(54) 发明名称
一种高准确度非整周期采样谐波分析测量方法

(57) 摘要
为了获得高准确的谐波测量结果，本发明提供了一种谐波测量方法，对被测信号进行采样，对采样结果进行 DFT 或 FFT 处理，得到离散频谱，从离散频谱中选取若干谐波线修正长范围频谱泄漏、短范围频谱泄漏、负频点泄漏等造成的测量误差，得到高准确度的谐波测量结果。本发明可应用于谐波的精密测量领域。
1. 一种高准确度非整周期采样谐波分析测量方法，包括：
A. 对包含谐波的被测量信号进行采样的步骤；和
B. 对得到的采样样本进行 DFT 或 FFT 处理的步骤，其特征在于还包括如下步骤；
C. 从经过步骤 B 处理得到的离散频谱中选取谱线，选取的规则是:
选取谱线的数量为 K+1，K 为大于 1 的自然数，K 的值为基波数量和要测量的谐波数量之和，选取的谱线为第 p_1 根谱线，第 p_2 根谱线，……，第 p_{(k+1)} 根谱线，其中 p_1, p_2, ..., p_{k+1} 为谱线在离散频谱中的序号；第 p_1 根谱线的实部为 R_{p_1}，虚部为 I_{p_1}，第 p_2 根谱线的实部为 R_{p_2}，虚部为 I_{p_2}，第 p_3 根谱线的实部为 R_{p_3}，虚部为 I_{p_3}，……，第 p_{(k+1)} 根谱线的实部为 R_{p_{k+1}}，虚部为 I_{p_{k+1}}；
第 p_1 根谱线选取离散频谱中谱峰最大的谱线；
第 p_2 根谱线选择第 p_1 谱线两侧紧邻的两根谱线中幅值较大谱线；
从第 p_3 谱线开始直到第 p_{(k+1)} 谱线，每根谱线的选取方法是选取对应各谐波的谱峰，或用谱波次数乘以 p_1 得到数值 s，离散频谱中的第 s 根谱线作为选取的相应谱线；
D. 建立以下矩阵，其中 N 指 N 个采样样本，N 为自然数：

\[
\begin{bmatrix}
\sin\left(\frac{2\pi p_1}{N}\right) & \sin\left(\frac{2\pi p_1}{N}\right) & \vdots & \vdots & \sin\left(\frac{2\pi p_{k+1}}{N}\right) \\
\cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \vdots & \vdots & \cos\left(\frac{2\pi p_{k+1}}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sin\left(\frac{2\pi p_1}{N}\right) & \sin\left(\frac{2\pi p_1}{N}\right) & \vdots & \vdots & \sin\left(\frac{2\pi p_{k+1}}{N}\right) \\
\cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \vdots & \vdots & \cos\left(\frac{2\pi p_{k+1}}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) \\
\end{bmatrix}
\begin{bmatrix}
I_{p_1} \\
I_{p_2} \\
\vdots \\
I_{p_{k+1}} \\
\end{bmatrix}
\]

从该矩阵求得 \(p \)；
E. 计算 \(b_1, ..., b_k \)

\[
\begin{bmatrix}
\sin\left(\frac{2\pi p_1}{N}\right) & \sin\left(\frac{2\pi p_1}{N}\right) & \vdots & \vdots & \sin\left(\frac{2\pi p_{k+1}}{N}\right) \\
\cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \vdots & \vdots & \cos\left(\frac{2\pi p_{k+1}}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sin\left(\frac{2\pi p_1}{N}\right) & \sin\left(\frac{2\pi p_1}{N}\right) & \vdots & \vdots & \sin\left(\frac{2\pi p_{k+1}}{N}\right) \\
\cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \cos\left(\frac{2\pi p_1}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) & \vdots & \vdots & \cos\left(\frac{2\pi p_{k+1}}{N}\right) - \cos\left(\frac{2\pi p}{N}\right) \\
\end{bmatrix}
\begin{bmatrix}
I_{p_1} \\
I_{p_2} \\
\vdots \\
I_{p_{k+1}} \\
\end{bmatrix}
\]

