This invention is a bridging or tying device to be used in building construction between floor joists or the like.

One object of the invention is to provide a structure of this kind especially adapted for use with steel bar joists now in common use.

Another object is to provide a form of bridge strip for connecting joists in buildings, including spaced and squared loops adapted to seat snugly over the tops of the joists and to extend straight down the sides thereof substantially towards the bottoms thereof, the said loops being connected by straight across reaches for maintaining in an edgewise vertical position joists having otherwise a tendency to warp or twist sidewise.

A further object of the invention is to provide in a relatively simple and strong form, a structure of the kind which will serve to automatically center the joists as the bridging is laid down.

In the drawings:

Figure 1 is a side elevation of a strip of bridging constructed and laid in accordance with this invention, a side wall and a number of joists being shown in section;

Figure 2 is a plan view showing a number of sections of floor joists as connected by a strip of bridging made in accordance with this invention;

Figure 3 is a plan view showing a number of sections of floor joists as connected by two strips of the bridging, and illustrating the method of joining the ends of two such strips, the ends being positioned side by side and thus held or otherwise secured together;

Figure 4 is an enlarged detail view of a section of the bridging strip.

The invention consists in a form of bridging or bridge strip 1 made of strip iron or other suitable material of about one and one-half inches width and one-eighth inch thickness, or as may be desired. These strips are bent as shown in the drawings to form spaced and squared loops 2 adapted to seat snugly over the floor joists 3 which are regularly spaced apart. The loops 2 extend below the longitudinal axis of the joists and are integrally connected by the horizontally extended reaches 4. Thus the reaches 4 extend straight across from joist to joist below their axes and are most advantageously positioned to prevent warping or twisting of the joists. The ends of the bridge strips 1 may be anchored in the side walls, one of which is shown at 5, in any suitable manner, as by a right angled bend 6 seated in the masonry. The bridge strips 1 may be cut to order to meet the width of the building, or for wide structures, two or more strips may be joined or spliced together at their ends as shown at 7. Inasmuch as the strips 1 have the loops 2 regularly spaced apart to the desired distance, the said loops as they are laid down serve to automatically center the joists 3.

While I have herein described a certain specific manner and method of constructing and assembling the elements of my invention, it is understood that I may vary from the same in minor details, not departing from the spirit of my invention, so as best to construct a practical device for the purpose intended, as defined in the appended claim.

I claim:

In combination with the walls and a plurality of regularly spaced joists as set up in a building structure, a bridge strip for connecting the joists and having spaced loops adapted to seat snugly over the tops of the joists and extend straight down the sides and below the longitudinal axes of the joists to resist twisting stresses on the joists, the ends of the strip being extended outward from the upper extremities of the loops nearest the ends of the strip and being bent upward and anchored in the said walls of the building.

In testimony whereof I affix my signature.

VIRGIL C. BURGETT.