发明名称
被印刷体接触构件以及印刷装置用构件

摘要
本发明提供一种被印刷体接触构件。被印刷体接触构件具有：基材；固着层，其设于所述基材的表面，并使近似圆球状的粒子固着而成；低表面张力覆盖层，其将固着了所述近似圆球状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用，由此，在维持微小凹凸构造的同时，油墨排斥性高，不会出现清洗时的线头或灰尘等的附着，例如适用于印刷机的与印刷纸面接触的构件等中。
1. 一种被印刷体接触构件，其特征在于，具有：
 基材；
 固着层，其设于所述基材的表面，由使近似圆球状的粒子固着而成；
 低表面张力覆盖层，其将固着了所述近似圆球状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用。

2. 根据权利要求1所述的被印刷体接触构件，其特征在于，所述近似圆球状的粒子的粒径为1～20μm，并且，
 被所述低表面张力覆盖层覆盖了的表面的表面粗糙度的凸高度Ra为5～20μm，且凸间距Rz为20～100μm。

3. 根据权利要求1所述的被印刷体接触构件，其特征在于，所述低表面张力覆盖层的覆盖膜为1μm以下。

4. 根据权利要求1所述的被印刷体接触构件，其特征在于，所述固着层的膜厚为5～30μm。

5. 一种被印刷体接触构件，其特征在于，
 具有：基材；固着层，其设于所述基材的表面，由使近似圆球状的粒子固着而成；低表面张力覆盖层，其将固着了所述近似圆球状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用；
 所述低表面张力覆盖层的覆盖膜为1μm以下，并且，
 所述低表面张力覆盖层由具有与被印刷体接触的低表面张力体现部、以及与基材表面发生相互作用的化学反应部的化合物形成。

6. 一种被印刷体接触构件，其特征在于，
 具有：基材；固着层，其设于所述基材的表面，由使近似圆球状的粒子固着而成；低表面张力覆盖层，其将固着了所述近似圆球状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用；
 所述低表面张力覆盖层的覆盖膜为1μm以下，
 所述低表面张力覆盖层由具有与被印刷体接触的低表面张力体现部、以及与基材表面发生相互作用的化学反应部的化合物构成，并且，
 所述低表面张力覆盖层由所述化合物的单分子层构成。
7. 根据权利要求 5 或 6 所述的被印刷体接触构件，其特征在于，所述化学反应部是对于由形成于所述基材表面的近似圆球状粒子和固着层构成的凹凸形状表面显示出取代反应性的结构。

8. 根据权利要求 5 或 6 所述的被印刷体接触构件，其特征在于，所述低表面张力体现部具有氟原子。

9. 根据权利要求 5 或 6 所述的被印刷体接触构件，其特征在于，构成所述低表面张力覆盖层的所述化合物的密度高于 2 分子/nm²。

10. 根据权利要求 5 或 6 所述的被印刷体接触构件，其特征在于，在所述基材与所述低表面张力覆盖层之间，作为中间层具有二氧化硅系化合物层。

11. 一种印刷装置用构件，其特征在于，具备权利要求 1～10 中任一项所述的被印刷体接触构件。

12. 根据权利要求 11 所述的印刷装置用构件，其特征在于，所述印刷装置用构件是压印滚筒、样品台、真空抽吸车、颜色计测装置的任一种。
被印刷体接触构件以及印刷装置用构件

技术领域

本发明涉及被印刷体接触构件以及印刷装置用构件。

背景技术

一般来说，双面印刷机中，先印刷的印刷面在印刷后 1 秒左右或其以下时间内与后印刷的压印滚筒（impression cylinder）接触而承受印刷压力。由此，在单张双面印刷机中，会产生未干燥的先印刷油墨沾在压印滚筒上而造成印刷面的浓度不均、漏白；以及附着于压印滚筒上的油墨反向转印到其后的纸上而将纸面弄脏等先印刷面与后印刷面中的印刷质量上的不佳状况。

所以，作为抑制此种油墨的附着的对策，提出过如下的技术，即，在压印滚筒的基材的表面形成凹凸，利用与印刷面的点接触效果来防止油墨附着。另外，还提出过在压印滚筒的表面中使用脱模性良好的材料的技术（例如参照专利文献 1 及 2）。

这里，作为所述在压印滚筒的基材的表面形成凹凸的具体的技术，采用过将表面利用喷丸来粗糙化、实施玻璃珠涂覆、进行陶瓷喷镀等各种方式。

另外，作为上述的脱模性良好的材料，可以举出有机硅系树脂或氟系树脂。

图 12 中示出了形成于以往的压印滚筒上的防油墨沾附构造的一例。如图 12 所示，提供如下的构造，即，在形成于基板金属版 1 的上面的合成树脂覆盖层 2 的表面，通过粘接剂 3 设有陶瓷粒子 4，其平均粒径例如约为 55 μm，且将其头部露出，以将该陶瓷粒子 4 的头部覆盖的方式形成由有机硅树脂等制成的低表面张力树脂覆盖层 6，在该表面具有凹凸的脱模性表面（参照专利文献 2，图 1）。而且，符号 5 表示复合覆盖皮膜。