和 \(a_1, ..., a_k \)。
$$\begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} \sin \left(\frac{2\pi r}{N} \right) & \sin \left(\frac{2\pi K r}{N} \right) & \cdots & \sin \left(\frac{2\pi K r}{N} \right) \\ \cos \left(\frac{2\pi r}{N} \right) - \cos \left(\frac{2\pi}{N} \right) & \cos \left(\frac{2\pi p}{N} \right) - \cos \left(\frac{2\pi K r}{N} \right) & \cdots & \cos \left(\frac{2\pi K r}{N} \right) \\ \vdots & \vdots & \ddots & \vdots \\ \cos \left(\frac{2\pi p}{N} \right) - \cos \left(\frac{2\pi}{N} \right) & \cos \left(\frac{2\pi p}{N} \right) - \cos \left(\frac{2\pi K r}{N} \right) & \cdots & \cos \left(\frac{2\pi K r}{N} \right) \end{bmatrix}^{-1} \begin{bmatrix} R - \sum b_k \\ \vdots \\ R - \sum b_k \end{bmatrix}$$

得到；第 k 次谐波的频率为 \(\frac{k f_s}{2\pi} \); 第 k 次谐波的幅值 \(A_k \) 为 \(\frac{2N \sqrt{a_k^2 + b_k^2}}{1 - \cos(2\pi k r)} \); 第 k 次谐波的初相位为 \(\text{arg} \left(\frac{a_k + b_k j}{1 - e^{i2\pi k r}} \right) \); 其中 N 指 N 个采样样本，N 为自然数，f_s 为采样频率。

2. 根据权利要求 1 所述高准确度非整周期采样谐波分析测量方法，其特征在于步骤 A 所述对被测量信号进行采样为非整周期采样，即采样周期与被测量信号周期之间为非整数倍关系。

3. 根据权利要求 1 所述高准确度非整周期采样谐波分析测量方法，其特征在于步骤 A 所述对被测量信号进行采样为整周期采样，即采样周期与被测量信号周期之间为整数倍关系。
一种高准确度非整周期采样谐波分析测量方法

技术领域
[0001] 本发明涉及一种信号测量方法，特别是对包含谐波成分的信号的测量方法。

背景技术
[0002] 随着电力电子装置、半导体器件等非线性负荷的广泛使用，电力系统中的谐波污染越来越严重。为了保证电能质量和电力系统安全运行，应对谐波进行准确检测和分析，从而为治理谐波提供更科学的依据。另外，目前国内外出现了多种谐波测量仪器，为了确保这些仪器量值的统一，有必要研究高准确度的谐波测量方法。
[0003] 用于谐波测量的数字信号处理器方法有多相分析法、基于离散傅立叶变换（DFT）的快速傅立叶变换（FFT）法、小波变换法、神经网络法及遗传算法等。目前，FFT 应用较广。在利用 FFT 测量含有谐波的信号时，若数据采集系统的采样频率满足采样定理，而且采样速度覆盖的时间是被测信号周期的整数倍，即相当于数据采集系统做到了整周期采样，此时利用 FFT 可以获得准确度很高的谐波参数。但是在实际中，由于被测信号的周期未知，加上数据采集系统硬件的限制，整周期采样通常很难实现。在非整周期采样条件下，由于长范围泄漏、短范围泄漏、负频点泄漏的影响，利用 FFT 测量谐波参数时会出现较大的误差。为了提高测量准确度，现有方法是在忽略负频点泄漏的基础上，通过对采样样本来加窗函数来减小长范围泄漏，采用插值方法来减小短范围泄漏。由于这些方法忽略了负频点泄漏，而采用加窗函数也无法将长范围泄漏降至最低，因而其准确度有限。现有的测量方法得到结果的准确度约在 10^{-5} ~ 10^{-3} 之间。

