SELF-ALIGNING APPARATUS AND METHODS FOR GATHERING BALES

Apparatus for gathering bales that aligns itself during bale pick-up. Methods for transferring bales that use such an apparatus are also provided.
SELF-ALIGNING APPARATUS AND METHODS FOR GATHERING BALES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Application No. 61/665,757, filed June 28, 2012, which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The field of this disclosure relates to apparatus for gathering bales that aligns bales during bale pick-up and to methods for transferring bales that use such an apparatus.

BACKGROUND

[0003] Crop forages such as hay (e.g., alfalfa and/or grass hay) are periodically cut in the field, dried and compacted into bales for transport and storage of the forage material. Recent improvements in row crop production and in technology for processing these materials have led to changes in the scale and economics of harvest and to increasing potential for harvest of crop residues like corn stover. Corn stover is also baled in the field and used as livestock feed, bedding or production of biofuels. In addition, harvest technology for cotton has been developed, that includes
the step of baling the cotton in the field. Due to these relatively recent changes, the scale at which this type of harvest process is conducted in some instances is different than the traditional process. The density of the bales, in terms of the number of bales per acre, is higher in some instances; the labor availability is less in some instances and the criticality of timing is higher in some instances.

[0004] Materials may be baled into relatively large round, rectangular or square (in cross-section) bales which may be tied by twine, netting or plastic wrap depending on the type of material, the type of storage and the intended use of the material. The bales are typically left in the field, near the location where the bale was formed, to minimize labor and time required for the harvest process including the baling operation.

[0005] A continuing need exists for an apparatus for gathering and transporting bales in the field after baling, one that allows the bales to be gathered relatively quickly and reliably and in a way to minimize demands on the operator, and that consistently positions the bales adjacent one another to minimize the area required for storage. A need also exists for methods for gathering bales that use such apparatus.

[0006] This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background
information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

SUMMARY

[0007] In one aspect of the present disclosure, an apparatus for gathering bales includes a chassis. A forward-looking sensor is mounted on the chassis for sensing a bale. The apparatus includes a controller for adjusting the position of the apparatus based on signals from the sensor.

[0008] Another aspect of the present disclosure is directed to a method for gathering bales resting on a surface by use of an apparatus for gathering bales. The apparatus is guided toward a bale. A bale is sensed and the position of the apparatus is adjusted in response to sensing the bale.

[0009] Various refinements exist of the features noted in relation to the above-mentioned aspects of the present disclosure. Further features may also be incorporated in the above-mentioned aspects of the present disclosure as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments of the present disclosure may be incorporated into any of the above-described aspects of the present disclosure, alone or in any combination.
BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Figure 1 is a perspective view of an apparatus for gathering bales;

[0011] Figure 2 is a perspective view of a portion of the apparatus showing a hydraulic cylinder for tilting the chassis of the apparatus;

[0012] Figure 3 is a perspective view of the apparatus prior to loading a round bale;

[0013] Figure 4 is a perspective view of the apparatus after the round bale has been loaded onto the bed;

[0014] Figure 5 is a perspective view of the apparatus after being loaded with bales;

[0015] Figure 6 is a top view of a pulling vehicle and the apparatus in the traveling position;

[0016] Figure 7 is a top view of a hydraulic cylinder attached to the chassis and tongue of the apparatus;

[0017] Figure 8 is a top view of a pulling vehicle and the apparatus in the loading position;

[0018] Figure 9 is a top view of a pulling vehicle and another embodiment of the apparatus in the traveling position;
Figure 10 is a top view of another embodiment of the apparatus that is self-propelled in the traveling position;

Figure 11 is a top view of a pulling vehicle and another embodiment of the apparatus having a steerable axle assembly in the traveling position;

Figure 12 is a top view of a pulling vehicle and another embodiment of the apparatus having a sliding off-set hitch in the traveling position;

Figure 13 is a top view of a pulling vehicle and the apparatus of Figure 12 in the loading position; and

Figure 14 is a perspective view of the apparatus during unloading of bales.

Corresponding reference characters indicate corresponding parts throughout the drawings.