这里，将所述陶瓷粒子 4 的头部露出是为了将有机硅树脂等低表面张
力树脂覆盖层 6 的表面粗糙度设为规定的值（例如 \(R_{\text{max}}: 30\sim 150 \mu \text{m} \)),
例如提出过形成在陶瓷粒子的头部约为 2 \(\mu \text{m} \) 左右、在谷部约为 5\sim 10 \(\mu \text{m} \) 左右的厚度的低表面张力树脂覆盖层 6 的方案（参照专利文献 1: [0074]、[0075]段）。

专利文献 1：日本特开平 08-12151 号公报
专利文献 2：日本特开 2000-1321 号公报

但是，在如图 12 所示的专利文献 2 中公布的方案中，如果继续其使用，则会有凹凸表面的低表面张力树脂覆盖层 6 因其磨损而使陶瓷粒子 4 露出的问题。由于该陶瓷粒子 4 是有棱角的形态，因此在清洗压印滚筒时，会附着例如来自清洗布的线头或灰尘，结果产生导致印刷质量的降低的问题。另外，当因使用的继续而使露出比例增多时，就会有大量地附着线头或灰尘等而无法保持良好的自身洁净的问题。

在为了防止该问题，而在制造被印刷接触构件时，对露出了的陶瓷粒子例如另外进行研磨作业的情况下，就会在清洗工序中花费时间，并且还需要研磨装置，从而有无法实现制造上的高效化以及成本降低的问题。

另外，在印刷工序中，在清洗压印滚筒的表面之时，由于有可能产生由来自清洗布的线头、灰尘附着造成的印刷质量降低，因此就需要用于除去线头、灰尘的追加清洗作业，从而有在清洗中花费问题的时间的问题。

另外，在使用像以往那样的粒径例如为 55 \(\mu \text{m} \) 的大直径的粒子，而且是在用使用了有机硅树脂的低表面张力覆盖层覆盖的表面的表面粗糙度的情况下，凸高度大到 40 \(\mu \text{m} \) 以上，无法良好地防止漏（印刷质量差）的减少，因而会有对于印刷质量恶化的防止不够充分的问题。

发明内容

本发明鉴于上述问题，目的在于，提供如下的被印刷体接触构件以及印刷装置用构件，可以在维持微细凹凸构造的同时，油墨排斥性高，清洗时没有线头或灰尘等的附着，而且耐久性以及印刷质量良好。

用于解决上述的问题的本发明的第一发明提供一种被印刷体接触构件，其特征在于，具有：基材；固着层，其设于所述基材的表面，由使近似圆球状的粒子固着而成；低表面张力覆盖层，其将固着了所述近似圆球
状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用。

第二发明提供一种被印刷体接触构件，其特征在于，所述近似圆球状的粒子的粒径为 1～20 μm，并且被所述低表面张力覆盖层覆盖了的表面的表面粗糙度的凸高度 Rz 为 5～20 μm，且凸间距 Rs 为 20～100 μm。

第三发明提供一种被印刷体接触构件，其特征在于，所述低表面张力覆盖层的覆盖膜为 1 μm 以下。

第四发明提供一种被印刷体接触构件，其特征在于，所述固着层的膜厚为 5～30 μm。

第五发明提供一种被印刷体接触构件，其特征在于，所述低表面张力覆盖层由具有与被印刷体接触的低表面张力体现部、以及与基材表面发生相互作用的化学反应部的化合物形成。

第六发明提供一种被印刷体接触构件，其特征在于，所述低表面张力覆盖层由所述化合物的单分子层构成。

第七发明提供一种被印刷体接触构件，其特征在于，所述化学反应部是对于由形成于所述基材表面的近似圆球状粒子和固着层构成的凹凸形状表面显示出取代反应性的结构。

第八发明提供一种被印刷体接触构件，其特征在于，所述低表面张力体现部具有氟原子。

第九发明提供一种被印刷体接触构件，其特征在于，构成所述低表面张力覆盖层的所述化合物的密度大于 2 分子/μm²。

第十发明提供一种被印刷体接触构件，其特征在于，在所述基材与所述低表面张力覆盖层之间，作为中间层具有二氧化硅系化合物层。

第十一发明提供一种印刷装置用构件，其特征在于，具备第一至第十发明中任一项所述的被印刷体接触构件。

第十二发明提供一种印刷装置用构件，其特征在于，所述印刷装置用构件是压印滚筒、样品台、真空抽吸车、颜色计测装置的任一种。

根据本发明，通过采用如下的被印刷体接触构件就可以获得在维持细微凹凸构造的同时，油墨排斥性高，清洗之后没有线头或灰尘等的附着，而且耐久性良好的效果，所述被印刷体接触构件具有：固着层，其设于基材的表面，且使近似圆球状的粒子固着而成；低表面张力覆盖层，其将固
着了所述近似球状的粒子的固着层的表面覆盖，并且对被印刷物起到脱模作用。

