Abstract: The invention relates to a safety device (20) for a photovoltaic system for feeding into a power supply system (50), comprising at least one input (21, 22) for connection to a PV generator (10) and at least one output (23, 24) for connection to an inverter (30), and comprises a switching element (29) for de-energizing the at least one output (23, 24). The safety device (20) is distinguished by the fact that it comprises an evaluating unit (27) which is arranged for switching the switching element (29) in dependence on a low-frequency signal at the at least one output (23, 24). The invention also relates to a method for operating such a safety device (20).
The invention relates to a safety device for a photovoltaic system and an operating method for a safety device of a photovoltaic system.

Photovoltaic systems, called PV systems abbreviated in the text which follows, are used for converting sunlight into electrical energy. For this purpose, a multiplicity of photovoltaic modules, called PV modules abbreviated in the text which follows, each of which represents an interconnection of a number of photovoltaic cells, is usually interconnected electrically as a photovoltaic generator. The photovoltaic generator (PV generator) is connected to an inverter, frequently mounted remotely, which is used for converting the direct current delivered by the PV generator into alternating current which is suitable for being fed into a public or private (isolated operation) power supply system.

In this context, the PV modules are mostly series-connected in such a manner that the direct-current lines running between the PV generator and the inverter are loaded with voltages within a range of substantially more than 100 V. For reasons of efficiency, a voltage of this order of magnitude is suitable, among other things, in order to keep ohmic losses in the lines tolerably small without having to select a line cross section which is too large. With a light incidence on the PV modules, however, the risk of a lethal electric shock exists due to the high voltage in the case of damages, e.g. in the case of fire, or during installation and maintenance work. Without further protective measures, the danger to life in the case of a direct contact or an indirect contact, e.g. via quenching water, can only be banned if the power generation by the PV modules is stopped, for example by
darkening the PV modules. This is difficult to implement in the case of large PV systems or in the case of fire, however.

In order to avoid the occurrence of hazardous voltages especially at accessible or exposed components of a PV-system during certain situations, e.g. in the case of fire or during maintenance work at a PV system, it is known to arrange switching elements e.g. electromechanical switches, contactors or semiconductor switches in spatial vicinity of the PV modules, for example in a connecting socket of the PV module. Said switching elements are controlled by the inverter or any other control center via control lines and de-energize the power transmitting connecting lines between the PV modules and the inverter. This can be done either by interrupting the connecting lines by means of the switching elements or by short-circuiting the PV modules as disclosed, for example, in the journal Photon, May 2005 edition, pp. 75-77.

The connecting lines between the PV generator and the inverter can also be de-energized by a single switching element arranged at the PV generator as disclosed in the printed document DE 10 2005 018 173 A1. Printed document DE 10 2009 022 508 A1 discloses a similar setup, where a switching element for de-energizing the power transmitting connection lines between a PV generator and an inverter is arranged in close proximity of the PV generator. The switching element is mains-operated for de-energizing the connection lines depending on the status of the buildings power-supply system. In this case, "mains-operated" means that the switching element is directly coupled to the buildings power-supply. Accordingly, a power-supply line has to be provided at the PV-generator.
In all this cases, additional lines have to be provided for transmitting the control signals to the switching elements located at the PV-generator.

As an alternative, it is known from the printed document DE 10 2006 060 815 A1 to send the control signals as radio-frequency signals via the direct-current lines which are used for the transmission of electric power from the PV-generator to the inverter. For this purpose, the switching elements are provided with a control unit which decodes the control signals transmitted at radio frequency and controls the switching process. To generate the radio-frequency control signals, separate and generally elaborate and costly signal generators are provided. The use of radio-frequency control signals also necessitates a relatively high expenditure in the electromagnetic shielding of the signal generators in order to meet the EMC (electromagnetic compatibility) guidelines.

It is an object of the present invention to create a safety device for a PV system which, with a simple structure, reliably and safely prevents that at least a significant length of the direct-current (DC) lines connecting a PV generator to an inverter are loaded with high voltages in certain situations, e.g. in the case of danger. It is a further object of the present invention to specify an operating method for such a safety device.

This object is achieved by a safety device having the features of claim 1 and by an operating method having the features of claim 17.

A safety device according to the invention for a photovoltaic system for feeding into a power supply system comprises an input for connection to a PV generator and at least one output for connection to an
inverter, and comprises a switching element for de-energizing the at least one output. It is characterized by the fact that it also has an evaluating unit which is arranged for switching the switching element in dependence on a low-frequency signal which is present at the at least one output.

In the case of commercial inverters, a low-frequency signal of low amplitude relative to the earth potential is applied to at least one of the direct-current inputs of the inverter, as soon as the inverter is connected to a functional power supply system. The invention makes use of this fact to remotely de-energize the direct-current lines.

