

Sept. 8, 1970

A. COLOMBO

3,527,256

NINE-WAY VALVE FOR INVERTING CYCLE PROVIDING BOTH A PERFECT  
HEAT PUMP AND A REFRIGERATOR PUMP CIRCUIT, AND  
CIRCUIT OBTAINED BY SAID VALVE

Filed Sept. 16, 1968

2 Sheets-Sheet 1

FIG.1

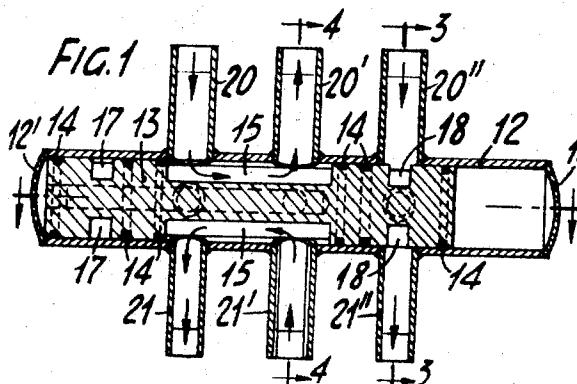



FIG.3

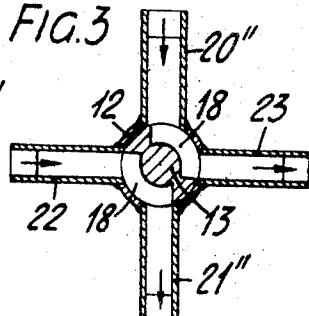



FIG.2

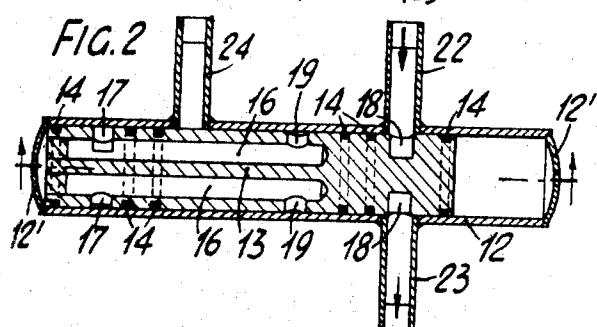



FIG.4

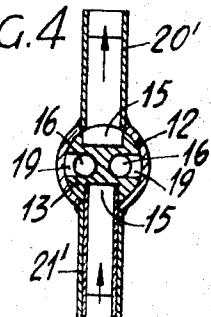



FIG.5

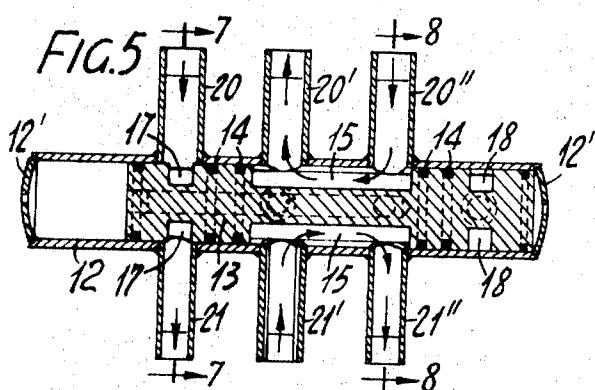



FIG.7

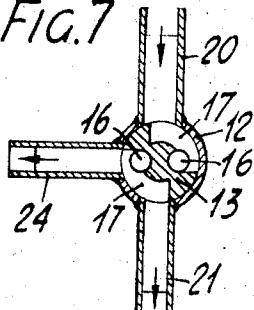



FIG.6

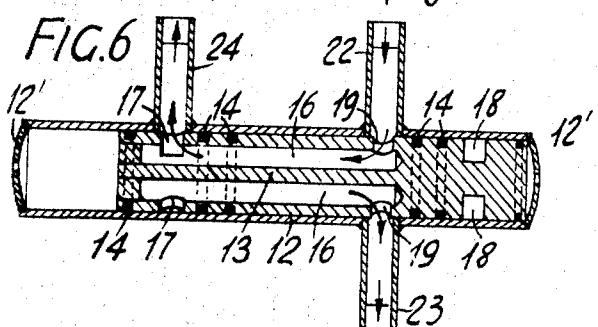
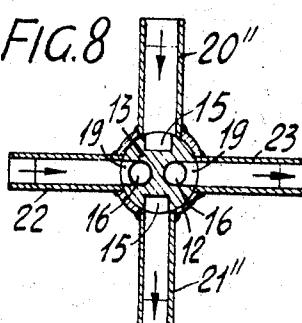