发明内容
[0004] 为了获得高准确的谐波测量结果，本发明提供了一种谐波测量方法，同时减小微范围泄漏、短范围泄漏和负频点泄漏，从而提高了谐波测量结果的准确度。
[0005] 本发明的技术方案如下：
[0006] 高准确度谐波测量方法，包括：
[0007] A、对包含谐波的被测量信号进行采样的步骤，和
[0008] B、对得到的采用样本进行 DFT 或 FFT 处理的步骤，还包括如下步骤：
[0009] C、从经过步骤 B 处理得到的离散频谱中选取谱线，选取的规则是：
[0010] 选取谱线的数量为 K+1，K 为大于 1 的自然数，K 的值为基波数量和要测量的谐波数量之和；选取的谱线为第 p_1 谱线，第 p_2 谱线，……，第 p_{K+1} 谱线，其中 p_1，p_2，……，p_{K+1} 为谱线在离散频谱中的序号；第 p_1 谱线的实部为 R_n 虚部为 I_n，第 p_2 谱线的实部为 R_{n+1} 虚部为 I_{n+1}，……，第 p_{K+1} 谱线的实部为 R_{n+K} 虚部为 I_{n+K}；
[0011] 选取 p_1 谱线选取离散频谱中谱峰最大的谱线，对应于基波分量；
[0012] 第 p_2 谱线选择第 p_1 谱线两侧紧邻的两根谱线中幅值较大谱线；
[0013] 第 p_{K+1} 谱线选取从第 p_1 谱线开始到第 p_{K+1} 谱线，每根谱线的选取方法是选取对应各谐波
的谱峰；或用谐波次数乘以 p_i，得到数值 s，离散频谱中的第 s 根谱线作为选取的相应谱线；

[0014] D、建立以下矩阵：

$$
F' = egin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) & \cdots & \sin \left(\frac{2\pi p_1}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi p_k}{N} \right) & \cdots & \sin \left(\frac{2\pi p_k}{N} \right) \\
\cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\sin \left(\frac{2\pi p_{k+1}}{N} \right) & \cdots & \sin \left(\frac{2\pi p_{k+1}}{N} \right) \\
\cos \left(\frac{2\pi p_{k+1}}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_{k+1}}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right)
\end{bmatrix}
$$

[0016] 通过初等行列变化，使 F' 变为如下形式

$$
F = \begin{bmatrix}
F_1 & F_2 \\
0 & F_{K(K+1)}
\end{bmatrix}
$$

[0017] 求解方程 $F_{kk}F_{(k+1)(k+1)} - F_{(k+1)k}F_{k(k+1)} = 0$，得到 τ；

[0018] E、计算 b_1, \cdots, b_k

$$
\begin{bmatrix}
b_1 \\
b_k
\end{bmatrix} = \begin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) & \cdots & \sin \left(\frac{2\pi p_1}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi p_k}{N} \right) & \cdots & \sin \left(\frac{2\pi p_k}{N} \right) \\
\cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right)
\end{bmatrix}^{-1}
\begin{bmatrix}
I_{p_1} \\
I_{p_k}
\end{bmatrix}
$$

[0019] 和 a_1, \cdots, a_k

$$
\begin{bmatrix}
a_1 \\
a_k
\end{bmatrix} = \begin{bmatrix}
\sin \left(\frac{2\pi \tau}{N} \right) & \cdots & \sin \left(\frac{2\pi \tau}{N} \right) \\
\cos \left(\frac{2\pi \tau}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi \tau}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi \tau}{N} \right) & \cdots & \sin \left(\frac{2\pi \tau}{N} \right) \\
\cos \left(\frac{2\pi \tau}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi \tau}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right)
\end{bmatrix}^{-1}
\begin{bmatrix}
R_{p_1} - \sum_{k=1}^{b_k} b_k \\
R_{p_k} - \sum_{k=1}^{b_k} b_k
\end{bmatrix}
$$

[0020] 得到了：第 k 次谐波的频率为 $\frac{k\tau f_c}{2\pi N}$；第 k 次谐波的幅值 A_k 为 $\frac{2N \sqrt{a_k^2 + b_k^2}}{1 - \cos(2\pi \kappa \tau)}$；第 k 次谐波的初相位为 $\arg \left(\frac{a_k + b_k}{1 - e^{j2\pi \kappa \tau}} \right)$。
步骤 A 所述对被测量信号进行采样为非整周期采样，即采用周期与被测信号周期
之间为非整数倍关系。

步骤 A 所述对被测量信号进行采样还可以是整周期采样，即采用周期与被测信号
周期之间为整数倍关系。

本发明的技术效果：

1. 通过理论推导的方式对本发明达成的技术效果进行说明。

时域内连续的谐波信号通常可表示为如下形式

\[u(t) = \sum_{k} A_k \sin\left(2\pi ft + \varphi_k\right) \] \hspace{1cm} (1)