DETAILED DESCRIPTION

An embodiment of an apparatus for gathering bales is generally referred to as 5 in Figure 1. The apparatus 5 includes a bed 25 for holding one or more bales and a loading assembly 15 for lifting a bale off the ground and conveying it to the bed. The apparatus 5 includes a tongue 1 for pulling the apparatus by use of, for example, a tractor or other pulling vehicle. In some embodiments and as shown in Figure 10 the apparatus 5 includes its own propulsion mechanism.
(i.e., powered front wheels) rather than being pulled by a pulling vehicle. The apparatus maybe guided toward bales by a user or maybe partially or fully guided by a global positioning system (GPS).

[0026] Generally, the apparatus 5 is suitable for picking up cylindrical bales commonly referred to as "round" bales. Roundbales are used for harvesting any material capable of being formed into a cylindrical bale such as traditional hay crops (e.g., alfalfa or grass), corn stover or other crop residues, cotton, or wood products like small diameter trees. The apparatus 5 shown in Figure 1 is configured for loading up to five bales. The apparatus 5 may be modified to carry more or less bales without departing from the scope of the present disclosure. The apparatus may be modified to carry square or rectangular bales, or any compacted form of crop material, without departing from the scope of the present disclosure.

[0027] The apparatus 5 includes wheels 3 attached to a bed chassis 6. The bed 25 tilts between various positions, to a forward tilted position for loading the bales or unloading to the front, to a middle position used after bales have been loaded for transportation of the loaded bales (Fig. 5) and to a rearward tilted position for unloading and re-loading of bales to the rear (Fig. 14). The apparatus 5 may be tilted hydraulically through manual or automatic control by use of a hydraulic cylinder 17 (Fig. 2) or by any other method available to those of skill in the art.
Tracks (not shown) may be used as an alternative to the wheels 3.

[0028] The loading assembly 15 includes two arms 4, 24, that are the first portion of the apparatus 5 to contact the bale during loading. Each arm 4, 24 includes an endless conveyor belt 16, 18. The endless conveyor belts 16, 18 may include various drive, idler and/or support rollers (not shown) for rotating the conveyor belt. In some cases the drive roller is positioned at the front, and in some cases at the rear.

[0029] Each belt 16, 18 includes upper portions 16u, 18u (Fig. 1) that are capable of carrying the weight of a bale. The movement of the belt, around the front roller and backward along the upper portion of the belt path, has been found to be effective to lift a bale off the ground and for simultaneously causing the bale to move toward the bed 25. This lifting and transporting action occurs after the two conveyor belts contact the bale.

[0030] Referring again to Figure 1, the bed 25 includes a number of bed conveyors 35, each having an endless belt routed around a front idler roller and a rear powered roller that may be rotated to cause the belt to move which results in moving bales away from the loading assembly and toward the end 27 of the bed. Each conveyor 35 may have an effective length, the distance between the idler roller and the drive roller. This effective length may be the length of about one bale. Typical bale lengths for forage products may be between about 40 and 60 inches and bales of cotton are in the
range of 100 inches in length. It should be noted that the apparatus and the effective length of the conveyor belts and bed conveyors are not limited by bale size or to a particular length.

[0031] Alternatively, the bed may have one bed conveyor on each side (not shown) that extends from the first end to the second end rather than a series of bed conveyors on each side. In some embodiments, the bed has a single conveyor belt (not shown) that forms a floor of the bed upon which the bales rest for moving bales toward the second end.

[0032] The conveyor belts of the first and second arms and the conveyor belts of the bed maybe driven by hydraulics, as discussed above, or alternately by any type of rotary power device such as an electric motor.

[0033] The position of the loading assembly relative to the pull vehicle (i.e., whether the apparatus is pulled directly behind the pull vehicle or at an offset position such as when bales are being gathered from the field) maybe adjusted by any suitable method or combination of methods including, for example, by manipulating the angle between the tongue and the bed chassis (Fig. 1) by use of hydraulics or by any other suitable method. In other embodiments, the position of the loading assembly relative to the pull vehicle is adjusted by use of a steerable axle assembly (Fig. 11). In other embodiments, the position of the loading assembly relative to the pull vehicle is adjusted by use of a sliding
offset hitch 84 as shown in Figures 12-13. In Figure 12 the tongue 1 is attached to the sliding offset hitch 84 at the loading position (i.e., closer to the loading side of the pull vehicle 78) and in Figure 13 the tongue 1 is attached at the non-loading position of the sliding offset hitch (i.e., opposite the loading position).