The low low-frequency signal is also observed when an internal switching element of the inverter is switched off, for example at night, when no power sufficient for feeding-in is supplied by the PV generator. It is only when an isolating element preceding the inverter (seen in direction to the power supply system), for example a main switch of the PV system or a main fuse switch of the complete building, is opened or when the power supply system does not provide any voltage that no low-frequency signal is observed at one of the direct-current inputs of the inverter and therefore also not at the direct-current lines which are connected to the input of the inverter. In consequence, the switching element is switched when the isolating element preceding the inverter is operated due to the detection of the low-frequency signal which is applied or not applied to the direct-current lines. Therefore, the switching element de-energizes the power transmitting connection lines (i.e. the direct-current lines) between the PV-generator and the inverter without needing any dedicated additional signal transmission line. Furthermore, no dedicated signal generator is needed for this purpose, which otherwise would for
example be the case a radio-frequency control signal is used. Instead, the low-frequency (interference) signal provided inherently by the inverter is utilized for controlling the switching element. In the case of danger, e.g. in case of a fire, a normal procedure consists in de-energizing the PV system from the alternating-current side by means of the isolating element. The safety device according to the application then automatically also de-energizes the direct-voltage side and thus provides, for example, for safe extinguishing work.

Within the context of the application, a de-energized state of the at least one output is here understood to be a safe state in which a contact of conductors or elements connected to the output is not associated with a danger to life or health, even if the conductors or elements do not have an electrical insulation or have a damaged insulation.

In an advantageous embodiment of the safety device, the low-frequency signal is a voltage signal. Especially preferred, the safety device then has a terminal for connection to an earth potential, the evaluating unit being arranged for determining the voltage signal between the at least one output and the earth potential. In an advantageous embodiment of the safety device, the low-frequency signal is a current signal. Especially preferred, the safety device then has a current measuring device connected to the evaluating unit, the evaluating unit being arranged for determining a current flowing via the at least one output as current signal. Both, the measuring of a voltage or a current signal represent suitable possibilities for detecting the low-frequency signal. A combination in which both a voltage and a current signal are measured is also possible. Depending on the characteristics of the PV generator and depending on
the operating and environmental conditions, e.g. humidity, a voltage or a current measurement is more suitable for reliably detecting the low-frequency signal. The combination of both measurements can thus be advantageous for a reliable detection of the low-frequency signal.

In a further advantageous embodiment of the safety device, the low-frequency signal has a frequency which corresponds to an integral multiple of the system frequency in the power supply system. Especially preferred, the frequency corresponds at least to once and at most to 10-times the system frequency in the power supply system. The low-frequency signal is especially distinct at the system frequency itself or at a small integral multiple of the system frequency, which is why a measurement at such a frequency is especially suitable.

In further advantageous embodiments of the safety device, de-energization of the at least one output occurs via a short circuit at the inputs of the safety device or by separating the connection of the at least one input and the at least one output. Both are suitable possibilities for switching the output free of hazardous voltages.

A method according to the invention for operating a safety device for a photovoltaic system for feeding into a power supply system has the following steps: a level of a low-frequency signal at at least one output of the safety device, connected to an inverter, is determined. The output is connected to an input which is coupled to a PV generator if the level of the low-frequency signal is above a first threshold value. If the level of the low-frequency signal is below a second threshold value, the output is de-energized. This results in the same advantages as described in
conjunction with the safety device according to the invention.

Further developments and advantageous embodiments of the safety device and of the operating method are specified in the dependent claims.

In the text which follows, the invention will be explained in greater detail by means of exemplary embodiments with the aid of eight figures, in which:

figure 1 shows a diagrammatic representation of a PV system with a safety device in a first exemplary embodiment,

figure 2 shows an equivalent circuit of a measuring device contained in an inverter,

figures 3 to 6 show in each case a circuit diagram of a further exemplary embodiment of a safety device,

figure 7 shows a diagrammatic representation of a PV system having a number of safety devices in another exemplary embodiment, and

figure 8 shows a diagrammatic representation of a PV system comprising a safety device in another exemplary embodiment.

Figure 1 shows diagrammatically the basic configuration of a PV system with a safety device in a first exemplary embodiment.

The PV system has a PV generator 10 which is connected via connecting lines 11, 12 to inputs 21 and 22 of a safety device 20. The safety device 20 also has outputs 23 and 24 from which direct-current lines 13 and 14
lead to an inverter 30 which is connected to a power supply system 50 via alternating-current lines 17, 18 via an isolating element 40. The direct-current lines 13 and 14 are used for transmitting the photovoltaic power generated by the PV generator 10 to the inverter 30.

As an example, the PV generator 10 in figure 1 is symbolized by the circuit symbol of an individual photovoltaic cell. In an implementation of the PV system shown, the PV generator 10 can be an individual PV module which, in turn, contains a multiplicity of photovoltaic cells. Similarly, the PV generator 10 can also be a series connection of a number of PV modules, a so-called string, in which the voltages of the individual PV modules add up. A parallel connection or a mixed series and parallel connection of PV modules is also possible.