FIG.8



INVENTOR  
ANGELO COLOMBO

BY

*Angelo Colombo*

Sept. 8, 1970

A. COLOMBO

3,527,256

NINE-WAY VALVE FOR INVERTING CYCLE PROVIDING BOTH A PERFECT  
HEAT PUMP AND A REFRIGERATOR PUMP CIRCUIT, AND  
CIRCUIT OBTAINED BY SAID VALVE

Filed Sept. 16, 1968

2 Sheets-Sheet 2

FIG. 9

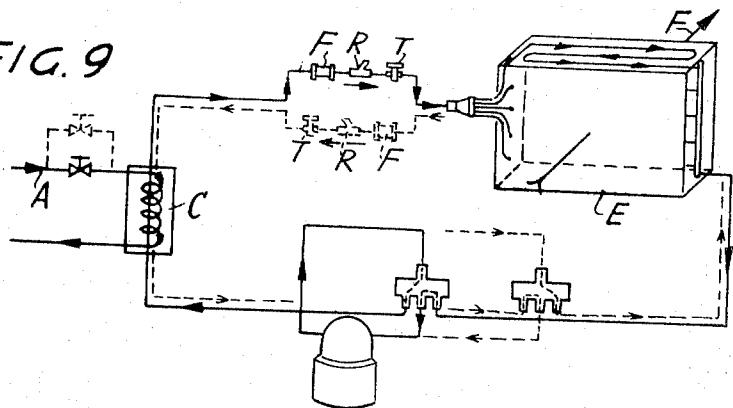



FIG. 10

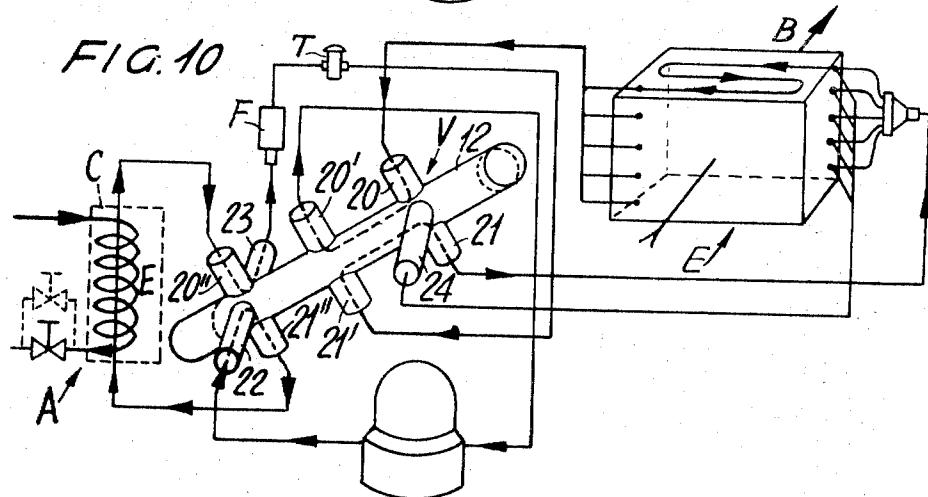
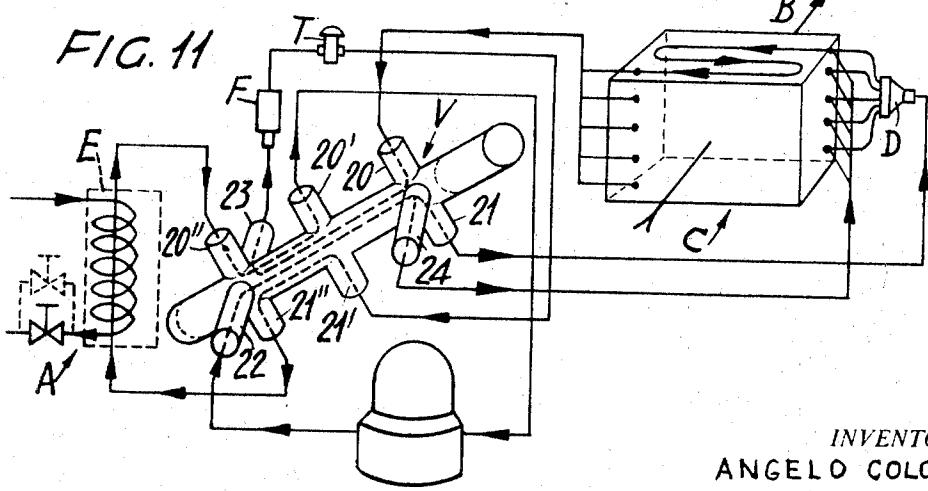




