours post-dose, and one animal of each the adalimumab groups are euthanized at 6, 12, 24 and 48 hours post-dose. Animals are discarded after the last blood collection unless retained for a subsequent study.
Table AA

<table>
<thead>
<tr>
<th>General</th>
<th>Sample size</th>
<th>Dose</th>
<th>Route</th>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food/Water</td>
<td>ad libidum</td>
<td>oral</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations</th>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>clinical observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>body weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatments (groups)</th>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNBS (all animals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vehicle control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2 1.6mL saline (vehicle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Treated control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2 40mg in 1.6mL saline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Adalimumab (low)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=4 40mg in 1.6mL saline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Adalimumab (med)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=4 80mg in 1.6mL saline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Adalimumab (high)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=4 160mg in 1.6mL saline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adalimumab (required)</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples</th>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cephalic, jugular or catheter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>necropsy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2c - Pharmacokinetic/Pharmacodynamic and Bioavailability of Adalimumab

After Topical Application

Groups

DSS-induced colitis Yorkshire-Cross Farm Swine (approximately 5-10 kg at study start) are allocated to one of five groups:

1. Vehicle Control: (saline); intra-rectal;
2. Treated Control: Adalimumab (13 mg in saline); subcutaneous;
3. Adalimumab: Adalimumab (13 mg in saline); intra-rectal;

At t = 0, the test article is applied to a damaged mucosal surface of the bowel via intra-rectal administration or subcutaneous injection by a veterinary surgeon at the dose levels and volume described above.

Clinical Observations

Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded on all appropriate animals at least daily prior to the initiation of experiment and throughout the study until termination. Additional clinical observations may be performed if deemed necessary. Animals whose health condition warrants further evaluation are examined by a Clinical Veterinarian.

Samples

Blood:

Blood is collected (cephalic, jugular, and/or catheter) into EDTA tubes during acclimation on Day-7, just prior to dose on Day 0, and 12 hours post-dose. The EDTA samples are split into two aliquots and one is centrifuged for pharmacokinetic plasma and either analyzed immediately, or stored frozen (-80°C) for later pharmacokinetic analyses. The remaining sample of whole blood is used for pharmacodynamic analyses.

Feces:

Feces is collected Day -7, 0 and 12 hours post-dose, and either analyzed immediately, or flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug levels and inflammatory cytokines.
Tissue:
Immediately after euthanasia (12 hours after dosing) in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic findings related to DSS-damage. Triplicate samples of normal and damaged tissues are either analyzed immediately, or are flash-frozen on liquid nitrogen and stored frozen at -70°C pending later analysis of drug concentration, inflammatory cytokines and histology.

Samples are analyzed for adalimumab levels (local mucosal tissue levels and systemic circulation levels), and for levels of inflammatory cytokines including TNF-alpha.

Terminal Procedures
Animals are euthanized at 12 hours post-dose.

Example 3 - Comparison of Systemic versus Intra-cecal Delivery of an Anti-IL-12

Antibody
The objective of this study was to compare the efficacy of an IL-12 inhibitor (anti-IL-12 p40; anti-p40 mAb; BioXCell (Cat#: BE0051)), when dosed systemically versus intra-cecally, to the treat dextran sulfate sodium salt (DSS)-induced colitis in male C57B1/6 mice.

Materials and Methods
Mice
Normal male C57B1/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into thirteen groups of twelve animals and two groups of eight animals, and housed in groups of 6-8 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.

Cecal Cannulation
Animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The
site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10mg/Kg every day for the first 5 days post surgery.

Induction of Colitis

Colitis was induced in male C57B1/6 mice by exposure to 3% DSS drinking water (MP Biomedicals #02601 10) from Day 0 to Day 5. Fresh DSS/water solutions were made again on Day 3 and any of the remaining original DSS solution will be discarded.

Assessment of Colitis

All animals were weighed daily and visually assessed for the presence of diarrhea and/or bloody stool at the time of dosing. The mice underwent two video endoscopies, one on day 10 and one on day 14, to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during the endoscopy, and assessed using the rubric demonstrated in Table 1.1. Additionally, stool consistency was scored during the endoscopy using this rubric (Table 1.2) (0 = Normal, well-formed pellet, 1 = Loose stool, soft, staying in shape, 2 = Loose stool, abnormal form with excess moisture, 3 = Watery or diarrhea, 4 = Bloody diarrhea). At necropsy, intestinal contents, peripheral blood, and tissue, and cecum/colon contents were collected for analysis.

Table 1.1. Endoscopy Scoring

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Endoscopy Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Loss of vascularity</td>
</tr>
<tr>
<td>2</td>
<td>Loss of vascularity and friability</td>
</tr>
<tr>
<td>3</td>
<td>Friability and erosions</td>
</tr>
<tr>
<td>4</td>
<td>Ulcerations and bleeding</td>
</tr>
</tbody>
</table>

Table 1.2. Stool Consistency Score

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Stool Consistency</th>
</tr>
</thead>
</table>

At necropsy, intestinal contents, peripheral blood, and tissue, and cecum/colon contents were collected for analysis.
0 Normal, well-formed pellet
1 Loose stool, soft, staying in shape
2 Loose stool, abnormal form with excess moisture
3 Watery or diarrhea
4 Bloody diarrhea

Treatment of Colitis

Mice were treated with anti-IL-12 p40 during the acute phase of colitis due to its efficacy in the treatment of DSS-induced colitis. The test article was dosed at a volume of 0.1 mL/20 g from days 0 to 14. Anti-IL-12 p40 was administered intraperitoneally at a dose of 10 mg/kg every 3 days, and intra-cecally at a dose of 10 mg/kg, either every 3 days or every day. There was also a lower dose of 1 mg/kg given every day intra-cecally. The control groups were not administered drugs, and the vehicles (sterile PBS) were administered the placebo drug intraperitoneally and intra-cecally every day. These drugs were given from days 5-14, which is 9 days of administration. A more detailed explanation of dosing and groups can be seen in Table 1.3.

Table 1.3. Groups of Animals

<table>
<thead>
<tr>
<th>Group #</th>
<th># of Animals</th>
<th>DSS</th>
<th>Cecal Cannula</th>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>Dosing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 males</td>
<td>—</td>
<td>NO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>8 males</td>
<td>—</td>
<td>YES</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>NO</td>
<td>Vehicle</td>
<td>—</td>
<td>PO</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>4</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>Vehicle</td>
<td>—</td>
<td>IC</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>5</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>NO</td>
<td>Anti-p40</td>
<td>10</td>
<td>IP</td>
<td>Q3 0,3,6,9,12</td>
</tr>
<tr>
<td>6</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>Anti-p40</td>
<td>10</td>
<td>IC</td>
<td>Q3 0,3,6,9,12</td>
</tr>
<tr>
<td>7</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>Anti-p40</td>
<td>10</td>
<td>IC</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>8</td>
<td>12 males</td>
<td>3% DSS</td>
<td>YES</td>
<td>Anti-p40</td>
<td>1</td>
<td>IC</td>
<td>QD</td>
</tr>
</tbody>
</table>
Sample Collection

Intestinal contents, peripheral blood, and tissue were collected at sacrifice on day 14, as follows: at the end of each study period, mice were euthanized by CO2 inhalation immediately following endoscopy on day 14. The blood was collected via cardiac puncture into K₂EDTA-coated tubes and centrifuged at 4000 x g for 10 minutes. The blood cell pellet was retained and snap frozen. The resulting plasma was then split into two separate cryotubes, with 100 μL in one tube and the remainder in the second. Plasma and cell pellet were also collected, flash frozen, and stored at -80 degrees Celsius.

The cecum and colon were removed from each animal and contents were collected, weighed, and snap frozen in separate cryovials. The colon was excised, rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into 5 pieces. The most proximal 1 cm of colon was snapped frozen for subsequent bioanalysis of test article levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections was placed in formalin for 24 hours then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen.

Results

The data in Figure 30 show that the DSS mice that were intra-cecally administered an anti-IL-12 p40 (IgG2A) antibody had decreased weight loss as compared to DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody.

The data in Figure 31 show that the plasma concentration of the anti-IL-12 p40 antibody was decreased in DSS mice that were intra-cecally administered the anti-IL-12 p40 antibody as compared to DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody. The data in Figure 32 show that the cecum and colon concentration of the anti-IL-12 p40 antibody is increased in DSS mice that were intra-cecally administered the anti-IL-12 p40 antibody as compared to the DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody.

The data in Figures 33 and 34 show that the anti-IL-12 p40 antibody is able to penetrate colon tissues (the lumen superficial, lamina propria, submucosa, and tunica muscularis/serosa) in DSS mice intra-cecally administered the anti-IL-12 p40 antibody, while
the anti-IL-12 p40 antibody did not detectably penetrate the colon tissues of DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in Figure 35 also show that the ratio of the concentration of anti-IL-12 p40 antibody in colon tissue to the concentration of the anti-IL-12 p40 antibody in plasma is increased in DSS mice intra-cecally administered the anti-IL-12 p40 antibody as compared to the ratio in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody.

The data in Figure 36 show that the concentration of IL-1β in colon tissue is decreased in DSS mice intra-cecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-1β in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in Figure 37 show that the concentration of IL-6 in colon tissue is decreased in DSS mice intra-cecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-6 in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in Figure 38 show that the concentration of IL-17A in colon tissue is decreased in DSS mice intra-cecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-17A in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody.

No significant differences in clinical observations or gastrointestinal-specific adverse effects, including stool consistency and/or bloody stool, were observed due to cannulation or intra-cecal treatments when compared with vehicle. No toxicity resulting from the treatments was reported. A significant reduction in body weight-loss (AUC) was found in groups treated with anti-IL-12 p40 antibody (10 mg/kg and 1 mg/kg, QD) via intra-cecal delivery when compared with vehicle control and intraperitoneal delivery (10 mg/kg, Q3D). The immunohistochemistry staining in anti-IL-12 p40 antibody (10 mg/kg, QD) treatment groups showed penetration of the antibody in all layers of colon tissue, including lumen mucosa, lamina propria, submucosa, tunica muscularis, via intra-cecal delivery. The distribution of anti-IL-12 p40 antibody was found in all segments of the colon, however, higher levels were detected in the proximal region. A significantly higher mean concentration of anti-IL-12 p40 antibody was found in the gastrointestinal contents and colon tissues when delivered via intra-cecal administration (Anti-p40: 10 mg/kg and 1 mg/kg, QD) compared with intraperitoneal administration (anti-p40: 10 mg/kg, Q3D). The blood level of anti-IL-12 p40 antibody was significantly higher when delivered via intraperitoneal administration (Q3D & QD) compared to intra-cecal administration (Q3D & QD). The concentrations of inflammatory cytokines, including IL-1β, IL-6, and IL-17, were significantly reduced by anti-IL-12 p40...
antibody (10 mg/kg, QD) treatment when delivered via intra-cecal administration as
compared to vehicle controls.

In sum, these data show that the compositions and devices provided herein can
suppress the local immune response in the intestine, while having less of a suppressive effect
on the systemic immune response of an animal. These data also suggest that the presently
claimed compositions and devices will provide for treatment of colitis and other pro-
inflammatory disorders of the intestine.

Example 4 - Comparison of Systemic versus Intra-cecal Delivery of an Anti-Integrin

α4β7 Antibody

The objective of this study was to compare the efficacy of an integrin inhibitor (anti-
integrin α4β7; anti-LPAM1; DATK-32 mAb; BioXCell (Cat#: BE0034)) when dosed
systemically versus intra-cecally for treating dextran sulfate sodium salt (DSS)-induced
colitis in male C57B1/6 mice.

Materials and Methods

Mice

Normal male C57B1/6 mice between the ages of 6-8 weeks old, weighing 20-24 g,
were obtained from Charles River Laboratories. The mice were randomized into thirteen
groups of twelve animals and two groups of eight animals, and housed in groups of 6-8 per
cage, and acclimatized for at least three days prior to entering the study. Animal rooms were
set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a
light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water
administered ad libitum.

Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a
midline incision in the abdomen. A small point incision was made in the distal cecum where
1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using
5-0 silk. An incision was then made in the left abdominal wall through which the distal end
of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The
site was then washed copiously with warmed saline prior to closing the abdominal wall. A
small incision was also made in the skin of the back between the shoulder blades, exposing
the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue
smear. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were
monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10mg/Kg every day for the first 5 days post-surgery.

Induction of Colitis

Colitis was induced in male C57B1/6 mice by exposure to 3% DSS drinking water (MP Biomedicals #02601 10) from day 0 to day 5. Fresh DSS/water solutions were made again on day 3 and any of the remaining original DSS solution will be discarded.

Assessment of Colitis

All animals were weighed daily and visually assessed for the presence of diarrhea and/or bloody stool at the time of dosing. Mice underwent two video endoscopies, one on day 10 and one on day 14, to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during the endoscopy, and assessed using the rubric demonstrated in Table 2.1. Additionally, stool consistency was scored during the endoscopy using this rubric (Table 2.2) (0 = Normal, well-formed pellet, 1= Loose stool, soft, staying in shape, 2 = Loose stool, abnormal form with excess moisture, 3 = Watery or diarrhea, 4 = Bloody diarrhea). At necropsy, intestinal contents, peripheral blood and tissue, and cecum/colon contents were collected for analysis.

Table 2.1. Endoscopy Score

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Endoscopy Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Loss of vascularity</td>
</tr>
<tr>
<td>2</td>
<td>Loss of vascularity and friability</td>
</tr>
<tr>
<td>3</td>
<td>Friability and erosions</td>
</tr>
<tr>
<td>4</td>
<td>Ulcerations and bleeding</td>
</tr>
</tbody>
</table>

Table 2.2. Stool Consistency Score

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Stool Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal, well-formed pellet</td>
</tr>
<tr>
<td>1</td>
<td>Loose stool, soft, staying in shape</td>
</tr>
</tbody>
</table>
2 Loose stool, abnormal form with excess moisture
3 Watery or diarrhea
4 Bloody diarrhea

Treatment of Colitis

Mice were treated with DATK32 during the acute phase of colitis due to its efficacy in the treatment of DSS-induced colitis. The test article was dosed at a volume of 0.1 mL/20 g from days 0 to 14. DATK32 was administered intraperitoneally at a dose of 25 mg/kg every 3 days, and intra-cecally at a dose of 25 mg/kg, either every 3 days or every day. There was also a lower dose of 5 mg/kg given every day intra-cecally. The control groups were not administered drugs, and the vehicle (sterile PBS) was administered as the placebo drug intraperitoneally and intra-cecally every day. These drugs were given from days 5-14, which is 9 days of administration. A more detailed explanation of dosing and groups can be seen in Table 2.3.

Table 2.3. Groups of Mice

<table>
<thead>
<tr>
<th>Group #</th>
<th># of Animals</th>
<th>DSS</th>
<th>Cecal Cannula</th>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>Dosing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 males</td>
<td>—</td>
<td>NO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>8 males</td>
<td>—</td>
<td>YES</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>NO</td>
<td>Vehicle</td>
<td>—</td>
<td>PO</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>4</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>Vehicle</td>
<td>—</td>
<td>IC</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>9</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>NO</td>
<td>DATK32</td>
<td>25</td>
<td>IP</td>
<td>Q3 0,3,6,9,12</td>
</tr>
<tr>
<td>10</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>DATK32</td>
<td>25</td>
<td>IC</td>
<td>Q3 0,3,6,9,12</td>
</tr>
<tr>
<td>11</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>DATK32</td>
<td>25</td>
<td>IC</td>
<td>QD day 0-14</td>
</tr>
<tr>
<td>12</td>
<td>12 males</td>
<td>3% DSS (day 0-5)</td>
<td>YES</td>
<td>DATK32</td>
<td>5</td>
<td>IC</td>
<td>QD day 0-14</td>
</tr>
</tbody>
</table>
Sample Collection

Intestinal contents, peripheral blood, and tissue were collected at sacrifice on day 14, as follows: at the end of each study period, mice were euthanized by CO2 inhalation immediately following endoscopy on day 14. The blood was collected via cardiac puncture into K$_2$EDTA-coated tubes and centrifuged at 4000 x g for 10 minutes. The blood cell pellet was retained and snapped frozen. The resulting plasma was then split into two separate cryotubes, with 100 µL in one tube and the remainder in the second. Plasma and the cell pellet were also collected, flash frozen, and stored at -80 degrees Celsius. An ELISA was used to determine the level of rat IgG2A.

The cecum and colon were removed from each animal and contents were collected, weighed, and snap frozen in separate cryovials. The colon was excised, rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into 5 pieces. The most proximal 1 cm of colon was snapped frozen for subsequent bioanalysis of anti-DATK32 levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections was placed in formalin for 24 hours then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen.

There was an additional collection of 100 µL of whole blood from all animals and processed for FACS analysis of α4 and β1 expression on T-helper memory cells. Tissue and blood were immediately placed in FACS buffer (1x PBS containing 2.5% fetal calf serum) and analyzed using the following antibody panel (Table 2.4).

Table 2.4. Fluorophore Labelled Antibodies Used in FACS Analysis

<table>
<thead>
<tr>
<th>Antibody Target</th>
<th>Fluorochrome</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>APC-Vio770</td>
<td>Defines T-Helper Cells</td>
</tr>
<tr>
<td>CD44</td>
<td>VioBlue</td>
<td>Memory/Naive Discrimination</td>
</tr>
<tr>
<td>CD45RB</td>
<td>FITC</td>
<td>Memory/Naive Discrimination</td>
</tr>
<tr>
<td>α4</td>
<td>APC</td>
<td>Defines T-helper memory subset of interest</td>
</tr>
<tr>
<td>β7</td>
<td>PE</td>
<td>Defines T-helper memory subset of interest</td>
</tr>
<tr>
<td>CD 16/32</td>
<td>-</td>
<td>Fc Block</td>
</tr>
</tbody>
</table>
Results

The data in Figure 39 show decreased weight loss in DSS mice intra-cecally administered DATK antibody as compared to DSS mice that were intraperitoneally administered the DATK antibody. The data in Figure 40 show that DSS mice intra-cecally administered DATK antibody have a decreased plasma concentration of DATK antibody as compared to DSS mice that were intraperitoneally administered DATK antibody. The data in Figures 41 and 42 show that DSS mice intra-cecally administered DATK antibody have an increased concentration of DATK antibody in the cecum and colon content as compared to DSS mice intraperitoneally administered DATK antibody. The data in Figures 43 and 44 show that DSS mice intra-cecally administered DATK antibody have an increased concentration of DATK antibody in colon tissue as compared to DSS mice intraperitoneally administered DATK antibody. The data in Figures 45 and 46 show an increased level of penetration of DATK antibody into colon tissue in DSS mice intra-cecally administered the DATK antibody as compared to an intra-cecal vehicle control (PBS). The data in Figure 47 show that DSS mice intra-cecally administered DATK antibody have an increased ratio of the concentration of DATK antibody in colon tissue to the plasma concentration of the DATK antibody, as compared to the same ratio in DSS mice intraperitoneally administered the DATK antibody.

The data in Figure 48 show that DSS mice intra-cecally administered the DATK antibody have an increased percentage of blood Th memory cells as compared to DSS mice intraperitoneally administered the DATK antibody.

No significant differences in clinical observations or gastrointestinal-specific adverse effects, including stool consistency and/or bloody stool, were observed due to cannulation or intra-cecal treatments when compared with vehicle. No toxicity resulting from the treatments was reported. A significant reduction in body weight-loss was also found with DATK32 (5 mg/kg, QD) treatment (IC) when compared to vehicle control at the endpoint (day 14). The immunohistochemistry staining in DATK32 (25 mg/kg, QD) treatment groups showed penetration of DATK32 in all layers of colon tissue, including lumen mucosa, lamina propria, submucosa, tunica muscularis, via intra-cecal delivery. The distribution of DATK32 was found in all segments of the colon, however, higher levels were detected in the proximal region. A significantly higher mean concentration of DATK32 was found in gastrointestinal contents and colon tissues when delivered via intra-cecal administration (DATK32: 25 mg/kg and 5 mg/kg, QD) as compared to intraperitoneal administration (DATK32: 25 mg/kg, Q3D).
The blood level of DATK32 was significantly higher when delivered via intraperitoneal administration (Q3D) as compared to intra-ecal administration (Q3D & QD). The pharmacokinetics of DATK32 (25 mg/kg, QD) showed significantly higher mean concentrations of DATK32 when delivered via intra-ecal administration at 1, 2, and 4 h post-dose in the gastrointestinal contents, and 1, 2, 4 and 24 h in colon tissue as compared with the mean concentrations of DATK32 following intraperitoneal administration. The mean number of gut-homing T cells (Th memory cells) was significantly higher in the blood of groups treated with DATK32 via intra-ecal administration (QD 25 mg/kg and QD 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg). The mean number of Th memory cells was significantly lower in the Peyer’s Patches of groups treated with DATK32 via intra-ecal administration (QD 25 mg/kg and 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg). The mean number of Th memory cells in mesenteric lymph nodes (MLN) was significantly lower in groups treated with DATK32 via intra-ecal administration (QD and Q3D 25 mg/kg and QD 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg).

In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. These data also show that the release of DATK-32 antibody in the colon can result in a suppression of leukocyte recruitment and may provide for the treatment of colitis and other pro-inflammatory diseases of the intestine.

Example 5 - An Assessment of DATK32 Bio-Distribution Following Intra-ecal Administration in Male C57B1/6 Mice

The objective of this study is to assess DATK32 bio-distribution when dosed intra-ecally in male C57B1/6 mice. A minimum of 10 days prior to the start of the experiment a cohort of animals will undergo surgical implantation of a cecal cannula. A sufficient number of animals will undergo implantation to allow for 24 cannulated animals to be enrolled in the main study (e.g., 31 animals). Animals were dosed with vehicle or test article via intra-ecal injection (IC) on Day 0 as indicated in Table 3. Animals from all groups were sacrificed for terminal sample collection three hours following test article administration.

Materials and Methods

Mice
Normal male C57B1/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into two groups of twelve animals, and housed in groups of 12 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.

Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10mg/Kg every day for the first 5 days post-surgery.

Dosing

Animals were dosed IC at a volume of 0.075 mL/animal on Days 0 as indicated in Table 3.

Sacrifice

All animals were euthanized by CO2 inhalation three hours after dosing on Day 0.

Sample Collection

Terminal blood was collected and prepared for plasma using K2EDTA as the anti-coagulant. The plasma will be split into two cryotubes, with 50 μL in one tube (PK analysis) and the remainder in another (other). Both samples were flash-frozen in liquid nitrogen. Plasma was stored at -80°C for downstream analysis. Mesenteric lymph nodes (mLN) were collected, weighed, and flash-frozen in liquid nitrogen. Mesenteric lymph nodes were stored at -80°C for downstream analysis. The small intestine was excised and rinsed, and the most distal 1 cm of ilium was dissected, weighed, and flash-frozen in liquid nitrogen. The samples were stored at -80°C for downstream analysis. The cecum and colon were removed from
each animal and contents collected, weighed, and snap frozen in separate cryovials. The samples were stored at -80°C for downstream analysis. The colon was rinsed, and the most proximal 1 cm of colon was weighed and flash-frozen in liquid nitrogen. The snap frozen tissues were stored at -80 °C.

Table 3. Study Design

<table>
<thead>
<tr>
<th>Group</th>
<th>N° Animals</th>
<th>Treatment (PBS)</th>
<th>Route</th>
<th>Schedule</th>
<th>Terminal Collections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>Vehicle</td>
<td>IC</td>
<td>Day 0 **</td>
<td>Blood (plasma) Small intestine mL/N Colon Colon Contents Cecum Contents</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>DATK32 (625 μg)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Per mouse. TA was administered in 0.075 mL/animal. DATK32 was delivered in sterile PBS.

**Animals were dosed on Day 0 and collections were performed 3 hours later.

Results

The data in FIGS. 63A-F show no significant differences in clinical observations. No gastrointestinal-specific or adverse effects were found in the group administered DATK32 via intra-cecal administration as compared to the group administered a vehicle control. No toxicity resulting from the treatments was reported. The level of DATK32 in the group intra-cecally administered DATK32 was significantly higher in cecum and colon content, and colon tissue compared to the group administered a vehicle control at 3h post-dose. A small amount of DATK32 was also detected in plasma, small intestine, and mesenteric lymph node in the group intra-cecally administered DATK32.

Example 6 - Pharmacokinetics/Pharmacodynamics and Bioavailability of Adalimumab When Applied to a TNBS-damaged Mucosal Surface (Induced Colitis) in Swine

The purpose of this non-Good Laboratory Practice (GLP) study was to explore the PK/PD, and bioavailability of adalimumab when applied to a TNBS-damaged mucosal surface (induced colitis) in Yorkshire-Cross farm swine, and to determine an appropriate dose and frequency for studies where a drug will be delivered by the ingestible device system. The ingestible device system will be capable of delivering a TNF inhibitor (adalimumab) topically and locally to damaged mucosa in human patients with inflammatory bowel disease.
(IBD). The TNBS-induced colitis model was validated when a single administration on Day 1 of 40 mL of 100% ethanol (EtOH) mixed with 5 grams of TNBS diluted in 10 mL of water via an enema using a rubber catheter resulted in the intended reproducible induction of damaged mucosal surface (induced colitis) in Yorkshire-Cross farm swine.

This study investigated whether topical delivery of adalimumab would result in increased local mucosal tissue levels with limited drug reaching systemic circulation, as compared to subcutaneous administration; whether local mucosal tissue levels of drug would be greater in damaged tissues when compared to normal tissues; whether increasing the dose of drug would result in increased mucosal tissue levels in local and distal TNBS-damaged tissues; and whether topical delivery of adalimumab would result in reductions in inflammatory cytokines such as TNF-α in damaged tissues, feces, and possibly blood.

All animals were subjected to intra-rectal administration of trinitrobenzene sulfonic acid (TNBS) to induce chronic colitis on day -2. All animals were fasted prior to colitis induction. Bedding was removed and replaced with rubber mats on day -3 to prevent ingestion of straw bedding material. The dose was 40 mL of 100% EtOH mixed with 5 grams of TNBS diluted in 10 mL of water, then instilled into the colon intra-rectally using a flexible gavage tube by a veterinary surgeon (deposited in a 10-cm portion of the distal colon and proximal rectum, and retained for 12 minutes by use of two Foley catheters with 60-mL balloons). Approximately 3 days after induction, macroscopic and microscopic alterations of colonic architecture were apparent: some necrosis, thickening of the colon, and substantial histologic changes were observed (Figures 49 and 50). The study employed 15 female swine (approximately 35 to 45 kg at study start) allocated to one of five groups. Group 1 employed three animals that were the treated controls. Each animal in Group 1 was administered adalimumab by subcutaneous injection at 40 mg in 0.8 mL saline. Groups 2, 3, 4, and 5 employed 3 animals in each group. Animals in these groups were administered intra-rectal adalimumab at 40 mg in 0.8 mL saline. The test drug (adalimumab) was administered to all groups on study day 1. The intra-rectal administrations (Groups 2-5) were applied to damaged mucosal surface of the bowel via intra-rectal administration by a veterinary surgeon. Blood (EDTA) was collected from all animals (cephalic, jugular, or catheter) on day -3 (n=15), -1 (n=15), and 6 (n=15), 12 (n=12), 24 (n=9), and 48 (n=6) hours post-dose (87 bleeds total). The EDTA samples were split into two aliquots, and one was centrifuged for PK plasma, and stored frozen (-80°C) for PK analyses and reporting. Fecal samples were collected for the same time-points (87 fecal collections). Fecal samples were flash-frozen in
liquid nitrogen and then stored at -80°C for analysis of drug levels and inflammatory cytokines. Groups 2, 3, 4, and 5 were euthanized and subjected to gross necropsy and tissue collection 6, 12, 24, and 48 hours post-dose, respectively. Group 1 was similarly euthanized and necropsied 48 hours post-dose. The animals were euthanized via injection of a veterinarian-approved euthanasia solution as per the schedule. Immediately after euthanasia in order to avoid autolytic changes, colon tissues were collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon were performed to identify macroscopic findings related to TNBS-damage. Tissue samples were taken from the proximal, mid, and distal transverse colon; the dose site; and the distal colon. Each tissue sample was divided into two approximate halves; one tissue section was placed into 10% neutral buffered formalin (NBF) and evaluated by a Board certified veterinary pathologist, and the remaining tissue section was flash frozen in liquid nitrogen and stored frozen at -80°C. Clinical signs (ill health, behavioral changes, etc.) were recorded daily beginning on day -3. Additional pen-side observations were conducted once or twice daily. Animals observed to be in ill health were examined by a veterinarian. Body weight was measured for all animals on day -3, and prior to scheduled euthanasia. Table 4.1, depicted below, shows the study design.