附图说明

图 1 是本实施方式的被印刷体接触构件的概略图。
图 2 是本实施方式的被印刷体接触构件的要部的概略图。
图 3 是本实施方式的被印刷体接触构件的构成示意图。
图 4 是本实施方式的被印刷体接触构件的其他的构成示意图。
图 5 是本实施方式的被印刷体接触构件的化学结构的示意图。
图 6 是本实施方式的被印刷体接触构件的其他的化学结构的示意图。
图 7-1 是表示低表面张力覆盖层与固着层的结合的状态的示意图。
图 7-2 是表示低表面张力覆盖层与固着层的结合的状态的另一个示意图。
图 7-3 是表示低表面张力覆盖层与固着层的结合的状态的另一个示意图。
图 8 是印刷机的压印滚筒部分的概略图。
图 9 是真空吸车的概略图。
图 10 是颜色计测装置的概略图。
图 11 是铝涂法的概略图。
图 12 是表示形成于以往的压印滚筒上的防油墨粘附构造的一例的图。
其中，50 基材，51 近似圆球状的粒子，52 固着层，53 低表面张力覆盖层，54 被印刷体接触构件，55 中间层，12 低表面张力体现部，13 化学反应部，21 第一相互作用（低表面张力覆盖层与基材的相互作用），22 第二相互作用（相邻分子间的相互作用）

具体实施方式

下面在参照附图的同时对本发明进行详细说明。而且，本发明不受该实施方式限定。另外，在下述实施方式的构成要素中，包含本领域技术人员可以很容易地想到的形态或实质上相同的形态。[发明的实施方式]
参照附图，对本发明的实施方式的被印刷体接触构件进行说明。

图1是实施方式的被印刷体接触构件的概略图。

如图1所示，本实施方式的被印刷体接触构件54具有：基材50；固定层52，其设于所述基材50的表面，且使近似圆球状的粒子51固着而成；低表面张力覆盖层53，其将固着了所述近似圆球状的粒子51的固定层52的表面覆盖，并且对被印刷物起到脱模作用。

通过如图1所示，通过如下的被印刷体接触构件54就可以形成在忠实地维持由近似圆球状的粒子51构成的微细凹凸形状的同时，油墨排斥性高的构件，所述被印刷体接触构件54具有将固着了所述近似圆球状的粒子51的固定层52的表面覆盖，且对被印刷物起到脱模作用的极薄的低表面张力层53。而且由于制成近似圆球状的粒子51，因此在清洗之时就没有线头或灰尘等的附着。其结果是，可以提供耐久性良好的被印刷体接触构件。

这里所说的所述近似圆球状的粒子51为近似圆球状，不是指例如利用粉碎等制造的那样的有棱角的形状的粒子，而是指消除了角的球状的粒子。是指锐角（例如90°以下）的突端不向粒子的表面露出的球状形状。

另外，作为近似圆球状的粒子51的粒径，例如优选为1～20μm。这是因为，为了将凸高度维持为10μm以下，优选将粒径设为20μm以下。

这里，对于近似圆球状的粒子51的粒径基本上只要使用厂家标称值即可。另外，作为近似圆球状的粒子，例如可以使用“CB－A10S（平均粒径：10μm）”、昭和电工公司制的粒子。

而且，这里所例示的粒子的粒径的测定方法利用的是库尔特计数法（Coulter counter法）。该库尔特计数法是如下的方法，即，根据分散于分散溶剂中的粒子穿过施加了电压的细孔部分时所产生的细孔内的电阻变化，来求得粒子数、粒子体积。

另外，对于被所述低表面张力覆盖层覆盖了的表面的表面粗糙度，为了实现利用压接的印刷质量提高，将图1所示的凸高度Rz设为5～20μm，并且将凸间距Rs设为20～100μm。如果将该凸高度设为20μm以下，则从实现涂布（印刷质量差）的减少的观点来看是理想的。另一方面，如果设为5μm以上，则由于可以很好地发挥点接触所致的支承效果，因此
优选。

另外，通过将凸间距 Rs 设为 20～100 μm，则即使在凸高度低到 20 μm 以下的情况下，也可以发挥良好的纸面保持力，充分地防止印刷质量恶化。

另外，所述低表面张力覆盖层 53 的覆盖膜优选设为 0.01～1 μm，更优选设为亚微米（0.1 μm）以下。这样，即使近似圆球状的粒子 51 的粒径很小，由于所述低表面张力覆盖层 53 的覆盖膜极薄，因此也可以原样地反映近似圆球状的粒子 51 固着在固着层 52 中而形成的光滑的凹凸形状，可以得到良好的印刷质量。

即，在以往由其膜厚大到 20 μm 的有机硅树脂构成的低表面张力覆盖层的情况下，凹凸形状的凹凸被埋入，无法构成良好的凹凸面，成为印刷质量恶化的要因。然而根据本发明，通过制成极薄的低表面张力覆盖层 53，就可以消除该问题。

这里，作为所述固着层 52 的膜厚，只要是可以良好地保持圆球状粒子的厚度，就没有特别限定，然而例如优选设为 5～30 μm。

如果设为 5 μm 以上，则可以获得更为充分的粘接粘接力，从这一点来看是理想的。另外，如果设为 30 μm 以下，则可以防止粒子本身埋没在固着层 52 内，容易获得所需的凹凸形状，从而一点来看是理想的。