FIG. 11



INVENTOR.  
ANGELO COLOMBO

BY

*Jeremy Bailey*

3,527,256

**NINE-WAY VALVE FOR INVERTING CYCLE PROVIDING BOTH A PERFECT HEAT PUMP AND A REFRIGERATOR PUMP CIRCUIT, AND CIRCUIT OBTAINED BY SAID VALVE**

Angelo Colombo, Via Wildt 14, Milan, Italy

Filed Sept. 16, 1968, Ser. No. 769,468

Claims priority, application Italy, Sept. 15, 1967,

20,498/67

Int. Cl. F16k 11/07

U.S. Cl. 137—625.48

8 Claims

**ABSTRACT OF THE DISCLOSURE**

A cycle inverting nine-way valve providing a heat and refrigerator pump circuit, characterized in that said circuit is unidirectional for both cases. The valve comprises a cylinder in which a core can be moved to two extreme positions. In said core there are four longitudinal channels, two of which are peripheral and the other two internal, and four independent radial connecting passages, two of which communicate with the two inner channels. Nine radial unions connect the valve interior to the outer conduits.

This invention relates to a nine-way valve for inverting the cycle of a pump circuit. By the valve according to the invention, a perfect circuit is provided both as to cooling and heating the fluids being counterflowing in both cases.

As to structure and operation, the basic feature of the present valve is that the movable member, i.e. the distribution piston, is subjected to radially balanced internal pressures, whereby, whatever the means for controlling it may be substantial forces are not required for displacements thereof, because it is highly slideable within the seating cylinder even on operation. Indeed, the present valve—owing to its internal balance—can be controlled by a suitable electrovalve (core movement) through the difference in pressure provided by the compressor forming part of the unit.

The particular counterflow circuit can be carried out indeed, owing to the provision of the present valve according to the invention. The valve, of course, is connected to several conduits, by which highly significant advantages are obtained as to efficiency and operation, in addition to the practical advantage of removing a filter, two check valves and a thermostatic valve.

The valve comprises a cylinder, internally of which a core is adapted for a sealing movement, four longitudinal channels being formed in said core, two of these channels being peripheral at opposite locations and the other two internal are on a plane perpendicular to the plane of the former; four independent radial connecting members, two of which communicating with two inner channels; nine radial unions connecting the outer conduits communicating with the cylinder interior, six of said nine unions being coaxial by pairs and coplanar on a plane perpendicular to the plane on which the other three unions are located, two of the latter in a coaxial pair on the same plane of the extreme right-hand pair in the other three pairs, the third union being located on the plane perpendicular to the extreme left-hand pair thereof.

The valve according to the present invention substantially provides a circuit attainable by a similar eleven-way valve, or four three-way valves and a two-way valve suitably controlled and connected.

A further significant feature of the circuit as provided by the present valve is in the constantly unidirectional flow of the fluid, while cycle change is provided by varying the pressure areas and the physical state of the gas.

For a better understanding, the invention will now be

more particularly described with reference to the accompanying drawings showing a preferred, but not restrictive embodiment thereof, changes or modifications being possible as to arrangement or details, particularly where the present valve should be used for functions other than those of the present disclosure and drawings since, as obvious, said changes will fall within the scope of this invention. In the accompanying drawings:

FIGS. 1 and 2 are mutually perpendicular longitudinal sectional views of the valve, in which the core is moved to the left;

FIGS. 3 and 4 are two cross-sections of the same valve taken along lines 3—3 and 4—4 of FIG. 1, respectively;

FIGS. 5 and 6 are views similar to FIGS. 1 and 2, in which the core is moved to the right;

FIGS. 7 and 8 are two cross-sections of the same valve taken along lines 7—7 and 8—8 of FIG. 5, respectively;

FIG. 9 shows a common direction inverting circuit; and FIGS. 10 and 11 show the single direction circuit according to the present invention.

Particularly referring to FIGS. 1—6, the nine-way valve comprises a cylinder 12, in which a core 13 is controllably moved, the sealing for said core being ensured by annular gaskets 14; provisions are made along the periphery of said core 13 for two diametrically opposite channels 15 and two inner channels 16, the latter being coplanar and symmetrical to the axis and perpendicular to the former, and adapted for communicating with the outside through sector connecting members 17 at the left end; said core 13 additionally has sector connecting members 18 at the right end and intermediate holes 19; all of these connections are coplanar in the sectional view of FIG. 1.