[0034] The bed conveyors may be constructed from the same basic components used in the loading assembly conveyors, with an endless conveyor belt, an idler roller, a drive roller and supports. The embodiments illustrated herein show an alternative construction for the bed conveyors 35, each including an endless conveyor belt of a slightly different construction than the belts 16 and 18, routed around a drive pulley and an idler pulley. In some embodiments the drive pulley is positioned at the front or, in other embodiments, at the rear of the conveyor.

[0035] The surface characteristics of the conveyors 16, 18 may affect the frictional engagement between the conveyor belt and the bale. The conveyor belts 16, 18 may include a surface that will adequately engage the bale to enhance the capability for the loading assembly to reliably lift the bales while also minimizing potential for damage to the bale and any bale wrapping.

[0036] It should be noted that any suitable type of conveyor belts or conveyor systems may be included in the apparatus. For instance, a conveyor belt composed of a carcass of nylon or fiberglass fibers covered by a wide variety of materials including rubber, PVC, thermoplastic polymer or the equivalent may be used.
Chain conveyor systems may also be used without departing from the scope of the present disclosure. In this regard, "conveyor belt" as used herein includes any arrangement in which a belt, chain, track or the like is moved around a series of pulleys to cause movement of the belt, chain or track.

[0037] In operation, the apparatus 5 is pulled by the pull vehicle (not shown) toward a bale as shown in Figure 3. The vehicle may provide the power for running the various conveyors and positioning systems (e.g., by use of hydraulics) or the apparatus 5 may include its own independent power system (e.g., hydraulic system). The apparatus 5 may be described herein with reference to a hydraulic system. It should be noted that the present disclosure should not be limited to a hydraulic system as the principles would apply to other power transfer technologies such as an electrical system.

[0038] As shown in Figure 3, the bale Bl should be oriented such that the ends 40 of the cylindrical bale are perpendicular to the apparatus 5 as the apparatus 5 approaches the bale Bl. The chassis 6 and tongue 1 are pivotally connected and are caused to be at an angle λ relative to one another such that the loading assembly 15 and bed 25 travel outside of the path of the pull vehicle (not shown) to allow the pull vehicle to travel "outside of" and parallel to the bales B targeted for loading.

[0039] The first and second conveyor belts 16, 18 are driven or actuated to cause the belt to move while the apparatus 5 travels toward the first bale Bl.
As the apparatus 5 approaches the bale Bl, the conveyor belts 16, 18 of the arms 4, 24 contact the first bale causing the bale to be lifted and simultaneously moved toward the bed 25. The first bale B1 maybe loaded onto the loading assembly 15 without stopping the apparatus 5 such that the apparatus 5 and the vehicle that pulls the apparatus may continually move forward during bale pick-up.

[0040] Once the bale B1 is loaded on the loading assembly 15, belt conveyors 35 move to transfer the bale B1 from the loading assembly 15 to the position on the bed 25 as illustrated in Figure 4. Once loaded onto the bed 25, the bed conveyors 35 are stopped to position the first bale B1 adjacent the end of the loading assembly.

[0041] In accordance with the present disclosure, each bale subsequent to the first bale B1 may be loaded until it nears or contacts the previously loaded bale which causes the bale to stop. Once the first bale B1 is loaded, the apparatus 5 is directed to a second bale B2. The conveyor belts 16, 18 of the arms 4, 24 are in motion and move the second bale B2 toward the bed 25 and toward the first bale B1. The loading assembly 15 grasps the second bale B2 and carries the second bale B2 toward the bed 25 until it nears or contacts the first bale B1. Once the second bale B2 nears or contacts the first bale B1, one or more sets of bed conveyors 35 are then actuated to move the first and second bales B1, B2 partially down the bed 25 toward the
second end 27. This process is repeated to load additional bales.