另外，在利用固着层 52 将近似圆球状的粒子 51 粘接・固定的情况下，由于粒子的表面由构成固着层的材料材料地覆盖，因此与低表面张力覆盖层 53 的结合性变得良好，从而形成牢固的具有脱模性的覆盖膜。

另外，作为所述低表面张力覆盖层 53，优选由具有与被印刷体接触的低表面张力体现部，和与基材表面发生相互作用的化学反应部的化合物构成。

特别优选所述低表面张力覆盖层 53 由所述化合物的单分子层构成。

这里，作为凹凸形状的制造方法，没有特别限定，然而例如可以例如分散粘接粘法、粒子粘入法等。

所述分散粘接粘法通过利用辊涂法将粘接剂（例如环氧树脂等）涂布在基材 50 上（膜厚 5～20 μm），利用静电粘接来使近似圆球状的粒子（例如平均粒径 10 μm）51 分散・粘接，就可以形成所需的表面凹凸形状。
另外，所述粒子拌入法通过利用辗涂法将预先混合了粘接剂（例如环氧树脂等）和近似圆球状的粒子（例如平均粒径 10 μm）的材料涂布于基材 50 上（膜厚 5～20 μm），使其分散·粘接，就可以形成所需的表面凹凸形状。

使用图 11 对利用辗涂法的膜厚控制方法的一例进行说明。

如图 11 所示，首先（调整 1）利用一对第一辊 201、第二辊 202 之间的夹持宽度调整来调整环氧粘接剂 205 的供给量。

然后（调整 2）调整第三辊 203、第四辊 204 之间的夹持宽度，调整向基材 206 上的附着量。

在上述（1）及（2）的调整之后，在 300×300mm 见方的基材上涂布粘接剂，利用下述式（A），计算涂布膜厚。

\[\text{涂布膜厚} = \frac{[\text{涂布后的重量} - \text{涂布前的重量}] / \text{比重}}{\text{涂布面积}} \quad \text{（A）} \]

所需的表面凹凸形状（表面粗糙度的凸高度 Rz 为 5～20 μm，并且凸间距 Rs 为 20～100 μm）例如优选利用表面摩擦系数来评价。

作为所选表面摩擦系数优选设为 0.5～0.2 的范围。

这是为了真正地设有表面凹凸状态的粘层，并且在用破布进行清洗表面之时防止发生阻力。

该表面摩擦系数的测定是使用依照了 JIS P8147 中所规定的“纸及板纸的摩擦系数试验方法”的方法，使用 Autograph（例如“AG－IS 100kN（商品名）”岛津制作所公司制）作为试验装置进行的。

另外，也可以如图 2 所示，在固着层 52 与低表面张力覆盖层 53 之间，夹设中间层 55，进一步提高两者的结合性。

这里，作为构成所述中间层 55 的材料，优选采用如下的材料，即，与固着层 52 的反应性高，而且与低表面张力覆盖层 53 的反应性高，例如在最表面具有羟基或硅氧烷结构的材料。作为具体的材料，例如可以举出水玻璃、硅烷偶联剂。

另外，作为中间层 55 的膜厚，优选设为 0.2～2 μm 范围。

通过使之大于 0.2 μm，就可以充分地发挥作为中间层的功能，在这一点上是理想的。另外，通过设为 2 μm 以下，中间层本身就难以破坏，在这一点上是理想的。
图3是说明上述低表面张力覆盖层53的化学的相互作用的示意图。

如图3所示，上述低表面张力覆盖层53是由至少具有与被印刷体接触的低表面张力体现部12、以及与基材表面发生相互作用（第一相互作用21）的化学反应部13的化合物所构成单分子层而形成的。

本发明中，通过用具备有高疏油墨性的低表面张力体现部12以及与固着层52的表面反应的化学反应部13的分子的单分子层来覆盖，形成疏油墨性高、耐久性高的被印刷体接触构件。

另外，如图4所示，也可以在低表面张力体现部12与化学反应部13之间，具有第三构造部（例如—O—）14等。

这里，通过具有上述化学反应部13，就会形成高密度并且在相邻分子间相互作用的单分子膜（Close packed & Lateral interacted Monolayer: CLM）。

另外，作为相邻分子间的相互作用（第二相互作用22），优选形成化学键，然而也有形成氢键或者利用物理的引力的结合的情况。作为物理的引力是所谓的范德华力，是由偶极间引力、分散力、诱导偶极间引力等造成的作用。

另外，本发明的化合成反应部的反应基是与存在于固着层52的表面的OH基反应的基，然而特别是在 Si 上结合有2个以上的 Cl 或 OR 的分子中，在全部的 Cl 或 OR 与基材反应的情况下，由于分子与基材的结合数增加，因此低表面张力层的耐久性就会提高。

另外，即使在无法使全部的 Cl 或 OR 与基材反应的情况下，由于未与固着层52反应的 Cl 或 OR 与相邻的分子的未反应的 Cl 或 OR 反应而形成分子间键，因此膜强度也会提高。