其中，t 为时间；f 为基波信号的频率；k 为谐波次数，k = 1 表示基波；A_k 为第 k
次谐波的幅值；\varphi_k 为第 k 次谐波的初相位。

忽略模数转换过程中的量化误差，以及测量过程中的各种随机误差，而采样频率
为 f_s（邻近两次采样的时间间隔为 T_s = 1/f_s）的数据采集系统得到 N 个样本

\[u(n) = \sum_{k} A_k \sin\left(2\pi knf / f_s + \varphi_k\right) \] \hspace{1cm} (2)

其中 n 为大于等于 0 且小于等于 N-1 的整数。

\(u(n) \) 的 FFT 的结果为

\[U_m = \frac{1}{N} \sum_{n=0}^{N-1} u(n)e^{-j \frac{2\pi m n}{N}} \] \hspace{1cm} (3)

其中，m 为大于等于 0 且小于等于 N-1 的整数。

在整周期采样条件下，即 kNf = pf_s，p 为整数，则第 k 次谐波的频率为 pf_s/N，幅值
和初相位可利用 \(u(n) \) 的离散频谱中的第 p 个根谱线获得，因为

\[U_p = \frac{A_k e^{j\varphi_k}}{2jN} \] \hspace{1cm} (4)

在非整周期采样条件下，kNf = (p + \varepsilon) f_s，\varepsilon |< 1 且 \varepsilon \neq 0，此时第 p 根谱线的

\[U_p = \frac{1}{2jN} \left[A_k e^{j\varphi_k} - \frac{1-e^{j2\pi \varepsilon}}{1-e^{j2\pi \varepsilon}} \sum_{l=0}^{N-1} A_l e^{j\varphi_l} \right] \] \hspace{1cm} (5)

其中，\tau = NF_s/f_s。由短范围频谱泄漏造成的测量误差存在于 U_b 中，由长范围频谱
泄漏造成的误差存在于 U_a 中，由负频点频谱泄漏造成的误差存在于 U_v 中。由于上述泄漏的
影响，利用上式很难准确得到第 k 次谐波的参数。现有的技术或者忽略短范围频谱泄漏和
短范围频谱泄漏造成的误差，或者忽略长范围频谱泄漏造成的误差，或者忽略负频点频谱
泄漏造成的误差，因此得到的第 k 次谐波的参数的准确度有限。

在非整周期采样条件下，令 \[\frac{A_k e^{j\varphi_k} (1-e^{j2\pi \varepsilon})}{2N} = a_k + b_k j \] ，根据式 (5) 可知，第 p 根谱线的
虚部为

\[I_p = \sum \frac{b_k}{2} \frac{2 \sin \left(\frac{2\pi p}{N} \right)}{\cos \left(\frac{2\pi p}{N} \right) - \cos \left(\frac{2\pi k\tau}{N} \right)} \] \quad (6)

第 p 根谱线的实部为

\[R_p = \sum \left[b_k + \frac{a_k}{2} \frac{2 \sin \left(\frac{2\pi k\tau}{N} \right)}{\cos \left(\frac{2\pi k\tau}{N} \right) - \cos \left(\frac{2\pi p}{N} \right)} \right] \] \quad (7)

在利用数据采集系统采集时域连续信号时，数据采集系统的采样频率 \(f_s \) 以及获取的样点数 N 均已知。对采样数据进行 FFT 后，第 p 根谱线的虚部 \(I_p \) 和实部 \(R_p \) 也已知，而需要测量的基波和谐波的数量 K 也已知。那么，在式 (6) 中，只剩下 \(b_k, \tau \) 是未知数。为了准确测量 \(\tau \)，按前述发明技术方案中所述方法选取 (K+1) 根谱线来修正长范围频谱泄漏、短范围频谱泄漏、重频点频谱泄漏等造成的测量误差。假设这 (K+1) 根谱线分别为第 \(p_1, p_2, \ldots, p_{K+1} \) 根谱线，根据式 (6) 有

\[
\begin{align*}
I_{p_1} &= \sum b_k \frac{\sin \left(\frac{2\pi p_1}{N} \right)}{\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi k\tau}{N} \right)} \\
I_{p_2} &= \sum b_k \frac{\sin \left(\frac{2\pi p_2}{N} \right)}{\cos \left(\frac{2\pi p_2}{N} \right) - \cos \left(\frac{2\pi k\tau}{N} \right)} \\
&\vdots \\
I_{p_{K+1}} &= \sum b_k \frac{2 \sin \left(\frac{2\pi p_{K+1}}{N} \right)}{\cos \left(\frac{2\pi p_{K+1}}{N} \right) - \cos \left(\frac{2\pi k\tau}{N} \right)}
\end{align*}
\] \quad (8)

