一种合金薄片制备方法和装置，将合金熔液流至一冷却滚筒表面形成薄片带，合金薄片带继续在传送过程中得到冷却；合金薄片在传送至集料器时，继续冷却和粉碎；合金薄片从集料器进入排料机构，在惰性气体保护下继续冷却。该装置主要包括：一容器，置于感应加热线圈内；一液流稳定化机构，呈桶形容器，置于容器口下方；一冷却滚筒，位于能承接液流稳定化机构中底板板流下的熔液的位置，作轴向往复运动；一传送机构，置于冷却滚筒的下方；一集料器，为双层水冷漏斗状容器，置于传送机构的下方；一排料机构，置于集料器的下方，设有上、下二个阀门，二个阀门之间有一充填惰性气体的锥型管。
1. 一种合金薄片制备方法，其主要步骤为:
 A) 将合金熔融成熔液；
 B) 熔液流至一冷却滚筒表面形成薄片带，该冷却滚筒在旋转的同时
 振轴往复移动；
 C) 合金薄片带脱离冷却滚筒被粉碎后，继续在传送过程中得到冷却；
 D) 合金薄片在传送至集料器时，继续冷却和粉碎；
 E) 合金薄片从集料器进入排料机构，在惰性气体保护下继续冷却。

2. 如权利要求 1 所述的方法，其特征在于，所述合金为稀土金属合金。

3. 如权利要求 1 或 2 所述的方法，其特征在于，所述合金的组成中，
 钅铍、-fontawesome、писать的重量百分比合计为 18% - 66%。

4. 一种实施权利要求 1 所述方法的装置，其特征在于，主要包括有:
 一收容合金熔液的容器，置于感应加热线圈内，该容器在偏转方向
 上边沿有导流槽；
 一液流稳定化机构，由底板开口的桶形容器和设置在底部开口下面
 的底面板构成，该桶形容器的上端置于收容合金熔液的容器口下方；
 一冷却滚筒，位于能承受液流稳定化机构中底面板流下的熔液的位
 置，其表面是由 Cu 或 Cu 合金材料制成，该滚筒由一电机驱动滚筒旋转，
 该滚筒与电机安装在平板上，该平板下面有角轮与道轨相接，一换向
 电机通过丝杆控制平板作往复运动；
 一传送机构，置于冷却滚筒的下方；
 一集料器，为双层水冷漏斗容器，置于传送机构的下方；
 一排料机构，置于集料器的下方，设有上、下二个阀门，二个阀门
 之间有一充填惰性气体的锥形管。

5. 如权利要求 4 所述的装置，其特征在于，收容合金熔液的容器由
 液压马达或气泵控制倾倒速度。

6. 如权利要求 4 所述的装置，其特征在于，液流稳定化机构的底面板
 由两侧面板、一底面板和上挡板组成，底面板上部呈向下倾斜的梯形
状。

7. 如权利要求 4 所述的装置，其特征在于，换向电机通过行程开关发出换向信号而自动换向。

8. 如权利要求 4 所述的装置，其特征在于，传送机构中的传送带下

面设有水冷设备。

9. 如权利要求 4 所述的装置，其特征在于，集料器进口处中央设置有伞状挡块。

10. 如权利要求 4 所述的装置，其特征在于，排料机构的外壁上增设

有振动气锤。
合金薄片制备装置及工艺

5 技术领域

本发明涉及合金薄片的制备装置及其制造工艺，确切地说，是将含稀土等易氧化金属的合金，经真空感应熔铸和多段式快速冷却，在熔铸的同时分批排出合金薄片的装置及工艺。

10 背景技术

稀土类金属及其合金通常极易氧化，该类材料的合金薄片制备多采用真空感应熔铸，传统薄片状合金的制备装置如附图 1 所示(详见日本特许平 11-177426 专利说明书)。图 1 中，由于滚筒 5 无轴向移动，为使熔液 2 在滚筒 5 整个宽度面得到均匀快速冷却，中间包 4 内必须有熔液储存，以便减缓流速，使熔液得以在喷嘴宽度面均匀展开，这一过程致使浇铸侧段，熔液易于在喷嘴处凝固而堵塞喷嘴，从而影响下次正常使用。当然可采用给中间包加热的方式来避免喷嘴可能堵塞，这样会导致中间包构造复杂化；另一方面，尽管滚筒表面是由导热性好的材料制成，随浇铸时间延长，高速旋转的滚筒表面热量来不及散发，温度会缓慢升高，导致前后浇铸的熔液得不到相同的冷却条件，从而影响合金薄带的均一性。