另外，即使在分子间没有形成化学键的情况下，由于与固着层52反应了的分子全都将反应基朝向固着层52侧而反应，形成将低表面张力体现部分朝向外侧的取向，分子间利用物理的引力相互吸引，因此与分子随机地存在的情况相比，形成更高密度并且相邻分子间相互作用了的单分子膜（Close packed & Lateral interacted Monolayer: CLM），从而使膜强度大幅度提高。

即，向低表面张力体现部分导入极性低的官能基，提高疏油墨性，另
一方面，利用化学结合的反应基与固着层 52 表面形成牢固的化学键而形成耐久性高的覆盖膜。另外，由于分子中分子链基本上垂直于固着层 52 表面地取向，因此填充密度高，可以利用分子间的相互作用（化学键或氢键、物理的引力）来提高作为膜的强度，所以就可以得到耐久性高、具有高疏油墨性的被印刷体接触构件。

这里，作为上述化学反应部 13，可以举出环氧基、异氰酸酯基或以式（1）表示的基的任意一种。

\[\text{Si} - \text{X} \text{n} \]
\[\text{R}_{3-n} \]

式中，x 是 OR' 或 Cl，
n 是 1~3 的整数，
R 及 R' 是烷基数，
R 与 R' 的碳原子数相同或不同都可以。

另外，作为具有式（2）所示的环氧基的化合物，可以举出 1, 2-环氧基癸烷、1, 2-环氧基十二烷、1, 2-环氧基十六烷、1, 2-环氧基十八烷等，然而本发明并不限于它们。

\[\text{CH}_a - \text{CH}_b \]

式中，a、b 是 1 或 2 的整数。

另外，作为具有异氰酸酯基（R_1 - N=C=O，这里 R_1 表示烷基。）的化合物，可以举出十二烷基异氰酸酯、十八烷基异氰酸酯、3-异氰酸酯基丙基三乙氧基硅烷等，然而本发明并不限于它们。

另外，作为具有上述式（1）中举出的基的化合物来说，作为 X 为 Cl 的化合物，可以举出十八烷基二甲基氯硅烷、十八烷基甲基二氯硅烷、十八烷基三氯硅烷等。另外，作为 X 为醇盐 OR' 的化合物，例如可以举出己基三甲氧基硅烷、十八烷基甲基二甲氧基硅烷、十八烷基三乙氧基硅烷等，然而本发明并不限于它们。

另外，作为上述低表面张力体现部 12，是具有氮原子的构造。
即，为了形成低表面张力体现部 12，只要具有将碳链的 H 原子的至少一部分以 F 原子取代的构造即可。

这样，通过将碳链的 H 原子的至少一部分以 F 原子取代，低表面张力部分的极性就会进一步变小，疏油性进一步提高。

作为此种化合物来说，作为式 (1) 的 X 为 Cl 的化合物，可以举出三氟丙基三氟硅烷、十七氟癸基甲基二氟硅烷、十七氟癸基三氟硅烷、十三氟辛基三氟硅烷等。另外，作为 X 为醇盐 OR 的化合物，可以举出三氟丙基三甲氧基硅烷、十七氟癸基甲基二甲氧基硅烷、十七氟癸基三甲氧基硅烷、十七氟癸基三乙氧基硅烷、十三氟辛基三甲氧基硅烷、氟系表面处理剂的 “OPTOOL DSX”（商品名：Daikin 工业公司制）等，然而本发明并不限于它们。

图 5 是表示了式 (1) 的一例的示意图，图 6 是表示了向其中导入了 F 基的一例的示意图。

另外，如果为了提高疏油性，而向分子中导入 F 原子，则作为形成了单分子层时的分子间的物理引力的相互作用就会变小。这是因为，与 CH₂ 的重复碳链相比，CF₂ 的重复碳链的分子内的极化变小，分子间的凝聚力变小。

这样，通过导入 F 原子，表面张力也会变小。

另外，Teflon（注册商标）的耐磨损性低也是由于相同的理由，而使分子间的凝聚力变小。所以，在像以往那样，用无法期待与固着层的反应的氟树脂将表面简单地覆盖了的压印滚筒套中，耐久性低。

所以，本发明通过用带有具有高疏油性的低表面张力体现部分并且与固着层 52 的表面反应的分子的单分子层来覆盖，而形成疏油性高、耐久性高的被印制体接触构件。

这里，本发明的化合物的反应基是与存在于固着层 52 的表面的 OH 基反应的基，然而特别是在 Si 上结合有 2 个以上的 Cl 或 OR 的分子中，在全部的 Cl 或 OR 与固着层 52 反应的情况下，由于分子与固着层 52 的结合数增加，因此低表面张力层的耐久性就会提高。

另外，即使在无法使全部的 Cl 或 OR 与固着层 52 反应的情况下，由于未与固着层 52 反应的 Cl 或 OR 与相邻的分子的未反应的 Cl 或 OR 反应
而形成分子间键，因此膜强度也会提高。

即，在低表面张力体现部 12 中，导入 F 原子而进一步降低极性，提高疏油墨性，另一方面，在化学反应部 13 中，利用化学结合的反应基与固着层 52 表面形成牢固的化学键，利用两者的协同效应来形成耐久性高的覆盖膜。