Materials and Methods

TestArticle

Adalimumab (EXEMPTIA™) is a Tumor Necrosis Factor (TNF) inhibitor. A single dose was pre-filled in a syringe (40 mg in a volume of 0.8 mL).
<table>
<thead>
<tr>
<th>Treatments (groups)</th>
<th>Sample size</th>
<th>Dose</th>
<th>Route</th>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNBS (all animals)</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>intra rectal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Treated control</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>sub-cutaneous</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2. Adalimumab</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>intra rectal</td>
<td></td>
<td>n=3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Adalimumab</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>intra rectal</td>
<td></td>
<td>n=3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Adalimumab</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>intra rectal</td>
<td></td>
<td>n=3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Adalimumab</td>
<td>n=3</td>
<td>40mg in 0.8mL saline</td>
<td>intra rectal</td>
<td></td>
<td>n=3</td>
</tr>
<tr>
<td>Adalimumab (required)</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples</td>
<td>cephalic, jugular or catheter</td>
<td>cephalic, jugular or catheter</td>
<td>rectal</td>
<td>necropsy</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>PBMCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Tissue</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>1 location</th>
<th>4 locations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Histopathology</td>
<td>inflamed</td>
<td>normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>45</td>
<td>180</td>
<td>H&E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>180</td>
<td>H&E</td>
<td></td>
</tr>
<tr>
<td>Feces</td>
<td>57</td>
<td>pbl</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>pbl</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Issue</td>
<td>57</td>
<td>pbl</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>pbl</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Inflamed</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

			3	3
			3	3
			3	3
			3	3
Results

While subcutaneously administered adalimumab was detected at all times points tested in plasma, topically administered adalimumab was barely detectable in plasma (Figures 51 and 52). Both topical delivery and subcutaneous delivery of adalimumab resulted in reduced levels of TNF-a in colon tissue of TNBS-induced colitis animals, yet topical delivery of adalimumab was able to achieve a greater reduction in TNF-a levels (Figures 53 and 54).

Either subcutaneous or intra-rectal administration of adalimumab was well tolerated and did not result in death, morbidity, adverse clinical observations, or body weight changes. A decreased level of total TNBS-related inflammatory response was observed by adalimumab treatment via intra-rectal administration when applied to the damaged mucosal surface of the bowel when compared to subcutaneous delivery. A significantly higher concentration of adalimumab was measured in blood following subcutaneous delivery as compared to the blood concentration following intra-rectal administration. Intra-rectal administration of adalimumab decreased the total and normalized TNFα concentration over time (6~48h) and was more effective at reducing TNFα at the endpoint (48h) as compared to groups administered adalimumab subcutaneously.

In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. For example, these data show that intra-cecal administration of adalimumab using a device as described herein can provide for local delivery of adalimumab to the site of disease, without suppressing the systemic immune response. These data also show that local administration of adalimumab using a device as described herein can result in a significant reduction of the levels of TNFα in diseases animals.

Example 7 - Comparison of Systemic Versus Intra-cecal Delivery of Cyclosporine A

The objective of this study was to compare the efficacy of an immunosuppressant agent (cyclosporine A; CsA) when dosed systemically versus intra-cecally to treat dextran sulfate sodium salt (DSS)-induced colitis in male C57B1/6 mice.

Experimental Design

A minimum of 10 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for 44 cannulated animals to be enrolled in the main study
Colitis was induced in 60 male C57B1/6 mice by exposure to 3% DSS-treated drinking water from day 0 to day 5. Two groups of eight additional animals (cannulated and non-cannulated) served as no-disease controls (Groups 1 and 2). Animals were dosed with cyclosporine A via intraperitoneal injection (IP), oral gavage (PO), or intracecal injection (IC) from day 0 to 14 as indicated in Table 5.1. All animals were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool at the time of dosing. Mice underwent video endoscopy on days 10 and 14 to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during endoscopy. Additionally, stool consistency was scored during endoscopy using the parameters defined in Table 5.2. Following endoscopy on day 14, animals from all groups were sacrificed and underwent terminal sample collection.

Specifically, animals in all treatment groups dosed on day 14 were sacrificed at a predosing time point, or 1, 2, and 4 hours after dosing (n=3/group/time point). Terminal blood was collected via cardiac puncture and prepared for plasma using K2EDTA as the anticoagulant. The blood cell pellet was retained and snap frozen while the resulting plasma was split into two separate cryotubes, with 100 µL in one tube and the remainder in the second. Additionally, the cecum and colon were removed from all animals; the contents were collected, weighed, and snap frozen in separate cryovials. The colon was then rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into five pieces. The most proximal 1 cm of colon was snap frozen for subsequent bioanalysis of cyclosporine A levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections were each placed in formalin for 24 hours, then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen. All plasma and frozen colon tissue were stored at -80°C for selected end point analysis. For all control animals in Groups 1-4, there was an additional collection of 100 µL of whole blood from all animals which was then processed for FACS analysis of α4 and β7 expression on TH memory cells.

The details of the study are shown in Table 5.1.

Table 5.1. Study Design

<table>
<thead>
<tr>
<th>Group Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Animals</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Cecal Cannula | NO | YES | NO | YES | NO | YES | YES
---|---|---|---|---|---|---|---
DSS | N/A | N/A | 3% DSS on Day 0 to Day 5
Treatment | none | none | vehicle | vehicle | CsA | CsA | CsA
Dose (mg/kg) | N/A | N/A | N/A | N/A | 10 | 10 | 3
Route | N/A | N/A | N/A | N/A | PO | IC | IC
Dosing Schedule | N/A | N/A | QD: Day Oto 14 | QD: Day Oto 14
Endoscopy Schedule* | Days 10 and 14
Endpoints Day 14 | Endoscopy, Colon weight/ length, stool score
Terminal Collection (all groups): Cecal contents, colon contents, plasma, and colon tissue
FACS analysis collection of Groups 1-4:
Whole blood for the following FACS panel: CD4, CD44, CD45RB, χ^4, β^7, CD 16/32
PK Sacrifice (Day 14) | N=3/ time points
At pre-dose and 1, 2, and 4 hours post-dosing
*Animals were dosed once (QD) on Day 14 and plasma collected (K2EDTA) at pre-dosing, 1, 2, and 4 hours post-dosing from n=3/group/time point. Each collection was terminal.

Experimental Procedures

Cecal Cannulation

Animals were placed under isoflurane anesthesia, and the cecum exposed via a mid-line incision in the abdomen. A small point incision was made in the distal cecum through which 1-2 cm of the cannula was inserted. The incision was closed with a purse-string suture using 5-0 silk. An incision was made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was washed copiously with warmed saline prior to closing the abdominal wall. A small
incision was made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until fully recovered before returning to the cage. All animals received buprenorphine at 0.6 mg/kg BID for the first 3 days, and Baytril® at 10 mg/kg QD for the first 5 days following surgery.

Disease Induction

Colitis was induced on day 0 via addition of 3% DSS (MP Biomedicals, Cat #02601 10) to the drinking water. Fresh DSS/water solutions were made on day 3 and any of the remaining original DSS solution was discarded.

Dosing

Animals were dosed by oral gavage (PO), intraperitoneal injection (IP), or intra-cecal injection (IC) at a volume of 0.1 mL/20 g on days 0 to 14 as indicated in Table 5.1.

Body Weight and Survival

Animals were observed daily (weight, morbidity, survival, presence of diarrhea, and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.

Animals Found Dead or Moribund

Animals were monitored on a daily basis and those exhibiting weight loss greater than 30% were euthanized, and samples were not collected from these animals.

Endoscopy

Each mouse underwent video endoscopy on days 10 and 14 using a small animal endoscope (Karl Storz Endoskope, Germany) under isoflurane anesthesia. During each endoscopic procedure still images as well as video were recorded to evaluate the extent of colitis and the response to treatment. Additionally, we attempted to capture an image from each animal at the most severe region of disease identified during endoscopy. Colitis severity was scored using a 0-4 scale (0 = normal; 1 = loss of vascularity; 2 = loss of vascularity and friability; 3 = friability and erosions; 4 = ulcerations and bleeding). Additionally, stool consistency was scored during endoscopy using the parameters defined in Table 5.2.

Table 5.2. Stool Consistency

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal, well-formed pellet</td>
</tr>
</tbody>
</table>
1 Loose stool, soft, staying in shape
2 Loose stool, abnormal form with excess moisture
3 Watery or diarrhea
4 Bloody diarrhea

Tissue/Blood for FACS

Tissue and blood were immediately placed in FACS buffer (1x phosphate-buffered saline (PBS) containing 2.5% fetal calf serum (FCS)) and analyzed using the antibody panel in Table 5.3.

Table 5.3. FACS Antibody Panel

<table>
<thead>
<tr>
<th>Antibody Target</th>
<th>Fluorochrome</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>APC-Vio770</td>
<td>Defines T\textsubscript{H} cells</td>
</tr>
<tr>
<td>CD44</td>
<td>VioBlue</td>
<td>Memory/ Naïve discrimination</td>
</tr>
<tr>
<td>CD45RB</td>
<td>FITC</td>
<td>Memory/ Naïve discrimination</td>
</tr>
<tr>
<td>α4</td>
<td>APC</td>
<td>Defines T\textsubscript{H}-memory subset of interest</td>
</tr>
<tr>
<td>β7</td>
<td>PE</td>
<td>Defines T\textsubscript{H}-memory subset of interest</td>
</tr>
<tr>
<td>CD16/32</td>
<td>-</td>
<td>Fc block</td>
</tr>
</tbody>
</table>

Results

The data in Figure 55 show a decrease in weight loss is observed in DSS mice intra-ecally administered cyclosporine A as compared to DSS mice orally administered cyclosporine A. The data in Figure 56 show a decrease in plasma concentration of cyclosporine A in DSS mice intra-ecally administered cyclosporine A as compared to DSS mice orally administered cyclosporine A. The data in Figures 57-59 show an increased concentration of cyclosporine A in the colon tissue of DSS mice intra-ecally administered cyclosporine A as compared to the concentration of cyclosporine A in the colon tissue of DSS mice orally administered cyclosporine A.
The data in Figure 6.0 show that DSS mice intra-cecally administered cyclosporine A have an increased concentration of IL-2 in colon tissue as compared to DSS mice orally administered cyclosporine A. The data in Figure 6.1 show that DSS mice intra-cecally administered cyclosporine A have a decreased concentration of IL-6 in colon tissue as compared to DSS mice orally administered cyclosporine A.

In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. For example, these data demonstrate that the present compositions and devices can be used to release cyclosporine A to the intestine and that this results in a selective immune suppression in the colon, while having less of an effect on the immune system outside of the intestine. These data also suggest that the present compositions and devices will provide for the treatment of colitis and other pro-inflammatory disorders of the intestine.

Example 8 - Bellows Testing: Drug Stability Bench Test

Experiments were run to evaluate the effects that bellows material would have on the function of a drug used as the dispensable substance. The experiments also evaluated the effects on drug function due to shelf life in the bellows.

The adalimumab was loaded into simulated device jigs containing either tapered silicone bellows or smooth PVC bellows and allowed to incubate for 4, 24, or 336 hours at room temperature while protected from light. FIG. 64 illustrates the tapered silicone bellows, and FIG. 65 illustrates the tapered silicone bellows in the simulated device jig. FIG. 66 illustrates the smooth PVC bellows, and FIG. 67 illustrates the smooth PVC in the simulated device jig.

The drug was subsequently extracted using the respective dispensing systems and tested by a competitive inhibition assay. The test method has been developed from the literature (Velayudhan et al., "Demonstration of functional similarity of proposed biosimilar ABP501 to adalimumab" BioDrugs 30:339-351 (2016) and Barbeau et al., "Application Note: Screening for inhibitors of TNFa/s TNFRI Binding using AlphaScreen™ Technology". PerkinElmer Technical Note ASC-016. (2002)), as well as pre-testing development work using control drug and experiments using the provided AlphaLISA test kits. FIG. 68 demonstrates the principle of the competition assay performed in the experiment.
The bellows were loaded as follows: aseptically wiped the dispensing port of the simulated ingestible device jig with 70% ethanol; allowed to air dry for one minute; used an adalimumab delivery syringe to load each set of bellows with 200 µL of drug; took a photo of the loaded device; gently rotated the device such that the drug is allowed to come in contact with all bellows' surfaces; protected the bellows from light; and incubate at room temperature for the predetermined time period to allow full contact of the drug with all bellows' surfaces.

The drug was extracted as follows: after completion of the incubation period; the device jig was inverted such that the dispensing port was positioned over a sterile collection microfuge tube and petri dish below; five cubic centimeters of air was drawn into an appropriate syringe; the lure lock was attached to the device jig; the syringe was used to gently apply positive pressure to the bellow with air such that the drug was recovered in the collection microfuge tube; where possible, a video of drug dispensing was taken; samples were collected from each bellows type; a control drug sample was collected by directly dispensing 200 µL of drug from the commercial dispensing syringe into a sterile microfuge tube; the control drug-free sample was collected by directly dispensing 200 µL of PBS using a sterile pipette into a sterile microfuge tube; the collected drug was protected from light; and the drug was diluted over the following dilution range (250, 125, 25, 2.5, 0.25, 0.025, 0.0125, 0.0025 µg) in sterile PBS to determine the IC50 range of the drug.

To determine any effects storage conditions may have on drug efficacy in the device, the drug (stored either in the syringe, silicon bellows, PVC bellows) was stored at room temperature while protected from light for 24 hours and 72 hours. Samples were then extracted and the steps in the preceding paragraph were repeated.

The AlphaLISA (LOCI™) test method was used. Human TNFa standard dilution ranges were prepared as described in Table 6.
The test was performed as follows: the above standard dilution ranges were in a separate 96-well plate; to ensure consistent mixing, samples were mixed up and down gently with a pipette five times; a 384-well test plate was prepared according to the test layout diagram depicted Table 7; five microliters of 10,000 pg/mL TNFα standard from the previously made dilution plate was added to each corresponding concentration as shown in Table 6; five microliters of recovered drug (directly from the commercial syringe (A), from the silicone bellows (B Si), from the PVC bellows (B PVC), or from the PBS control (C) was added into the corresponding wells described in Table 5; the test plate was incubated for one hour at room temperature while protected from light; 10 microliters of acceptor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; 10 µL of biotinylated antibody was added to each previously accessed well; the wells were incubated for 15 minutes at room temperature, while protected from light; the room lights were darkened and 25 microliters of streptavidin (SA) donor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; the plate was read in Alpha Mode; and the results were recorded. Upon addition of reagent(s) in the various steps, each well was pipetted up and down three times to achieve good mixing.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Vol. of human TNFα (µL)</th>
<th>Vol. of diluent (µL)</th>
<th>[human TNFα] in standard curve (pg/mL in 5 µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 µL of reconstituted human TNFα</td>
<td>90</td>
<td>1E-07, 100 000</td>
</tr>
<tr>
<td>B</td>
<td>60 µL of tube A</td>
<td>140</td>
<td>3E-08, 30 000</td>
</tr>
<tr>
<td>C</td>
<td>60 µL of tube B</td>
<td>120</td>
<td>1E-08, 10 000</td>
</tr>
<tr>
<td>D</td>
<td>60 µL of tube C</td>
<td>140</td>
<td>3E-09, 3 000</td>
</tr>
<tr>
<td>E</td>
<td>60 µL of tube D</td>
<td>120</td>
<td>1E-09, 1 000</td>
</tr>
<tr>
<td>F</td>
<td>60 µL of tube E</td>
<td>140</td>
<td>3E-10, 300</td>
</tr>
<tr>
<td>G</td>
<td>60 µL of tube F</td>
<td>120</td>
<td>1E-10, 100</td>
</tr>
<tr>
<td>H</td>
<td>60 µL of tube G</td>
<td>140</td>
<td>3E-11, 30</td>
</tr>
<tr>
<td>I</td>
<td>60 µL of tube H</td>
<td>120</td>
<td>1E-11, 10</td>
</tr>
<tr>
<td>J</td>
<td>60 µL of tube I</td>
<td>140</td>
<td>3E-12, 3</td>
</tr>
<tr>
<td>K</td>
<td>60 µL of tube J</td>
<td>120</td>
<td>1E-12, 1</td>
</tr>
<tr>
<td>L</td>
<td>60 µL of tube K</td>
<td>140</td>
<td>3E-13, 0.3</td>
</tr>
<tr>
<td>M ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>N ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>O ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>P ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6

The test was performed as follows: the above standard dilution ranges were in a separate 96-well plate; to ensure consistent mixing, samples were mixed up and down gently with a pipette five times; a 384-well test plate was prepared according to the test layout diagram depicted Table 7; five microliters of 10,000 pg/mL TNFα standard from the previously made dilution plate was added to each corresponding concentration as shown in Table 6; five microliters of recovered drug (directly from the commercial syringe (A), from the silicone bellows (B Si), from the PVC bellows (B PVC), or from the PBS control (C) was added into the corresponding wells described in Table 5; the test plate was incubated for one hour at room temperature while protected from light; 10 microliters of acceptor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; 10 µL of biotinylated antibody was added to each previously accessed well; the wells were incubated for 15 minutes at room temperature, while protected from light; the room lights were darkened and 25 microliters of streptavidin (SA) donor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; the plate was read in Alpha Mode; and the results were recorded. Upon addition of reagent(s) in the various steps, each well was pipetted up and down three times to achieve good mixing.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00E+05</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>STD3</td>
<td>STD11</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>STD5</td>
<td>STD13</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>0.333</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B Si</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>STD6</td>
<td>Blank</td>
<td>0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B Si</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>STD7</td>
<td>Blank</td>
<td>0</td>
<td>0.025</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B Si</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>STD8</td>
<td>Blank</td>
<td>0</td>
<td>0.013</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B Si</td>
<td>C</td>
</tr>
<tr>
<td>H</td>
<td>STD9</td>
<td>Blank</td>
<td>0</td>
<td>0.003</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B Si</td>
<td>C</td>
</tr>
</tbody>
</table>
The data are shown in FIGS. 69-71. The data demonstrate that the bellows do not negatively impact the drug function after shelf lives of 4 hours, 24 hours, or 336 hours. The IC50 values of the drug dispensed from the bellows were comparable to the IC50 values of the standard dispensation method (Table 6). A slight right shift was noted in the bellows curves after 24 hours (FIG. 70), but this shift was well within the error bars of the curves. Tables 8-11 represent data of FIGS. 69-71, respectively. Of note, when comparing mean (n=5) RFU data between test articles over the concentration ranges significant differences (p<0.05) were discerned. However, these significant differences did not favor either test article over time, suggesting that they were not related to the performance of the material in response to the drug (FIGS. 69-71).

Table 8

<table>
<thead>
<tr>
<th></th>
<th>Needle control (A)</th>
<th>Silicone Bellows (B)</th>
<th>PVC Bellows (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Hours</td>
<td>0.0174</td>
<td>0.0169</td>
<td>0.0172</td>
</tr>
<tr>
<td>24 Hours</td>
<td>0.0180</td>
<td>0.0180</td>
<td>0.0180</td>
</tr>
<tr>
<td>336 Hours</td>
<td>0.0144</td>
<td>0.0159</td>
<td>0.0163</td>
</tr>
</tbody>
</table>

Table 9

Statistics (Student's T-test, 2 tailed, non-pair-wise, for significance p<0.05)

<table>
<thead>
<tr>
<th>Drug (micrograms)</th>
<th>Needle control (A) vs. Silicone (B)</th>
<th>Needle control (A) vs. PVC</th>
<th>Silicone vs. PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.911</td>
<td>0.008*</td>
<td>0.268</td>
</tr>
<tr>
<td>0.0025</td>
<td>0.138</td>
<td>0.390</td>
<td>0.822</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.122</td>
<td>0.118</td>
<td>0.771</td>
</tr>
<tr>
<td>0.025</td>
<td>0.143</td>
<td>0.465</td>
<td>0.020*</td>
</tr>
<tr>
<td>0.25</td>
<td>0.591</td>
<td>0.984</td>
<td>0.350</td>
</tr>
<tr>
<td>2.5</td>
<td>0.243</td>
<td>0.124</td>
<td>0.169</td>
</tr>
<tr>
<td>125</td>
<td>0.867</td>
<td>0.688</td>
<td>0.182</td>
</tr>
<tr>
<td>250</td>
<td>0.681</td>
<td>0.184</td>
<td>0.108</td>
</tr>
</tbody>
</table>

*p<0.5 data set
Table 10

Statistics (Student's T-test, 2 tailed, non-pair-wise, for significance $p<0.05$)

<table>
<thead>
<tr>
<th>Drug (micrograms)</th>
<th>Needle control (A) vs. Silicone (B)</th>
<th>Needle control (A) vs. PVC</th>
<th>Silicone vs. PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.132</td>
<td>0.038*</td>
<td>0.292</td>
</tr>
<tr>
<td>0.0025</td>
<td>0.003*</td>
<td>0.076</td>
<td>0.575</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.161</td>
<td>0.022*</td>
<td>0.783</td>
</tr>
<tr>
<td>0.025</td>
<td>0.058</td>
<td>0.078</td>
<td>0.538</td>
</tr>
<tr>
<td>0.25</td>
<td>0.974</td>
<td>0.384</td>
<td>0.198</td>
</tr>
<tr>
<td>2.5</td>
<td>0.714</td>
<td>0.080</td>
<td>0.017*</td>
</tr>
<tr>
<td>125</td>
<td>0.873</td>
<td>0.731</td>
<td>0.269</td>
</tr>
<tr>
<td>250</td>
<td>0.798</td>
<td>0.956</td>
<td>0.903</td>
</tr>
</tbody>
</table>

*p<0.5 data set

Table 11

Statistics (Student's T-test, 2 tailed, non-pair-wise, for significance $p<0.05$)

<table>
<thead>
<tr>
<th>Drug (micrograms)</th>
<th>Needle control (A) vs. Silicone (B)</th>
<th>Needle control (A) vs. PVC</th>
<th>Silicone vs. PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.858449</td>
<td>0.036847*</td>
<td>0.026444*</td>
</tr>
<tr>
<td>0.0025</td>
<td>0.087379</td>
<td>0.280302</td>
<td>0.046767*</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.469282</td>
<td>0.057232</td>
<td>0.117194</td>
</tr>
<tr>
<td>0.025</td>
<td>0.02758*</td>
<td>0.078234</td>
<td>0.373419</td>
</tr>
<tr>
<td>0.25</td>
<td>0.411548</td>
<td>0.258928</td>
<td>0.400498</td>
</tr>
<tr>
<td>2.5</td>
<td>0.368959</td>
<td>0.156574</td>
<td>0.006719*</td>
</tr>
<tr>
<td>125</td>
<td>0.948649</td>
<td>0.246702</td>
<td>0.463735</td>
</tr>
<tr>
<td>250</td>
<td>0.485046</td>
<td>0.128993</td>
<td>0.705543</td>
</tr>
</tbody>
</table>

*p<0.5 data set

Example 9 - A Comparison Study of Systemic vs Intra-cecal Delivery of SMAD7 Bio-Distribution in DSS-induced Colitis in Male C57B1/6 Mice

The objective of this study was to compare the efficacy of novel test articles, e.g., fluorescent SMAD7 antisense oligonucleotides (SMAD7 AS), when dosed systemically versus intra-ceccally in the treatment of DSS-induced colitis, in male C57B1/6 mice.
Experimental Design

A minimum of 10 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for 12 cannulated animals to be enrolled in the main study (i.e., 16 animals).

Colitis was induced in 12 male C57B1/6 mice (Groups 4-5) by exposure to 3% DSS-treated drinking water from Day 0 to Day 5. Three groups of six additional animals per group (n = 6 cannulated; n = 12 non-cannulated; Groups 1-3) served as no-disease controls (Groups 1-3). All animals were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool during this time.

Animals were dosed with test-article via oral gavage (PO) or intra-cecal injection (IC) once on Day 9 as indicated in Table 12. The animals in Group 0 were not dosed. The animals in Groups 2 and 4 were dosed PO with SMAD7 antisense. The animals in Groups 3 and 5 were dosed IC with SMAD7 antisense.

All animals were euthanized by CO2 inhalation 12 hours after dosing, on Day 10. Terminal blood was collected into two K2EDTA tubes and processed for plasma. Both plasma and pellet samples were snap-frozen in liquid nitrogen and stored at -80 °C. Cecum contents were removed and the contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The cecum was excised and bisected longitudinally; each piece is separately weighed and flash-frozen in liquid nitrogen. The colon contents were removed and the contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The colon was then rinsed, and the most proximal 2 cm of colon was collected. This 2-cm portion was bisected longitudinally; each piece was separately weighed and flash-frozen in liquid nitrogen. Snap-frozen blood pellet, cecum/colon contents, and tissue samples were used for downstream fluoremetry or RP-HPLC. The details of the study design are shown in Table 12.

Table 12. Study design

<table>
<thead>
<tr>
<th>Group</th>
<th># Animals</th>
<th>Cecal Cannula</th>
<th>Colitis Induction</th>
<th>Treatment</th>
<th>Route</th>
<th>Schedule</th>
<th>Terminal Collections Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>NO</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Whole blood, plasma, cecal contents, colon</td>
</tr>
</tbody>
</table>
Materials and Methods

Mice

Normal male C57B1/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into five groups of six mice each, and housed in groups of 8-15 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered *ad libitum*.

Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum, where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals were administered 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals were administered 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10mg/Kg every day for the first 5 days post-surgery.

<table>
<thead>
<tr>
<th>2</th>
<th>6</th>
<th>NO</th>
<th>Fluorescently labelled SMAD7 antisense 50 μg*</th>
<th>PO</th>
<th>QD</th>
<th>contents, cecal tissue, colon tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>YES</td>
<td></td>
<td>IC</td>
<td>Day 9**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>NO</td>
<td>3% DSS</td>
<td>PO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>YES</td>
<td>Days 0-5</td>
<td>IC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Per mouse. TA is administered in 0.075 mL/animal.
**Animals are dosed on Day 9 and collections are performed 12 hours later.
Disease Induction

Colitis was induced on Day 0 via addition of 3% DSS (MP Biomedicals, Cat #02601 10) to the drinking water. Fresh DSS/water solutions was provided on Day 3 and any of the remaining original DSS solution is discarded.

Body Weight and Survival

Animals were observed daily (weight, morbidity, survival, presence of diarrhea and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.

Animals Found Dead or Moribund

Animals were monitored on a daily basis. Animals exhibiting weight loss greater than 30% were euthanized, and samples were not collected from these animals.

Dosing

Animals were dosed with test-article via oral gavage (PO) or intra-cecal injection (IC) once on Day 9 as indicated in Table 12. Animals in Group 0 were not dosed. Animals in Groups 2 and 4 were dosed PO with SMAD7 antisense. Animals in Groups 3 and 5 were dosed IC with SMAD7 antisense.

Sacrifice

All animals were euthanized by CO2 inhalation 12 hours after dosing, on Day 10.

Sample Collection

Intestinal contents, peripheral blood and tissue were collected at sacrifice on Day 10, as follows:

Blood/Plasma

Terminal blood was collected into two K2EDTA tubes and processed for plasma. The approximate volume of each blood sample was recorded prior to centrifugation. Both plasma and pellet samples were snap-frozen in liquid nitrogen and stored at -80 °C. The first pellet sample (sample 1) was used for fluorometry. The second pellet sample (sample 2) was used for RP-HPLC.

Cecum Contents

Cecum contents was removed and contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.
Cecum

The cecum was excised and bisected longitudinally; each piece was separately weighed and snap-frozen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.

Colon Contents

Colon contents were removed and contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.

Colon

The colon was rinsed, and the most proximal 2 cm of colon was collected and bisected longitudinally. Each piece was separately weighed and flash-frozen in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.

SMAD7 Antisense Bioanalysis

Samples flash-frozen for fluorometry were homogenized in 0.5 mL buffer RLT+ (Qiagen). Homogenate was centrifuged (4000 x g; 10 minutes), and supernatant was collected. Forty microliters of the sample was diluted 1:6 in 200 μL of bicarbonate solution and 100 μL of diluted supernatant was analyzed on a fluorescent plate reader (485 excitation; 535 emission) in duplicate.

Prior to the above, assay development was performed as follows. Samples (as indicated in Sample Collection) were harvested from a naive animal and flash-frozen. Samples were then homogenized in 0.5 mL buffer RLT+, homogenate was centrifuged (4000 x g; 10 minutes) and supernatant was collected and diluted 1:6 with bicarbonate solution (i.e., 0.5 mL supernatant was added to 2.5 mL of PBS). An aliquot (0.200 mL (90 μL for each duplicate) of each diluted sample was pipetted into 15 (14 dilution of FAM-AS-SAMD7+ blank control) Eppendorf tubes. One tube was set-aside to be used as a blank sample. Ten microliters of fluorescently-labeled SMAD7 antisense was then spiked into all other sample to achieve final concentrations of 50 μg/mL, 16.67 μg/mL, 5.56 μg/mL, 1.85 μg/mL, 0.62 μg/mL, 0.21 μg/mL, 0.069 μg/mL, 0.023 μg/mL, 7.6 ng/mL, 2.5 ng/mL, 0.847 ng/mL, 0.282 ng/mL, 0.094 ng/mL, and 0.024 ng/mL respectively. The fluorescently-labeled SMAD7 antisense was prepared and serially diluted such that the volume added to each organ homogenate sample was the same for each of the above concentrations. These samples were analyzed on a fluorescent plate reader (485 excitation; 535 emission) in duplicate.
Processing for RP-HPLC

Samples flash-frozen for RP-HPLC were homogenized in buffer RLT+ (Qiagen). Homogenate was centrifuged (4000 x g; 10 minutes), and supernatant was used to perform RP-HPLC analysis.