[0042] The apparatus 5 includes an alignment control system electronically coupled to a bale sensing system. The alignment control system includes a sensor that is used to sense a bale and/or to sense an edge of the bale to align the apparatus 5 with the bale during bale pick-up. Suitable sensors include lasers, cameras and acoustic sensors such as an ultrasonic sensor. In some embodiments, the alignment control system adjusts the angle λ formed between the tongue 1 and the bed chassis 6 (Fig. 6 and Fig. 8). Alternatively or in addition, the alignment control system steers an axle assembly 85 (Fig. 11). Alternatively or in addition, the alignment control system adjusts the position of the apparatus 5 by use of the sliding offset hitch 84 (Figs. 12-13). In this regard, while the relative position between the apparatus 5 and the pulling vehicle 78 during the bale loading process maybe described herein with reference to an adjustable angle λ formed between the tongue 1 and the bed chassis 6, these principles should be understood to apply to other methods for adjusting the position of the apparatus including use of the steerable axle assembly 85 (Fig. 11) and/or the sliding offset hitch 84 (Figs. 12-13).

[0043] The apparatus 5 begins in a traveling position relative to the pulling vehicle 78 (Fig. 6) in which the apparatus is partially behind the pulling vehicle. As the apparatus 5 approaches a bale B1, a sensor 70 (which may also be referred to herein as a
"forward looking sensor") located on the side of the apparatus opposite where the tongue is connected to the chassis senses the presence of a bale. As shown in Figure 6, the sensor 70 is mounted to the first arm 4. In this regard, the sensor 70 may be directly mounted to the first arm 4 or mounted indirectly to the first arm 4 by mounting to one or more intermediate parts. In other embodiments, the sensor 70 is directly or indirectly mounted to the chassis which supports the bed conveyors 35.

[0044] The sensor 70 sends a signal to a controller (not shown) and the controller causes a hydraulic system to supply fluid to the cylinder (Fig. 7) between the tongue and chassis of the apparatus to be actuated to increase the angle to further off-set the apparatus from the pull vehicle. The controller continues to increase the off-set until the sensor no longer senses the bale. This change, from sensing a bale to not sensing a bale, occurs when the sensor is aligned with the edge of the bale (i.e., the sensor extends past the far edge of the bale) as shown in Figure 8. Once the edge of the bale is sensed, the off-set is maintained constant. The pull vehicle passes by the bale while maintaining the apparatus centered with the bale (i.e., with the apparatus at the "loading position" relative to the pull vehicle).

[0045] After bale pick-up, the controller actuates the cylinder such that angle is decreased and the apparatus returns to its traveling position relative to the pulling vehicle.
In some embodiments and as shown in Figure 9, the apparatus 5 includes a second sensor 80 directly or indirectly mounted to the chassis 6 for sensing a bale. The second sensor 80 may be a laser, camera or an acoustic sensor such as an ultrasonic sensor. The second sensor 80 is offset from the first forward-looking sensor 70. As shown in Figure 9, the second sensor 80 is mounted on the side opposite the first sensor 70 and angled toward the loading side of the pulling apparatus 78. In this position the sensor 80 is able to sense the presence of an approaching bale during loading.

The chassis 6 of the apparatus 5 has a lengthwise axis C that extends through the center of the apparatus from the first and second arms 4, 24 to the second end 27 of the bed conveyor 35. The center axis C defines a first side 6a of the apparatus that extends furthest from the pulling vehicle 78 during bale loading and a second side 6b of the apparatus that is more near the pulling vehicle during bale loading. As shown in Figure 9, the first sensor 70 may be mounted to the first side 6a of the apparatus and the second sensor 80 is mounted to the second side 6b of the apparatus. In some embodiments, the second sensor 80 is mounted on the same side as, but offset from, the first sensor 70.