特别是在具有 Si—Cl 或 Si—OR 的分子中，每一个分子在与固着层 52 之间形成最多 3 个化学键，从而提高耐久性。或者无法与固着层 52 反应的 Si—Cl 或 Si—OR 在分子间结合，提高作为膜的强度，从而提高耐久性。

另外，构成上述低表面张力覆盖层 53 的上述化合物的密度优选为高于 2 分子/nm² 的密度。

这里，给出是否是高于 2 分子/nm² 的密度的判断的一例。

作为测定方法，使用了 XPS（X 射线光电子分光法：X-ray Photoelectron Spectroscopy）。该 XPS 向样品表面照射 X 射线，通过进行从表面（深数 nm）释放出的电子的能量分析，就可以分析出元素的种类和量、元素的化学结合状态。

这样，通过测定元素量（该情况下是氟与碳的量），来计算每单位面积中所存在的氟材料分子的量，判断是否是高于 2 分子/nm² 的密度。

作为测定装置的一例，例如可以举出「型号：JPS－90MX」、日本电子株式会社制。

这里，将形成低表面张力覆盖层的上述化合物设为高于 2 分子/nm² 的密度是因为从如下的方面考虑是理想的，即，符合降低表面张力，恰当地发挥疏油墨性，也就是发挥防油墨附着功能，并且体现分子间的相互作用功能，实现耐久性。

另外，也可以在上述固着层 52 与上述低表面张力覆盖层之间，具有二氧化硅系化合物层。

这里，二氧化硅系化合物层的整体以硅原子 (Si) 和氧原子 (O) 作为主成分，表面被足够量的 OH 基覆盖。所以，由于能够在紧密地填充了形成低表面张力覆盖层的化合物的状态下反应，因此可以体现高疏油墨性。

另外，通过将该二氧化硅系化合物层设于固着层 52 与低表面张力覆
盖层 53 之间，将固着层 52 覆盖，就可以实质上消除由固着层 52 的组成的差别造成的对低表面张力覆盖层 53 的影响。

另外，由于该二氧化硅系化合物层与存在于固着层 52 的表面的 OH 基或 COOH 基反应，或者因极性基的存在而良好地密合，因此可以形成将固着层 52 —二氧化硅系化合物层—低表面张力覆盖层牢固地连结了的构造体。

作为形成此种二氧化硅系化合物层的化合物，可以举出聚硅氮烷、硅酸锂、硅溶胶等，然而本发明并不限于它们。

本发明的被印刷体接触构件可以作为将基材设为树脂或金属或者其复合材料的覆盖片或覆盖层；各种印刷装置用构件的油墨接触部；以及针对油墨以外的油、粘合剂等的非粘合部来应用。

作为本发明的被印刷体接触构件所应用的具体的对象，例如可以举出单张印刷机的印刷纸面所接触的图 8 所示的压印滚筒 103；或中间滚筒、转轮式印刷机的导辊、转向杆（turn bar）等。

另外，在上述压印滚筒 103 以外的印刷机相关构件中，可以适用于图 9 所示的单张印刷机的真空抽吸车 110、图 10 所示的色调管理装置的作为吸附板的固定平板 122、单张双面印刷机的连接圆筒、油墨刮刀、油墨托盘等中。

另外，在印刷机以外，例如可以适用于粘附胶带等粘合体的搬送辊；为了使在背面具有固着层的招贴（bill）等容易剥离而临时地密合设置的剥离材料中所形成的防粘接层；例如刀具等的刀刃的非固着层等针对油墨以外的油、粘接剂等的非粘合构件等中。

这里，参照图 8 对应用本发明的被印刷体接触构件的单张胶版双面印刷机的印刷部的一例进行说明。

如图 8 所示，在印刷机的印刷部中设有印刷组件，该印刷组件具备：印刷版滚筒 101，其装备有印刷版 101a，并从油墨供给部（图示略）经油墨供给辊（图示略）向该印刷版 101a 供给有油墨；空白滚筒（橡胶滚筒）102，其与该印刷版滚筒 101 压接，并转印供给至印刷版 101a 的图案部分的油墨；作为印刷滚筒的压印滚筒（也称作印刷滚筒、圆筒）103，其隔着印刷用纸 104 与空白滚筒 102 压接；中间滚筒 105，其将印刷纸 104 转
交给压印滚筒 103。

在上述印刷用纸 104 穿过空白滚筒 102 与压印滚筒 103 之间时，被施加由空白滚筒 102 和压印滚筒 103 产生的夹持压力，从空白滚筒 102 向其一面（图中为上面）104a 转印与图案对应的油墨，进行印刷。在该印刷用纸 104 中，在图示的印刷组件的上游部分，从未图示的空白滚筒 102 与一面 104a 同样地向另一面（图中为下面）104b 转印与所对应的图案对应的油墨，向该印刷用纸 104 的另一面 104b 转印的油墨在上述的夹持压力之下降触上述压印滚筒 103，形成油墨极易从印刷用纸 104 的另一面 104b 粘附在压印滚筒 103 的表面的状况。