在式 (8) 中，由于 \(b_1, b_2, \ldots, b_k \) 总计 K 个未知数，而方程总计 (K+1) 个，因而通过初等行列变换，便可消去 \(b_1, b_2, \ldots, b_k \) 得到一个关于 \(\tau \) 的方程，求解该方程便可求得 \(\tau \)。该过程可利用下述矩阵化简描述。根据式 (8)，可构造如下矩阵
对式 (9) 中的矩阵进行初等行变换，可得如下形式

\[
F' = \begin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) & \ldots & \sin \left(\frac{2\pi p_{K+1}}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \ldots & \cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi p_{K+1}}{N} \right) & \ldots & \sin \left(\frac{2\pi p_{K+1}}{N} \right) \\
\cos \left(\frac{2\pi p_{K+1}}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \ldots & \cos \left(\frac{2\pi p_{K+1}}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right)
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
F_{11} & F_{12} \\
0 & F_{(K+1)K}
\end{bmatrix}
\]

令

\[
F_{KK} = \frac{F_{K(K+1)}}{F_{(K+1)K}}
\]

则可得到

\[
g(N, p_1, \ldots, p_K, I_{p_1}, \ldots, I_{p_{K+1}}, \tau) = 0,
\]

求解该方程可得到多个 \(\tau \) 解，选择距离 \(p_1 \) 最近的解为最终的 \(\tau \) 解，再根据 \(\tau = Nf' / f_a \)，便可求出信号的基波频率 \(f = \tau f_a / N \)。

根据式 (6)，有

\[
\begin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\vdots \\
\sin \left(\frac{2\pi p_K}{N} \right) \\
\cos \left(\frac{2\pi p_K}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right)
\end{bmatrix}
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_K
\end{bmatrix}
= \begin{bmatrix}
I_{p_1} \\
I_{p_2} \\
\vdots \\
I_{p_{K+1}}
\end{bmatrix}
\]

求出 \(b_1, \ldots, b_K \) 后，根据式 (7)，有

\[
\begin{bmatrix}
\sin \left(\frac{2\pi \tau}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) \\
\vdots \\
\sin \left(\frac{2\pi p_K}{N} \right) \\
\cos \left(\frac{2\pi p_K}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_K
\end{bmatrix}
= \begin{bmatrix}
R_{p_1} - \sum b_k \\
\vdots \\
R_{p_{K+1}} - \sum b_k
\end{bmatrix}
\]

由上式可求出 \(a_1, \ldots, a_K \)。再根据 \(\frac{A_k}{2N}e^{j\omega_k} (1 - e^{j\omega_k}) = a_k + b_k \), 可求出第 k 次谐波的幅值 \(A_k \) 和初相位的分别为
$A_k = \frac{2N\sqrt{a_k^2 + b_k^2}}{1 - \cos(2\pi k \tau)}$

$\phi_k = \arg\left(\frac{a_k + b_k \jmath}{1 - e^{\jmath 2\pi k \tau}}\right)$

从上述推导过程可见，本发明方法能够同时消除长范围泄漏效应、短范围泄漏效应和负频点泄漏效应，具有较高的准确度。本发明获得的谱波参数的准确度可达 10^{-7} 以上。

附图说明

图 1 为本发明方法的流程图。
图 2 为给出的测量实例得到的离散频谱。
图 2 中的标识说明如下：
1. 第 18 根谱线；2. 第 19 根谱线；3. 第 53 根谱线；4. 第 87 根谱线。

