March 28, 1933.

F. L. IMPEY

SIGNAL FOR USE ON COMMERCIAL AND OTHER RECORDS

Filed March 31, 1932
UNITED STATES PATENT OFFICE

FRANCIS LEVITT IMPEY, OF NORTHFIELD, BIRMINGHAM, ENGLAND, ASSIGNEE TO MORLAND & IMPEY LIMITED, OF BIRMINGHAM, ENGLAND

SIGNAL FOR USE ON COMMERCIAL AND OTHER RECORDS

Application filed March 31, 1932, Serial No. 602,311, and in Great Britain May 4, 1931.

In connection with commercial and other records such as account books or stock books it is usual to affix to the leaves or sheets small indicating devices usually termed signals.

In one form these consist of small paper discs of different colours which are attached to appropriate positions on the sheets by adhesive. As these discs are ordinarily of small dimensions they are difficult to handle, and the advantages known to be desirable by the use of such signals have hitherto been to a large extent nullified by the inconveniences experienced in handling and applying the signals.

The object of the present invention is to facilitate the manipulation of signals of the kind above described, and so make it possible to affix the signals to the sheets in a convenient and expeditious manner.

The invention comprises a signal made wholly or in part from magnetic material in the form of for example a thin iron disc, a thin iron annulus to which is secured a paper or other disc, or a deposit of iron on paper or the like.

In the accompanying sheet of explanatory drawing:-

Figure 1 is a plan and Figure 2 a cross-sectional view of a signal constructed in accordance with this invention.

Figure 3 is a sectional side elevation showing a pile of signals in a tubular container.

Figure 4 is a part sectional side elevation of a magnetic stick or handle for manipulating the signals.

Figure 5 is a perspective view showing a stand for holding a number of signal containers and a damping device.

Figure 6 shows a signal receptacle combined with a reinforcing sleeve.

In carrying the invention into effect as shown, I make the signals a of circular, polygonal, or any convenient form and of magnetic material. Preferably the signals are made wholly or in part from thin iron. On one side the signals are coated with drying or non-drying adhesive. The iron may be in the form of an annulus covered on one side by thin paper or other material. Alternatively the signal may consist of a thin iron disc coated on one or both sides by adhesive material. Preferably the signal consists of a thin tinted iron disc as shown in Figures 1 and 2, and on one side of the disc is attached a piece of thin paper to which a drying adhesive is applied. The paper may consist of a single layer, or of two or more layers, secured together by adhesive. In another form a paper or other disc has a coating of iron deposited on one side of it. After such a signal has been applied to the page of a book or other record, and is no longer required, it can readily be removed, as the paper layer by which the iron part is attached to the page can be readily split or torn. To remove the signal it is only necessary to apply the edge of a knife or a finger nail to the edge of the disc.

A stack of signals as above described is contained in a tubular or other receptacle b made from paper, celluloid, glass or other convenient material, the receptacle serving to retain the signals in the required superimposed condition. In the form shown in Figure 3, the receptacle consists of a paper tube one end of which is turned inwards to form a flange for supporting the stack of signals, the other end being fitted with a removable cap c. One such receptacle, or a number of receptacles containing signals of different form or colour, is or are mounted in sockets on a table or desk stand as d, Figure 5. Preferably the upper end of each receptacle is reinforced by a sleeve e when placed in the stand. After removal of the cap c the sleeve is placed in position, and each socket in the stand is adapted to receive the lower end of the sleeve. The upper end of the sleeve is preferably made to overlap the upper end of the receptacle b so as to afford it protection. The sleeves may be advantageously made of different colours, corresponding to differently coloured signals, to facilitate identification of the signals contained in the receptacles. I also prefer to combine with the stand a moist pad f by which the adhesive on the signals can be moistened when the signals are coated with a drying adhesive. Further, one of the sockets in the stand may be adapted to hold
the manipulating device hereinafter described.

For manipulating the signals I employ a device comprising as shown in Figure 4, a hollow vulcanite or other non-magnetic body part or handle e. Within the handle is arranged a slidable brass or other non-magnetic stem h to one end of which is attached the magnet f. Preferably the magnet consists of two parts arranged side by side as shown with their opposite poles adjacent to each other. This arrangement eliminates risk of the signal being picked up edgewise. If desired the operative end of the magnet may consist of more than one pair of poles, but one pair is ordinarily sufficient. The other end of the stem h is secured to a knob or finger piece k which is slidable over the body part, and within the knob is arranged a spring g which holds the magnet in the position shown. The magnet can be caused to project beyond the body part by pressing the knob against the action of the spring. Such a stick when applied to the stack of iron signals in the receptacle causes the upper one to adhere to it. Adhesion of more than one disc is usually prevented by the coating of adhesive or other layer of non-magnetic substance which separates successive signals. But as a further precaution I arrange the active end of the magnet to lie slightly within the handle as shown. To remove a signal from a container the end of the handle is placed into contact with the upper signal. As the magnet does not then come into contact with the signal, the magnetic force exerted is only sufficient to attach the signal to the handle, and is insufficient to lift more than one signal. After the signal has been removed, the magnet is pushed outwards by means of the slidable knob k so that it directly engages the signal. The latter is then firmly held and can be pressed on the damping pad without risk of detachment. After the signal has been applied in position on the record the knob can be released to weaken the hold of the magnet on the signal, and complete detachment is effected by sliding the stick off the signal.

The invention is not limited to the example above described, and subordinate details can be varied to suit different requirements. Thus instead of iron any other suitable magnetic metal may be used for the signals, but iron is preferred.

Having thus described my invention what I claim as new and desire to secure by Letters Patent is:

1. A device of the character described comprising a thin flat signal magnetic on one surface and carrying an adhesive on its opposite surface, a stick magnetized sufficiently to lift the loose signal but insufficiently to lift the signal when the adhesive side is stuck to a sheet of paper.

2. A signal comprising a thin disc of iron on one surface and a paper backing, said backing being provided with an adhesive on its outer surface, a manipulating stick for the signal magnetized sufficiently to lift the loose signal but insufficiently to raise the signal after the adhesive side of the disc is moistened and pressed against a sheet of paper.

3. A disc of the character described comprising a signal having a magnetizable iron disc on one surface, an adhesive paper attached to the iron disc to form the opposite surface, the paper surface having an adhesive over its outer surface and a magnet for manipulating the disc having a magnetized blunt end to substantially cover the disc.

4. A device of the character described comprising a series of disc signals piled one upon the other, each signal having on its top surface magnetic metal, a paper disc between each two magnetic metal surfaces, each paper disc being attached to the metal disc above it and each paper disc having an adhesive on its outer side and a magnetic stick having a magnetized end for lifting the signals one after the other from said prearranged pile of discs.

5. In a device of the character described, a hollow stick having an annular blunt end adapted to seat on a flat iron disc, said stick having a non-magnetic stick enclosed in the hollow stick, magnetic means secured to the non-magnetic stick and normally disposed within and projectable from the first mentioned stick the non-magnetic stick being moveable lengthwise relative to the magnetic stick to withdraw the magnetic means from said disc.

6. A signal comprising a piece of magnetic metal and a manipulating device comprising a hollow handle and a magnet slidable in the handle and projectable therefrom substantially as described.

In testimony whereof I have signed my name to this specification.

FRANCIS LEVITT IMPEY.