通过在此种压印滚筒 103 中应用本发明的被印刷体接触构件，在本发明中，就可以通过用由带有具有高疏油墨性的低表面张力体现部 12 以及与固着层 52 的表面反应的化学反应部 13 构成的分子的单分子层来覆盖，而制成疏油墨性高、耐久性高的压印滚筒套。

而且，本例中，虽然对单张胶版双面印刷机进行了说明，然而本发明并不限定于此，也可以同样地应用于使用压印滚筒型的胶版转轮式印刷机来进行双面印刷的情况。

图 9 是作为应用本发明的被印刷体接触构件的另一个例子的真空抽吸车的概略图。如图 9 所示，通过在真空抽吸车 110 的具有吸附孔 112 的吸附垫 111 的表面应用本实施例的被印刷体接触构件，就可以进行印刷机的抽吸停止。

其结果是，以往对于真空抽吸车的与纸面的接触部，是选定纸面被印刷的场所以外的场所来调整真空抽吸车的设置位置，然而通过应用本发明的被印刷体接触构件，就不会受向纸面上的印刷的有无左右，即使将真空抽吸车设于任意的位置，也可以进行纸面的停止。

图 10 是作为应用本发明的被印刷体接触构件的另一个例子的颜色计测装置的概略图。如图 10 所示，颜色计测装置 120 由安放、计测作为被测定物的印刷物而临时地吸附配置的固定平板 122，以及计测印刷物的图案颜色的计测装置 121 构成，在上述固定平板 122 中应用被印刷体接触构件。

本例中，上述计测装置 121 是由颜色计测传感器 121a 和扫描该颜色
计测传感器的扫描装置 121b 构成的扫描装置，计测固定平板 122 上的印刷物的全面。而且，也可以取代扫描装置，而设为例如利用 CCD 等的拍摄装置。

上述固定平板 122 从扫描装置 121b 的起动侧（本例中为左侧）的一方角部起放射状地设有多个槽（未图示），在这些槽中，分别以一定间隔设有孔（未图示）。上述孔利用来自设于上述固定平板 122 的背面侧的气室（未图示）的抽吸操作，将印刷物临时地固定。

通过在此种固定平板 122 中应用本发明的被印刷体接触构件，在本发明中，就可以通过用由带有具有高疏油墨性的低表面张力体现部 12 以及与固着层 52 的表面反应的化学反应部 13 构成的分子的单分子层来覆盖，而制成疏油墨性高、耐久性高的固定平板。

实施例

下面，对显示本发明的效果的具体的实施例进行说明，然而本发明并不限定于它们。

[实施例 1]

图 1 是实施例 1 的被印刷体接触构件的构成示意图。

如图 1 所示，在 0.15mm 的金属制的基材 50 上以约 20μm 涂覆由 2 液混合型环氧粘接剂制成的固着层 52，分散粘接平均粒径 10μm 的陶瓷制的近似圆球状的粒子 51。其结果是，得到凸高度 10μm、凸间距 100μm 的凹凸形状。该表面的表面摩擦系数为 0.4，是即使用布等擦划也没有钩挂的表面。

这里，作为上述 2 液混合型环氧粘接剂，使用了主剂为“2022S”（型号）、固化剂为“2105C”（型号）的 Three Bond 公司制。

在该表面涂布作为脱模剂的十三氟辛基三甲氧基硅烷（GE 东芝 Silicone 制）的乙醇溶液，在 100℃加热 1 小时，从而形成低表面张力覆盖层 53，制作了被印刷体压接构件。

所得的表面的凸高度为 20μm，凸间距为 100μm，确认无论有无低表面张力覆盖层 53，基材表面的凹凸形状都不会变化。

将上述被印刷体压接构件作为印刷机的压印滚筒套，进行了适用性评价试验。
试验是将印刷油墨（「TOYO HY—UNITY 墨」商品名：东洋油墨公司制）用要素测试机以 1.2 μm 的膜厚印刷在涂覆纸上，立即使之在卷绕了上述被印刷体压接构件的辊下穿过。

根据穿过的印刷面的图像处理，漏白（印刷质量降低率）为 1% 以下，确认可以获得与印刷面不与压印滚筒接触的单面印刷同等的印刷质量。

另外，被印刷体压接构件的耐久性良好。

像这样，通过在进行了薄膜涂布的 2 液混合型环氧粘接剂上分散粘接圆球状陶瓷粒子，而利用表面张力使 2 液混合型环氧粘接剂将粒子整体包入，另外，通过向粒子的微米细孔内渗入 2 液混合型环氧粘接剂，就可以形成足够强度的凹凸形状。

与此不同，以往是在分散粘接之后再次涂布酚系树脂。其结果是，通过将粒子直径控制为近似圆球状，就可以实现凹凸形状的细微的控制，可以进一步减少漏白（印刷质量差）。

另外，通过使用基材反应性低分子材料作为脱模剂，就可以实现单层膜的脱模处理，可以在维持基材的微细凹凸形状的同时，体现脱模效果。

其结果是，能够制造出以往难以制造的凹高度低（例如 10 μm）、间距小（例如 100 μm）表面形状的脱模表面，可以实现进一步的漏白（印刷质量差）的减少（1%）。