具体实施方式

以下结合附图对本发明的技术方案进行详细说明。

如图 1 所示的流程图，本发明的高准确度谱波测量方法具体步骤如下：
首先需要利用数据采集系统对输入的被测谱波信号（即包含谱波的被测量信号）进行采样，获得 N 个采样样本，N 为自然数，f_s 为采样频率。
然后对采集到的 N 个采样样本进行离散傅立叶变换 (DFT) 或快速傅立叶变换 (FFT)，得到被测量信号的离散频谱。
第三步，从离散频谱中选取 $K+1$ 根谱线，选取谱线的规则为：
K 为大于 1 的自然数，K 的值为基波数量和要测量的谐波数量之和；假定选取的谱线为第 p_1 基频线，第 p_2 基频线，……，第 $p_{(K+1)}$ 谱波线，其中 $p_1, p_2, \cdots, p_{(K+1)}$ 为谱线在离散频谱中的序号；第 p_1 谱线的实部为 R_{p_1}，虚部为 I_{p_1}；第 p_2 谱线的实部为 R_{p_2}，虚部为 I_{p_2}；第 p_3 谱线的实部为 R_{p_3}，虚部为 I_{p_3}；……，第 $p_{(K+1)}$ 谱波线的实部为 $R_{p_{(K+1)}}$，虚部为 $I_{p_{(K+1)}}$。
第 p_1 基频线选取离散频谱中谐波最大的谱线，第 p_1 基频线实际是选取基波谱峰，一般基波的成分都大于谐波的成分，所以基波的谱峰在离散频谱中最高。第 p_2 基频线选择第 p_1 谱线两侧紧邻的两根谱线中幅值较大谱线。从第 p_3 谱线开始直到第 $p_{(K+1)}$ 谱波线，每根谱线的选取方法是以下方法之一；
1. 选取对应各谐波的谱峰作为相应谱线。即在对应谐波的谱线及邻近该谱线的若干根谱线选择幅值最大的谱线作为相应谱线。
2. 用谐波次数乘以 p_1 得到数值 s，离散频谱中的第 s 跟谱线作为选取的相应谱线。
上述两个选择谱线的方法优选第 1 种方法，如果利用第 1 种方法不能选择出谱峰，则采用第 2 种方法。
记录每根谱线实部的大小 R_i （$i = 1, \cdots, K+1$）和虚部的大小 I_i （$i = 1, \cdots, K+1$）。

第四步，构建如下矩阵
\[F' = \begin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) & \cdots & \sin \left(\frac{2\pi p_1}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi p_K}{N} \right) & \cdots & \sin \left(\frac{2\pi p_K}{N} \right) \\
\cos \left(\frac{2\pi p_K}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_K}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\sin \left(\frac{2\pi p_{K+1}}{N} \right) & \cdots & \sin \left(\frac{2\pi p_{K+1}}{N} \right) \\
\cos \left(\frac{2\pi p_{K+1}}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_{K+1}}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\end{bmatrix}
\]

并将其化简成如下形式

\[F = \begin{bmatrix} F_1 & F_2 \\ 0 & F_{kk} & F_{k(k+1)} \\ & F_{(k+1)k} & F_{(k+1)(k+1)} \end{bmatrix} \]

第五步，求解方程 \(F_{kk}F_{k(k+1)}^{-1}F_{(k+1)k}F_{k(k+1)} = 0 \) 选择距离 \(p_i \) 最近的解为最终的 \(\tau \) 解 \(\tau \)。得到第 \(k \) 次谐波的频率 \(f_k \) 为 \(\frac{k\tau f}{2\pi N} \)。

第六步，计算 \(b_1, \cdots, b_k \)

\[\begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix} = \begin{bmatrix}
\sin \left(\frac{2\pi p_1}{N} \right) & \cdots & \sin \left(\frac{2\pi p_1}{N} \right) \\
\cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_1}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi p_k}{N} \right) & \cdots & \sin \left(\frac{2\pi p_k}{N} \right) \\
\cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi p_k}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\end{bmatrix}^{-1} \begin{bmatrix} I_p \\ \vdots \\ I_k \end{bmatrix} \]

和 \(a_1, \cdots, a_k \)

\[\begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix}
\sin \left(\frac{2\pi}{N} \right) & \cdots & \sin \left(\frac{2\pi}{N} \right) \\
\cos \left(\frac{2\pi}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\vdots & \ddots & \vdots \\
\sin \left(\frac{2\pi}{N} \right) & \cdots & \sin \left(\frac{2\pi}{N} \right) \\
\cos \left(\frac{2\pi}{N} \right) - \cos \left(\frac{2\pi \tau}{N} \right) & \cdots & \cos \left(\frac{2\pi}{N} \right) - \cos \left(\frac{2\pi K \tau}{N} \right) \\
\end{bmatrix}^{-1} \begin{bmatrix} R - \sum a_i \\ \vdots \\ R - \sum a_{k} \end{bmatrix} \]