The controller (not shown) causes a hydraulic system to supply pressurized fluid to the cylinder 75 (Fig. 7) to actuate the cylinder to move the apparatus 5 from the traveling position to the loading position relative to the pull vehicle 78 (i.e., to
increase the angle \(\theta \) between the tongue and the chassis when both sensors 70, 80 concurrently sense the bale B1. By not actuating the cylinder 75 until both sensors 70, 80 sense the bale, the incidence of a bale being sensed when only blown debris or wind is present may be reduced. The first sensor 70 and/or second sensor 80 maybe used to sense the edge of the bale B1 (i.e., when the loading position of the apparatus 5 has been reached). In some embodiments, the first sensor 70 is used alone to sense the edge of the bale B1. In some embodiments, the first sensor 70 is used to sense the edge and the second sensor 80 is used to validate or confirm the presence of a bale. In such embodiments, in addition to the second sensor 80, the first sensor 70 may also be used to validate or confirm the presence of a bale as noted above.

[0049] The apparatus 5 includes a sensor 69 for detecting the loading of a bale B1 on the apparatus. The loading sensor 69 maybe a photoelectric-type (i.e., photo-eye) sensor which includes transmitter and receiver ends. As the bale B1 is loaded on the apparatus 5, the bale B1 passes through the line-of-sight of the sensor 69 which indicates that a bale has been loaded. Upon sensing the loading of the bale B1 and transmitting a signal to the controller, the controller actuates the cylinder 75 (Fig. 7) causing the angle \(\theta \) between the chassis and tongue to decrease and the apparatus to travel from the loading position (Fig. 8) to the traveling position (Fig. 6).

[0050] Bales may continue to be loaded onto the apparatus 5 until the apparatus becomes fully loaded.
Once fully loaded, the apparatus 5 may be adjusted to promote ease of travel to the unloading site. As shown in Figure 5, the bed chassis 6 of the apparatus 5 may be leveled by use of hydraulic cylinder 17 (Fig. 2) and the relative position between tongue 1 and the bed 15 may be adjusted (e.g., the tongue may be adjusted to be more parallel to the bed).

[0051] As shown in Figure 14, once the apparatus 5 is pulled to the desired unloading site for the bales, the bed chassis 6 is tilted by use of the hydraulic cylinder 17 (Fig. 2). The bed conveyors 35 are operated and the apparatus 5 is caused to move forward while the bales are unloaded.

[0052] Compared to conventional apparatus for gathering bales, the apparatus 5 described above has several advantages. For example, by including an alignment control system, the apparatus may properly align itself with bales for bale loading without precise alignment control by the user. Further, upon bale loading, the apparatus 5 is able to return to a traveling position without user control in preparation of further bale loading. The user is able to guide the apparatus toward a bale in a general path with the apparatus itself performing lateral adjustment which results in reliable and precise loading of bales.

[0053] When introducing elements of the present disclosure or the embodiment(s) thereof, the articles "a", "an", "the" and "said" are intended to mean that there are one or more of the elements. The terms "comprising," "including," "containing" and "having" are
intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., "top", "bottom", "side", etc.) is for convenience of description and does not require any particular orientation of the item described.

[0054] As various changes could be made in the above constructions and methods without departing from the scope of the disclosure, it is intended that all matter contained in the above description and shown in the accompanying drawing[s] shall be interpreted as illustrative and not in a limiting sense.
WHAT IS CLAIMED IS:

1. An apparatus for gathering bales, the apparatus comprising:
 a forward-looking sensor mounted on the apparatus for sensing a bale; and
 a controller for adjusting the position of the apparatus based on signals from the sensor.

2. The apparatus as set forth in claim 1, the apparatus further comprising:
 a chassis;
 a tongue pivotally connected to the chassis; and
 a cylinder connected to the tongue and the chassis, wherein the controller is adapted to adjust an angle between the tongue and the chassis based on signals from the forward-looking sensor.

3. The apparatus of claim 1 or claim 2 wherein the forward-looking sensor is a laser, camera or an acoustic sensor.

4. The apparatus as set forth in any one of claims 1 to 3 comprising a second sensor mounted on the apparatus for sensing a bale, the second sensor being offset from the forward-looking sensor.

5. The apparatus as set forth in claim 4 wherein the chassis comprises a lengthwise axis that extends through the center of the apparatus, the lengthwise center axis defining a first side of the apparatus and a
second side of the apparatus generally opposite the first side, the forward-looking sensor being mounted on the first side of the apparatus and the second sensor being mounted on the second side of the apparatus.