这里可以认为，通过结合在作为本实施例的脱模材料的低表面张力覆盖层 53 中所含的 Si 上的反应基与存在于基材表面的 OH 基反应，形成牢固的脱模膜，而且非粘合膜的耐久性提高。

另外可以认为，即使在不是所有的反应基与基材反应的情况下，也可以通过与相邻的分子的反应基反应，形成牢固的覆盖膜，提高非粘合膜的耐久性。

[实施例 2]

通过与实施例 1 相同地准备基材，分散粘接平均粒径 10 μm 的圆球状陶瓷粒子，而得到了凸高度 10 μm、间距 100 μm 的凹凸形状。其表面摩擦系数为 0.4，即使使用布等擦拭也没有挂钩的表面。

通过向所得的表面上涂布氟系的 EGC—1720（商品名：3M 制），在
100°C下加热1小时，而形成低表面张力覆盖层53，制作了被印刷体压接构件。

所得的表面形状与形成低表面张力覆盖层53之前相同，凸高度为10μm，凸间距为100μm，确认无论有无低表面张力覆盖层53，基材表面凹凸形状都不会变化。

对上述被印刷体压接构件进行了与实施例1相同的印刷测试，其结果是，漏白率为1%以下，确认可以获得与印刷面不与压印滚筒接触的单面印刷同等的印刷质量。

虽然本实施例中所用的非粘合材料在分子内与Si结合的反应基为1个，然而可以确认其能够与基材表面的OH基反应而形成牢固的膜。

另外可以认为，由于反应基为1个，因此非粘合构造朝向与基材表面相反一侧而排列，因而非粘合效果进一步提高。

与之不同，以往的树脂中，由于分子随机地排列，因此非粘合构造不一定朝向最表面，所以无法期望非粘合效果的提高。

[实施例3]

利用与实施例2相同的操作制作凹凸基材，如图2所示，在其上作为中间层55涂布双（三乙氧基甲硅烷基）乙烷，在80°C加热1小时后，通过与实施例1相同地涂布十三氯辛基三甲氧基硅烷的乙醇溶液，在100°C下加热1小时，而形成低表面张力覆盖层53，制作了被印刷体压接构件。

这里，作为上述中间层等的涂布方法，采用了喷雾方式。另外，作为膜厚控制方法，利用以下的手法进行。

（1）首先，测定来自喷雾喷嘴中的每单位时间的喷出量。
（2）测定单位时间中的涂布面积。
（3）根据[喷出量]/[涂布面积]，计算涂布膜厚。

这样，利用喷出量的调整以及涂布面积的调整（喷雾喷嘴移动速度的调整），调整了膜厚。

喷雾方式作为装置的概要来说，是具有在载台上沿X-Y方向移动喷嘴的机构的装置，喷雾喷嘴使用了「STS－6R」（型号）：株式会社制的喷雾喷嘴。
所得的表面形状与涂布脱模剂之前大致相同，凸高度为 10 \mu m，凸间距为 100 \mu m，确认即使在涂布了中间层和低表面张力覆盖层 53 后，基材表面凹凸形状也没有变化。

对上述被印刷体压接件进行了与实施例 1 相同的印刷测试，其结果是，漏白率为 1%以下，确认可以获得和印刷面不与压印滚筒接触的单面印刷同等的印刷质量。

通过在由陶瓷粒子造成的凹凸构造之上作为中间层 55 使用 1，2－双（三乙氧基甲硅烷基）乙烷，就可以提高低表面张力覆盖层 53 的反应密度，可以进一步提高非粘合性能，并且提高耐久性。

这是因为，形成低表面张力覆盖层 53 的材料中所含的氟系分子在分子内具有与基材表面（固体层 52 的凹凸表面）的 OH 基相反应（硅烷偶联反应）的部分，由此，利用化学键（共价键）与表面结成一体，密合性（耐久性）提高。

这里，如果氟系分子的反应率（密度）低，则脱模效果就会降低。如果作为本实施例中所用的材料，与作为固体层 52 的环氧系树脂比较，则如图 7－1～图 7－2 所示，二氧化硅系材料一侧表面的 OH 基更多，氟系分子的反应率提高，脱模效果提高。

与之不同，如图 7－3 所示，本实施例中所用的 1，2－双（三乙氧基甲硅烷基）乙烷由于成为在基材（凹凸表面）一侧与基材相反一侧（最表面侧）具有 OH 基的构造，另外，还利用了相邻的分子之间进行化学反应的特性，与环氧系树脂相比，增加了与氯系分子反应的 OH 基的数目，由此就会提高结合性，实现密合性的提高。

工业上的利用可能性
如上所述，本发明的被印刷体接触件制成了具有：固体层，其设于基材的表面，并使近似圆球状的粒子固着而成；低表面张力覆盖层，其将所述固定着近似圆球状的粒子的固体层的表面覆盖，并且对被印刷物起到脱模作用的被印刷体接触件，由此，在维持微细凹凸构造的同时，油墨排斥性高，不会出现清洗时的线头或灰尘等的附着，例如适用于印刷机的与印刷纸面接触的构件等中。
图 8