5 Results

The data in Figures 73 and 74 show that significantly more SMAD7 antisense oligonucleotide was present in cecum tissue and colon tissue for mice with or without DSS treatment that were intra-cecally administered the SMAD7 antisense oligonucleotide as compared to mice with or without DSS treatment that were orally administered the SMAD7 antisense oligonucleotide. The data in Figure 75 show that there is about the same level of SMAD7 antisense oligonucleotide in the cecum contents of mice with or without DSS treatment that were orally or intra-cecally administered the SMAD7 antisense oligonucleotide. No SMAD7 antisense oligonucleotide was found in the plasma or white blood cell pellet of SMAD7 antisense oligonucleotide treated mice.

No significant differences were observed in clinical observations, GI-specific adverse effects or toxicity due to FAM-AS-SMAD7 treatment via PO vs IC. No fluorescent detection of FAM-AS-SMAD7 was found in plasma and whole blood cell pellets across all treatment groups. A significant higher fluorescent signal (RFU) of FAM-AS-SMAD7 was found in cecum tissue when delivered intra-cecally compared with PO in both normal and DSS-induced models (Figure 83). A slight higher RFU was also found in colon tissue when delivered intra-cecally, however, the overall signal is 10 times lower (Figure 84). A significant higher RFU was found in colon content when delivered intra-cecally compared with PO in a normal mouse model (Figure 85). This result was not seen in cecum content across all treatment groups (Figure 86), indicating a better tissue absorption of oligos in cecum tissue from cecal content when delivered intra-cecally, but not in colon content at 12 hours post-treatment.

Example 10 - Comparison of the Tissue, Plasma, and GI Content Pharmacokinetics of Tacrolimus through Oral vs. Intra-Cecal Ingestible Device Delivery in Yorkshire-Cross Farm Swine

The primary objective of this study was to compare the tissue, plasma, rectal sample, and GI content pharmacokinetics of tacrolimus through oral versus intra-cecal ingestible device delivery in normal Yorkshire-Cross farm swine.
This study compares the effects of administration of: a single intra-cecal administration of an ingestible device containing 0.8 mL sterile vehicle solution (80% alcohol, 20% castor oil (HCO-60)); a single oral dose of tacrolimus at 4 mg/0.8 mL (in sterile vehicle solution); and a single intra-cecal administration of an ingestible device containing either 1 mg/0.8 mL (in sterile vehicle solution), 2 mg/0.8 mL (in sterile vehicle solution), or 4 mg /0.8 mL (in sterile vehicle solution).

This study employed five groups of three female swine weighing approximately 45 to 50 kg at study start. Swine were randomly placed into animal rooms/pens as they are transferred from the delivery vehicle without regard to group. Group numbers were assigned to the rooms in order of room number. No further randomization procedure was employed. The study design is provided in Table 13.
<table>
<thead>
<tr>
<th>General</th>
<th>Group size</th>
<th>Dose</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food/Water</td>
<td>ad libidum</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical observations</td>
<td>Day -10–5 & Day 1</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>body weight*</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Treatments (Groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vehicle control</td>
<td>n=3</td>
<td>0.8 mL (20% HCO-60, 80% EtOH)</td>
<td>IC</td>
</tr>
<tr>
<td>Surgical placement of IC port**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euthanized</td>
<td></td>
<td>(1 Ingestible Device)</td>
<td>n=3</td>
</tr>
<tr>
<td>2. Tacrolimus (PO)</td>
<td>n=3</td>
<td>4 mg in 0.8 mL</td>
<td>Oral</td>
</tr>
<tr>
<td>Surgical placement of IC port**</td>
<td></td>
<td>0.08 mg/kg</td>
<td>•</td>
</tr>
<tr>
<td>Euthanized</td>
<td></td>
<td>(solution)</td>
<td></td>
</tr>
<tr>
<td>3. Tacrolimus (IC)</td>
<td>n=3</td>
<td>1 mg in 0.8 mL</td>
<td>IC</td>
</tr>
<tr>
<td>Surgical placement of IC port**</td>
<td></td>
<td>0.02 mg/kg</td>
<td>•</td>
</tr>
<tr>
<td>Euthanized</td>
<td></td>
<td>(1 Ingestible Device)</td>
<td>n=3</td>
</tr>
<tr>
<td>4. Tacrolimus (IC)</td>
<td>n=3</td>
<td>2 mg in 0.8 mL</td>
<td>IC</td>
</tr>
<tr>
<td>Surgical placement of IC port**</td>
<td></td>
<td>0.04 mg/kg</td>
<td>•</td>
</tr>
<tr>
<td>Procedure</td>
<td>Dose/Details</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Euthanized</td>
<td>(1 Ingestible Device)</td>
<td>n=3</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus (IC)</td>
<td>n=3</td>
<td>4 mg in 0.8 mL</td>
<td>IC</td>
</tr>
<tr>
<td>Surgical placement of IC port**</td>
<td>0.08 mg/kg</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Euthanized</td>
<td>(1 Ingestible Device)</td>
<td>n=3</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus (required)</td>
<td>20 mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Samples**

<table>
<thead>
<tr>
<th>Sample</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>cephalic, jugular or catheter</td>
</tr>
<tr>
<td>Rectal contents</td>
<td>rectal</td>
</tr>
<tr>
<td>Tissue***</td>
<td>x5</td>
</tr>
<tr>
<td>Luminal contents****</td>
<td>x5</td>
</tr>
</tbody>
</table>

Analysis (Agrilux Charles River)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>105</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>15</td>
</tr>
<tr>
<td>Rectal contents</td>
<td>60</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>15</td>
</tr>
<tr>
<td>Tissue (intact)***</td>
<td>105</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>105</td>
</tr>
<tr>
<td>Luminal contents</td>
<td>75</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>75</td>
</tr>
<tr>
<td>Tissue after removing luminal content</td>
<td>75</td>
</tr>
</tbody>
</table>
Notes:

*Animal weight was -45-50 kg for drug doses proposed.
**Surgical placement of IC port in all animals to control.
***Tissue samples [drug] (five GI section cecum (CAC); proximal colon (PCN); transverse colon (TCN); distal colon (DCN); rectum (RTM), plus mesenteric lymph nodes and Peyer's Patch).
****Luminal contents (cecum (CAC); proximal colon (PCN); transverse colon (TCN); distal colon (DCN); rectum (RTM)).

Animals in Group 1 received an ingestible device containing 0.8 mL of vehicle solution (80% alcohol, 20% HCO-60). Animals in Group 2 received orally 4 mL liquid formulation of tacrolimus at 4 mg/0.8 mL per animal (Prograf: 5 mg/mL). Animals in Group 3 received intra-rectally an ingestible device containing tacrolimus at 1 mg in 0.8 mL per ingestible device. Animals in Group 4 received intra-rectally an ingestible device containing tacrolimus at 2 mg in 0.8 mL per ingestible device. Animals in Group 5 received intra-rectally an ingestible device containing tacrolimus at 4 mg in 0.8 mL per ingestible device.

To control for potential confounding effects of the surgery, all groups fast overnight, and were fasted for at least 12 hr prior to dosing on Day 1. Animals were dosed via either intra-cecal dosing (IC) or oral dosing (PO) at Day 1 (between 6-8 p.m.). All animals resumed feeding at approximately 4 hours after dose (11-12 p.m. after dosing).

Animals in Group 1 (Vehicle Control) were administered a single intra-cecal ingestible device containing 0.8 mL Vehicle solution (80% alcohol, 20% castor oil (HCO-60) on Day 1. On Day -10 the animals were anesthetized, and a veterinary surgeon surgically placed an intra-cecal port in each animal. On Day 1, each animal was placed into a sling then a single intra-cecal ingestible device containing 0.8 mL vehicle solution (80% alcohol, 20% castor oil (HCO-60)) is introduced by the veterinary surgeon into the cecum via the cecal port in each animal. Following ingestible device placement, the animals were removed from the slings and placed back into their pens with water. All animals resumed feeding at approximately 4 hours after dose. Samples of rectal contents were collected for pharmacokinetic analyses from each animal at each of 1, 3, 6, and 12 hours post-ingestible device placement using a fecal swab (rectal swab). A total of 60 samples were collected.
Approximately 200-400 mg of rectal content were collected, if available, with a fecal swab (Copan Diagnostics Nylon Flocked Dry Swabs, 502CS01). The fecal swab was pre-weighed and weighed after collection in the collection tube (Sterile Tube and Cap No Media, PFPM913S), and the sample weight was recorded. The fecal swab was broken via the breakpoint, and was stored in the collection tube, and immediately frozen at -70 °C. Whole blood (2 mL) was collected into K2EDTA coated tubes for pharmacokinetics at each time-point of pre-dose and 1, 2, 3, 4, 6 and 12 hours post-dose. Immediately following euthanasia, tissue was collected. A total of 105 samples were collected.

For tissue necropsy, small intestine fluid and cecal fluid were collected separately from all the animals into two separate square plastic bottles, and stored at -20 °C. The length and diameter of the cecum and the colon was measured from one animal in each group and recorded for reference. Tissues were collected for pharmacokinetic analyses and include mesenteric lymph nodes, a Peyer's Patch, and five gastrointestinal sections, including cecum, proximal colon, transverse colon, distal colon, and rectum. All samples were weighed, and the tissue sample weights were recorded. In each of the five gastrointestinal sections, tissue samples were collected in three different areas where the mucosal surface was visible and not covered by luminal content by using an 8.0-mm punch biopsy tool. Around 3 grams of the total punched sample were collected into a pre-weighed 15-mL conical tube, and the tissue weight was recorded. Three mesenteric lymph nodes were collected from different areas and weighed. At least one Peyer's Patch was collected and weighed. Tissues were snap-frozen in liquid nitrogen and stored frozen at approximately -70 °C or below (total of 105 samples).

Luminal contents were collected for pharmacokinetic analyses from the surface of the tissue from each of five gastrointestinal sections: cecum, proximal colon, transverse colon, distal colon, and rectum (total of 75). The contents were collected in pre-weighed 15-mL conical tubes and the sample weights were recorded. Samples were snap-frozen in liquid nitrogen stored frozen at approximately -70 °C or below.

After removing the luminal content, another set of tissue samples from 3 different areas were collected via an 8.0-mm punch biopsy in each section of the five tissue gastrointestinal sections described above. Around 3 grams of the total punched sample were collected into a pre-weighed 15-mL conical tube, and the tissue weight was recorded (total of 75). Tissues were snap-frozen in liquid nitrogen and stored frozen at approximately -70 °C or below.
A 30-cm length of jejunum (separated into two 15 cm lengths), and the remaining distal and transverse colon tissue sample (after tissue and luminal content were collected for PK) were collected in one animal in each group of treatment, snap-frozen in liquid nitrogen and stored frozen at approximately -70 °C or below. All samples for pharmacokinetic analyses were stored on dry ice before analyses.

Group 2 animals were administered a single oral dose of tacrolimus at 4 mg/0.8 mL (0.08-mg/kg) (in the vehicle solution) on Day 1. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments was the same as those employed in Group 1.

Group 3 animals were administered a single intra-cecal ingestible device containing tacrolimus at 1-mg/0.8 mL (0.02 mg/kg) (in the vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments was the same as those employed in Group 1. All samples were analyzed for tacrolimus.

Group 4 animals were administered a single intra-cecal ingestible device of tacrolimus at 2 mg/0.8 mL (0.04 mg/kg) (in sterile vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments were the same as those employed in Group 1. All samples were analyzed for tacrolimus.

Group 5 animals are administered a single intra-cecal ingestible device containing tacrolimus at 4 mg/0.8 mL (0.08 mg/kg) (in the vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments were the same as those employed in Group 1. All samples were analyzed for tacrolimus.

Detailed clinical observations were conducted daily from Day -10 to -5, and on Day 1. Additional pen-side observations were conducted at least once each day. The animals remained under constant clinical observation for the entire 12 hours from dose until euthanasia. Body weights were collected on Day -10, Day -5, and pre-dose on Day 1. Animals were euthanized via injection of a veterinarian-approved euthanasia.

TestArticle and Formulation
1. Vehicle solution, 20 mL
 Description: 80% alcohol, 20% PEG-60 castor oil
 Physical characteristics: clear liquid solution.
2. Prograf (tacrolimus injection), 10 ampules
Description: A sterile solution containing the equivalent of 5 mg anhydrous tacrolimus in 1 mL. Tacrolimus is macrolide immunosuppressant and the active ingredient of Prograf. 0.8 mL of Prograf (5 mg/mL) was administrated through oral gavage per animal in group 2.

Prograf (5 mg/mL) was diluted 2x folds (2.5 mg/mL) and 4x folds (1.25 mg/mL) by using vehicle solution. 0.8 mL of each concentration, 1.25 mg/mL, 2.5 mg/mL, and 5 mg/mL of Prograf, was injected into a DSS ingestible device for group 3, 4, and 5.
Formulation: Each mL contained polyoxyl 60 hydrogenated castor oil (HCO-60), 200 mg, and dehydrated alcohol, USP, 80.0% v/v.
Physical characteristics: clear liquid solution.

3. DDS ingestible device containing Tacrolimus
Description: Three (3) DDS ingestible devices containing vehicle solution for Group 1, three (3) DSS ingestible devices containing 1 mg tacrolimus for Group 3, three (3) DDS ingestible devices containing 2 mg tacrolimus for Group 4, and three (3) DDS ingestible devices containing 4 mg tacrolimus for Group 5.

Acclimation
Animals were acclimated prior to study initiation for at least 7 days. Animals in obvious poor health were not placed on study.

Concurrent Medication
Other than veterinary-approved anesthetics and medications used during surgery to install the ileocecal ports, or for vehicle or test article administration, and analgesia and antibiotics post-surgery, no further medications were employed.

Feed
All swine were fasted at least 24 hours before being anesthetized and properly medicated for surgery or overnight before dosing. Otherwise, animals were fed ad-libitum. Tap water was pressure-reduced and passed through a particulate filter, then a carbon filter prior to supply to an automatic watering system. Water was supplied ad libitum. There were
no known contaminants in the feed or water that would be expected to interfere with this study.

Results

The data in Figure 76 show that the mean concentration of tacrolimus in the cecum tissue and the proximate colon tissue were higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. All blood trough concentrations were < 10 ng/mL and exposure AUC <2000 - 12 ng.h/mL (Figures 87-89). Significantly higher Cmax values (9.20 ± 3.30 and 21.80 ± 4.73 ng/mL) were observed in groups treated with high (0.09 mg/kg) and moderate (0.04 mg/kg) dose of tacrolimus when delivered through IC capsule as compared to the Cmax values following PO delivery of tacrolimus (0.09 mg/kg). Significantly higher tissue (spiral and transverse colon) and luminal content (spiral, transverse, and distal colon) concentrations were observed in groups treated with high and moderate dose tacrolimus delivered through IC capsule as compared to the levels observed in animals administered tacrolimus via PO. No measurable level of tracrolimus was detected in tissue when animals were delivered tacrolimus via PO, despite systemic concentrations equivalent to low dose IC group (0.02 mg/kg) (Figures 90 and 91). A higher rectal content concentration was observed at 12 hours post-treatment in the IC capsule groups (Figure 92), while no detectable level was observed in the PO group.

These data suggest that intra-cecal administration of tacrolimus is able to locally deliver tacrolimus to the tissues in the GI tract of a mammal, while not decreasing the systemic immune system of a mammal.

Example 11 - Comparison of the Tissue, Plasma, and GI Content Pharmacokinetics of Adalimumab through SC vs. Intra-Cecal Ingestible Device Delivery in Yorkshire-Cross Farm Swine in DSS-induced Colitis

The purpose of this non-Good Laboratory Practice (GLP) study is to explore the PK/PD and bioavailability of adalimumab when applied to (Dextran Sulfate Sodium Salt) DSS-induced colitis in Yorkshire-cross farm swine, and to evaluate topical Humira (adalimumab or ADA) in DSS-colitis in swine. Colitis was induced in weanling YorkShire-Cross farm swine by administering DSS once daily for 7 consecutive days via oral gastric intubation. The dose levels were chosen based on the doses and regimens used to induce
colitis in weanling pigs. The doses of DSS were 1.275 or 2.225 g/k/day for Groups 2 and 3 respectively.

This study used one group of 19- to 21-day old weanling swine, and 2 groups of three, 19- to 20-day old weanling swine that weighed from 6.5 to 7.5 kg on arrival. To induce colitis, on study day 1 through and including day 7, animals in Groups 2 and 3 were administered once daily oral (gastric intubation) doses of DSS at 8.5% or 15% w/v for dose levels of 1.275 or 2.25 g/kg/day, respectively (Groups 2 and 3 respectively, 2 hours before morning feeding). The Group 1 control animals were administered sterile saline only. Each animal was placed in a sling for dosing. Animals were fasted at least 6 hours prior to each dose. See Study Table below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Route</th>
<th>Animal #1</th>
<th>DSS % w/v</th>
<th>mg/mL</th>
<th>Volume (mL)</th>
<th>Total g2</th>
<th>g/kg</th>
<th>Frequency3</th>
<th>Total DSS needed</th>
<th>ADA treatment4</th>
<th>Endpoints5,6,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oral/gastric intubation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>105</td>
<td>0</td>
<td>0</td>
<td>QD, 7 day</td>
<td>0</td>
<td>Day 8 (Vehicle)</td>
<td>Body weights, clinical signs, & necropsy and IHC at 3hr post ADA</td>
</tr>
<tr>
<td>2</td>
<td>oral/gastric intubation</td>
<td>3</td>
<td>8.5%</td>
<td>85</td>
<td>105</td>
<td>8.925</td>
<td>1.27</td>
<td>QD, 7 day</td>
<td>187.4</td>
<td>Day 8 (rectal 13mg)</td>
<td>Body weights, clinical signs, & necropsy and IHC at 3hr post ADA</td>
</tr>
<tr>
<td>3</td>
<td>oral/gastric intubation</td>
<td>3</td>
<td>15%</td>
<td>150</td>
<td>105</td>
<td>15.75</td>
<td>2.25</td>
<td>QD, 7 day</td>
<td>330.7</td>
<td>Day 8 (rectal 13mg)</td>
<td>Body weights, clinical signs, & necropsy and IHC at 3hr post ADA</td>
</tr>
</tbody>
</table>

1. Animal weighed around 6.5-7.5 kg
2. Daily clinical signs and body weight were closely monitored throughout the study. If severe clinical signs or body weight loss is observed at day 1-3 after dosing, the DSS dosing was shortened to 5 days.
3. 0.8 mL of ADA solution was dosed rectally to the colon via an endoscope
4. Necropsy was done to observe GI inflammation and overall histopathology
5. 5-cm length opened tissue samples harvested for immunohistochemistry from terminal ileum, cecum, proximal colon; spiral colon, transverse colon; distal colon, rectum, and included other gastrointestinal sites of inflammation depending on the necropsy results.
6. ~3 g of punch biopsy sample and -200 mg luminal content snap frozen for adalimumab measurement and three extra 5-cm length open tissue samples taking down for immunohistochemistry staining of ADA at the site where ADA was administrated. Additional tissue biopsy samples were collected from 3 different areas at proximal colon and proximal region of transverse colon in each animal.

The day following the last DSS dose, using endoscopy and a catheter, at 13 mg adalimumab /0.8 mL /pig (one 40 mg adalimumab/0.8 mL dosage syringe was divided into 3 parts and diluted with PBS) was placed in the proximal portion of the descending colon just past the bend of the transverse colon. Alternatively, 13 mg of adalimumab was diluted with PBS to a volume suitable for dosing post-weanling swine. Prior to dosing, endoscopy photographs were taken of the mucosal surface of the colon. Animals were anesthetized during adalimumab dosing. Prior to adalimumab dosing, animals were housed on rubber mats to prevent ingestion of bedding material, and were fasted at least 24 hours. The colon was cleansed using an enema prior to the procedure.

All animals were properly euthanized approximately 3 hours post-adalimumab-dose for tissue collections and subjected to a gross necropsy with emphasis on the severity of colitis (immediately after euthanasia, in order to avoid autolytic changes). All samples for histology were fixed in a fixation medium and the punch-biopsy sample snap-frozen in liquid nitrogen and stored frozen (~70 °C).

To measure drug content, tissue samples and luminal content were collected by gently removing and collecting luminal content first, then using an 8.0 mm-punch biopsy tool. Biopsies from three different areas at the site of adalimumab administration were collected in each animal. Additional tissue biopsy samples were collected from three different areas at the proximal colon, and the proximal region of transverse colon in each animal.

Approximately 3 g of total punched sample and 200 mg of luminal content were collected in a pre-weighed conical tubes and the tissue weighed was recorded.

Approximately, a 5-cm length of open gastrointestinal tissue sample including terminal ileum, cecum (CAC); proximal colon (PCN); transverse colon (TCN); spiral colon, distal colon (DCN), and rectum was collected, gently rinsed in saline to remove luminal material, and individually fixed in fixation buffer (10% neutral buffered formalin). Also, a 5-
cm length of open gastrointestinal tissue from 3 different areas near the site of adalimumab administration was collected and fixed in formalin in the same manner for immunohistochemical staining for adalimumab. Tissue samples for histopathology were fixed in 10% neutral buffered formalin for 18-24 hr, and transferred to 70% ethanol.

HUMIRA® was supplied in single-use, 1-mL pre-filled glass syringes, as a sterile, preservative-free solution for subcutaneous administration. The solution of HUMIRA® was clear and colorless, with a pH of about 5.2. Each syringe delivered 0.8 mL (40 mg adalimumab) of drug product. Each vial contained approximately 0.9 mL of solution to deliver 0.8 mL (40 mg adalimumab) of drug product. Each 0.8 mL HUMIRA® contained 40 mg adalimumab, 4.93 mg sodium chloride, 0.69 mg monobasic sodium phosphate dihydrate, 1.22 mg dibasic sodium phosphate dihydrate, 0.24 mg sodium citrate, 1.04 mg citric acid monohydrate, 9.6 mg mannitol, 0.8 mg polysorbate 80, and water for injection. Sodium hydroxide was added as necessary to adjust pH.

All animals were randomized into groups of three. Animals were dosed once with adalimumab via subcutaneous (SC), perirectal (PR), or intra-cecal (IC) administration.

The concentration of adalimumab and TNFa was measured in plasma at 1, 2, 3, 4, 6, and 12 hours post-dose. The concentration of adalimumab was measured in rectal contents at 1, 3, 6, and 12 hours post-dose and in luminal content at 12 hours post-dose. Concentration of adalimumab and TNFa, HER2, and total protein was measured in gastrointestinal tissue, e.g., cecum sample (CAC), proximal colon sample (PCN), transverse colon sample (TCN), distal colon sample (DCN), inflamed, distal colon non-inflamed sample (DCN), and rectum sample (RTM), at 12 hours post-dose.

Treatment with 8.5% DSS (oral; Day 1 to Day 7) induced mild body weight loss, hemorrhage diarrhea, soft bloody stool, and moderate colitis in swine. Necropsy revealed marked edema and full thickness of mucosal erosion from the proximal colon through the distal rectum. The 8.5% DSS-induced animals were treated with adalimumab at day 8. No significant differences in clinical observations, Gl-specific adverse effects or toxicity due to adalimumab treatment were observed. The 15% DSS (oral; day 1 to day 7)-induced animals had marked mucosal sloughing and hemorrhage from cecum to rectum and severe colitis. All of the animals were euthanized early on day 5.

Significant lesions of colitis were found in animals treated with 8.5% DSS and were characterized by inflammation that involved mucosa and submucosa, loss of surface epithelium (erosion), and intestinal crypts (Figure 93 and 94). There was little, if any,
evidence of regeneration. The ileum and cecum were unremarkable in all animals except cecum from one animal (animal 2504) that was treated with 8.5% DSS, which had lesions of inflammation and loss of surface and crypt epithelium (Figures 95-99). Lesions of colitis were significant and consistent in all other segments of the large intestine from animals treated with 8.5% DSS. The severity and character of the changes were not remarkably different among the different segments or among these animals. Staining for human IgG was most consistent and intense at the adalimumab administration site and localized to the luminal surface of the mucosal epithelium or inflammatory exudate at the luminal surface, and penetration of adalimumab is found in the lamina propria near the luminal surface (Figure 100).

Example 12 - Human Clinical Trial of Treatment of Ulcerative Colitis using Adalimumab

As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.

Figure 72 describes an exemplary process of what would occur in clinical practice, and when, where, and how the ingestible device will be used. Briefly, a patient displays symptoms of ulcerative colitis, including but not limited to: diarrhea, bloody stool, abdominal pain, high c-reactive protein (CRP), and/or high fecal calprotectin. A patient may or may not have undergone a colonoscopy with diagnosis of ulcerative colitis at this time. The patient's
primary care physician refers the patient. The patient undergoes a colonoscopy with a
biopsy, CT scan, and/or MRI. Based on this testing, the patient is diagnosed with ulcerative
colitis. Most patients are diagnosed with ulcerative colitis by colonoscopy with biopsy. The
severity based on clinical symptoms and endoscopic appearance, and the extent, based on the
area of involvement on colonoscopy with or without CT/MRI is documented. Treatment is
determined based on diagnosis, severity and extent.

For example, treatment for a patient that is diagnosed with ulcerative colitis is an
ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg
adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment,
the patient is fasted overnight and is allowed to drink clear fluids. Four hours after
swallowing the ingestible device, the patient can resume a normal diet. An ingestible device
is swallowed at the same time each day. The ingestible device is not recovered.

In some embodiments, there may be two different ingestible devices: one including an
induction dose (first 8 to 12 weeks) and a different ingestible device including a different
dose or a different dosing interval.

In some examples, the ingestible device can include a mapping tool, which can be
used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one
or more of the following: drug level, drug antibody level, biomarker level, and mucosal
healing status). Depending on the response status determined by the mapping tool, a subject
may continue to receive an induction regimen or maintenance regimen of adalimumab.

In different clinical studies, the patients may be diagnosed with Crohn's disease and
the ingestible devices (including adalimumab) can be programmed to release adalimumab in
the cecum, or in both the cecum and transverse colon.

In different clinical studies, the patients may be diagnosed with ileocolonic Crohn's
disease and the ingestible devices (including adalimumab) can be programmed to release
adalimumab in the late jejunum or in the jejunum and transverse colon.

Example 13 - Pharmacokinetic Study of Oral vs. Intra-Cecal Administration of
Tacrolimus in Yorkshire-Cross Farm Swine

The primary objective of this study was to study the pharmacokinetics of oral versus
intra-cecal administration of tacrolimus in normal Yorkshire-Cross farm swine.

This study compares the effects of administration of: a single intra-cecal
administration of a device containing 0.8 mL sterile vehicle solution (80% alcohol, 20%
caster oil (HCO-60)); a single oral dose of tacrolimus at 0.09 mg/kg (in sterile vehicle
solution); and a single intra-cecal administration of a device containing either 0.02 mg/kg (in sterile vehicle solution), 0.04 mg/kg (in sterile vehicle solution), or 0.09 mg/kg (in sterile vehicle solution).

This study employed five groups of three female swine weighing approximately 45 to 50 kg at study start. Swine were randomly placed into animal rooms/pens as they are transferred from the delivery vehicle without regard to group. Group numbers were assigned to the rooms in order of room number. No further randomization procedure was employed. The study design is provided in Table 14.

Table 14. Study Design

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dosage mg/kg</th>
<th>HED mg</th>
<th>Route</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Vehicle control</td>
<td>n=3</td>
<td>0</td>
<td>Intra-cecal capsule</td>
</tr>
<tr>
<td>Group 2</td>
<td>Tacrolimus</td>
<td>n=3</td>
<td>0.09</td>
<td>6.60</td>
</tr>
<tr>
<td>Group 3</td>
<td>Tacrolimus</td>
<td>n=3</td>
<td>0.02</td>
<td>1.65</td>
</tr>
<tr>
<td>Group 4</td>
<td>Tacrolimus</td>
<td>n=3</td>
<td>0.04</td>
<td>3.30</td>
</tr>
<tr>
<td>Group 5</td>
<td>Tacrolimus</td>
<td>n=3</td>
<td>0.09</td>
<td>6.60</td>
</tr>
</tbody>
</table>

Animals in Group 1 received intra-cecally a device containing a vehicle solution (80% alcohol, 20% HCO-60). Animals in Group 2 received orally a liquid formulation of tacrolimus at 0.09 mg/kg per animal. Animals in Group 3 received intra-cecally a device containing tacrolimus at 0.02 mg/kg per device. Animals in Group 4 received intra-cecally a device containing tacrolimus 0.04 mg/kg per device. Animals in Group 5 received intra-cecally a device containing tacrolimus 0.09 mg/kg per device.

Samples of rectal contents were collected for pharmacokinetic analyses from each animal at each of 1, 3, 6, and 12 hours post-device placement using a fecal swab (rectal swab).