得到第 \(k \) 次谐波的幅值 \(2N \sqrt{a_i^2 + b_i^2} \),

得到第 \(k \) 次谐波的初相位 \(\arg \left(\frac{a_k + b_k j}{1 - e^{j2\pi \tau}} \right) \)。

至此，获得了需要测量的谐波信号的参数。本发明的方法可以适用于非整周期采
样和整周期采样的情况。
[0089] 下述应用本发明方法对一个校准值进行计算，以验证本发明的方法。
[0090] 利用 MATLAB 软件产生一个信号实例，具体设置为：基波频率为 $f = 50.5$ Hz，含有三次谐波分量、五次谐波分量的正弦信号，其表达式为：

$$y(t) = 5 \sin(2 \pi ft + 1) + 0.5 \sin(6 \pi ft - 0.3) + 0.08 \sin(10 \pi ft + 1.2)$$

[0091] 利用采样频率为 $f_s = 1500$ Hz 的数据采集系统采样得 $N = 512$ 个样本进行 FFT 处理，所得到的结果频谱特性如图 2 所示。根据本发明的方法选取 4 根谱线（即选择 $K+1$ 根谱线，K 值为谐波数量 2 与基波数量 1 的和），第 1 根谱线选择离散谱中频移最大的谱线，即图 2 中第 18 根谱线（标识为 1 的谱线）。第 2 根谱线选择第 1 根谱线左右两根相邻谱线中幅值较大的一个，即图 2 中第 19 根谱线（标识为 2 的谱线）。第 3 根谱线选择：三次谐波对应的谱峰为第 53 根谱线（标识为 3 的谱线）。第 4 根谱线选择：五次谐波对应的谱峰为第 87 根谱线（标识为 4 的谱线）。

[0092] 选择谱线的具体数据如下表：

<table>
<thead>
<tr>
<th>谱线序号</th>
<th>离散频谱实部</th>
<th>离散频谱虚部</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>4.5188</td>
<td>0.7865</td>
</tr>
<tr>
<td>19</td>
<td>-1.3563</td>
<td>-0.2507</td>
</tr>
<tr>
<td>53</td>
<td>-0.4171</td>
<td>-0.1637</td>
</tr>
<tr>
<td>87</td>
<td>0.0683</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

[0093] 构造矩阵 F'，并将其化简成和 F 一样的形式，得到关于 τ 的方程，求解可得 $\tau = 17.237333333333311$，于是基波的频率为 50.499999999999936。

[0094] 计算 b_1, b_2, b_3 可得：$b_1 = -0.001152243419121, b_2 = -0.000274816801420, b_3 = -0.000018501183705$。

[0095] 计算 a_1, a_2, a_3 可得：$a_1 = -0.006524189713665, a_2 = -0.000716996787663, a_3 = -0.00084464919214$。

[0096] 最后可得，基波的幅值为 4.9999999999942，初相位为 1.000000000000070；

[0097] 三次谐波的幅值为 0.500000000000019，初相位为 -0.29999999999807；

[0100] 九次谐波的幅值为 0.07999999999997, 初相位为 1.2000000000000319。

[0101] 由上可见，本发明方法的准确度可达 10^{-6} 以上，现有测量方法均达不到该准确度。
输入被测谐波信号

数据采集系统采样，采样频率设定为f_s

对N个样本进行FFT

在离散频谱中选取$K+1$根谱线

$$U_{k+1} = R_{k+1} + jI_{k+1} \quad (k = 1, ..., K + 1)$$

构建$\mathbf{F'}$并化简$\mathbf{F'} \Rightarrow \mathbf{F}$

计算$$\frac{F_{kk}}{F_{(k+1)k}} = \frac{F_{k(k+1)}}{F_{(k+1)(k+1)}}$$

求解r

计算$[b_1 \cdots b_k]^T$和$[a_1 \cdots a_k]^T$

第k次谐波的幅值

$$\frac{2N\sqrt{a_k^2 + b_k^2}}{1 - \cos 2\pi kr}$$

第k次谐波的频率krf_s/N

第k次谐波的初相位

$$\arg\left(\frac{a_k + b_k j}{1 - e^{2\pi kr}}\right)$$

图 1
图 2