另外在传统装置中，底部收集合金薄片的容器 7，尽管可通过水冷装置对其进行冷却，但其内部的合金薄片还是得不到充分冷却，温度依然很高，对稀土等易氧化合金，在转出过程中极易氧化，等待其自然冷却下来，又需要较长时间，对规模化连续生产而言，效率较低。

发明内容

本发明的目的在于提供一种合金薄片制备装置及使用该装置制备合金薄片的方法。使用本发明提供的装置制备合金薄片，铸造产品在排出前，能得到充分冷却达到合理温度，尤其适于易氧化稀土合金薄片的制
备；此外在熔铸的同时，可将先期铸造产品分批转送下道工序，使生产效率大幅提高成为可能；另外本发明使滚筒沿轴向来回移动，使滚筒表面得到循环使用，一方面简化了液流稳定化机构，另一方面使滚筒工作面可得到充分冷却，更易于生产均一厚度的合金薄片。

附图说明

图 1 为传统合金薄片制备装置示意简图。
图 2 为本发明装置制备合金薄片的一种形态示意简图。
图 3 为本发明提供的水冷传送系统、集料器和排料机构示意简图。
图 4 为本发明提供的液流稳定化机构示意简图。
图 5 为本发明冷却滚筒 5a 及驱动机构示意图。

具体实施方式

下面结合示意图来说明本发明提供的合金薄片制备装置，及使用该装置制备合金薄片工艺的具体实施形态。

在参阅图 1 的同时请结合参阅图 2，收容合金熔液的容器 3 上部敞口，在倾倒方向上边沿有导流槽，外形上无其它特殊要求；作为生产稀土永磁这类易氧化合金薄片的装置，整个熔铸室可抽真空，并可充入保护性气体（10³Pa～10⁴Pa），容器 3 通常为柱形坩埚，并置于感应加热线圈 1 内。

作为使容器缓慢均匀倾倒的驱动机构 2，可以有多种选择。对中小规模生产，可分别采用液压马达或气泵控制的操作杆、或结构简单经济的手动操作控制杆，通过熔铸室外壳上的观察窗，随时观察熔液柱粗细及液流稳定化机构 4 内熔液面高度，及时调整倾倒速度，以达到向冷却滚筒 5 大致定量供给熔液的目的。

对大规模（300Kg 以上）连续化生产，可采用编程器来控制无级变速马达驱动，倾倒速度程序是根据所需流量和容器形状通过试验事先确定好的；速度程序由分段速度和相应时间及段数构成，最多可将倾倒过程分为 50 段，可使容器在任一倾斜位停留一定时间，在浇铸的过程中有异常情况，可随时触发紧急程序，使容器复原等等。对某一确定形状的容器和流量控制要求，可根据经验设置相应倾倒速度程序，通过装置检测实
际流量随时间的变化，经验丰富的人经过 2～3 次的调整便可达到流量控制要求。采用该结构，液流稳定化结构 4 只起导流的作用。

液流稳定化结构 4 由 4a 和 4b 两部分组成。4a 为底部开口的桶形容器，起导流和节流的作用，可以是锥形、圆形和方形等各种形状；底面部有斜度，开口可以是圆孔、窄缝等任意形状，其尺寸大小根据流量需要确定；本实施例采用锥形底部为圆孔的容器，通常熔液在 4a 底面部只有极少量储存，通常不会发生堵塞。4b 设置在 4a 下面，由两侧面板、一底面板和上挡板组成，底面板上部为向下倾斜的梯形（参见图 4），使熔液自由铺展，下部为水平的长方形，使熔液流减速缓并更趋均匀；由于滚筒 5 可沿轴向往复移动（关于滚筒 5，详见下面的描述），4b 底部开口可以不必很大，通常中间包为使熔液在滚筒整个宽度面均匀铺展，熔液在中间包内滞留时间较短，易于发生喷嘴堵塞，或者需给中间包等液流稳定化机构增设加热装置。随容器 3 的倾倒，熔液经 4a 引导节流后流向 4b，在 4b 底面部自由展开，然后均匀稳定地流到冷却滚筒 5 上。