The concentration of tacrolimus measured was measured in the blood at 1-, 2-, 3-, 4-, 6-, and 12-hours post-dose. The concentration of tacrolimus was measured in rectal contents at 1-, 3-, 6-, and 12-hours post-dose, and in the gastrointestinal tissue and luminal content, e.g., the cecum tissue and lumen, the proximal colon tissue and lumen, the spiral colon tissue and lumen, the transverse colon tissue and lumen, and the distal colon tissue and lumen, at 12 hours post-dose.
Results

The data in Figures 7 7 and 7 8 show that the mean concentration and AUCo-12 o s o f tacrolimus in the blood was higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus even at the same concentration (0.09 mg/kg). The data in Figure 79 show that the mean concentration of tacrolimus in the spiral colon tissue and the transverse colon tissue were statistically higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. The data in Figure 80 show that the mean concentration of tacrolimus in the spiral colon lumen, the transverse colon lumen, and the distal colon lumen were statistically higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. The data in Figures 81 and 82 show that the mean concentration of tacrolimus in the rectal content was higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus even at the same concentration, particularly at 12 hours post-dose.

These data suggest that intra-cecal administration of tacrolimus is able to locally deliver tacrolimus to the tissues in the GI tract of a mammal.

A summary of the results are shown in Table 15.

Table 15. Summary of Results

<table>
<thead>
<tr>
<th>Route</th>
<th>PO</th>
<th>IC</th>
<th>IC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage (mg/kg)</td>
<td>0.09</td>
<td>0.02</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>3.53 ± 3.84</td>
<td>2.39 ± 0.57</td>
<td>9.197 ± 3.30</td>
<td>21.8 ± 4.73</td>
</tr>
<tr>
<td>Trough (12hr) (ng/mL)</td>
<td>0.568 ± 0.291</td>
<td>0.746 ± 0.038</td>
<td>1.96 ± 0.491</td>
<td>4.35 ± 0.561</td>
</tr>
<tr>
<td>AUC 0-12hr (ng·hr/mL)</td>
<td>16.83 ± 3.641</td>
<td>15.29 ± 2.36</td>
<td>51.35 ± 4.04</td>
<td>129.6 ± 7.83</td>
</tr>
</tbody>
</table>

Tables 16 and 17 provide the tissue and plasma ratios of the animals in Groups 2-5.

Table 16-1. Tissue (mean) (ng/g)/ AUC (0-12hr) (ng·hr/mL) ratios

<table>
<thead>
<tr>
<th>Group</th>
<th>2 PO (0.09 mg/kg)</th>
<th>Group</th>
<th>3 IC (0.02 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue (ng/g)</td>
<td>AUC 0-12hr (ng·hr/mL)</td>
<td>Ratio</td>
<td>Tissue (ng/g)</td>
</tr>
<tr>
<td>Cecum</td>
<td>16.83</td>
<td>0</td>
<td>15.29</td>
</tr>
<tr>
<td>Proximal Colon</td>
<td>16.83</td>
<td>0</td>
<td>50.20</td>
</tr>
<tr>
<td>Spiral colon</td>
<td>16.83</td>
<td>0</td>
<td>204.00</td>
</tr>
</tbody>
</table>
Table 16-2. Tissue (mean) (ng/g)/ AUC(0-i2hr)(ng-hr/mL) ratios

<table>
<thead>
<tr>
<th></th>
<th>Group 4 IC (0.04 mg/kg)</th>
<th>Group 5 IC (0.09 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tissue (ng/g)</td>
<td>AUC 0-12hr (ng hr/mL)</td>
</tr>
<tr>
<td>Cecum</td>
<td>52.3</td>
<td>51.35</td>
</tr>
<tr>
<td>Proximal Colon</td>
<td>98.3</td>
<td>51.35</td>
</tr>
<tr>
<td>Spiral colon</td>
<td>342.3</td>
<td>51.35</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>85.8</td>
<td>51.35</td>
</tr>
<tr>
<td>Distal Colon</td>
<td>28.7</td>
<td>51.35</td>
</tr>
</tbody>
</table>

Table 17-1. Tissue (mean) (ng/g)/ Trough(i2hr)(ng/mL)

<table>
<thead>
<tr>
<th></th>
<th>Group 2 PO (0.09 mg/kg)</th>
<th>Group 3 IC (0.02 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tissue (ng/g)</td>
<td>Trough level (12hr)</td>
</tr>
<tr>
<td>Cecum</td>
<td>0.568</td>
<td>0</td>
</tr>
<tr>
<td>Proximal Colon</td>
<td>0.568</td>
<td>0</td>
</tr>
<tr>
<td>Spiral colon</td>
<td>0.568</td>
<td>0</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>0.568</td>
<td>0</td>
</tr>
<tr>
<td>Distal Colon</td>
<td>0.568</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 17-2. Tissue (mean) (ng/g)/ Trough(i2hr)(ng/mL)

<table>
<thead>
<tr>
<th></th>
<th>Group 4 IC (0.04 mg/kg)</th>
<th>Group 5 IC (0.09 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tissue (ng/g)</td>
<td>Trough level (12hr)</td>
</tr>
<tr>
<td>Cecum</td>
<td>52.3</td>
<td>1.96</td>
</tr>
<tr>
<td>Proximal Colon</td>
<td>98.3</td>
<td>1.96</td>
</tr>
<tr>
<td>Spiral colon</td>
<td>342.3</td>
<td>1.96</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>85.8</td>
<td>1.96</td>
</tr>
<tr>
<td>Distal Colon</td>
<td>28.7</td>
<td>1.96</td>
</tr>
</tbody>
</table>

5 Example 14

An ingestible medical device according to the disclosure ("TLCI") was tested on 20 subjects to investigate its localization ability. TLCI was a biocompatible polycarbonate ingestible device that contained a power supply, electronics and software. An onboard
software algorithm used time, temperature and reflected light spectral data to determine the location of the ingestible device as it traveled the GI tract. The ingestible device is 0.51 x 1.22 inches which is larger than a vitamin pill which is 0.4 x 0.85 inches. The subjects fasted overnight before participating in the study. Computerized tomography ("CT") were used as a basis for determining the accuracy of the localization data collected with TLCl. One of the 20 subjects did not follow the fasting rule. CT data was lacking for another one of the 20 subjects. Thus, these two subjects were excluded from further analysis. TLCl sampled RGB data (radially transmitted) every 15 seconds for the first 14 hours after it entered the subject's stomach, and then samples every five minutes after that until battery dies. TLCl did not start to record optical data until it reached the subject's stomach. Thus, there was no RGB-based data for the mouth-esophagus transition for any of the subjects.

In addition, a PillCam® SB (Given Imaging) device was tested on 57 subjects. The subjects fasted overnight before joining the study. PillCam videos were recorded within each subject. The sampling frequency of PillCam is velocity dependent. The faster PillCam travels, the faster it would sample data. Each video is about seven to eight hours long, starting from when the ingestible device was administrated into the subject's mouth. RGB optical data were recorded in a table. A physician provided notes on where stomach-duodenum transition and ileum-cecum transition occurred in each video. Computerized tomography ("CT") was used as a basis for determining the accuracy of the localization data collected with PillCam.

Esophagus-Stomach Transition

For TLCl, it was assumed that this transition occurred one minute after the patient ingested the device. For PillCam, the algorithm was as follows:

1. Start mouth-esophagus transition detection after ingestible device is activated/administrated
2. Check whether Green < 102.3 and Blue < 94.6
 a. If yes, mark as mouth-esophagus transition
 b. If no, continue to scan the data
3. After detecting mouth-esophagus transition, continue to monitor Green and Blue signals for another 30 seconds, in case of location reversal
 a. If either Green > 110.1 or Blue > 105.5, mark it as mouth-esophagus location reversal
 b. Reset the mouth-esophagus flag and loop through step 2 and 3 until the confirmed mouth-esophagus transition detected
4. Add one minute to the confirmed mouth-esophagus transition and mark it as esophagus-stomach transition

For one of the PillCam subjects, there was not a clear cut difference between the esophagus and stomach, so this subject was excluded from future analysis of stomach localization. Among the 56 valid subjects, 54 of them have correct esophagus-stomach transition localization. The total agreement is 54/56=96%. Each of the two failed cases had prolonged esophageal greater than one minute. Thus, adding one minute to mouth-esophagus transition was not enough to cover the transition in esophagus for these two subjects.

Stomach-Duodenum

For both TLC1 and PillCam, a sliding window analysis was used. The algorithm used a dumbbell shape two-sliding-window approach with a two-minute gap between the front (first) and back (second) windows. The two-minute gap was designed, at least in part, to skip the rapid transition from stomach to small intestine and capture the small intestine signal after ingestible device settles down in small intestine. The algorithm was as follows:

1. Start to check for stomach-duodenum transition after ingestible device enters stomach
2. Setup the two windows (front and back)
 a. Time length of each window: 3 minutes for TLC1; 30 seconds for PillCam
 b. Time gap between two windows: 2 minutes for both devices
 c. Window sliding step size: 0.5 minute for both devices
3. Compare signals in the two sliding windows
 a. If difference in mean is higher than 3 times the standard deviation of Green/Blue signal in the back window
 i. If this is the first time ever, record the mean and standard deviation of signals in the back window as stomach reference
 ii. If mean signal in the front window is higher than stomach reference signal by a certain threshold (0.3 for TLC1 and 0.18 for PillCam), mark this as a possible stomach-duodenum transition
 b. If a possible pyloric transition is detected, continue to scan for another 10 minutes in case of false positive flag
i. If within this 10 minutes, location reversal is detected, the previous pyloric transition flag is a false positive flag. Clear the flag and continue to check

ii. If no location reversal has been identified within 10 minutes following the possible pyloric transition flag, mark it as a confirmed pyloric transition

c. Continue monitoring Green/Blue data for another 2 hours after the confirmed pyloric transition, in case of location reversal

i. If a location reversal is identified, flag the timestamp when reversal happened and then repeat steps a-c to look for the next pyloric transition

ii. If the ingestible device has not gone back to stomach 2 hours after previously confirmed pyloric transition, stops location reversal monitoring and assume the ingestible device would stay in intestinal area

For TLCI, one of the 18 subjects had too few samples (<3 minutes) taken in the stomach due to the delayed esophagus-stomach transition identification by previously developed localization algorithm. Thus, this subject was excluded from the stomach-duodenum transition algorithm test. For the rest of the TLCI subjects, CT images confirmed that the detected pyloric transitions for all the subjects were located somewhere between stomach and jejunum. Two out of the 17 subjects showed that the ingestible device went back to stomach after first the first stomach-duodenum transition. The total agreement between the TLCI algorithm detection and CT scans was 17/17 = 100%.

For one of the PillCam subjects, the ingestible device stayed in the subject's stomach all the time before the video ended. For another two of the PillCam subjects, too few samples were taken in the stomach to run the localization algorithm. These three PillCam subjects were excluded from the stomach-duodenum transition localization algorithm performance test. The performance summary of pyloric transition localization algorithm for PillCam was as follows:

1. Good cases (48 subjects):

 a. For 25 subjects, our detection matches exactly with the physician's notes

 b. For 19 subjects, the difference between the two detections is less than five minutes
c. For four subjects, the difference between the two detections is less than 10 minutes (The full transition could take up to 10 minutes before the G/B signal settled)

2. Failed cases (6 subjects):
 a. Four subjects had high standard deviation of Green/Blue signal in the stomach
 b. One subject had bile in the stomach, which greatly affected Green/Blue in stomach
 c. One subject had no Green/Blue change at pyloric transition

The total agreement for the PillCam stomach-duodenum transition localization algorithm detection and physician's notes was 48/54 = 89%.

Duodenum-Jejunum Transition

For TLC1, it was assumed that the device left the duodenum and entered the jejunum three minutes after it was determined that the device entered the duodenum. Of the 17 subjects noted above with respect to the TLC1 investigation of the stomach-duodenum transition, 16 of the subjects mentioned had CT images that confirmed that the duodenum-jejunum transition was located somewhere between stomach and jejunum. One of the 17 subjects had a prolonged transit time in duodenum. The total agreement between algorithm detection and CT scans was 16/17 = 94%.

For PillCam, the duodenum-jejunum transition was not determined.

Jejunum-ileum Transition

It is to be noted that the jejunum is redder and more vascular than ileum, and that the jejunum has a thicker intestine wall with more mesentery fat. These differences can cause various optical responses between jejunum and ileum, particularly for the reflected red light signal. For both TLC1 and PillCam, two different approaches were explored to track the change of red signal at the jejunum-ileum transition. The first approach was a single-sliding-window analysis, where the window is 10 minutes long, and the mean signal was compared with a threshold value while the window was moving along. The second approach was a two-sliding-window analysis, where each window was 10 minutes long with a 20 minute spacing between the two windows. The algorithm for the jejunum-ileum transition localization was as follows:

1. Obtain 20 minutes of Red signal after the duodenum-jejunum transition, average the data and record it as the jejunum reference signal
2. Start to check the jejunum-ileum transition 20 minutes after the device enters the jejunum
 a. Normalize the newly received data by the jejunum reference signal
 b. Two approaches:
 i. Single-sliding-window analysis
 • Set the transition flag if the mean of reflected red signal is less than 0.8
 ii. Two-sliding-window analysis:
 • Set the transition flag if the mean difference in reflected red is higher than 2X the standard deviation of the reflected red signal in the front window

For TLCI, 16 of the 18 subjects had CT images that confirmed that the detected jejunum-ileum transition fell between jejunum and cecum. The total agreement between algorithm and CT scans was 16/18 = 89%. This was true for both the single-sliding-window and double-sliding-window approaches, and the same two subjects failed in both approaches.

The performance summary of the jejunum-ileum transition detection for PillCam is listed below:
1. Single-sliding-window analysis:
 a. 11 cases having jejunum-ileum transition detected somewhere between jejunum and cecum
 b. 24 cases having jejunum-ileum transition detected after cecum
 c. 19 cases having no jejunum-ileum transition detected
 d. Total agreement: 11/54 = 20%

2. Two-sliding-window analysis:
 a. 30 cases having jejunum-ileum transition detected somewhere between jejunum and cecum
 b. 24 cases having jejunum-ileum transition detected after cecum
 c. Total agreement: 30/54 = 56%
 d.HIleum-Cecum Transition

Data demonstrated that, for TLCI, mean signal of reflected red/green provided the most statistical difference before and after the ileum-cecum transition. Data also demonstrated that, for TLCI, the coefficient of variation of reflected green/blue provided the
most statistical contrast at ileum-cecum transition. The analysis based on PillCam videos showed very similar statistical trends to those results obtained with TLCI device. Thus, the algorithm utilized changes in mean value of reflected red/green and the coefficient of variation of reflected green/blue. The algorithm was as follows:

1. Start to monitor ileum-cecum transition after the ingestible device enters the stomach
2. Setup the two windows (front (first) and back (second))
 a. Use a five-minute time length for each window
 b. Use a 10-minute gap between the two windows
 c. Use a one-minute window sliding step size
3. Compare signals in the two sliding windows
 a. Set ileum-cecum transition flag if
 i. Reflected red/green has a significant change or is lower than a threshold
 ii. Coefficient of variation of reflected green/blue is lower than a threshold
 b. If this is the first ileum-cecum transition detected, record average reflected red/green signal in small intestine as small intestine reference signal
 c. Mark location reversal (i.e. ingestible device returns to terminal ileum) if
 i. Reflected red/green is statistically comparable with small intestine reference signal
 ii. Coefficient of variation of reflected green/blue is higher than a threshold
 d. If a possible ileum-cecum transition is detected, continue to scan for another 10 minutes for TLCI (15 minutes for PillCam) in case of false positive flag
 i. If within this time frame (10 minutes for TLCI, 15 minutes for PillCam), location reversal is detected, the previous ileum-cecum transition flag is a false positive flag. Clear the flag and continue to check
 ii. If no location reversal has been identified within this time frame (10 minutes for TLCI, 15 minutes for PillCam) following the possible ileum-cecum transition flag, mark it as a confirmed ileum-cecum transition
e. Continue monitoring data for another 2 hours after the confirmed ileum-cecum transition, in case of location reversal
 i. If a location reversal is identified, flag the timestamp when reversal happened and then repeat steps a-d to look for the next ileum-cecum transition
 ii. If the ingestible device has not gone back to small intestine 2 hours after previously confirmed ileum-cecum transition, stop location reversal monitoring and assume the ingestible device would stay in large intestinal area

The flag setting and location reversal criteria particularly designed for TLC1 device were as follows:

1. Set ileum-cecum transition flag if
 a. The average reflected red/Green in the front window is less than 0.7 or mean difference between the two windows is higher than 0.6
 b. And the coefficient of variation of reflected green/blue is less than 0.02

2. Define as location reversal if
 a. The average reflected red/green in the front window is higher than small intestine reference signal
 b. And the coefficient of variation of reflected green/blue is higher than 0.086

For TLC1, 16 of the 18 subjects had CT images that confirmed that the detected ileum-cecum transition fell between terminal ileum and colon. The total agreement between algorithm and CT scans was $16/18 = 89\%$. Regarding those two subject where the ileum-cecum transition localization algorithm failed, for one subject the ileum-cecum transition was detected while TLC1 was still in the subject's terminal ileum, and for the other subject the ileum-cecum transition was detected when the device was in the colon.

Among the 57 available PillCam endoscopy videos, for three subjects the endoscopy video ended before PillCam reached cecum, and another two subjects had only very limited video data (less than five minutes) in the large intestine. These five subjects were excluded from ileum-cecum transition localization algorithm performance test. The performance summary of ileum-cecum transition detection for PillCam is listed below:

1. Good cases (39 subjects):
 a. For 31 subjects, the difference between the PillCam detection and the physician's notes was less than five minutes
b. For 3 subjects, the difference between the PillCam detection and the physician's notes was less than 10 minutes
c. For 5 subjects, the difference between the PillCam detection and the physician's notes was less than 20 minutes (the full transition can take up to 20 minutes before the signal settles)

2. Marginal cases (13 subjects):
 a. Marginal cases (9 subjects)
 i. The PillCam ileum-cecum transition detection appeared in the terminal ileum or colon, but the difference between the two detections was within one hour
 b. Failed cases (4 subjects)
 i. Reasons of failure:
 1. The signal already stabilized in the terminal ileum
 2. The signal was highly variable from the entrance to exit
 3. There was no statistically significant change in reflected red/green at ileum-cecum transition

The total agreement between ileocecal transition localization algorithm detection and the physician's notes is 39/52 = 75% if considering good cases only. Total agreement including possibly acceptable cases is 48/52 = 92.3%.

Cecum-Colon Transition

Data demonstrated that, for TLCI, mean signal of reflected red/green provided the most statistical difference before and after the cecum-colon transition. Data also demonstrated that, for TLCI, the coefficient of variation of reflected blue provided the most statistical contrast at cecum-colon transition. The same signals were used for PillCam. The cecum-colon transition localization algorithm was as follows:

1. Obtain 10 minutes of reflected red/green and reflected blue signals after ileum-cecum transition, average the data and record it as the cecum reference signals
2. Start to check cecum-colon transition after ingestible device enters cecum (The cecum-colon transition algorithm is dependent on the ileum-cecum transition flag)
 a. Normalize the newly received data by the cecum reference signals
 b. Two-sliding-window analysis:
 i. Use two adjacent 10 minute windows
ii. Set the transition flag if any of the following criteria were met

- The mean difference in reflected red/green was more than 4X the standard deviation of reflected red/green in the back (second) window
- The mean of reflected red/green in the front (first) window was higher than 1.03
- The coefficient of variation of reflected blue signal in the front (first) window was greater than 0.23

The threshold values above were chosen based on a statistical analysis of data taken by TLC1.

For TLC1, 15 of the 18 subjects had the cecum-colon transition detected somewhere between cecum and colon. One of the subjects had the cecum-colon transition detected while TLC1 was still in cecum. The other two subjects had both wrong ileum-cecum transition detection and wrong cecum-colon transition detection. The total agreement between algorithm and CT scans was 15/18 = 83%.

For PillCam, for three subjects the endoscopy video ended before PillCam reached cecum, and for another two subjects there was very limited video data (less than five minutes) in the large intestine. These five subjects were excluded from cecum-colon transition localization algorithm performance test. The performance summary of cecum-colon transition detection for PillCam is listed below:

1. 27 cases had the cecum-colon transition detected somewhere between the cecum and the colon
2. one case had the cecum-colon transition detected in the ileum
3. 24 cases had no cecum-colon transition localized

The total agreement: 27/52 = 52%.

The following table summarizes the localization accuracy results.

<table>
<thead>
<tr>
<th>Transition</th>
<th>TLC1</th>
<th>PillCam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach-Duodenum</td>
<td>100% (17/17)</td>
<td>89% (48/54)</td>
</tr>
<tr>
<td>Duodenum-Jejunum</td>
<td>94% (16/17)</td>
<td>N/A</td>
</tr>
<tr>
<td>Ileum-Cecum</td>
<td>89% (16/18)</td>
<td>75% (39/52)</td>
</tr>
<tr>
<td>Ileum-terminal ileum/cecum/colon</td>
<td>100% (18/18)</td>
<td>92% (48/52)</td>
</tr>
</tbody>
</table>
Example 15.

In the following cases, each subject is treated by administering a device as disclosed herein containing a self-localization mechanism that autonomously determines the device location within the subject's GI tract. The device localization mechanism includes one or more sensors associated with the device that detects light reflectance that is external to the device and present in the GI tract. Based on pre-determined identification of disease site(s) in a particular section or subsection of the GI tract, as disclosed in each case, the device is pre-programmed with instructions to release the drug into or proximal to the section of the GI tract containing the disease site(s). The instructions are provided from at least one processor and/or at least one controller associated with the at least one sensor. The device contains a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), optionally formulated as COPAXONE®.

Example 15-la - Treatment of inflammatory disease site(s) in the duodenum by releasing drug in the duodenum

In the following 4 cases, based on pre-determined identification of disease site(s) in the duodenum, the device is pre-programmed with instructions to release the drug into the duodenum to treat the disease site(s).

(i) A 34-year old male subject suffering from symptoms of gastrointestinal inflammation walks into a clinic. The subject returns for an endoscopy, which reveals that he has disease site(s) in the tissue in the duodenum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicate that the device has transitioned from the stomach into the duodenum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum. The formulation is then released from the device based on the instructions. In a follow-up visit, the subject undergoes a repeat endoscopy to determine the effect of the treatment.

(ii) Treatment of diffuse duodenitis associated with pancolonic ulcerative colitis in the duodenum by releasing drug in the duodenum
A 45-year old subject with a history of pancolonic ulcerative colitis undergoes laparoscopy-assisted proctocolectomy due to severe steroid-resistant disease. Two weeks after the surgery, the subject complains of epigastralia and tarry stool. The subject undergoes an endoscopy of the upper gastrointestinal tract with biopsy and histology, which reveals that the subject has disease site(s) in the tissue in the duodenum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicate that the device has transitioned from the stomach into the duodenum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of gastroduodenal Crohn's disease by releasing drug in the duodenum

A 33-year old subject suffering from one month of epigastric pain and dyspepsia visits an outpatient clinic. The subject undergoes esophagastroduodenoscopy (EGD) with biopsy, which reveals multiple progressive ulcers and erosions in the tissue in the duodenum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicate that the device has transitioned from the stomach into the duodenum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iv) Treatment of gastroduodenal Crohn's disease by releasing drug in the duodenum

A 26-year old female subject suffering from nausea, weight loss and loss of appetite sees a gastroenterologist. The subject undergoes an endoscopy, which reveals gastroduodenal Crohn's disease affecting the subject's duodenum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of
the drug ingestion of the device, data collected from at least one of the light sensors,
on Optionally in conjunction with elapsed time through the GI tract after the oral administration,
indicate that the device has transitioned from the stomach into the duodenum with at least
about 90% accuracy. In this particular case, the light reflectance detected by the sensors
includes green light and blue light; an increase in the ratio of the green to blue reflectance is
used to determine that the device has transitioned from the stomach to the duodenum. The
formulation is then released from the device based on the instructions. In a follow-up visit,
the subject undergoes a repeat endoscopy to determine the effect of the treatment.

Example 15-lb - Treatment of inflammatory disease site(s) in the jejunum by releasing
drug in the jejunum

In the following 2 cases, based on pre-determined identification of disease site(s) in
the jejunum, as disclosed in each case, the device is pre-programmed with instructions to
release the drug into the jejunum to treat the disease site(s).

(i) A 68-year old female subject suffering from symptoms of gastrointestinal pain and
discomfort goes to see her doctor. The subject subsequently undergoes a video endoscopy,
which reveals disease site(s) in the tissue in the jejunum. Subsequently, the subject is orally
administered the ingestible device containing the therapeutically effective amount of the
drug. After ingestion of the device, data collected from at least one of the light sensors,
together with elapsed time through the GI tract after the oral administration, indicates that the
device has transitioned into the jejunum with at least about 90% accuracy. In this particular
case, the light reflectance detected by the sensors includes green light and blue light; an
increase in the ratio of the green to blue reflectance is used to determine that the device has
transitioned from the stomach to the duodenum; a period of elapsed time (about 3 minutes)
after the transition to the duodenum is then used to determine that the device has transitioned
from the duodenum to the jejunum. Optionally, peristaltic contraction frequency data are
used to corroborate that the device has entered the jejunum. The formulation is then released
from the device based on the instructions. The subject subsequently undergoes an endoscopy
to determine the effect of the treatment.

(ii) Treatment of Crohn's disease in the jejunum by releasing drug in the jejunum

A subject having unexplained weight loss and fever goes to urgent care. The subject
later undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue
in the jejunum associated with Crohn's disease. Subsequently, the subject is orally
administered the ingestible device containing the therapeutically effective amount of the
drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the jejunum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum; a period of elapsed time (about 3 minutes) after the transition to the duodenum is then used to determine that the device has transitioned from the duodenum to the jejunum. Optionally, peristaltic contraction frequency data are used to corroborate that the device has entered the jejunum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-lc - Treatment of inflammatory disease site(s) in the ileum by releasing drug in the ileum

In the following 3 cases, based on pre-determined identification of disease site(s) in the ileum, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the ileum to treat the disease site(s).

(i) A 42-year old female subject suffering from gastrointestinal cramping and fatigue makes an appointment with a gastroenterologist. The subject undergoes an endoscopy, which reveals that she has disease site(s) in the tissue in the ileum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red light. Once the device has reached the jejunum (essentially as determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to determine that the device has transitioned from the jejunum to the ileum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis with backwash ileitis by releasing drug in the ileum

A 42-year old female subject with a history of pancolitis visits her treating physician. The subject undergoes an endoscopy, which reveals that the subject has patchy cryptitis and crypt abscesses in the distal ileum thought to be due to backwash of cecal contents
("backwash ileitis"). Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red light. Once the device has reached the jejunum (essentially as determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to determine that the device has transitioned from the jejunum to the ileum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the ileum by releasing drug in the ileum

A subject suffering from symptoms of Crohn's disease, including abdominal pain and cramping, walks into a clinic. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the ileum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red light. Once the device has reached the jejunum (essentially as determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to determine that the device has transitioned from the jejunum to the ileum. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-lb - Treatment of inflammatory disease site(s) in the cecum by releasing drug in the cecum

In the following 3 cases, based on pre-determined identification of disease site(s) in the cecum, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the cecum to treat the disease site(s).

(i) A 25-year old male subject suffering from symptoms of gastrointestinal inflammation walks into a clinic. The subject undergoes an endoscopy, which reveals disease site(s) in the tissue in the cecum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion
of the device, data collected from at least one of the light sensors, optionally in conjunction
with elapsed time through the GI tract after the oral administration, indicates that the device
has transitioned into the cecum with at least about 80% accuracy. In this particular case, the
light reflectance detected by the sensors includes red, green and blue light. A decrease in the
ratio of the red to green reflectance, together with a decrease in the ratio of the green to blue
reflectance, are used to determine that the device has transitioned from the ileum to the
cecum. The formulation is then released from the device based on the instructions. The
subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis in the cecum by releasing drug in the cecum

A subject with a history of ulcerative colitis returns to the clinic. The subject
undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the
cecum. Subsequently, the subject is orally administered the ingestible device containing the
therapeutically effective amount of the drug. After ingestion of the device, data collected
from at least one of the light sensors, optionally in conjunction with elapsed time through the
GI tract after the oral administration, indicates that the device has transitioned into the cecum
with at least about 80% accuracy. In this particular case, the light reflectance detected by the
sensors includes red, green and blue light. A decrease in the ratio of the red to green
reflectance, together with a decrease in the ratio of the green to blue reflectance, are used to
determine that the device has transitioned from the ileum to the cecum. The formulation is
then released from the device based on the instructions. The subject subsequently undergoes
an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the cecum by releasing drug in the cecum

A subject suffering from symptoms of Crohn's disease, including fatigue, reduced
appetite and frequent, recurring diarrhea goes to a local clinic. The subject undergoes an
endoscopy, which reveals that the subject has disease site(s) in the tissue in the cecum.
Subsequently, the subject is orally administered the ingestible device containing the
therapeutically effective amount of the drug. After ingestion of the device, data collected
from at least one of the light sensors, optionally in conjunction with elapsed time through the
GI tract after the oral administration, indicates that the device has transitioned into the cecum
with at least about 80% accuracy. In this particular case, the light reflectance detected by the
sensors includes red, green and blue light. A decrease in the ratio of the red to green
reflectance, together with a decrease in the ratio of the green to blue reflectance, are used to
determine that the device has transitioned from the ileum to the cecum. The formulation is
then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-le - Treatment of inflammatory disease site(s) in the colon by releasing drug in the colon

In the following 3 cases, based on pre-determined identification of disease site(s) in the colon, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the colon to treat the disease site(s).