Through heads 12', core 13 is adapted to be controlled from the outside by mechanical or pneumo-hydraulic means. Cylinder 12 is made fast with a first set of six unions arranged in three coaxial and coplanar pairs 20—21, 20'—21' and 20"—21"; said pairs are located at the middle portion of the cylinder and the mutual position thereof (FIG. 1) is such that as the first and second pairs are connected by channels 15, the third pair communicates through sector connecting members 18 with the perpendicular and coplanar pair 22—23. On rightward movement of core 13 the connections will be as follows: the second and third pair (FIG. 5) are connected by channels 15, whilst the first pair is connected by means of sectors 17 through channels 16 and intermediate holes 19 to said perpendicular pair 22—23, in addition to cause connecting member 21 to communicate with connecting members 20—21 (FIGS. 7 and 8). Only at this "piston to the right" position (FIG. 6) the connecting member 24 is connected with connecting member 22, whilst at the "piston to the left" position (FIG. 2) said connecting member 24 is blind. When said connecting member 24 is open it communicates with connecting member 21 as well as connecting member 22 and, as seen from FIGS. 10 and 11, the circuit external to the valve from unions 24 is in parallel with the circuit from connecting member 21 to liquid dispenser D; this applies only when circuit E (evaporator) operates as a refrigerator (core to the right in FIG. 10 and core to the left in FIG. 1). When the core is at left position of FIG. 11 (the core at right position in FIG. 5), circuit E of FIG. 10 becomes condenser C, and conversely condenser C of FIG. 10 becomes E, and therefore the gas in place of liquid will flow through liquid dispenser D. In this case a high resistance will occur in the dispenser to gas passage therethrough, due to the volume increase, i.e. before the refrigerant quantity ( $q$ ) was liquid, and now the same quantity ( $q$ ) is gaseous due to the cycle inversion. With its additional circuit in parallel to the dispenser and totally cancelling said resistance, the connecting member 24 here finds its extremely remarkable significance.

50

55

60

65

70

In the common circuit of FIG. 9 the two cases are achieved by the inversion of flow direction, as shown by dashed lines in the figure, whereby a case will occur in which flow direction is not counterflowing; this case further requires a pair of thermostatic valves T, a pair of check valves R and a pair of filters F to be installed.

In both cases, with its nine-way valve V the circuit according to the invention (FIGS. 10 and 11) always provides a unique flow direction, as shown by the arrows in both figures, and a counterflow passage: in condenser C relative to water flow A and in evaporator E relative to air flow B. As a result, only one thermostatic valve T and one filter F are required in said circuit, check valves R being removed (FIG. 9).

I claim:

1. A cycle inverting nine-way valve providing a heat and refrigerator pump circuit, characterised in that said circuit is unidirectional for both cases, the valve comprises a cylinder in which a core can be moved to two extreme positions, in said core there are four longitudinal channels, two of which are peripheral and the other two internal; four independent radial connecting passages two of which communicate with the two inner channels; nine radial unions connecting the outer conduits communicating with the valve interior, six of which being coaxial by pairs and coplanar on a plane perpendicular to the plane containing the other three unions, two of the latter being coaxial and on the same plane of the rightmost pair of the other three pairs, whilst the third union is on a plane perpendicular to the leftmost pair thereof.

2. A nine-way valve according to claim 1, characterized in that said two diametrically opposite and symmetrical peripheral channels extend so as to connect only two pairs of unions in both core positions.

5 3. A nine way valve according to claim 1, characterized in that said two inner channels, which are more extended than the former and moved to the left, have at the ends thereof substantially 90° sector connecting members for a right angle interconnection of two adjacent unions.

10 4. A nine way valve according to claim 1, characterized in that the intermediate connecting members radially and coaxially extend by pair from the inner channels.

5 5. A valve according to claim 1, characterized in that in all cases the pressure distribution on said core by the fluid from the unions is so balanced that said core will move within said cylinder free of localized frictions.

15 6. A valve according to claim 1, characterized in that the sealing for said core is ensured by annular gaskets.

7. A valve according to claim 1, characterized in that the control for said core is carried out by any preferred means through the cylinder heads.

20 8. A heat and cold pump circuit provided by the valve according to claim 1, characterized in that by the provision of only one thermostatic valve and one filter, the circuit provides for a unidirectional flow in both cases; and on cycle inversion said circuit has an additional parallel circuit for cancelling the resistance generated by the 25 change of the pressure area.

#### References Cited

##### UNITED STATES PATENTS

30 2,991,631 7/1961 Ray ----- 137—625.48 X

M. CARY NELSON, Primary Examiner

M. O. STURM, Assistant Examiner