请结合参阅图 5，为冷却滚筒 5，其表面是由散热性良好的 Cu 或 Cu 合金材料制成，滚筒 5a 及使驱动滚筒 5a 旋转的机构 5b 安装在一平板 5d 上，平板 5d 下面有角轮 5e 与轨道相接，一换向电机 5c 通过丝杆与上述平板 5d 相连，该换向电机 5c 是通过行程开关发出换向信号而自动向，以控制 5d 沿底座上的导轨前后往复运动，这样就使滚筒 5a 旋转的同时还具备沿轴向往复移动的功能。实际使用中，能使整体作往复运动的驱动机构可有多种形式，均为公知技术，本发明中指的可自动换向电机只是其中一种。传统装置中，为使熔液在滚筒表面得以均匀铺展，滚筒长度受限，在连续浇铸过程中，滚筒表面温度会缓慢升高，从而使熔液冷却条件改变而影响到合金薄片厚度结构的均一性；采用本发明，中间包结构得以简化的同时，滚筒 5a 长度不受限制，随滚筒 5a 沿轴向往复运动，滚筒 5a 表面得到充分利用的同时，也有足够的时间得以冷却；作为上述结构的改进型，还可以通过滚筒回转轴设置冷却装置，对滚筒表面进行强制冷却；使用本发明提供的装置，可使得合金熔液在滚筒表面得到更均匀的冷却条件，便于制备出更均一厚度结构的合金薄带。

在滚筒 5a 表面凝固的合金薄带，在滚筒回转离心力作用下(或受设置
在滚筒前沿刮板6b的作用脱落滚筒表面，在薄带跌落的前方设有水冷挡板6a(图1中的6)，薄带被粉碎成合金薄片，根据需要，挡板可以有多块，使薄带在下落过程中获得多次撞击粉碎的机会。

请结合参阅图3，合金薄片被设置在正下方的传送系统7收集，然后送往漏斗状集料器8。传送系统7由传送带7a、驱动控制机构7b和冷却装置7c组成，传送带7a由导热性良好的材料制成，根据冷却需要可设计成不同的长度，带两侧有挡板，下面的水冷装置对传送带能给予良好的冷却，这样收集在传送带7a上的一薄层合金薄片，在传送过程中能获得充分快速的冷却。

集料器8主要由伞状装置8a、双层水冷漏斗状容器8b和集料器下部的压力传感器(图中未示出)等传感控制装置组成：从传送带7a上跌落的合金薄片，经漏斗状集料器8中央设置的伞状装置8a获得进一步碰撞粉碎的同时，沿容器水内壁8b滑向底部的过程中，可得到进一步冷却的机会。

排料机构9由上下二个气动阀9b和9c、阀门间的锥形体9a、两端的法兰及控制和储料容器9d组成，锥形体9a及储料容器9d上均设有抽真空和充入惰性气体的接口，根据需要可在锥形体9a外壁上增设振动气锤以便排料；储料器根据需要可以是各种大小形状的容器，可以是便于混粉的各种大型容器，对不易氧化的合金薄片，甚至可以是便于运输的塑料袋，本发明实施例采用带抽真空及充气接口、法兰和阀门的不锈钢罐。后面详细说明排料过程中相关机构的动作顺序。

预先给锥形体9a和集料器9d抽真空并充入适量惰性气体(负压)，当集料器内合金薄片达到一定量后，其下部压力传感器发出排料信号，排料控制系统驱动气动阀门动作，使上阀9b开启，合金薄片先被排到锥形体9a内暂存，继电器延时一定时间后，上阀门9b关闭，下阀门9c开启，气锤9f工作，产品随后被排到集料器9d内，排料完毕下阀9c关闭；这样在熔铸的同时，即可通过储料器9d将已降到合理温度的合金薄片分批转送下道工序，实现连续规模化生产。

本实用新型采用的排料控制系统是现成的商品，其结构是一公知技术，对本领域技术人员而言，是很容易理解的技术，因此没有给出其参
考附图，也不过多地描述。

传统装置是将收集容器 7 置于有水冷却的铸造室底面中部，待收集容器内的合金薄片达到一定量后通过相应通道排出，此时收集容器内产品温度还相当高；对稀土等易氧化的合金产品而言，这就要求收集器的密闭性能相当好，并充惰性气体保护，在转往下一道工序前通过其它方式对其进行冷却；或者在熔铸室内，等待产品经较长时间自然冷却后排出，相对本发明而言效率较低。

以下是利用本发明装置制备合金薄片的实施例。

将 Nd: 58Kg, Pr: 3Kg, Dy: 1Kg, BFe 合金 12Kg 和电工纯铁 Fe126Kg 共 200Kg 原料放入熔铸室坩埚容器内，在规定的真空及负压(约 10^4Pa)下感应熔化，使用液压马达驱动操作杆缓慢倾倒容器，通过观察窗随时调节熔液供给量，熔液经液流稳定化中间包均匀流到冷却滚筒上，滚筒宽 800mm, 4b 底部开口宽 150mm，滚筒转速 3600 转/小时，滚筒轴向运动速度 0.45 米/秒，传送带长 3 米，带速 0.11 米/秒，薄片平均厚度 0.228mm, 厚度分布宽度 (6σ) 为 18%，储料器内合金薄片温度约 65 度。
图 3

图 4

图 5