(i) A 57-year old male subject suffering frequent, recurring diarrhea goes to an outpatient facility for an endoscopy, which reveals disease site(s) in the tissue in the colon. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the colon. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the colon with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red, green light and blue light. Once the device is localized to the cecum (essentially as described in Example 15-lf(i)), a change in the ratio of the red to green reflectance is used to determine that the device has transitioned from the cecum further into the colon. Alternatively or additionally, a change in the coefficient of variation (CV) of the detected blue reflectance is used to determine that the device has transitioned from the cecum further into the colon. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis in the colon by releasing drug in the colon

A subject suffering from tenesmus and rectal bleeding sees a gastroenterologist. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the colon. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the colon with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red, green light and blue light. Once the device is localized to the cecum
(essentially as described in Example 15-ld(i)), a change in the ratio of the red to green reflectance is used to determine that the device has transitioned from the cecum to the colon. Alternatively or additionally, a change in the coefficient of variation (CV) of the detected blue reflectance is used to determine that the device has transitioned from the cecum to the colon. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the colon by releasing drug in the colon

A subject suffering from Crohn's disease undergoes an endoscopy, which reveals disease site(s) in the tissue in the colon. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the colon with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red, green light and blue light. Once the device is localized to the cecum (essentially as described in Example 15-ld(i)), a change in the ratio of the red to green reflectance is used to determine that the device has transitioned from the cecum to the colon. Alternatively or additionally, a change in the coefficient of variation (CV) of the detected blue reflectance is used to determine that the device has transitioned from the cecum to the colon. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-If - Treatment of inflammatory disease site(s) in the stomach by releasing drug in the stomach

A subject suffering from nausea, weight loss and loss of appetite sees a gastroenterologist. The subject undergoes an endoscopy, which reveals disease site(s) in the stomach. Subsequently the subject is orally administered an ingestible device as disclosed herein containing a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), optionally formulated as COPAXONE®. The device contains a self-localization mechanism that autonomously determines the device location within the subject's GI tract. The device localization mechanism includes one or more sensors associated with the device that detects light reflectance that is external to the device and present in the GI tract. The device is pre-programmed with instructions to release the drug into the stomach. The instructions are
provided from at least one processor and/or at least one controller associated with the at least one sensor. After ingestion of the device, data collected from at least one of the light sensors, in conjunction with elapsed time (about 1 minute) after the oral administration, indicates that the device has entered the stomach. The formulation is then released from the device based on the instructions, providing topical delivery of the drug to the one or more disease sites of the stomach. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-2a - Treatment of inflammatory disease site(s) in the jejunum by releasing drug in the duodenum

In the following 2 cases, based on pre-determined identification of disease site(s) in the jejunum, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the duodenum to treat the disease site(s).

(i) A subject suffering from symptoms of a gastrointestinal inflammatory disease walks sees her doctor. The subject later undergoes an endoscopy with biopsy, which reveals disease site(s) in the tissue in the jejunum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicate that the device has transitioned from the stomach into the duodenum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of Crohn's disease in the jejunum by releasing drug in the duodenum

A subject suffering from abdominal pain, cramping after meals, and diarrhea is diagnosed by endoscopy withjejunoleitis, a form of Crohn's disease that affects the jejunum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicate that the device has transitioned from the stomach into the duodenum with at least about 90% accuracy. In this particular case, the
light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-2b - Treatment of inflammatory disease site(s) in the ileum by releasing drug in the jejunum.

In the following 3 cases, based on pre-determined identification of disease site(s) in the ileum, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the jejunum to treat the disease site(s).

(i) A subject suffering from symptoms of gastrointestinal inflammation and recent weight loss walks into a clinic. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the ileum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the jejunum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum; a period of elapsed time (about 3 minutes) after the transition to the duodenum is then used to determine that the device has transitioned from the duodenum to the jejunum. Optionally, peristaltic contraction frequency data are used to corroborate that the device has entered the jejunum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis with backwash ileitis by releasing drug in the jejunum.

A 47-year old male subject who previously underwent total proctocolectomy returns to the clinic for a follow-up visit. The subject undergoes an endoscopy, which reveals that the subject has increased neutrophilic and mononuclear inflammation in the lamina propria, along with patchy cryptitis in the ileum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time...
through the GI tract after the oral administration, indicates that the device has transitioned into the jejunum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum; a period of elapsed time (about 3 minutes) after the transition to the duodenum is then used to determine that the device has transitioned from the duodenum to the jejunum. Optionally, peristaltic contraction frequency data are used to corroborate that the device has entered the jejunum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the ileum (ileocolitis) by releasing drug in the jejunum.

A subject suffering from diarrhea and cramping in the lower right part of the abdomen undergoes an endoscopy, which reveals that the subject has ileocolitis. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the jejunum with at least about 90% accuracy. In this particular case, the light reflectance detected by the sensors includes green light and blue light; an increase in the ratio of the green to blue reflectance is used to determine that the device has transitioned from the stomach to the duodenum; a period of elapsed time (about 3 minutes) after the transition to the duodenum is then used to determine that the device has transitioned from the duodenum to the jejunum. Optionally, peristaltic contraction frequency data are used to corroborate that the device has entered the jejunum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-2c - Treatment of inflammatory disease site(s) in the cecum by releasing drug in the ileum

In the following 3 cases, based on pre-determined identification of disease site(s) in the cecum, as disclosed in each case, the device is pre-programmed with instructions to release the drug into the ileum to treat the disease site(s).
(i) A subject having diarrhea, pain and fatigue walks into a clinic. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the cecum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red light. Once the device has reached the jejunum (essentially as determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to determine that the device has transitioned from the jejunum to the ileum. The formulation is then released from the device based on the instructions. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis in the cecum by releasing drug in the ileum

A subject suffering from symptoms of ulcerative colitis, including diarrhea, pain and fatigue walks into a clinic. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the cecum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red light. Once the device has reached the jejunum (essentially as determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to determine that the device has transitioned from the jejunum to the ileum. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the cecum by releasing drug in the ileum

A subject suffering from symptoms of Crohn's disease walks into a clinic. The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the tissue in the cecum. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, together with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned from the jejunum to the ileum with at least about 80% accuracy. In this particular case, the light reflectance detected by the device,

SUBSTITUTE SHEET (RULE 26)
sensors includes red light. Once the device has reached the jejunum (essentially as
determined in Example 15-lb(i)), a detected decrease in red light reflectance is used to
determine that the device has transitioned from the jejunum to the ileum. The formulation is
then released from the device based on the instructions. The subject subsequently undergoes
an endoscopy to determine the effect of the treatment.

Example 15-2d - Treatment of inflammatory disease site(s) in the colon by releasing
drug in the cecum

In the following 3 cases, based on pre-determined identification of disease site(s) in the
colon, as disclosed in each case, the device is pre-programmed with instructions to release the
drug into the cecum to treat the disease site(s).

(i) A subject having abdominal pain and bloody bowel movements sees a
gastroenterologist. The subject undergoes an endoscopy, which reveals disease site(s) in the
tissue in the colon. Subsequently, the subject is orally administered the ingestible device
containing the therapeutically effective amount of the drug. After ingestion of the device,
data collected from at least one of the light sensors, optionally in conjunction with elapsed
time through the GI tract after the oral administration, indicates that the device has
transitioned into the cecum with at least about 80% accuracy. In this particular case, the light
reflectance detected by the sensors includes red, green and blue light. A decrease in the ratio
of the red to green reflectance, together with a decrease in the ratio of the green to blue
reflectance, are used to determine that the device has transitioned from the ileum to the
cecum. The formulation is then released from the device based on the instructions, providing
topical delivery of the drug to the one or more disease sites of the colon. The subject
subsequently undergoes an endoscopy to determine the effect of the treatment.

(ii) Treatment of ulcerative colitis in the colon by releasing drug in the cecum

A subject suffering from a recurrent urge to have a bowel movement sees a specialist.
The subject undergoes an endoscopy, which reveals that the subject has disease site(s) in the
tissue in the colon. Subsequently, the subject is orally administered the ingestible device
containing the therapeutically effective amount of the drug. After ingestion of the device,
data collected from at least one of the light sensors, optionally in conjunction with elapsed
time through the GI tract after the oral administration, indicates that the device has
transitioned into the cecum with at least about 80% accuracy. In this particular case, the light
reflectance detected by the sensors includes red, green and blue light. A decrease in the ratio
of the red to green reflectance, together with a decrease in the ratio of the green to blue reflectance, are used to determine that the device has transitioned from the ileum to the cecum. The formulation is then released from the device based on the instructions, providing topical delivery of the drug to the one or more disease sites of the colon. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

(iii) Treatment of Crohn's disease in the colon by releasing drug in the cecum

A subject suffering from skin lesions, joint pain, diarrhea, and pain around the anus undergoes an endoscopy and is diagnosed with Crohn's (granulomatous) colitis. Subsequently, the subject is orally administered the ingestible device containing the therapeutically effective amount of the drug. After ingestion of the device, data collected from at least one of the light sensors, optionally in conjunction with elapsed time through the GI tract after the oral administration, indicates that the device has transitioned into the cecum with at least about 80% accuracy. In this particular case, the light reflectance detected by the sensors includes red, green and blue light. A decrease in the ratio of the red to green reflectance, together with a decrease in the ratio of the green to blue reflectance, are used to determine that the device has transitioned from the ileum to the cecum. The formulation is then released from the device based on the instructions, providing topical delivery of the drug to the one or more disease sites of the colon. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 15-2e - Treatment of gastroduodenal Crohn's disease by releasing drug in the stomach

A subject suffering from nausea, weight loss and loss of appetite sees a gastroenterologist. The subject undergoes an endoscopy, which reveals gastroduodenal Crohn's disease affecting the stomach and duodenum. Subsequently the subject is orally administered an ingestible device as disclosed herein containing a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), optionally formulated as COPAXONE®. The device contains a self-localization mechanism that autonomously determines the device location within the subject's GI tract. The device localization mechanism includes one or more sensors associated with the device that detects light reflectance that is external to the device and present in the GI tract. The device is pre-programmed with instructions to release the drug into the stomach. The instructions are provided from at least one processor and/or at least one controller associated with the at least
one sensor. After ingestion of the device, data collected from at least one of the light sensors, in conjunction with elapsed time (about 1 minute) after the oral administration, indicates that the device has entered the stomach. The formulation is then released from the device based on the instructions, providing topical delivery of the drug to the one or more disease sites of the stomach and distal to the duodenum. The subject subsequently undergoes an endoscopy to determine the effect of the treatment.

Example 16 - Intra-cecal Administration of Therapeutic Antibodies in a Colitis Animal Model that has Previously Received an Adoptive T-cell Transfer

A set of experiments were performed to compare the efficacy of an anti-IL12 p40 antibody and an anti-TNFα antibody when dosed systemically versus intra-rectally in the treatment of colitis induced through adoptive transfer of a subpopulation of CD447CD62L+ T cells isolated from C57BI/6 donor mice into RAG2−/− recipients.

Materials
Test System
Species/strain: Mice, C57B1/6 (donors) and RAG2−/− (recipients; C57B1/6 background)
Physiological state: Normal/immunodeficient
Age/weight range at start of study: 6-8 weeks (20-24 g)
Animal supplier: Taconic
Randomization: Mice were randomized into seven groups of 15 mice each, and two groups of eight mice each.
Justification: T cells isolated from male C57B1/6 wild type donors were transferred into male RAG2−/− recipient mice to induce colitis.
Replacement: Animals were not replaced during the course of the study.

Animal Housing and Environment
Housing: Mice were housed in groups of 8-15 animals per cage prior to cannulation surgery. After cannulation surgery, cannulated animals were
single-housed for seven days post-surgery. After this point, animals were again group-housed as described above. Non-cannulated animals (Group 9) were housed at 8 mice per cage. ALPHA-dri® bedding was used. Prior to colitis induction (i.e., during the cannulation surgeries), bedding was changed a minimum of once per week. After colitis induction, bedding was changed every two weeks, with ¼ of dirty cage material captured and transferred to the new cage. Additionally, bedding from Group 9 animals was used to supplement the bedding for all other groups at the time of cage change.

Acclimation: Animals were acclimatized for a minimum of 7 days prior to study commencement. During this period, the animals were observed daily in order to reject animals that presented in poor condition.

Environmental conditions: The study was performed in animal rooms provided with filtered air at a temperature of 70±5°F and 50% ±20% relative humidity. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour. The room was on an automatic timer for a light/dark cycle of 12 hours on and 12 hours off, with no twilight.

Food/water and contaminants: Animals were maintained with Labdiet 5053 sterile rodent chow. Sterile water was provided ad libitum.

Test Articles
Test Article: IgG Control
Name of the Test Article: **InVivoMAb** polyclonal rat IgG
Source: BioXCell, catalog #BE0094
Storage conditions: 4°C
Vehicle: Sterile PBS
5 Formulation Stability: Prepare fresh daily
Dose: 0.625 mg/mouse; 0.1 mL/mouse IP and IC
Frequency and duration of dosing: Days 0-49. 3X/week (IP - Group 3); QD (IC - Group 4)
Route and method of administration: IP or IC

Formulation:
For Group 3: On each day of dosing, dilute stock pAb to achieve 2.145 mL of a 5.68 mg/mL solution.

For Group 4: On each day of dosing, dilute stock pAb to achieve 2.145 mL of a 5.68 mg/mL solution

Test Article: **Anti-IL12 p40**
Name of the Test Article: **InVivoMAb** anti-mouse IL-12 p40
Source: BioXCell, catalog #BE0051
Storage conditions: 4°C
Vehicle: Sterile PBS
Formulation Stability: Prepare fresh daily
Dose: 0.625 mg/mouse (IP and IC); 0.1 mL/mouse
25 Frequency and duration of dosing: Days 0-49. 3X/week (IP - Group 5); QD (IC - Group 6);
Route and method of administration: IP or IC

Formulation:
For Group 5: On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.
For Group 6: On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.

Test Article:

<table>
<thead>
<tr>
<th>Name of the Test Article:</th>
<th>InVivoPlus anti-mouse TNFa, clone XT3.1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>BioXCell, catalog #BP0058</td>
</tr>
<tr>
<td>Storage conditions:</td>
<td>4°C</td>
</tr>
<tr>
<td>Vehicle:</td>
<td>Sterile PBS</td>
</tr>
<tr>
<td>Formulation Stability:</td>
<td>Prepare fresh daily</td>
</tr>
<tr>
<td>Dose:</td>
<td>0.625 mg/mouse (IP and IC); 0.110 mL/mouse</td>
</tr>
</tbody>
</table>

Frequency and duration of dosing:

- Days 0-49, 3X/week (IP - Group 7); QD (IC - Group 8);

Route and method of administration:

- IP or IC

Methods

The details of the study design are summarized in Table 18. A detailed description of the methods used in this study is also provided below.

Table 18. Study Design

<table>
<thead>
<tr>
<th>Group</th>
<th># Animals</th>
<th>Cecal Cannula</th>
<th>Cell Transfer (Day 0)</th>
<th>Treatment</th>
<th>Dose</th>
<th>Route</th>
<th>Schedule (Days 0-42)</th>
<th>Blood Collection (RO)</th>
<th>Endoscopy</th>
<th>Endpoints (Day 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>YES</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Day 13</td>
<td></td>
<td>3 Hours Post Dose:</td>
</tr>
</tbody>
</table>
A minimum of 10-14 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for enough cannulated animals to be enrolled in the main study. An additional n = 8 animals (Group 9) served as no surgery/no disease controls.

Colitis was induced on Day 0 in male RAG2/ T mice by IP injection of 0.5 x 10^6 CD44^+CD62L^+ T cells isolated and purified from C57B1/6 recipients. The donor cells were processed by first harvesting spleens from 80 C57B1/6 mice and then isolating the CD44^+ /CD62L^+ T cells using Miltenyi Magnetic-Activated Cell Sorting (MACS) columns. An additional eight mice (Group 1) served as no-disease controls, and eight mice (Group 9) served as no-cannulation and no-disease controls (sentinel animals for bedding). All recipient mice were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool. The cages were changed every two weeks starting on Day 7, with care taken to...
capture ¼ of dirty cage material for transfer to the new cage. On Day 13, blood was collected via RO eye bleed, centrifuged, and plasma was aliquoted (50 µL and remaining) and frozen for downstream analysis. The pelleted cells were re-suspended in buffer to determine the presence of T cells by FACS analysis of CD45+CD4+ events.

Treatment with test article was initiated on Day 0 and was continued until Day 42 as outlined in Table 18. The animals in Groups 1 and 9 (n = 8 per group; naive controls) were not treated with test article. The animals in Group 2 were treated IP with vehicle (PBS) 3X/week and IC with vehicle QD. The animals in Group 3 were treated IP with IgG control 3x/week and IC with vehicle (PBS) QD. The animals in Group 4 were treated IP with vehicle (PBS) 3x/week and IC with IgG control QD. The animals in Group 5 were treated IP with anti-IL12 p40 antibody 3X/week and IC with vehicle QD. The animals in Group 6 were treated IP with vehicle 3x/week and IC with anti-IL12 p40 antibody QD. The animals in Group 7 were treated IP with anti-TNFα antibody 3X/week and IC with vehicle QD. The animals in Group 8 were treated IP with vehicle 3X/week and IC with anti-TNFα antibody QD.

The mice underwent HD video endoscopy on Days 14 (pre-dosing; baseline), 28, and 42 (before euthanasia) in order to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during endoscopy. Additionally, stool consistency was scored during endoscopy using the parameters described herein. Following endoscopy on Day 42, the animals from all groups were sacrificed and terminal samples were collected.

The animals were euthanized by CO2 inhalation three hours after dosing on Day 42. Terminal blood samples were collected and plasma obtained from these samples. The resulting plasma was split into two separate cryotubes, with 50 µL in one tube (Bioanalysis) and the remainder in a second tube (TBD). The cecum and colon contents were removed and the contents collected, weighed, and snap frozen in separate cryovials. The mesenteric lymph nodes were collected and flash-frozen in liquid nitrogen. The small intestine were excised and rinsed, and the most distal 2-cm of ileum was placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The Peyer's patches were collected from the small intestine, and were flash-frozen in liquid nitrogen. The colon was rinsed, measured, weighed, and then trimmed to 6-cm in length and divided into 5 pieces as described in the above Examples. The most proximal 1-cm of colon was separately weighed, and flash-frozen for subsequent bioanalysis (PK) of test article levels. Of the remaining 5-cm
of colon, the most distal and proximal 1.5-cm sections were each placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally, and each piece was weighed, placed into two separate cryotubes, and snap frozen in liquid nitrogen; one of the samples was used for cytokine analysis and the other was used for myeloperoxidase (MPO) analysis. All plasma and frozen colon tissue samples were stored at -80°C until used for endpoint analysis.

A more detailed description of the protocols used in this study are described below.

Cecal Cannulation

Animals were placed under isoflurane anesthesia, and the cecum was exposed via a mid-line incision in the abdomen. A small point incision was made in the distal cecum through which 1-2 cm of the cannula was inserted. The incision was closed with a purse-string suture using 5-0 silk. An incision was made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was washed copiously with warmed saline prior to closing the abdominal wall. A small incision was made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All of the animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until fully recovered before returning to the cage. All animals received buprenorphine at 0.6mg/kg BID for the first 3 days, and Baytril at 10 mg/Kg QD for the first 5 days following surgery.

Disease Induction

Colitis was induced on Day 0 in male RAG2-/- mice by IP injection (200 µL) of 0.5 x 10^6 CD44^+CD62L^+ T cells (in PBS) isolated and purified from C57B1/6 recipients.

Donor Cell Harvest

Whole spleens were excised from C57B1/6 mice and immediately placed in ice-cold PBS. The spleens were dissociated to yield a single cell suspension and the red blood cells were lysed. The spleens were then processed for CD4^+ enrichment prior to CD44^+CD62L^+ sorting by MACS.

Dosing

Treatment with test article was initiated on Day 0 and continued until Day 42 as outlined in Table 18. The animals in Groups 1 and 9 (n = 8 per group; naive control) were not treated with test article. The animals in Group 8 were treated IP with vehicle (PBS) 3X/week
and IC with vehicle QD. The animals in Group 3 were treated IP with IgG control 3x/week and IC with vehicle (PBS) QD. The animals in Group 4 were treated IP with vehicle (PBS) 3x/week and IC with IgG control QD. The animals in Group 5 were treated IP with anti-IL12 p40 antibody 3X/week and IC with vehicle QD. The animals in Group 6 were treated IP with vehicle 3X/week and IC with anti-IL12 p40 antibody QD. The animals in Group 7 were treated IP with anti-TNFα antibody 3X/week and IC with vehicle QD. The animals in Group 8 were treated IP with vehicle 3X/week and IC with anti-TNFα antibody QD.

Body Weight and Survival

The animals were observed daily (weight, morbidity, survival, presence of diarrhea and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.

Animals Found Dead or Moribund

The animals were monitored on a daily basis and those exhibiting weight loss greater than 30% were euthanized, and did not have samples collected.

Endoscopy

Each mouse underwent video endoscopy on Days 14 (pre-dosing; baseline), 28, and 42 (before euthanasia) using a small animal endoscope (Karl Storz Endoskope, Germany), under isoflurane anesthesia. During each endoscopic procedure, still images as well as video were recorded to evaluate the extent of colitis and the response to treatment. Additionally, an image from each animal at the most severe region of disease identified during endoscopy was captured. Colitis severity was scored using a 0-4 scale (0= normal; 1= loss of vascularity; 2= loss of vascularity and friability; 3= friability and erosions; 4= ulcerations and bleeding). Additionally, stool consistency was scored during endoscopy using the scoring system described herein.

Sacrifice

All animals were euthanized by CO2 inhalation following endoscopy on Day 42 and three hours after test-article dosing.

Sample Collection

Terminal blood (plasma and cell pellet), Peyer's patches (Groups 1-8 only), small intestine and colon mLN (Groups 1-8 only), cecum contents, colon contents, small intestine, and colon were collected at euthanasia, as follows.
Blood

Terminal blood was collected by cardiac puncture and plasma generated from these samples. The resulting plasma was split into two separate cryotubes with 50 µL in one tube (Bioanalysis), and the remainder in a second tube (TBD).

Mesenteric Lymph Nodes

The mesenteric lymph nodes were collected, weighed, snap-frozen in liquid nitrogen, and stored at -80 °C.

Small Intestine

The small intestine was excised and rinsed, and the most distal 2-cm of ileum will be placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation.

Peyer’s Patches

The Peyer’s patches were collected from the small intestine. The collected Peyer’s patches were weighed, snap-frozen in liquid nitrogen, and stored at -80 °C.

Cecum/Colon Contents

The cecum and colon were removed from each animal and contents collected, weighed, and snap-frozen in separate cryovials.

Colon

Each colon was rinsed, measured, weighed, and then trimmed to 6-cm in length and divided into 5 pieces as outlined herein. The most proximal 1-cm of colon was separately weighed, and snap frozen for subsequent bioanalysis (PK) of test article levels. Of the remaining 5-cm of colon, the most distal and proximal 1.5-cm sections were placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally, and each piece weighed, placed into two separate cryotubes, and snap-frozen in liquid nitrogen; one of these samples was used for cytokine analysis and the other sample was used for MPO analysis.
Cytokine Levels in Colon Tissue

Cytokine levels (IFNy, IL-2, IL-4, IL-5, IL-1β, IL-6, IL-12 p40, and TNFa) were assessed in colon tissue homogenate (all groups) by multiplex analysis. MPO levels were assessed by ELISA in colon tissue homogenate (all groups).

Results

The Disease Activity Index was determined in each mouse using a total score from the scoring system depicted below.

<table>
<thead>
<tr>
<th>Disease Activity Index</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colitis Severity</td>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Loss of vascularity</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Loss of vascularity and friability</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Friability and erosions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ulcerations and bleeding</td>
<td>4</td>
</tr>
<tr>
<td>Stool Consistency</td>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Loose stool, soft, staying in shape</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Abnormal form with excess moisture</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Watery or diarrhea</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bloody diarrhea</td>
<td>4</td>
</tr>
<tr>
<td>Body Weight Loss (%)</td>
<td>X < 0% or gain weight</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2% ≤ X < 5%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5% ≤ X < 10%</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10% ≤ X < 15%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15% ≤ X < 20%</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>20% ≤ X < 25%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>25% ≤ X < 30%</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>X ≥ 35%</td>
<td>7</td>
</tr>
<tr>
<td>Total score</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

The data in Figure 103 show that mice intra-cecally administered anti-TNFa antibody (Group 8) had decreased disease activity index (DAI) as compared to mice intraperitoneally administered anti-TNFa antibody (Group 7) at Day 42 of the study. The data in Figure 104
show that mice intra-cecally administered anti-TNFα antibody (Group 8) had decreased levels of TNFα, IL-17A, and IL-4 in colonic tissue as compared to the levels in colonic tissue intraperitoneally administered anti-TNFα antibody (Group 7), when assessed at Day 42 of the study. The data in Figure 105 show that mice intra-cecally administered anti-IL12 p40 antibody (Group 6) had decreased disease activity index (DAI) as compared to mice intraperitoneally administered anti-IL12 p40 antibody (Group 5) at Day 28 and Day 42 of the study. The data in Figure 106 show that mice intra-cecally administered anti-IL12 p40 antibody (Group 6) had decreased levels of IFN-gamma, IL-6, IL-17A, TNFα, IL-22, and IL-1b in colonic tissue as compared to the levels in colonic tissue in vehicle-administered control mice (Group 2).

Exemplary embodiments:

The following are exemplary embodiments provided herein:

Exemplary embodiment 1. A method of treating a disease of the gastro-intestinal tract in a subject, comprising:

- delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject,

wherein the method comprises administering orally to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Exemplary embodiment 2. The method of exemplary embodiment 1, wherein the disease of the GI tract is an inflammatory bowel disease.

Exemplary embodiment 3. The method of exemplary embodiment 1, wherein the disease of the GI tract is ulcerative colitis.

Exemplary embodiment 4. The method of exemplary embodiment 1, wherein the disease of the GI tract is Crohn’s disease.

Exemplary embodiment 5. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the large intestine of the subject.

Exemplary embodiment 6. The method of exemplary embodiment 5, wherein the location is in the proximal portion of the large intestine.

Exemplary embodiment 7. The method of exemplary embodiment 5, wherein the location is in the distal portion of the large intestine.
Exemplary embodiment 8. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ascending colon of the subject.

Exemplary embodiment 9. The method of exemplary embodiment 8, wherein the location is in the proximal portion of the ascending colon.

Exemplary embodiment 10. The method of exemplary embodiment 8, wherein the location is in the distal portion of the ascending colon.

Exemplary embodiment 11. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the cecum of the subject.

Exemplary embodiment 12. The method of exemplary embodiment 11, wherein the location is in the proximal portion of the cecum.

Exemplary embodiment 13. The method of exemplary embodiment 11, wherein the location is in the distal portion of the cecum.

Exemplary embodiment 14. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the sigmoid colon of the subject.

Exemplary embodiment 15. The method of exemplary embodiment 14, wherein the location is in the proximal portion of the sigmoid colon.

Exemplary embodiment 16. The method of exemplary embodiment 14, wherein the location is in the distal portion of the sigmoid colon.

Exemplary embodiment 17. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the transverse colon of the subject.

Exemplary embodiment 18. The method of exemplary embodiment 17, wherein the location is in the proximal portion of the transverse colon.

Exemplary embodiment 19. The method of exemplary embodiment 17, wherein the location is in the distal portion of the transverse colon.

Exemplary embodiment 20. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the descending colon of the subject.

Exemplary embodiment 21. The method of exemplary embodiment 20, wherein the location is in the proximal portion of the descending colon.
Exemplary embodiment 22. The method of exemplary embodiment 20, wherein the location is in the distal portion of the descending colon.

Exemplary embodiment 23. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the small intestine of the subject.

Exemplary embodiment 24. The method of exemplary embodiment 23, wherein the location is in the proximal portion of the small intestine.

Exemplary embodiment 25. The method of exemplary embodiment 23, wherein the location is in the distal portion of the small intestine.

Exemplary embodiment 26. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the duodenum of the subject.

Exemplary embodiment 27. The method of exemplary embodiment 26, wherein the location is in the proximal portion of the duodenum.

Exemplary embodiment 28. The method of exemplary embodiment 26, wherein the location is in the distal portion of the duodenum.

Exemplary embodiment 29. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the jejunum of the subject.

Exemplary embodiment 30. The method of exemplary embodiment 29, wherein the location is in the proximal portion of the jejunum.

Exemplary embodiment 31. The method of exemplary embodiment 29, wherein the location is in the distal portion of the jejunum.