6. The apparatus as set forth in claim 4 or claim 5 wherein the controller is adapted to adjust the position of the apparatus to allow the apparatus to load a bale upon both the forward-looking sensor and the second sensor concurrently sensing a bale.

7. The apparatus as set forth in any one of claims 4 to 6 wherein the second sensor is a laser, camera or an acoustic sensor.

8. The apparatus as set forth in any one of claims 1 to 7 comprising a loading sensor for detecting the loading of a bale on the apparatus.

9. The apparatus as set forth in claim 8 wherein the loading sensor is a photo-electric sensor, laser, camera or an acoustic sensor.

10. The apparatus as set forth in claim 8 or claim 9, wherein the controller is adapted to adjust the position of the apparatus upon the loading sensor sensing a bale loaded on the apparatus.

11. The apparatus as set forth in any one of claims 1 to 10 comprising:

a bed for holding a plurality of bales, the bed being mounted a chassis; and
a loading assembly for lifting a bale and conveying it to the bed, the loading assembly comprising:

- a first arm comprising a first conveyor belt;
- and

- a second arm comprising a second conveyor belt,

wherein the forward-looking sensor is mounted to the chassis or to the loading assembly.

12. A method for gathering bales resting on a surface by use of an apparatus for gathering bales, the method comprising:

- guiding the apparatus toward a bale;
- sensing a bale; and
- adjusting the position of the apparatus in response to sensing the bale.

13. The method as set forth in claim 12 wherein the position of the apparatus is adjusted relative to a pulling vehicle used to guide the apparatus.

14. The method as set forth in claim 13 wherein the apparatus comprises a chassis, a bed for holding a plurality of bales, and a forward-looking sensor mounted on the apparatus for sensing a bale, the forward-looking sensor sensing the bale as the apparatus approaches the bale, the method further comprising relaying a signal from the forward-looking sensor to a controller upon sensing the bale, the controller adjusting the position
of the apparatus relative to the pulling vehicle in
response to the signal.

15. The method as set forth in claim 14 comprising:

adjusting the position of the apparatus until the
forward-looking sensor does not sense a bale, the
apparatus and pulling vehicle being at a loading position
relative to each other the forward-looking sensor not
sensing a bale; and

loading a bale on the bed of the apparatus while
maintaining the apparatus at the loading position.

16. The method as set forth in claim 15 wherein the
apparatus is at a traveling position relative to the
pulling apparatus while guiding the apparatus toward a
bale, the method further comprising returning the
apparatus to the traveling position after loading the
bale.

17. The method as set forth in claim 16 wherein the
apparatus comprises a loading sensor for sensing a bale
loaded on the apparatus, the method further comprising
returning the apparatus to the traveling position after
the loading sensor senses the bale.

18. The method as set forth in claim 13 wherein the
apparatus comprises a chassis, a bed for holding a
plurality of bales mounted to the chassis, a tongue and a
cylinder connected to the tongue and the chassis, the
method comprising actuating the cylinder to adjust the
position of the apparatus relative to the pulling vehicle
in response to sensing the bale.
19. The method as set forth in claim 18 further comprising:

actuating the cylinder upon sensing the edge of the bale until the apparatus and pulling vehicle are at a loading position relative to each other; and

actuating the cylinder after the bale is loaded until the apparatus and pulling vehicle are at a traveling position relative to each other.

20. The method as set forth in any one of claims 12 to 19 wherein the apparatus comprises a second sensor mounted on the apparatus for sensing a bale, the sensor sensing the bale as the apparatus approaches the bale, the method further comprising relaying a signal from the second sensor to a controller upon sensing the bale, the controller adjusting the position of the apparatus upon the forward-looking sensor and second sensor concurrently sensing the bale.

21. The method as set forth in claim 20 wherein the chassis comprises a lengthwise axis that extends through the center of the apparatus, the lengthwise center axis defining a first side of the apparatus and second side of the apparatus generally opposite the first side, the forward-looking sensor being mounted on the first side of the apparatus and the second sensor being mounted on the second side of the apparatus.