Exemplary embodiment 32. The method of any one of exemplary embodiments 1, 2, or 3, 4, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the ileum of the subject.

Exemplary embodiment 33. The method of exemplary embodiment 32, wherein the location is in the proximal portion of the ileum.

Exemplary embodiment 34. The method of exemplary embodiment 32, wherein the location is in the distal portion of the ileum.

Exemplary embodiment 35. The method of any one of the preceding exemplary embodiments, wherein the location is proximate to one or more sites of disease.
Exemplary embodiment 36. The method of exemplary embodiment 35, further comprising identifying the one or more sites of disease by a method comprising imaging of the gastrointestinal tract.

Exemplary embodiment 37. The method of any one of the preceding exemplary embodiments, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered to the location by mucosal contact.

Exemplary embodiment 38. The method of any one of the preceding exemplary embodiments, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered to the location by a process that does not comprise systemic transport of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Exemplary embodiment 39. The method of any one of the preceding exemplary embodiments, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 1 mg to about 300 mg.

Exemplary embodiment 40. The method of exemplary embodiment 39, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 1 mg to about 100 mg.

Exemplary embodiment 41. The method of exemplary embodiment 40, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 5 mg to about 40 mg.

Exemplary embodiment 42. The method of any one of exemplary embodiments 1 to 41, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is less than an amount that is effective when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered systemically.

Exemplary embodiment 43. The method of any one of the preceding exemplary embodiments, comprising administering (i) an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is an induction dose.

Exemplary embodiment 44. The method of exemplary embodiment 43, further comprising (ii) administering an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is a maintenance dose following the administration of the induction dose.
Exemplary embodiment 45. The method of exemplary embodiment 43 or 44, wherein the induction dose is administered once a day.

Exemplary embodiment 46. The method of exemplary embodiment 43 or 44, wherein the induction dose is administered once every three days.

Exemplary embodiment 47. The method of exemplary embodiment 43 or 44, wherein the induction dose is administered once a week.

Exemplary embodiment 48. The method of exemplary embodiment 44, wherein step (ii) is repeated one or more times.

Exemplary embodiment 49. The method of exemplary embodiment 44, wherein the induction dose is equal to the maintenance dose.

Exemplary embodiment 50. The method of exemplary embodiment 44, wherein the induction dose is greater than the maintenance dose.

Exemplary embodiment 51. The method of exemplary embodiment 44, wherein the induction dose is 5 greater than the maintenance dose.

Exemplary embodiment 52. The method of exemplary embodiment 44, wherein the induction dose is 2 greater than the maintenance dose.

Exemplary embodiment 53. The method of any one of the preceding exemplary embodiments, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as a single bolus.

Exemplary embodiment 54. The method of any one of exemplary embodiments 1 to 52, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as more than one bolus.

Exemplary embodiment 55. The method of any one of exemplary embodiments 1 to 52, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract in a continuous manner.

Exemplary embodiment 56. The method of exemplary embodiment 55, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract over a time period of 20 or more minutes.
Exemplary embodiment 57. The method of any one of the preceding exemplary embodiments, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 µg/mL.

Exemplary embodiment 58. The method of exemplary embodiment 57, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 µg/mL.

Exemplary embodiment 59. The method of exemplary embodiment 58, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 µg/mL.

Exemplary embodiment 60. The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) rectally to the subject.

Exemplary embodiment 61. The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via an enema to the subject.

Exemplary embodiment 62. The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via suppository to the subject.

Exemplary embodiment 63. The method of any one of exemplary embodiments 1 to 59, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via instillation to the rectum of the subject.

Exemplary embodiment 66. The method of any one of the preceding exemplary embodiments, wherein the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- a storage reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein a first end of the storage reservoir is connected to the first end of the housing;
- a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the storage reservoir; and;
an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to be released out of the housing from the storage reservoir.

Exemplary embodiment 67. The method of exemplary embodiment 66, wherein the ingestible device further comprises:
- an electronic component located within the housing; and
- a gas generating cell located within the housing and adjacent to the electronic component,
 wherein the electronic component is configured to activate the gas generating cell to generate gas.

Exemplary embodiment 68. The method of exemplary embodiment 66 or 67, wherein the ingestible device further comprises:
- a safety device placed within or attached to the housing,
 wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

Exemplary embodiment 69. The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising:
- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- an electronic component located within the housing;
- a gas generating cell located within the housing and adjacent to the electronic component,
 wherein the electronic component is configured to activate the gas generating cell to generate gas;
- a storage reservoir located within the housing,
 wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;
 an exit valve located at the first end of the housing,
 wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the storage reservoir; and
- a safety device placed within or attached to the housing,
 wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.
Exemplary embodiment 70. The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- an electronic component located within the housing,
- a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas;

- a storage reservoir located within the housing,

wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;

- an injection device located at the first end of the housing,

wherein the jet injection device is configured to inject the dispensable substance out of the housing from the storage reservoir; and

- a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing.

Exemplary embodiment 71. The method of exemplary embodiment 66, wherein the pharmaceutical composition is an ingestible device, comprising:

- a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;
- an optical sensing unit located on a side of the housing,

wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;

- an electronic component located within the housing;

- a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;

- a storage reservoir located within the housing,
wherein the storage reservoir stores a dispensable substance and a first end of the storage reservoir is connected to the first end of the housing;

a membrane in contact with the gas generating cell and configured to move or deform into the storage reservoir by a pressure generated by the gas generating cell; and

a dispensing outlet placed at the first end of the housing,

wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the storage reservoir.

Exemplary embodiment 72. The method of any one of exemplary embodiments 1-71, wherein the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.

Exemplary embodiment 73. The method of any one of exemplary embodiments 1-71, wherein the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US20 15/052500, incorporated by reference herein in its entirety.

Exemplary embodiment 74. The method of any one of exemplary embodiments 1-73, wherein the pharmaceutical composition is not a dart-like dosage form.

Exemplary embodiment 75. A method of treating a disease of the large intestine of a subject, comprising:

delivering of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the proximal portion of the large intestine of the subject, wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Exemplary embodiment 76. The method of exemplary embodiment 75, wherein the disease of the large intestine is an inflammatory bowel disease.

Exemplary embodiment 77. The method of exemplary embodiment 75, wherein the disease of the large intestine is ulcerative colitis.

Exemplary embodiment 78. The method of exemplary embodiment 75, wherein the disease the large intestine is Crohn's disease.

Exemplary embodiment 79. The method of any one of exemplary embodiments 75 to 78, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the ascending colon.
Exemplary embodiment 80. The method of any one of exemplary embodiments 75 to 78, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the cecum.

Exemplary embodiment 81. The method of any one of exemplary embodiments 75 to 78, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the sigmoid colon.

Exemplary embodiment 82. The method of any one of exemplary embodiments 75 to 78, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the transverse colon.

Exemplary embodiment 83. The method of any one of exemplary embodiments 75 to 78, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered at a location in the proximal portion of the descending colon.

Exemplary embodiment 84. The method of any one of the preceding exemplary embodiments, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) as in exemplary embodiment 1 or 75; a different formulation of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate); or an agent having a different biological target that glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Exemplary embodiment 85. The method of any one of the preceding exemplary embodiments, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is an agent suitable for treating an inflammatory bowel disease.

Exemplary embodiment 86. The method of exemplary embodiment 84 or 85, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered prior to the second agent.

Exemplary embodiment 87. The method of exemplary embodiment 84 or 85, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered after the second agent.

Exemplary embodiment 88. The method of exemplary embodiment 84 or 85, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second agent are administered substantially at the same time.
Exemplary embodiment 89. The method of any one of exemplary embodiments 84 to 88, wherein the second agent is administered intravenously.

Exemplary embodiment 90. The method of any one of exemplary embodiments 84 to 88, wherein the second agent is administered subcutaneously.

Exemplary embodiment 91. The method of any one of exemplary embodiments 84 to 90, wherein the amount of the second agent is less than the amount of the second agent when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second agent are both administered systemically.

Exemplary embodiment 92. The method of exemplary embodiment 91, wherein the second agent is glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

Exemplary embodiment 93. In some aspects of these embodiments, the second agent is methotrexate.

Exemplary embodiment 94. The method of any one of exemplary embodiments 1 to 83, wherein the method does not comprise administering a second agent.

Further non-limiting exemplary embodiments are listed below.

1. A method of treating a disease of the gastrointestinal tract in a subject, comprising:
 administering to the subject a pharmaceutical formulation that comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the pharmaceutical formulation is released at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

2. The method of embodiment 1, wherein the pharmaceutical formulation is administered in an ingestible device.

3. The method of embodiment 1, wherein the pharmaceutical formulation is released from an ingestible device.

4. The method of embodiment 2 or 3, wherein the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device, wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing.
5. The method of embodiment 2 or 3, wherein the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device,
wherein the reservoir is internal to the device.

6. A method of treating a disease of the gastrointestinal tract in a subject, comprising:
administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device;
wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing;
wherein the pharmaceutical formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and
the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

7. A method of treating a disease of the gastrointestinal tract in a subject, comprising:
administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device;
wherein the reservoir is internal to the device;
wherein the pharmaceutical formulation comprises glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), and
the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

8. The method of any one of embodiments 4 to 7, wherein the housing is non-biodegradable in the GI tract.

9. The method of any one of embodiments 2 to 8, wherein the release of the formulation is triggered autonomously.

10. The method of any one of embodiments 2 to 9, wherein the device is programmed to release the formulation with one or more release profiles that may be the same or different at one or more locations in the GI tract.
11. The method of any one of embodiments 2 to 10, wherein the device is programmed to release the formulation at a location proximate to one or more sites of disease.

12. The method of embodiment 11, wherein the location of one or more sites of disease is predetermined.

13. The method of any one of embodiments 4 to 12, wherein the reservoir is made of a material that allows the formulation to leave the reservoir.

14. The method of embodiment 13, wherein the material is a biodegradable material.

15. The method of any one of embodiments 2 to 14, wherein the release of the formulation is triggered by a pre-programmed algorithm.

16. The method of any one of embodiments 2 to 15, wherein the release of the formulation is triggered by data from a sensor or detector to identify the location of the device.

17. The method of embodiment 16, wherein the data is not based solely on a physiological parameter.

18. The method of any one of embodiments 2 to 17, wherein the device comprises a detector configured to detect light reflectance from an environment external to the housing.

19. The method of embodiment 18, wherein the release is triggered autonomously or based on the detected reflectance.

20. The method of any one of embodiments 2 to 19, wherein the device releases the formulation at substantially the same time as one or more sites of disease are detected.

21. The method of any one of embodiments 4 to 20, wherein the release mechanism is an actuation system.

22. The method of embodiment 21, wherein the actuation system is a chemical actuation system.

23. The method of embodiment 21, wherein the actuation system is a mechanical actuation system.

24. The method of embodiment 21, wherein the actuation system is an electrical actuation system.

25. The method of embodiment 21, wherein the actuation system comprises a pump and releasing the formulation comprises pumping the formulation out of the reservoir.
26. The method of embodiment 21, wherein the actuation system comprises a gas generating cell.

27. The method of any one of embodiments 2 to 26, wherein the device comprises an anchoring mechanism.

28. The method of any one of embodiments 1 to 27, wherein the formulation comprises a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

29. The method of any one of the preceding embodiments, wherein the formulation comprises a human equivalent dose (HED) of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

30. A method of treating a disease of the gastrointestinal tract in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

31. The method of embodiment 30, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

32. The method of embodiment 30 or 31, wherein the method does not comprise releasing more than 10% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease.

33. The method of embodiment 30 or 31, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not proximate to a site of disease.

34. The method of any one of the preceding embodiments, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 μg/mL.

35. The method of embodiment 34, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 μg/mL.
36. The method of embodiment 35, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 μg/mL.

37. The method of any one of embodiments 30 to 33, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 μg/mL.

38. The method of embodiment 37, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 μg/mL.

39. The method of embodiment 38, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 μg/mL.

40. The method of any one of embodiments 31 to 39, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a pharmaceutical formulation within the device.

41. The method of embodiment 40, wherein the formulation is a solution of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in a liquid medium.

42. The method of embodiment 41, wherein the formulation is a suspension of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in a liquid medium.

43. The method of any one of embodiments 30 to 42, wherein the disease of the GI tract is an inflammatory bowel disease.

44. The method of any one of embodiments 30 to 42, wherein the disease of the GI tract is ulcerative colitis.

45. The method of any one of embodiments 30 to 42, wherein the disease of the GI tract is Crohn's disease.

46. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the large intestine of the subject.

47. The method of embodiment 46, wherein the location is in the proximal portion of the large intestine.
48. The method of embodiment 46, wherein the location is in the distal portion of the large intestine.

49. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the ascending colon of the subject.

50. The method of embodiment 49, wherein the location is in the proximal portion of the ascending colon.

51. The method of embodiment 49, wherein the location is in the distal portion of the ascending colon.

52. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the cecum of the subject.

53. The method of embodiment 52, wherein the location is in the proximal portion of the cecum.

54. The method of embodiment 52, wherein the location is in the distal portion of the cecum.

55. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the sigmoid colon of the subject.

56. The method of embodiment 55, wherein the location is in the proximal portion of the sigmoid colon.

57. The method of embodiment 55, wherein the location is in the distal portion of the sigmoid colon.

58. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the transverse colon of the subject.

59. The method of embodiment 58, wherein the location is in the proximal portion of the transverse colon.

60. The method of embodiment 58, wherein the location is in the distal portion of the transverse colon.

61. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the descending colon of the subject.
62. The method of embodiment 60, wherein the location is in the proximal portion of the descending colon.

63. The method of embodiment 61, wherein the location is in the distal portion of the descending colon.

64. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the small intestine of the subject.

65. The method of embodiment 64, wherein the location is in the proximal portion of the small intestine.

66. The method of embodiment 64, wherein the location is in the distal portion of the small intestine.

67. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the duodenum of the subject.

68. The method of embodiment 67, wherein the location is in the proximal portion of the duodenum.

69. The method of embodiment 67, wherein the location is in the distal portion of the duodenum.

70. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the jejunum of the subject.

71. The method of embodiment 70, wherein the location is in the proximal portion of the jejunum.

72. The method of embodiment 70, wherein the location is in the distal portion of the jejunum.

73. The method of any one of embodiments 30 to 45, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the ileum of the subject.

74. The method of embodiment 73, wherein the location is in the proximal portion of the ileum.

75. The method of embodiment 73, wherein the location is in the distal portion of the ileum.
76. The method of any one of the preceding embodiments, wherein the location at which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released is 10 cm or less from one or more sites of disease.

77. The method of any one of the preceding embodiments, wherein the location at which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released is 5 cm or less from one or more sites of disease.

78. The method of any one of the preceding embodiments, wherein the location at which glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released is 2 cm or less from one or more sites of disease.

79. The method of any one of the preceding embodiments, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by mucosal contact.

80. The method of any one of the preceding embodiments, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is delivered to the location by a process that does not comprise systemic transport of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

81. The method of any one of the preceding embodiments, further comprising identifying the one or more sites of disease by a method comprising imaging of the gastrointestinal tract.

82. The method of embodiment any one of the preceding embodiments, wherein the method comprises identifying the disease site prior to administering the pharmaceutical composition.

83. The method of embodiment 82, wherein the method comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) substantially at the same time as identifying the disease site.

84. The method of any one of the preceding embodiments, comprising (a) identifying a subject having a disease of the gastrointestinal tract and (b) evaluating the subject for suitability to treatment.

85. The method of any one of embodiments 30 or 32 to 39 or 41 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by one or more of: a pH in the jejunum from 6.1 to 7.2, a pH in the mid small bowel from 7.0 to 7.8, a pH in the ileum from 7.0 to 8.0, a pH in the right colon from
5.7 to 7.0, a pH in the mid colon from 5.7 to 7.4, a pH in the left colon from 6.3 to 7.7, such as 7.0.

86. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on the pH at or in the vicinity of the location.

87. The method of any one of embodiments 30 or 32 to 41 or 44 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by degradation of a release component located in the device.

88. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not triggered by degradation of a release component located in the device.

89. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on enzymatic activity at or in the vicinity of the location.

90. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not dependent on bacterial activity at or in the vicinity of the location.

91. The method of any one of embodiments 30 to 84, wherein the composition comprises a plurality of electrodes comprising a coating, and releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by an electric signal by the electrodes resulting from the interaction of the coating with the one or more sites of disease.

92. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by a remote electromagnetic signal.

93. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by generation in the composition of a gas in an amount sufficient to expel glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

94. The method of any one of embodiments 30 to 84, wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is triggered by an electromagnetic signal generated within the device according to a pre-determined drug release profile.
95. The method of any one of embodiments 31 to 84, wherein the ingestible device comprises an ingestible housing, wherein a reservoir storing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is attached to the housing.

96. The method of embodiment 95, further comprising:

- detecting when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease,

wherein releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) comprises releasing the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir proximate the respective disease site in response to the detection.

97. The method of embodiment 96, wherein detecting comprises detecting via one or more sensors coupled to the ingestible housing.

98. The method of embodiment 97, wherein the one or more sensors comprise a plurality of coated electrodes and wherein detecting comprises receiving an electric signal by one or more of the coated electrodes responsive to the one or more electrode contacting the respective disease site.

99. The method of embodiment 96, wherein releasing comprises opening one or more valves in fluid communication with the reservoir.

100. The method of embodiment 99, wherein the one or more valves is communicably coupled to a processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect the one or more sites of disease.

101. The method of embodiment 96, wherein releasing comprises pumping the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir via pump positioned in the ingestible housing.

102. The method of embodiment 101, wherein the pump is communicably coupled to a processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect the one or more sites of disease.

103. The method of embodiment 95, wherein the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is stored in the reservoir at a reservoir pressure higher than a pressure in the gastrointestinal tract of the subject.
104. The method of embodiment 95, further comprising anchoring the ingestible housing at a location proximate to the respective disease site in response to the detection.

105. The method of embodiment 104, wherein anchoring the ingestible housing comprises one or more legs to extend from the ingestible housing.

106. The method of any one of the preceding embodiments, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is administered is from about 1 mg to about 500 mg.

107. The method of any one of embodiments 30 to 106, wherein the amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is less than an amount that is effective when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered systemically.

108. The method of any one of the preceding embodiments, comprising administering (i) an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is an induction dose.

109. The method of embodiment 108, further comprising (ii) administering an amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) that is a maintenance dose following the administration of the induction dose.

110. The method of embodiment 108 or 109, wherein the induction dose is administered once a day.

111. The method of embodiment 108 or 109, wherein the induction dose is administered once every three days.

112. The method of embodiment 108 or 109, wherein the induction dose is administered once a week.

113. The method of embodiment 109, wherein step (ii) is repeated one or more times.

114. The method of embodiment 109, wherein step (ii) is repeated once a day over a period of about 6-8 weeks.

115. The method of embodiment 109, wherein step (ii) is repeated once every three days over a period of about 6-8 weeks.

116. The method of embodiment 109, wherein step (ii) is repeated once a week over a period of about 6-8 weeks.

117. The method of embodiment 109, wherein the induction dose is equal to the maintenance dose.
118. The method of embodiment 109, wherein the induction dose is greater than the maintenance dose.

119. The method of embodiment 109, wherein the induction dose is 5 times greater than the maintenance dose.

120. The method of embodiment 109, wherein the induction dose is 2 times greater than the maintenance dose.

121. The method of any one of the preceding embodiments, wherein the method comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as a single bolus.

122. The method of any one of embodiments 30 to 121, wherein the method comprises releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract as more than one bolus.

123. The method of any one of embodiments 30 to 122, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract in a continuous manner.

124. The method of embodiment 123, wherein the method comprises delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location in the gastrointestinal tract over a time period of 20 or more minutes.

125. The method of any one of embodiments 30 to 124, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) rectally to the subject.

126. The method of any one of embodiments 30 to 124, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via an enema to the subject.

127. The method of any one of embodiments 30 to 124, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via suppository to the subject.

128. The method of any one of embodiments 30 to 124, wherein the method does not comprise delivering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) via instillation to the rectum of the subject.

129. The method of any one of embodiments 30 to 124, wherein the method does not comprise surgical implantation.
130. The method of any one of embodiments 30 to 91 or 93 to 129, wherein the composition is an autonomous device.

131. The method of any one of embodiments 30 to 130, wherein the composition comprises a mechanism capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

132. The method of any one of embodiments 30 to 131, wherein the composition comprises a tissue anchoring mechanism for anchoring the composition to the location.

133. The method of embodiment 132, wherein the tissue anchoring mechanism is capable of activation for anchoring to the location.

134. The method of embodiment 132 to 133, wherein the tissue anchoring mechanism comprises an osmotically-driven sucker.

135. The method of embodiment 132, 162, or 134, wherein the tissue anchoring mechanism comprises a connector operable to anchor the composition to the location.

136. The method of embodiment 135, wherein the connector is operable to anchor the composition to the location using an adhesive, negative pressure and/or fastener.

137. The method of embodiment 95, wherein the reservoir is an anchorable reservoir.

138. The method of any one of embodiments 30 to 84, wherein the pharmaceutical composition is an ingestible device, comprising:

 a housing;
 a reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate),
 a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir;
 and;
 an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to be released out of the housing from the reservoir.

139. The method of embodiment 138, wherein the ingestible device further comprises:

 an electronic component located within the housing; and
 a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas.

140. The method of embodiment 138 or 139, wherein the ingestible device further comprises:

5 a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

141. The method of embodiment 30 to 84, wherein the pharmaceutical composition is an ingestible device, comprising:

10 a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

an electronic component located within the housing;

a gas generating cell located within the housing and adjacent to the electronic component,

15 wherein the electronic component is configured to activate the gas generating cell to generate gas;

a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;

an exit valve located at the first end of the housing,

wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and

a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.

142. The method of embodiment 30 to 84, wherein the pharmaceutical composition is an ingestible device, comprising:

30 a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

an electronic component located within the housing,

a gas generating cell located within the housing and adjacent to the electronic component,
wherein the electronic component is configured to activate the gas generating cell to generate gas;

a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;

an injection device located at the first end of the housing,

wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and

a safety device placed within or attached to the housing,

wherein the safety device is configured to relieve an internal pressure within the housing.

143. The method of embodiment 30 to 84, wherein the pharmaceutical composition is an ingestible device, comprising:

a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

an optical sensing unit located on a side of the housing,

wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;

an electronic component located within the housing;

a gas generating cell located within the housing and adjacent to the electronic component,

wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;

a reservoir located within the housing,

wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;

a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and

a dispensing outlet placed at the first end of the housing,

wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.
144. The method of any one of embodiments 30 to 84, wherein the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.

145. The method of any one of embodiments 132 to 133, wherein the pharmaceutical composition is an ingestible device as disclosed in US Patent Application Ser. No. 62/478,955, incorporated by reference herein in its entirety.

146. The method of any one of embodiments 30 to 84, wherein the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US20 15/052500, incorporated by reference herein in its entirety.

147. A method of treating a disease of the large intestine of a subject, comprising: releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease, wherein the method comprises administering endoscopically to the subject a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the method does not comprise releasing more than 20% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease.

148. A method of treating a disease of the gastrointestinal tract in a subject, comprising: releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the proximal portion of the large intestine of the subject that is proximate to one or more sites of disease, wherein the method comprises administering endoscopically to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the pharmaceutical composition is an ingestible device.

149. The method of embodiment 147 or 148, wherein the method does not comprise releasing more than 20% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease.

150. The method of embodiment 147, 148 or 149 wherein the method does not comprise releasing more than 10% of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is not proximate to a site of disease.
151. The method of any one of embodiments 147, 148 or 149, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location that is a site of disease or proximate to a site of disease that is 2-100 times greater than at a location that is not proximate to a site of disease.

152. The method of any one of embodiments 147 to 151, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 µg/mL.

153. The method of embodiment 152, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 µg/mL.

154. The method of embodiment 153, wherein the method provides a concentration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 µg/mL.

155. The method of any one of embodiments 147 to 151, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 3 µg/mL.

156. The method of any one of embodiments 147 to 151, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.3 µg/mL.

157. The method of any one of embodiments 147 to 151, wherein the method provides a C24 value of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the plasma of the subject that is less than 0.01 µg/mL.

158. The method of any one of embodiments 147 to 151, wherein the composition does not comprise an enteric coating.

159. The method of any one of embodiments 147 to 151, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is not a cyclic peptide.

160. The method of any one of embodiments 147 to 158, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a pharmaceutical formulation within the device.

161. The method of embodiment 160, wherein the formulation is a solution of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in a liquid medium.
162. The method of embodiment 160, wherein the formulation is a suspension of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in a liquid medium.

163. The method of any one of embodiments 147 to 162, wherein the disease of the large intestine is an inflammatory bowel disease.

164. The method of any one of embodiments 147 to 162, wherein the disease of the large intestine is ulcerative colitis.

165. The method of any one of embodiments 147 to 162, wherein the disease of the large intestine is Crohn's disease.

166. The method of any one of embodiments 147 to 162, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the proximal portion of the ascending colon.

167. The method of any one of embodiments 147 to 162, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the proximal portion of the cecum.

168. The method of any one of embodiments 147 to 165, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the proximal portion of the sigmoid colon.

169. The method of any one of embodiments 147 to 165, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the proximal portion of the transverse colon.

170. The method of any one of embodiments 147 to 165, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released at a location in the proximal portion of the descending colon.

171. The method of any one of embodiments 147 to 165, wherein the method comprises administering to the subject a reservoir comprising the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the reservoir is connected to the endoscope.

172. The method of any one of the preceding embodiments, further comprising administering a second agent orally, intravenously or subcutaneously, wherein the second agent is the same formulation of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate); a different formulation of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate); or an agent having a different
biological target from glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the second agent is an agent suitable for treating an inflammatory bowel disease.

173. The method of embodiment 172, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered prior to the second agent.

174. The method of embodiment 172, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is administered after the second agent.

175. The method of embodiment 172, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second agent are administered substantially at the same time.

176. The method of embodiment 172, wherein the second agent is administered intravenously.

177. The method of embodiment 172, wherein the second agent is administered subcutaneously.

178. The method of any one of embodiments 172 to 177, wherein the amount of the second agent is less than the amount of the second agent when glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) and the second agent are both administered systemically.

179. The method of embodiment 178, wherein the second agent is glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

180. The method of embodiment 178, wherein second agent is methotrexate.

181. The method of any one of embodiments 30 to 171, wherein the method does not comprise administering a second agent.

182. The method of any one of embodiments 165 to 181, wherein the method comprises identifying the disease site prior to endoscopic administration.

183. The method of any one of embodiments 165 to 181, wherein the method comprises identifying the disease site substantially at the same time as releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

184. The method of any one of the preceding embodiments, wherein the method comprising monitoring the progress of the disease.
185. The method of embodiment 184, wherein monitoring the progress of the disease comprises measuring the weight of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

186. The method of embodiment 184 or 185, wherein monitoring the progress of the disease comprises measuring the food intake of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

187. The method of embodiment 184, 185 or 186, wherein monitoring the progress of the disease comprises measuring the level of blood in the feces of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

188. The method of embodiment 184, 185 or 186, wherein monitoring the progress of the disease comprises measuring the level of abdominal pain of the subject over a period of about 1-14 weeks, such as about 6-8 weeks following administration of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

189. The method of any one of embodiments 30 to 188, wherein the method does not comprise administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with a spray catheter.

190. The method of any one of embodiments 30 to 188, wherein the method comprises administering glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) with a spray catheter.

191. A method of treating a disease of the gastrointestinal tract in a subject, comprising:

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) the method comprising one or more of the following steps:

a) identifying a subject having a disease of the gastrointestinal tract;

b) determination of the severity of the disease;

c) determination of the location of the disease;
d) evaluating the subject for suitability to treatment;

c) administration of an induction dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);

d) monitoring the progress of the disease; and/or

g) optionally repeating steps e) and f) one or more times.

192. The method of embodiment 191, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

193. The method of embodiment 191 or 192, wherein the method comprises administering one or more maintenance doses following administration of the induction dose in step e).

194. The method of embodiment 193, wherein the induction dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device.

195. The method of embodiment 193 or 194, wherein the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device as disclosed herein.

196. The method of embodiment 193 or 194, wherein the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivered systemically.

197. The method of embodiment 194, wherein the induction dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivered systemically.

198. The method of embodiment 193 or 197, wherein the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device.

199. The method of embodiment 193, wherein the induction dose is a dose of a second agent as delivered systemically.

200. The method of embodiment 193 or 197, wherein the maintenance dose is a dose of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) administered in an ingestible device.

201. A glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus comprising:
an ingestible housing comprising a reservoir having a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective disease site of the one of the one or more sites of disease;

a valve system in fluid communication with the reservoir system; and

a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective disease site so as to release the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the respective disease site.

202. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, further comprising a pump positioned in the ingestible housing, the pump configured to pump the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir in response to activation of the pump by the controller responsive to detection by the detector of the ingestible housing being proximate to the respective disease site.

203. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 202, wherein the controller is configured to cause the pump to pump the therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir according to the following protocol.

204. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, wherein the valve system comprises a dissolvable coating.

205. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, wherein the valve system comprises one or more doors configured for actuation by at least one of sliding, pivoting, and rotating.
206. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, wherein the valve system comprises an electrostatic shield.

207. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, wherein the reservoir comprises a pressurized cell.

208. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, further comprising at least one actutable anchor configured to retain the ingestible housing at the respective disease site upon actuation.

209. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) delivery apparatus according to embodiment 201, wherein the actutable anchor is retractable.

210. A composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) of any one of the preceding embodiments, wherein the composition is capable of releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject.

211. The composition of embodiment 210, wherein the composition comprises a tissue anchoring mechanism for anchoring the composition to the location.

212. The composition of embodiment 211, wherein the tissue anchoring mechanism is capable of anchoring for anchoring to the location.

213. The composition of embodiment 211 or 212, wherein the tissue anchoring mechanism comprises an osmotically-driven sucker.

214. The composition of embodiment 211, 212 or 213, wherein the tissue anchoring mechanism comprises a connector operable to anchor the composition to the location.

215. The composition of embodiment 214, wherein the connector is operable to anchor the composition to the location using an adhesive, negative pressure and/or fastener.

216. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use in a method of treating a disease of the gastrointestinal tract in a subject, wherein the method comprises orally administering to the subject an ingestible device loaded with glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate), wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

217. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use of embodiment 216, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.

218. An attachable reservoir containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use in a method of treating a disease of the gastrointestinal tract, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

219. A composition comprising or consisting of an ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), for use in a method of treatment, wherein the method comprises orally administering the composition to the subject, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is released by the device at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

220. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use according to embodiment 216 or 217, the attachable reservoir compartment for use according to embodiment 218, or the composition for use according to embodiment 219, wherein the sites of disease have been pre-determined.

221. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use according to embodiment 216 or 217, the attachable reservoir compartment for use according to embodiment 218, or the composition for use according to embodiment 219, wherein the ingestible device further comprises an environmental sensor and the method further comprises using the environmental sensor to identify the location of one or more sites of disease.
222. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use the composition for use, according to embodiment 221, wherein the environmental sensor is an imaging sensor and the method further comprising imaging the gastrointestinal tract to identify the location of one or more sites of disease.

223. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, or the composition for use, according to embodiment 222, wherein the imaging detects inflamed tissue and/or lesions associated with a disease of the gastrointestinal tract.

224. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use or the composition for use, according to any one of embodiments 216 to 222, wherein the disease of the GI tract is one or more of an inflammatory bowel disease, ulcerative colitis and Crohn's disease.

225. An ingestible device loaded with a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate), wherein the device is controllable to release glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

227. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use or the composition for use according to any one of embodiments 216 to 224, or the device according to embodiment 225 or embodiment 226, wherein the ingestible device comprises:

a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;

a reservoir located within the housing and containing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) wherein a first end of the reservoir is connected to the first end of the housing;

a mechanism for releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir; and

an exit valve configured to allow glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) to be released out of the housing from the reservoir.
228. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use or the composition for use according to any one of embodiments 216 to 224, or the device according to embodiment 225 or embodiment 226, wherein the ingestible device comprises:

an ingestible housing comprising a reservoir compartment having a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) stored therein;

a release mechanism having a closed state which retains glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the reservoir and an open state which releases glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) from the reservoir to the exterior of the device; and

an actuator which changes the state of the release mechanism from the closed to the open state.

229. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to embodiments 227 or 228, wherein the ingestible device further comprises an environmental sensor for detecting the location of the device in the gut and/or for detecting the presence of disease in the GI tract.

230. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to embodiment 229, wherein the ingestible device further comprises a communication system for transmitting data from the environmental sensor to an external receiver.

231. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to embodiment 229 or 230, wherein the ingestible device further comprises a processor or controller which is coupled to the environmental sensor and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of diseased tissue and/or is in a location in the gut that has been predetermined to be proximal to diseased tissue.

232. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for
use, or the device according to embodiment 230, wherein the communication system further comprises means for receiving a signal from an external transmitter, and wherein the actuator is adapted to be triggered in response to the signal.

233. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of embodiments 227 to 232, wherein the ingestible device further comprises a communication system for transmitting localization data to an external receiver.

234. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of embodiments 227 to 230, wherein the ingestible device further comprises a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; wherein the actuator is adapted to be triggered in response to the signal.

235. Glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) for use, the attachable reservoir compartment for use, the composition for use, or the device according to any one of embodiments 225 to 234, wherein the ingestible device further comprises a deployable anchoring system and an actuator for deploying the anchoring system, wherein the anchoring system is capable of anchoring or attaching the ingestible device to the subject's tissue.

236. The method of any one of embodiments 31 to 200, wherein the method comprises determining the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location of disease following administration of the device.

237. The method of any one of embodiments 31 to 200 or 236, wherein the method comprises determining that the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the location of disease at the time point following administration of the device is higher than the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).
238. The method of embodiment 236, wherein the method comprises determining
the level of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer
acetate) in the GI tissue of the subject at a time point following administration of the device.

239. The method of embodiment of any one of embodiments 31 to 200 or 238,
wherein the method comprises determining the level of glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) in one or more of the
lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica
muscularis/serosa in the subject at a time point following administration of the device.

240. The method of any one of embodiments 31 to 200 or 238, wherein the method
comprises determining that the level of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) in the GI tissue at a time point following
administration of the device is higher than the level of glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate) in the GI tissue of a subject at
substantially the same time point following systemic administration of an equal amount of
glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

241. The method of any one of embodiments 31 to 200 or 239, wherein the method
comprises determining that the level of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) in the lumen/superficial mucosa in the subject
following administration of the device is elevated as compared to the level of glatiramer or a
pharmaceutically acceptable salt thereof (for example, glatiramer acetate) in the
lumen/superficial mucosa in a subject at substantially the same time point following systemic
administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate).

242. The method of any one of embodiments 31 to 200 or 236 to 241, wherein the
method comprises determining the level of glatiramer or a pharmaceutically acceptable salt
thereof (for example, glatiramer acetate) in the tissue of the subject within a time period of
about 10 minutes to 10 hours following administration of the device.

243. The method of any one of embodiments 31 to 200 or 236 to 242, wherein the
method comprises determining a level of a marker at the location of disease in the subject
following administration of the device.

244. The method of embodiment 243, wherein the marker is a biomarker and the
method comprises determining that the level of the biomarker at the location of disease in the
subject at a time point following administration of the device is decreased as compared to a
level of the biomarker in the subject prior to administration of the device or a level of the biomarker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

245. The method of embodiment 244, wherein the level of the biomarker in the subject at a time point following administration of the device is 1% decreased to 99% decreased as compared to the level of the biomarker in the subject prior to administration of the device or the level of the biomarker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

246. The method of embodiment 244 or 245, wherein the method comprises determining the level of the biomarker in the subject at a time point that is 10 minutes to 10 hours following administration of the device.

247. The method of embodiment 244, 245, or 246, wherein the level of the biomarker is one or more of: the level of interferon-γ in GI tissue, the level of IL-1β in GI tissue, the level of IL-6 in GI tissue, the level of IL-22 in GI tissue, the level of IL-17A in the GI tissue, the level of TNFα in GI tissue, and the level of IL-2 in GI tissue.

248. The method of embodiment 243, wherein the method comprises determining that the level of the marker at the time point following administration of the device is decreased relative to the level of the marker in the subject prior to administration of the device or the level of the marker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

249. The method of embodiment 248, wherein the level of the marker in the subject at the time point following administration of the device is 1% decreased to 99% decreased as compared to the level of the marker in the subject prior to administration of the device or the level of the marker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

250. The method of embodiment 248 or 249, wherein the method comprises determining the level of the marker in the subject within a time period of about 10 minutes to about 10 hours following administration of the device.
251. The method of embodiment 248, 249 or 250, wherein the level of the marker is an endoscopy score in the subject.

252. The method of embodiment 236, wherein the method comprises determining that the level of the marker in the subject at the time point following administration of the device is elevated as compared to the level of the marker in the subject prior to administration of the device or the level of the marker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

253. The method of embodiment 236, wherein the level of the marker in the subject following administration of the device is 1% increased to 400% increased as compared to the level of the marker in the subject prior to administration of the device or the level of the marker in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

254. The method of embodiment 252 or 253, wherein the method comprises determining the level of the marker in the subject within a time period of about 10 minutes to about 10 hours of administration of the device.

255. The method of embodiment 252, 253 or 254 wherein the level of the marker is one or both of subject weight and stool consistency.

256. The method of any one of embodiments 31 to 200 or 236 to 255, wherein the method comprises determining the time period of onset of treatment following administration of the device.

257. A method for treating colitis in a subject, wherein the colitis is associated with treatment of the subject with one or more immuno-oncology agents, the method comprising releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

258. The method of embodiment 257, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.
259. The method of embodiment 257 or 258, wherein at least one of the one or more immuno-oncology agents is a chemotherapeutic agent.

260. The method of embodiment 259, wherein the chemotherapeutic agent is a chemotherapeutic immunomodulator.

261. The method of embodiment 260, wherein the chemotherapeutic immunomodulatory is an immune checkpoint inhibitor.

262. The method of embodiment 261, wherein the immune checkpoint inhibitor targets or decreases an activity of an immune checkpoint protein selected from the group consisting of: CTLA-4, PD-1, PD-L1, PD-1 - PD-L1, PD-1 - PD-L2, interleukin 2 (IL 2), indoleamine 2,3-dioxygenase (IDO), IL 10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9 - TIM3, Phosphatidyserine - TEVI3, lymphocyte activation gene 3 protein (LAG3), MHC class II - LAG3, 4IBB-4 IBB ligand, OX40-OX40 ligand, GITR, GITR ligand - GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM - BTLA, HVEM - CD 160, HVEM - LIGHT, HVEM-BTLA-CD 160, CD80, CD80 - PDL, PDL2 - CD80, CD244, CD48 - CD244, CD244, ICOS, ICOS-ICOS ligand, B7 H3, B7 H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTN2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86 - CD28, CD86 - CTLA, CD80 - CD28, CD39, CD73, Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidyserine - TIM3, SIRPA-CD47, VEGF, Neuropilin, CD 160, CD30, and CD155.

263. The method of embodiment 261, wherein the immune checkpoint inhibitor is selected from the group consisting of: Urelumab, PF 05082566, MEDI6469, TRX518, Varilumab, CP 870893, Pembrolizumab (PDL), Nivolumab (PDL), Atezolizumab (formerly MPDL3280A) (PDL1), MEDI4736 (PD-L1), Avelumab (PD-L1), PDR001 (PDL), BMS 986016, MGA271, Lirilumab, IPH2201, Emactuzumab, INCB024360, Galunisertib, Ulocuplumab, BKT140, Bavituximab, CC 90002, Bevacizumab, and MNRP1685A, and MGA271.

264. The method of embodiment 261, wherein the immune checkpoint inhibitor targets CTLA-4.

265. The method of embodiment 261, wherein the immune checkpoint inhibitor is an antibody.
266. The method of embodiment 265, wherein the antibody is ipilimumab or tremelimumab.

267. The method of embodiment 261, wherein the immune checkpoint inhibitor targets PD1 or PD-L1.

268. The method of embodiment 261, wherein the immune checkpoint inhibitor is selected from the group of: nivolumab, lambroizumab, and BMS-936559.

269. The method of embodiment 261, wherein at least one of the one or more immuno-oncology agents is a T-cell that expresses a chimeric antigen receptor (a CAR-T cell).

270. The method of any one of embodiments 257 to 269, wherein the treatment of the subject with one or more immuno-oncology agents further includes treatment of the patient with an immunosuppressant.

271. The method of embodiment 257, wherein at least one of the one or more immuno-oncology agents is a PI-3 kinase inhibitor.

272. A method for treating colitis in a subject comprising:

determining that the subject has colitis associated with treatment of the subject with one or more immuno-oncology agents; and

releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of colitis, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate). In some embodiments, the pharmaceutical composition is an ingestible device. In some embodiments, the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

273. A method for treating colitis, comprising releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of a subject who has been determined to have colitis associated with treatment of the subject with one or more immuno-oncology agents, wherein the location is proximate to one or more sites of colitis, wherein the method comprises administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).
274. The method of embodiment 272 or 273, wherein the pharmaceutical composition is an ingestible device and the method comprises administering orally to the subject the pharmaceutical composition.

275. An ingestible device, comprising:

- glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);
- one or more processing devices; and
- one or more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to determine a location of the ingestible device in a portion of a GI tract of a subject to an accuracy of at least 85%.

276. The ingestible device of embodiment 275, wherein the accuracy is at least 90%.

277. The ingestible device of embodiment 275, wherein the accuracy is at least 95%.

278. The ingestible device of embodiment 275, wherein the accuracy is at least 97%.

279. The ingestible device of embodiment 275, wherein the accuracy is at least 98%.

280. The ingestible device of embodiment 275, wherein the accuracy is at least 99%.

281. The ingestible device of embodiment 275, wherein the accuracy is 100%.

282. The ingestible device of embodiment 275, wherein the portion of the portion of the GI tract of the subject comprises the duodenum.

283. The ingestible device of embodiment 275, wherein the portion of the portion of the GI tract of the subject comprises the jejunum.

284. The ingestible device of embodiment 275, wherein the portion of the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon.

285. The ingestible device of any of embodiments 275-284, further comprising first and second light sources, wherein the first light source is configured to emit light at a first wavelength, and the second light source is configured to emit light at a second wavelength different from the first wavelength.
286. The ingestible device of embodiment 285, further comprising first and second detectors, wherein the first detector is configured to detect light at the first wavelength, and the second detector is configured to detect light at the second wavelength.

287. An ingestible device, comprising:

- glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);
- one or more processing devices; and
- one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to determine that the ingestible device is in the cecum of a subject to an accuracy of at least 70%.

288. The ingestible device of embodiment 287, wherein the accuracy is at least 75%.

289. The ingestible device of embodiment 287, wherein the accuracy is at least 80%.

290. The ingestible device of embodiment 287, wherein the accuracy is at least 85%.

291. The ingestible device of embodiment 287, wherein the accuracy is at least 88%.

292. The ingestible device of embodiment 287, wherein the accuracy is at least 89%.

293. An ingestible device, comprising:

- glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);
- one or more processing devices; and
- one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to transmit data to a device capable of implementing the data to determine a location of the medical device in a portion of a GI tract of a subject to an accuracy of at least 85%.

294. The ingestible device of embodiment 293, wherein the accuracy is at least 90%.

295. The ingestible device of embodiment 293, wherein the accuracy is at least 95%.

SUBSTITUTE SHEET (RULE 26)
296. The ingestible device of embodiment 293, wherein the accuracy is at least 97%.

297. The ingestible device of embodiment 293, wherein the accuracy is at least 98%.

298. The ingestible device of embodiment 293, wherein the accuracy is at least 99%.

299. The ingestible device of embodiment 293, wherein the accuracy is 100%.

300. The ingestible device of embodiment 293, wherein the portion of the portion of the GI tract of the subject comprises the duodenum.

301. The ingestible device of embodiment 293, wherein the portion of the portion of the GI tract of the subject comprises the jejunum.

302. The ingestible device of embodiment 293, wherein the portion of the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon.

303. The ingestible device of any of embodiments 293 to 302, further comprising first and second light sources, wherein the first light source is configured to emit light at a first wavelength, and the second light source is configured to emit light at a second wavelength different from the first wavelength.

304. The ingestible device of embodiment 303, further comprising first and second detectors, wherein the first detector is configured to detect light at the first wavelength, and the second detector is configured to detect light at the second wavelength.

305. The ingestible device of any of embodiments 293 to 303, wherein the data comprise intensity data for at least two different wavelengths of light.

306. An ingestible device, comprising:

glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate);

one or more processing devices; and

one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to transmit data to an external device capable of implementing the data to determine that the ingestible device is in the cecum of subject to an accuracy of at least 70%.

307. The ingestible device of embodiment 306, wherein the accuracy is at least 75%.
308. The ingestible device of embodiment 306, wherein the accuracy is at least 80%.
309. The ingestible device of embodiment 306, wherein the accuracy is at least 85%.
310. The ingestible device of embodiment 306, wherein the accuracy is at least 88%.
311. The ingestible device of embodiment 306, wherein the accuracy is at least 89%.
312. The device of any one of embodiments 275 to 311, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a therapeutically effective amount.
313. A method of treating a disease of the gastrointestinal tract in a subject, comprising:
 releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering orally to the subject the ingestible device of any one of embodiments 275 to 312,
 the method further comprising determining a location of the ingestible medical device in a portion of a GI tract of a subject to an accuracy of at least 85%.
314. The method of embodiment 313, wherein the accuracy is at least 90%.
315. The method of embodiment 313, wherein the accuracy is at least 95%.
316. The method of embodiment 313, wherein the accuracy is at least 97%.
317. The method of embodiment 313, wherein the accuracy is at least 98%.
318. The method of embodiment 313, wherein the accuracy is at least 99%.
319. The method of embodiment 313, wherein the accuracy is 100%.
320. The method of embodiment 313, wherein the portion of the portion of the GI tract of the subject comprises the duodenum.
321. The method of embodiment 313, wherein the portion of the portion of the GI tract of the subject comprises the jejunum.
322. The method of embodiment 313, wherein the portion of the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon.
323. The method of embodiment 313, wherein determining the location of the ingestible device within the GI tract of a subject comprises determining reflected light signals
within the GI tract, wherein the reflected signals comprise light of at least two different wavelengths.

324. The method of embodiment 323, wherein the reflected signals comprise light of at least three different wavelengths.

325. The method of embodiment 323 or 324, wherein:
the reflected light comprise first and second wavelengths;
the first wavelength is between 495-600 nm; and
the second wavelength is between 400-495 nm.

326. The method of embodiment 325, wherein the first and second wavelengths are separated by at least 50 nm.

327. A method of treating a disease of the gastrointestinal tract in a subject, comprising:
releasing glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease, wherein the method comprises administering orally to the subject the ingestible device of any one of embodiments 275 to 312, the method further comprising determining a location of an ingestible medical device within the GI tract of a subject based on measured reflected light signals within the GI tract, wherein the reflected signals comprise light of at least two different wavelengths.

328. The method of embodiment 327, wherein the reflected signals comprise light of at least three different wavelengths.

329. The method of embodiment 327, wherein:
the at least two different wavelengths comprise first and second wavelengths;
the first wavelength is between 495-600 nm; and
the second wavelength is between 400-495 nm.

330. The method of embodiment 329, wherein the first and second wavelengths are separated by at least 50 nm.

331. The method of any one of embodiments 313 to 330, wherein glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) is present in a therapeutically effective amount

332. An ingestible device, comprising:
a housing;
a gas generating cell located within the housing; and
a storage reservoir located within the housing,
wherein:
the storage reservoir stores glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate); and

5 the ingestible device is configured so that, when the gas generating cell generates a
gas, glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate)
exits the ingestible device via an opening in the ingestible device.

333. The ingestible device of embodiment 332, further comprising an injection
device configured so that, when the gas generating cell generates the gas, the gas moves the
injection device to force glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate) out of the ingestible device via the opening.

334. The ingestible device of embodiment 333, wherein the injection device
comprises a syringe.

335. The ingestible device of embodiment 333 or 334, further comprising a
component configured to position the injection device at an epithelial layer and spread the
epithelial layer prior to a delivery of glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate).

336. The ingestible device of any one of embodiments 332 to 335, further
comprising a membrane configured so that, when the gas generating cell generates the gas,
the gas moves the membrane to force glatiramer or a pharmaceutically acceptable salt thereof
(for example, glatiramer acetate) out of the ingestible device via the opening.

337. The ingestible device of embodiment 336, wherein the membrane comprises a
piston configured so that, when the gas generating cell generates the gas, the gas moves the
membrane to force glatiramer or a pharmaceutically acceptable salt thereof (for example,
glatiramer acetate) out of the ingestible device via the opening.

338. The ingestible device of any one of embodiments 332 to 337, further
comprising an optical sensing unit supported by the housing, wherein the optical sensing unit
is configured to detect a reflectance from an environment external to the housing.

339. The ingestible device of embodiment 338, wherein the ingestible device is
configured to determine a location of the ingestible device based on the reflectance detected
by the optical sensing unit.

340. The ingestible device of embodiment 338 or embodiment 339, wherein the gas
generating cell generates the gas based on the reflectance detected by the optical sensing unit.
341. The ingestible device of any one of embodiments 332 to 340, further
comprising an electronic component within the housing, wherein the electronic component is
configured to active the gas generating cell.

342. The ingestible device of embodiment 341, wherein the gas generating cell is
adjacent the electronic component.

343. The ingestible device of any one of embodiments 332 to 342, further
comprising a safety device configured to relieve an internal pressure within the housing.

344. The ingestible device of any one of embodiments 332 to 343, wherein:
the housing has a first end, a second end and a wall extending between the first and
second ends; and
the storage reservoir is adjacent to the first end.

345. The ingestible device of any one of embodiments 332 to 344, wherein the
storage reservoir stores a therapeutically effective amount of glatiramer or a pharmaceutically
acceptable salt thereof (for example, glatiramer acetate).

346. A reservoir configured for use in an ingestible device, wherein the reservoir
comprises a therapeutic agent.

347. The reservoir of embodiment 346, wherein the reservoir comprises a housing
and the housing comprises a plastic.

348. The reservoir of embodiment 346 or 347, wherein the plastic comprises at
least one material selected from the group consisting of PVC, silicone and polycarbonate.

349. The reservoir of any of embodiments 346 to 348, wherein the ingestible device
when fully assembled and packaged satisfies the regulatory requirements for marketing a
medical device in the United States of America.

350. The reservoir of embodiment 30, wherein the therapeutic agent comprises

glatiramer or a pharmaceutically acceptable salt thereof (for example, glatiramer acetate).

351. The reservoir of any one of embodiments 346 to 350, wherein the reservoir is
configured to partially fit within the housing of the ingestible device.

352. The reservoir of any one of embodiments 346 to 351, wherein the reservoir is
configured to entirely fit within the housing of the ingestible device

353. The reservoir of any of embodiments 346 to 350, wherein the reservoir is
configured to attach to the housing of the ingestible device.

354. The reservoir of any one of embodiments 346 to 353, wherein the reservoir is
configured to friction fit with the ingestible device.
355. The reservoir of any one of embodiments 346 to 354, wherein the reservoir is configured to be held to the ingestible device via a biasing mechanism.

356. The reservoir of embodiment 355, wherein the biasing mechanism comprises at least one member selected from the group consisting of a spring, a latch, a hook, a magnet, and electromagnetic radiation.

357. The reservoir of any one of embodiments 346 to 355, wherein the reservoir is configured to fit into a groove or a track in the housing of the ingestible device.

358. The reservoir of any one of embodiments 346 to 357, wherein the reservoir is configured to snap fit to the ingestible device.

359. The reservoir of any one of embodiments 346 to 358, wherein the reservoir is configured to be pierced.

360. The reservoir of any one of embodiments 346 to 358, wherein the reservoir comprises a plastic.

361. The reservoir of any one of embodiments 346 to 360, wherein the reservoir comprises at least one material selected from the group consisting of PVC, polycarbonate and silicone.

362. The reservoir of any one of embodiments 346 to 361, wherein the reservoir comprises a metal or an alloy.

363. The reservoir of embodiment 362, wherein the reservoir comprises stainless steel.

364. The reservoir of any one of embodiments 346 to 363, wherein the reservoir is configured to carry electronic components.

365. A kit, comprising:

an ingestible device; and

a reservoir configured for use in an ingestible device, wherein the reservoir comprises a therapeutic agent.

366. The ingestible device of any one of embodiments 275 to 286, further comprising one or more elements of a device as recited in any one of embodiments 95, 139, 140, 221, or 227 to 235.

367. The ingestible device of any one of embodiments 287 to 292, further comprising one or more elements of a device as recited in any one of embodiments 95, 139, 140, 221, or 227 to 235.
368. The ingestible device of any one of embodiments 293 to 305, further comprising one or more elements of a device as recited in any one of embodiments 95, 139, 140, 221, or 227 to 235.

369. The ingestible device of any one of embodiments 306 to 312, further comprising one or more elements of a device as recited in any one of embodiments 95, 139, 140, 221, or 227 to 235.

370. The ingestible device of any one of embodiments 332 to 345, further comprising one or more elements of a device as recited in any one of embodiments 95, 139, 140, 221, or 227 to 235.

371. The reservoir of any one of embodiments 346 to 364, wherein the reservoir is configured for use in a device of any one of embodiments 275 to 312, 332 to 345, or 366 to 370.

Other Embodiments

The various embodiments of systems, processes and apparatuses have been described herein by way of example only. It is contemplated that the features and limitations described in any one embodiment may be applied to any other embodiment herein, and flowcharts or examples relating to one embodiment may be combined with any other embodiment in a suitable manner, done in different orders, or done in parallel. It should be noted, the systems and/or methods described above may be applied to, or used in accordance with, other systems and/or methods. Various modifications and variations may be made to these example embodiments without departing from the spirit and scope of the embodiments, and the appended listing of embodiments should be given the broadest interpretation consistent with the description as a whole.
Claims:

1. A method of treating a gastrointestinal (GI) disease or condition in a subject, comprising:
 orally administering to the subject in need of such treatment an ingestible device containing a pharmaceutical formulation, said formulation comprising glatiramer or a pharmaceutically acceptable salt thereof; and
 releasing the formulation from the device into, or proximal to, a section or subsection of the subject's GI tract containing one or more inflammatory disease sites;
 thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to the one or more disease sites.

2. The method of claim 1, wherein the GI disease or condition is an inflammatory GI disease or condition.

3. The method of claim 1 or 2, wherein the GI disease or condition is an inflammatory bowel disease.

4. The method of any one of claims 1 to 3, wherein the GI disease or condition is ulcerative colitis or Crohn's disease.

5. The method of any one of claims 1 to 4, wherein the device comprises a self-localization mechanism configured to determine a device location within the subject's GI tract, and wherein the method further comprises self-localizing the device within the subject's GI tract.

6. The method of claim 5, wherein self-localizing the device within the subject's GI tract via the device self-localization mechanism comprises detecting one or more device transitions between portions of the subject's GI tract.

7. The method of claim 6, wherein the one or more device transitions occur between portions of the GI tract selected from the group consisting of: mouth and stomach; stomach and duodenum; duodenum and jejunum; jejunum and ileum; ileum and cecum; and cecum and colon; and combinations of any two or more of the foregoing.

8. The method of claim 6 or 7, wherein the portions are adjacent portions.
9. The method of claim 8, wherein the adjacent portions are selected from the group consisting of: stomach and duodenum; duodenum and jejunum; jejunum and ileum; ileum and cecum; and cecum and colon; and combinations of any two or more of the foregoing.

10. The method of any one of claims 5 to 9, wherein self-localizing the device within the subject's GI tract via the device self-localization mechanism further comprises confirming the one or more device transitions between the portions of the GI tract of the subject.

11. The method of any one of claims 5 to 10, wherein the device self-localization mechanism is based on data comprising:
 (a) light reflectance occurring external to the device and within the GI tract of the subject;
 (b) elapsed time after the oral administration, elapsed time after detecting at least one of the one or more device transitions between the portions of the subject's GI tract, or a combination thereof; or
 (c) both (a) and (b).

12. The method of claim 11, wherein the device self-localizes to the cecum based on data comprising light reflectance occurring external to the device and within the GI tract of the subject.

13. The method of any one of claims 5 to 12, wherein the device self-localizes to the stomach, duodenum, jejunum, ileum, cecum or colon with at least 80% accuracy.

14. The method of any one of claims 5 to 12, wherein the device self-localizes to the stomach, duodenum, jejunum, ileum, cecum or colon with at least 85% accuracy.

15. The method of any one of claims 5 to 14, wherein the release of the formulation from the device is autonomously triggered based on the self-localization of the device to a pre-selected location within the subject's GI tract.
16. The method of claim 15, wherein the pre-selected location is selected from the group consisting of the stomach, the duodenum, the jejunum, the ileum, the cecum and the colon.

17. The method of claim 15 or 16, wherein the release of the formulation from the device occurs at substantially the same time as the device self-localizes to the pre-selected location.

18. The method of any one of claims 15 to 17, wherein the release of the formulation from the device commences within a period of time of at most about 5 minutes, at most about 1 minute, at most about 30 seconds, at most about 10 seconds, or at most about 1 second after the device detects or confirms the transition to the pre-selected location.

19. The method of any one of claims 15 to 18, wherein the formulation is released as a bolus.

20. The method of claim 15, wherein the formulation is released from the device over a pre-determined period of time.

21. The method of claim 20, wherein the pre-determined period of time over which the formulation is released from the device is about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes.

22. The method of claim 20 or 21, wherein the pre-determined period of time commences within at most about 5 minutes, at most about 1 minute, at most about 30 seconds, at most about 10 seconds, or at most about 1 second after the device detects or confirms the transition to the pre-selected location.

23. The method of any one of claims 1 to 22, further comprising identifying the section or subsection of the GI tract containing at least one of the one or more disease sites.

24. The method of claim 23, wherein the identification of the section or subsection of the GI tract containing at least one of the one or more disease sites occurs prior to the administration, wherein said identification comprises imaging the GI tract, endoscopy, biopsy, computer-aided (CT) enterography, magnetic resonance enterography, sampling the
GI tract for one or more disease markers, or a combination of any two or more of the foregoing.

25. The method of any one of claims 1 to 24, wherein the formulation is released proximal to the one or more disease sites.

26. The method of claim 25, wherein the proximal release of the formulation is to a section or subjection of the GI tract immediately preceding the section or subsection of the subject's GI tract containing at least one of the one or more disease sites.

27. The method of claim 25 or 26, wherein self-localizing the device to the cecum autonomously triggers the release of the formulation to the cecum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the colon.

28. The method of claim 27, wherein the device self-localizes to the cecum with at least 80% accuracy.

29. The method of claim 27, wherein the device self-localizes to the cecum with at least 85% accuracy.

30. The method claim 25 or 26, wherein self-localizing the device to the ileum autonomously triggers release of the formulation to the ileum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the cecum.

31. The method of claim 30, wherein the device self-localizes to the ileum with at least 80% accuracy.

32. The method of claim 30, wherein the device self-localizes to the ileum with at least 85% accuracy.
33. The method of claim 25 or 26, wherein self-localizing the device to the duodenum autonomously triggers release of the formulation to the duodenum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the jejunum.

34. The method of claim 33, wherein the device self-localizes to the duodenum with at least 80% accuracy.

35. The method of claim 33, wherein the device self-localizes to the duodenum with at least 85% accuracy.

36. The method of any one of claims 25 to 35, wherein the immediately preceding section or subsection of the GI tract does not contain a disease site and/or has not been determined to contain a disease site.

37. The method of any one of claims 1 to 24, wherein self-localizing the device to the jejunum autonomously triggers release of the formulation to the jejunum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the ileum; wherein the jejunum does not contain a disease site and/or has not been determined to contain a disease site.

38. The method of claim 37, wherein the device self-localizes to the jejunum with at least 80% accuracy.

39. The method of claim 37, wherein the device self-localizes to the jejunum with at least 85% accuracy.

40. The method of any one of claims 1 to 24, wherein self-localizing the device to the jejunum autonomously triggers release of the formulation to the jejunum, and wherein the one or more disease sites is present in the ileum and in the colon.
41. The method of any one of claims 1 to 24 or 37 to 39, wherein self-localizing the device to the jejunum autonomously triggers release of the formulation to the jejunum, and wherein the disease or condition to be treated is ileal or ileal colonic Crohn's disease.

42. The method of any one of claims 1 to 24, wherein the formulation is released from the device into the section or subsection of the subject's GI tract containing at least one of the one or more inflammatory disease sites.

43. The method of claim 42, wherein self-localizing the device to the colon autonomously triggers release of the formulation to the colon, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the colon.

44. The method of claim 43, wherein the device self-localizes to the colon with at least 80% accuracy.

45. The method of claim 43, wherein the device self-localizes to the colon with at least 85% accuracy.

46. The method of claim 42, wherein self-localizing the device to the ileum autonomously triggers release of the formulation to the ileum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the ileum.

47. The method of claim 46, wherein the disease or condition to be treated is ileal or ileal colonic Crohn's disease.

48. The method of claim 46 or 47, wherein the device self-localizes to the ileum with at least 80%, accuracy, or at least 85%> accuracy.

49. The method of claim 42, wherein self-localizing the device to the jejunum autonomously triggers release of the formulation to the jejunum, thereby providing topical delivery of the
glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the jejunum.

50. The method of claim 49, wherein the device self-localizes to the jejunum with at least 80% accuracy.

51. The method of claim 49, wherein the device self-localizes to the jejunum with at least 85% accuracy.

52. The method of claim 42, wherein self-localizing the device to the duodenum autonomously triggers release of the formulation to the duodenum, thereby providing topical delivery of the glatiramer or pharmaceutically acceptable salt thereof to at least one of the one or more disease sites in the duodenum.

53. The method of claim 52, wherein the device self-localizes to the duodenum with at least 80% accuracy.

54. The method of claim 52, wherein the device self-localizes to the duodenum with at least 85% accuracy.

55. The method of any one of claims 1 to 54, wherein the section of the GI tract containing the one or more inflammatory disease sites is selected from the group consisting of the stomach, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon and rectum; and a combination of any two or more of the foregoing.

56. The method of any one of claims 1 to 55, wherein the subsection of the GI tract containing the one or more inflammatory disease sites is selected from the group consisting of the proximal duodenum, distal duodenum, proximal jejunum, distal jejunum, proximal ileum, distal ileum, proximal cecum, distal cecum, proximal ascending colon, distal ascending colon, proximal transverse colon, distal transverse colon, proximal descending colon and distal descending colon, and a combination of any two or more of the foregoing.
57. The method of any one of claims 5 to 56, wherein the device self-localization mechanism does not require monitoring the pH of the subject's GI tract.

58. The method of any one of claims 1 to 57, wherein the formulation excludes a pH-dependent drug release mechanism.

59. The method of claim 58, wherein the formulation excludes an enteric coating or a pH-sensitive polymeric matrix.

60. The method of any one of claims 1 to 59, wherein at least 80% of the formulation is released proximate to the one or more disease sites.

61. The method of any one of claims 1 to 60, wherein the formulation comprises a therapeutically effective amount of the glatiramer or pharmaceutically acceptable salt thereof.

62. The method of any one of claims 1 to 61, wherein the method treats the GI disease or condition.

63. The method of any one of claims 1 to 62, wherein the method provides a ratio of the glatiramer concentration in the subject's GI tissue to the glatiramer concentration in the subject's blood, serum, or plasma ranging from about 2:1 to about 600:1.

64. The method of any one of claims 1 to 63, wherein the method provides a reduction in TH memory cell levels in the subject's mesenteric lymph nodes as compared to a systemic administration of the same amount of the glatiramer or a pharmaceutically acceptable salt thereof; wherein the TH memory cell levels in the mesenteric lymph nodes provided by the systemic administration is determined or has previously been determined from the same subject, a different subject or a population of subjects.

65. The method of claim 64, wherein the reduction is at least a 10% reduction, at least a 20% reduction, at least a 30% reduction, at least a 40% reduction or at least a 50% reduction.
66. The method of any one of claims 1 to 65, wherein the method provides a reduction in TH memory cell levels in the subject's Peyer's Patches as compared to a systemic administration of the therapeutically effective amount of the glatiramer or a pharmaceutically acceptable salt thereof; wherein the TH memory cell levels in the Peyer's Patches provided by the systemic administration is determined or has previously been determined from the same subject, a different subject or a population of subjects.

67. The method of claim 66, wherein the reduction is at least a 10% reduction.

68. The method of any one of claims 1 to 67, wherein the method provides an increase in TH memory cell levels in the subject's blood, serum or plasma as compared to a systemic administration of the therapeutically effective amount of the glatiramer or a pharmaceutically acceptable salt thereof; wherein the TH memory cell levels in the blood, serum or plasma provided by the systemic administration is determined or has previously been determined from the same subject, a different subject or a population of subjects.

69. The method of claim 68, wherein the increase is at least a 1% increase, at least a 5% increase, at least a 10% increase or at least a 15% increase.

70. The method of any one of claims 1 to 69, wherein the method suppresses the subject's local GI tract immune response as compared to the subject's peripheral immune response.

71. The method of any one of claims 61 to 70, wherein the therapeutically effective amount of the glatiramer or pharmaceutically acceptable salt thereof is an induction dose.

72. The method of any one of claims 61 to 70, wherein the therapeutically effective amount of the glatiramer or pharmaceutically acceptable salt thereof is a maintenance dose.

73. The method of any one of claims 1 to 72, wherein the glatiramer or pharmaceutically acceptable salt thereof comprises L-glutamic acid, L-alanine, L-tyrosine and L-lysine in molar ratios of about 0.14 L-glutamic acid, about 0.43 L-alanine, about 0.10 L-tyrosine and about 0.34 L-lysine.
74. The method of any one of claims 1 to 73, wherein the glatiramer or pharmaceutically acceptable salt thereof comprises from about 15 to about 100 amino acids.

75. The method of any one of claims 1 to 74, wherein the glatiramer or pharmaceutically acceptable salt thereof has an average molecular weight ranging from about 4,700 to about 11,000 Dalton.

76. The method of any one of claims 1 to 75, wherein the pharmaceutically acceptable salt of glatiramer is selected from the group consisting of sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate, hydrochloride, hydrobromide, hydriodide, acetate, nitrate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, tocopheryl succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycollate, tartrate, methanesulfonate, propanesulfonate, naphthalene-2-sulfonate, p-toluencesulfonate and mandelate.

77. The method of any one of claims 1 to 76, wherein the pharmaceutically acceptable salt of glatiramer is the acetate salt.

78. The method of any one of claims 1 to 77, wherein the formulation comprises the glatiramer or pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable excipients or carriers.

79. The method of claim 78, wherein the concentration of the glatiramer or pharmaceutically acceptable salt thereof is at least about 10 mg/mL, at least about 20 mg/mL, or at least about 40 mg/mL.

80. The method of claim 79, wherein the glatiramer or pharmaceutically acceptable salt thereof is glatiramer acetate.
81. The method of any one of claims 78 to 80, wherein the formulation comprises glatiramer or pharmaceutically acceptable salt thereof and mannitol.

82. The method of any one of claims 78 to 81, wherein the formulation is COPAXONE® 20 mg/mL comprising 20 mg/mL glatiramer acetate or COPAXONE® 40 mg/mL comprising 40 mg/mL glatiramer acetate.

83. The method of any one of claims 1 to 82, wherein the ingestible device is the device of any one of claims 84 to 106.

84. A device comprising:
 a pharmaceutical formulation comprising glatiramer or a pharmaceutically acceptable salt thereof;
 one or more processing devices; and
 one more machine-readable hardware storage devices storing instructions that are executable by the one or more processing devices to (a) determine a location of the ingestible device in the gastrointestinal (GI) tract of a subject; and (b) release the formulation from the device at a pre-selected location of the GI tract;
 wherein the device is a self-localizing ingestible device configured for use in treating a GI disease or condition in a subject.

85. The device of claim 84, wherein the GI disease or condition is an inflammatory disease or condition.

86. The device of claim 84 or 85, wherein the device self-localizes in the pre-selected location of the GI tract of the subject with an accuracy of at least 80%.

87. The method of claim 86, wherein the pre-selected location is selected from the group consisting of stomach, duodenum, jejunum, ileum, cecum and colon.

88. The device of any one of claims 84 to 87, further comprising a first light source and a second light source, wherein the first light source is configured to emit light at a first wavelength, and the second light source is configured to emit light at a second wavelength different from the first wavelength.
89. The device of claim 88, further comprising a first detector and a second detector, wherein the first detector is configured to detect light at the first wavelength, and the second detector is configured to detect light at the second wavelength.

90. The device of claim 89, wherein each of the first and second wavelengths is independently selected from the group consisting of red light, green light and blue light.

91. The device of claim 89, wherein each of the first and second wavelengths is independently selected from the group consisting of 600 nm to 750 nm; 495 nm to 600 nm; and 400 nm to 495 nm.

92. The device of claim 91, wherein the first and second wavelengths are separated by at least 50 nm.

93. The device of any one of claims 84 to 92, further comprising a mechanism configured to monitor elapsed time after oral administration of the device to the subject.

94. The device of any one of claims 84 to 93, wherein the device is configured to detect a transition between a first section or subsection and a second section or subsection of the GI tract.

95. The device of claim 94, wherein the first and second section of the GI tract are selected from the group consisting of the stomach and duodenum; the duodenum and jejunum; the jejunum and ileum; the ileum and cecum; and the cecum and colon; and a combination of any two or more of the foregoing.

96. The device of any one of claims 93 to 95, wherein the mechanism is further configured to monitor elapsed time after detecting a device transition between a first section or subsection and a second section or subsection of the subject's GI tract.
97. The device of any one of claims 84 to 96, wherein at least one of the one or more storage devices stores instructions to release the formulation from the device into the preselected location at substantially the same time as the device self-localizes to the pre-selected location.

98. The device of claim 97, wherein the device is configured so that the pre-selected location is the stomach, and the formulation is released at substantially the same time as the device self-localizes to the stomach.

99. The device of claim 97, wherein the device is configured so that the pre-selected location is the duodenum, and the formulation is released at substantially the same time as the device self-localizes to the duodenum.

100. The device of claim 97, wherein the device is configured so that the pre-selected location is the jejunum, and the formulation is released at substantially the same time as the device self-localizes to the jejunum.

101. The device of claim 97, wherein the device is configured so that the pre-selected location is the ileum, and the formulation is released at substantially the same time as the device self-localizes to the ileum.

102. The device of claim 97, wherein the device is configured so that pre-selected location is the cecum, and the formulation is released at substantially the same time as the device self-localizes to the cecum.

103. The device of claim 97, wherein the device is configured so that the pre-selected location is the colon, and the formulation is released at substantially the same time as the device self-localizes to the colon.

104. The device of any one of claims 84 to 103, further comprising:
 a housing;
 a force generator located within the housing; and
 a storage reservoir located within the housing, wherein the storage reservoir stores the pharmaceutical formulation;
wherein the ingestible device is configured such that the force generator generates a force, thereby initiating the release of the formulation from the ingestible device into the pre-selected location of the GI tract.

105. The device of claim 104, wherein the force generator is a gas generating cell, and the gas generating cell generates a gas.

106. The device of any one of claim 84 to 105, wherein the device is not configured to measure the pH of the subject’s GI tract.

107. The device of any one of claims 84 to 106, wherein the pharmaceutically acceptable salt of glatiramer is selected from the group consisting of sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, hydrochloride, hydrobromide, hydroiodide, acetate, nitrate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, tocopheryl succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, tartrate, methanesulfonate, propanesulfonate, naphthalene-2-sulfonate, p-toluenesulfonate and mandelate.

108. The device of claim 107, wherein the pharmaceutically acceptable salt of glatiramer is the acetate salt.

109. The device of any one of 84 to 108, wherein the pharmaceutical formulation consists essentially of glatiramer or pharmaceutically acceptable salt thereof.

110. The device of claim 109, wherein the glatiramer or pharmaceutically acceptable salt thereof is glatiramer acetate.
111. The device of any one of claims 84 to 108, wherein the formulation comprises the glatiramer or pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable excipients or carriers.

112. The device of claim 111, wherein the concentration of the glatiramer or pharmaceutically acceptable salt thereof, is at least about 10 mg/mL, at least about 20 mg/mL, or at least about 40 mg/mL.

113. The device of claim 112, wherein the glatiramer or pharmaceutically acceptable salt thereof is glatiramer acetate.

114. The device of any one of claims 111 to 113, wherein the one or more pharmaceutically acceptable excipients comprises mannitol.

115. The device of any one of claims 84 to 106, wherein the formulation is COPAXONE® 20 mg/mL comprising 20 mg/mL glatiramer acetate or COPAXONE® 40 mg/mL comprising 40 mg/mL glatiramer acetate.

116. The device of any one of claims 84 to 106 for use in a method of any one of claims 1-82.

117. The device of any one of claims 84 to 115 for use in a method of any one of claims 1-75.
500

DETERMINE WHEN THE DEVICE ENTERS THE GASTROINTESTINAL TRACT THROUGH AN ESOPHAGUS

504

HAS THE DEVICE DETECTED ENTRY INTO THE GI TRACT (ESOPHAGUS)?

NO

506

WAIT FOR A TRANSITION FROM THE ESOPHAGUS TO THE STOMACH

508

STORE DATA INDICATING THE DEVICE HAS ENTERED THE STOMACH

510

GATHER MEASUREMENTS OF GREEN AND BLUE REFLECTANCE LEVELS WHILE IN THE STOMACH

512

HAS THE DEVICE DETECTED A TRANSITION FROM THE STOMACH TO A DUODENUM BASED ON A RATIO OF GREEN AND BLUE (G/B) REFLECTANCE LEVELS?

NO

514

STORE DATA INDICATING THE DEVICE HAS ENTERED THE DUODENUM

516

GATHER PERIODIC MEASUREMENTS OF REFLECTANCE LEVELS WHILE IN THE DUODENUM (OR STOMACH)

518

HAS THE DEVICE DETECTED A TRANSITION FROM THE DUODENUM TO THE STOMACH BASED ON A RATIO OF GREEN AND BLUE (G/B) REFLECTANCE LEVELS?

NO

520

GATHER MEASUREMENTS OF GREEN AND BLUE REFLECTANCE LEVELS WHILE IN THE DUODENUM

522

HAS THE DEVICE DETECTED A MUSCLE CONTRACTION BASED ON THE MEASUREMENTS OF THE REFLECTANCE LEVELS?

NO

524

STORE DATA INDICATING THE DEVICE HAS ENTERED THE JEJUNUM

YES

FIG. 5
602 RETRIEVE DATA SET WITH RATIO OF GREEN AND BLUE (G/B) REFLECTANCE LEVELS

604 INCLUDE NEW MEASUREMENT OF RATIO OF GREEN AND BLUE (G/B) REFLECTANCE LEVELS IN THE DATA SET

606 RETRIEVE FIRST SUBSET OF RECENT DATA BY APPLYING FIRST SLIDING WINDOW FILTER TO DATA SET

608 WAS THE MOST RECENT DETECTED LOCATION THE DUODENUM?

610 IS THE CURRENT G/B SIGNAL SIMILAR TO A RECORDED AVERAGE G/B SIGNAL IN THE STOMACH?

612 STORE DATA INDICATING A REVERSE PYLORIC TRANSITION FROM THE DUODENUM TO THE STOMACH WAS DETECTED

614 RETRIEVE SECOND SUBSET OF PREVIOUS DATA BY APPLYING SECOND SLIDING WINDOW FILTER TO DATA SET

616 IS MEAN (FIRST SUBSET) - MEAN (SECOND SUBSET) > K * STD (SECOND SUBSET)?

618 IS THIS THE FIRST TIME THAT IT WAS DETECTED THAT MEAN (FIRST SUBSET) - MEAN (SECOND SUBSET) > K * STD (FIRST SUBSET)?

620 STORE MEAN (SECOND SUBSET) AS AVERAGE G/B SIGNAL IN THE STOMACH

622 IS MEAN (FIRST SUBSET) - MEAN (SECOND SUBSET) > M?

624 STORE DATA INDICATING A PYLORIC TRANSITION FROM THE STOMACH TO THE DUODENUM WAS DETECTED

FIG. 6
902. RETRIEVE DATA SET OF REFLECTANCE LEVELS

904. INCLUDE NEW MEASUREMENT OF REFLECTANCE LEVELS IN THE DATA SET

906. OBTAIN A FIRST SUBSET OF RECENT DATA BY APPLYING A SLIDING WINDOW FILTER TO THE DATA SET

908. OBTAIN A SECOND SUBSET OF RECENT DATA BY INTERPOLATING THE FIRST SUBSET OF RECENT DATA

910. CALCULATE A NORMALIZED FREQUENCY SPECTRUM FROM THE SECOND SUBSET OF DATA

912. IS AT LEAST A PORTION OF THE NORMALIZED FREQUENCY SPECTRUM BETWEEN 0.05 HZ AND 0.33 HZ ABOVE A THRESHOLD VALUE OF 0.05?

914. STORE DATA INDICATING A MUSCLE CONTRACTION WAS DETECTED (YES)

916. DOES A TOTAL NUMBER OF DETECTED MUSCLE CONTRACTIONS EXCEED A PREDETERMINED THRESHOLD NUMBER?

918. STORE DATA INDICATING A TRANSITION FROM THE DUODENUM TO THE JEJUNUM WAS DETECTED (YES)
Determine Jejunum reference signal

Normalize newly received signal to Jejunum reference signal

Measure Signal

Is mean signal below threshold?

Yes

Device has entered ileum

No

FIG. 12
1300

Determine Jejunum reference signal

1310

Normalize newly received signal to Jejunum reference signal

1320

Measure Signal

1330

Is mean difference in signal above threshold?

1340

No

Yes

1350

Device has entered Ileum

FIG. 13
1500

Establish Reference Cecum signals

1510

Collect current signals

1520

Has device left Cecum and entered Colon?

1530

No

Yes

Device has entered Colon

1540

FIG. 15
FIG. 32
FIG. 35

^Outlier removed from Group 5
FIG. 36

FIG. 37
FIG. 38

![Graph showing IL-17A levels with different treatments.](image)

FIG. 39

![Graph showing Day 14 percent body weight change with different treatments.](image)
FIG. 46

FIG. 47
FIG. 48

Mean Blood Th memory cells
(CD4+CD45RB−/CD4+ x 100) ± SEM

- Naive
- Vehicle
- DATK32 (25 mg/kg; Q3D; IC)
- DATK32 (25 mg/kg; QD; IC)
- DATK32 (25 mg/kg; Q3D; IP)
- DATK32 (5 mg/kg; QD; IC)
<table>
<thead>
<tr>
<th>Time</th>
<th>SQ Adalimumab Plasma concentration µgs/ml</th>
<th>Topical Adalimumab Plasma concentration µgs/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>6hrs</td>
<td>16 +/-8</td>
<td>0.01</td>
</tr>
<tr>
<td>12hrs</td>
<td>13 +/-4</td>
<td>0.01</td>
</tr>
<tr>
<td>24hrs</td>
<td>13 +/-3</td>
<td>0.01</td>
</tr>
<tr>
<td>48hrs</td>
<td>16 +/-5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

FIG. 52
FIG. 53

TNFα (pg/ml) / mg Total Protein

- Non-Inflamed
- Inflamed

6 hours 12 hours 24 hours 48 hours
FIG. 55
Digital Health Monitoring to Drive Therapeutic Use

Subject Data
- Vitals, Activity
- Symptomology
- Diet
- Medications

Device Data
- Location
- Transit Time
- Breath Rate
- Macronutrient Levels
- Drug Levels

Server/Data Store
(No HIPAA Data)

Doctor Office Computer

Analytics/Decision Support
Analysis and Recommendations
- General Health
- Diet Recommendations
- Lifestyle Recommendations

FIG. 62
Panel A: Binding of anti-TNFα to TNFα receptor without drug. Uninhibited binding brings the Donor and Acceptor beads into close proximity for singlet Oxygen transfer detection.

Panel B: Binding of anti-TNFα to TNFα is inhibited by drug binding to TNFα and preventing binding to anti-TNFα antibodies which prevents proximity oxygen singlet transfer detection.
Dose response curves Exemptia binding to TNFa (10,000 pg) of Exemptia dispensed from standard injector, Si bellows or PVC bellows.
Error bars = standard deviation. Saline control n=1.

4 hour exposure

FIG. 69

Dose response curves Exemptia binding to TNFa (10,000 pg) of Exemptia dispensed from standard injector, Si bellows or PVC bellows.
Error bars = standard deviation. Saline control n=1.

24 hour exposure

FIG. 70
Dose response curves Exempia binding to TNFa (10,000 pg) of Exempia dispensed from standard injectors, SI bellows or PVC bellows.

Error bars = standard deviation. Saline control n=1.

336 hour exposure

Alphalisa Counts (RLU)

Log [Antibody] (mg)

A (needle control)

B (PVC Bellows)

C (Saline Control)
Does Patient Have Symptoms of IBD?

Primary Care Physician Refers Patient to Gastroenterologist/IBD specialist

Perform Colonoscopy with Biopsy, with or without CT scan/MRI?

Has Patient Been Diagnosed with IBD?

Determine Treatment Based on Diagnosis, Severity and Extent

Assess Efficacy of Treatment and (if necessary) Adjust Dosing/Alter Treatment

Topical Administration of the Drug (e.g., Adalimumab) using Ingestible Device in the GI Tract (e.g., at our near the site of disease)

If Patient is a Candidate for Treatment, the Appropriate Ingestible Device Loaded with a Therapeutically Effective Amount of an Appropriate Drug, and Programmed to Release the Drug at a Specific Location in the GI Tract Based on the Diagnosis, Severity, and Extent of Disease will be prescribed.
FIG. 73

Cecum

FIG. 74

Colon
Mean Blood Concentration of Tacrolimus

FIG. 77

Area Under the Curve

FIG. 78
FIG. 79

Mean GI Tissue Concentration

- Group 2 PO (0.09 mg/kg)
- Group 3 IC (0.02 mg/kg)
- Group 4 IC (0.04 mg/kg)
- Group 5 IC (0.09 mg/kg)

FIG. 80

Mean GI Luminal Content Concentration

- Group 2 PO (0.09 mg/kg)
- Group 3 IC (0.02 mg/kg)
- Group 4 IC (0.04 mg/kg)
- Group 5 IC (0.09 mg/kg)
FIG. 85

Colon Contents

FIG. 86

Cecum Contents
FIG. 89

Mean GI Tissue Concentration

![Bar chart showing mean GI tissue concentration across different groups.]

Group 2 PO (0.09 mg/kg)

Group 3 IC (0.02 mg/kg)

Group 4 IC (0.04 mg/kg)

Group 5 IC (0.09 mg/kg)

Cecum

Proximal Colon

Spiral colon

Transverse colon

Distal Colon

Mean Concentration (ng/g)

- **0**
- **100**
- **200**
- **300**
- **400**
- **500**
- **600**
- **700**
- **800**
- **900**
- **1000**
- **1100**
- **1200**

FIG. 90
FIG. 91

Mean GI Luminal Content Concentration

- Group 2 PO (0.09 mg/kg)
- Group 3 IC (0.02 mg/kg)
- Group 4 IC (0.04 mg/kg)
- Group 5 IC (0.09 mg/kg)

FIG. 92

Mean Rectal Content Concentration of Tacrolimus

- Group 2 PO (0.09 mg/kg)
- Group 3 IC (0.02 mg/kg)
- Group 4 IC (0.04 mg/kg)
- Group 5 IC (0.09 mg/kg)
Quantitative histological grading of colitis.

<table>
<thead>
<tr>
<th>Feature graded</th>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Slight</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Severe</td>
</tr>
<tr>
<td>Extent</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Mucosa</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Mucosa and submucosa</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Transmural</td>
</tr>
<tr>
<td>Regeneration</td>
<td>0</td>
<td>Complete regeneration or normal tissue</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Almost complete regeneration</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Regeneration with crypt depletion</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Surface epithelium not intact</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>No tissue repair</td>
</tr>
<tr>
<td>Crypt damage</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Basal 1/3 damaged</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Basal 2/3 damaged</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Only surface epithelium intact</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Entire crypt and epithelium lost</td>
</tr>
<tr>
<td>Percent involvement</td>
<td>1</td>
<td>1-25%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26-50%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>51-75%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>76-100%</td>
</tr>
</tbody>
</table>

FIG. 93
FIG. 99

PG-1705 Porcine ADA Admin Site Human IgG Scores

FIG. 100

- Lumen/Superficial Mucosa
- Lamina Propria
- Tunica Muscularis - Outer/Serosa
FIG. 105
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2018/046494

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K9/Q0 A61M31/O0 A61K31/785

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, CHEM ABS Data, EMBASE, WPI Data, BIOSIS, FSTA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01/60392 AI (VEDA RES & DEV [IL] ; TEVA PHARMA [US]) 23 August 2001 (2001-08-23)</td>
<td>1-82</td>
</tr>
<tr>
<td>A</td>
<td>WO 2015/140790 AI (MAPI PHARMA LTD [IL]) 24 September 2015 (2015-09-24)</td>
<td>1-117</td>
</tr>
<tr>
<td>A</td>
<td>WO 2013/120184 AI (MICROPHARMA LTD [CA]) 22 August 2013 (2013-08-22)</td>
<td>1-117</td>
</tr>
<tr>
<td>A</td>
<td>WO 2015/049602 AI (PROGENITY INC [US] ; JONES MITCHELL LAWRENCE [CA] ; LABBE ALAIN [CA] ; DR)</td>
<td>1-117</td>
</tr>
<tr>
<td></td>
<td>31 March 2016 (2016-03-31) the whole document</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“A” document member of the same patent family

Date of the actual completion of the international search
29 November 2018

Date of mailing of the international search report
07/12/2018

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Schule, Stefanie

Authorized officer
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 3846901 A</td>
<td>27-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001238469 B2</td>
<td>03-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2400374 A1</td>
<td>23-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1424915 A</td>
<td>18-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1261361 A1</td>
<td>04-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003522799 A</td>
<td>29-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02008Q23 A</td>
<td>30-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0160392 A1</td>
<td>23-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017080044 A1</td>
<td>23-03-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015140790 A1</td>
<td>24-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1204900 A1</td>
<td>11-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015011874 A1</td>
<td>08-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013120184 A1</td>
<td>22-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 112017006235 A2</td>
<td>12-12-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2964900 A1</td>
<td>31-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 107438404 A</td>
<td>05-12-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201790706 A1</td>
<td>29-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3197336 A1</td>
<td>02-08-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017532125 A</td>
<td>02-11-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2017084031 A</td>
<td>19-07-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201702308T A</td>
<td>27-04-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017296092 A1</td>
<td>19-10-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2016049602 A1</td>
<td>31-03-2016</td>
</tr>
</tbody>
</table>