The inverter 30 has as a central component a DC/AC converter 31. The inverter 30 has at its DC-side input an input capacitor which is symbolized in the figure by an input capacitor 32 connected in parallel with the input. For example, the DC/AC converter 31 - and thus the inverter 30 - are designed for a single-phase feed into the power supply system 50. Naturally, however, the inverter 30 can also be designed to be multi-phased, especially three-phased. By way of example, the power supply system 50 is represented as a single-phase system with one phase L and a neutral conductor N, in which context, naturally, it can have other phases which are only not contacted in the case of the PV system shown. Additionally, there is in the power supply system 50 a connection between the neutral conductor N and earth potential PE. The earth potential PE is also available at the safety device 20 via a connecting line 15 between a further earth potential terminal and the terminal 25 of the safety device 20.
and also at the inverter 30 via a connecting line 16 between the further earth potential terminal and the inverter 30.

If necessary, the inverter additionally contains between the input capacitance 32 and the DC/AC converter 31 a DC/DC converter and downstream a DC-link capacitance (not shown in fig. 1). The DC/DC converter converts the DC voltage of the PV generator into a DC voltage which is within the working range of the DC/AC converter and provides the converted DC voltage across the DC-link capacitance.

At the alternating-current end, the DC/AC converter 31 can be connected via a two-pole internal switching element 33 to the output of the inverter 30 and thus lastly to the power supply system 50. The internal switching element 33 then separates both phase L and the neutral conductor N of the connection to the power supply system 50. In case of a multi-phase inverter 30, the internal switching element 33 is correspondingly designed to be multi-pole so that the separation from the power supply system 50 extends to all phases.

Furthermore, the inverter 30 comprises a measuring arrangement 34 which is connected, on the one hand, to the alternating-current output of the inverter 30 and, on the other hand, has a connection to the direct-current side of the DC/AC converter 31. The measuring device 34 is used for determining parameters of the system voltage which are of relevance for the operation of the inverter 30. Information about these parameters of the system voltage are needed especially also when the internal switching element 33 on the output side is opened.

Thus, the output voltage of the DC/AC converter is synchronized with an amplitude and phase with the
system voltage e.g. during the start-up phase of the inverter. This synchronization takes place with the opened internal switching element 33. It is only after completed synchronization that the inverter is linked to the system by closing the internal switching element 33. This is why the measuring device 34 is contacted directly at the output of the inverter 30 and not at the alternating-current output of the DC/AC converter 31.

The safety device 20 is used for preventing the occurrence of dangerously high voltages at the outputs 23, 24 and thus at the direct-current lines 13, 14 which lead to the inverter 30, in the case of danger, independently of the voltage provided by the PV generator 10. Since the PV generator 10 applies a voltage of possibly lethal amplitude to the connecting lines 11, 12 in the case of irradiation of light, the safety device 20 is preferably positioned as closely as possible to the PV generator 10 in order to keep the length of the connecting lines 11, 12 correspondingly short.

To be able to de-energize the outputs 23, 24 and thus the direct-current lines 13, 14, the safety device 20 has a switching element 29 between inputs 21, 22 and outputs 23, 24 which is driven by a driver circuit 28. The switching element 29 can be, for example, a contactor, but the use of semiconductor switches is also conceivable. Suitable semiconductor switches are here, e.g., IGBTs (Insulated Gate Bipolar Transistors) or MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). The switching element 29 can switch both outputs 23 and 24, as shown. However, it is also possible to switch only one of the outputs 23 or 24 by means of the switching element 29. It can also be provided, for example for increasing the switching reliability, to use a number of switches, for example a
number of semiconductor switches in a series interconnection as the switching element 29. In an especially preferred embodiment, the switching element has means for extinguishing and/or avoiding a switching arc. A switching arc can be extinguished or avoided, respectively, e.g. by using a vacuum switching contactor or by a combination of semiconductor switches and electromechanical switches.

Instead of separating the connections between the inputs 21, 22 and outputs 23, 24, it is also possible to arrange the switching element in such a manner that inputs 21, 22 are short-circuited for the de-energizing.

The driver circuit 28 and via this the switching element 29 are driven by an evaluating unit 27 which is connected to the output 24 and thus to the negative direct-voltage potential DC- of the inverter 30 via a filter 26 and which is connected to the earth potential PE via the input 25. The components of the safety device 20 are energized via the PV voltage present at inputs 21, 22. Corresponding devices for supplying the components with power (buck converter, voltage regulator etc.) are not shown for reasons of clarity.

The filter 26 allows preferably a low-frequency alternating voltage to pass, especially an alternating voltage the frequency of which is a small integral multiple of the system frequency. The filter 26 can thus be designed, e.g., to once the system frequency (fundamental frequency), twice or several times the system frequency. However, the frequency to which the filter 26 is designed typically does not exceed 10-times the system frequency. It can be constructed, for example, as an analog band-pass filter or high-pass filter. A digital signal processing with a corresponding filter characteristic of a band-pass or
high-pass filter is also conceivable for implementing the filter 26.

The evaluating unit 27 is arranged for determining the level of the signal at the output of the filter 26 with respect to the earth potential PE and to switch the switching element 29 in dependence on the magnitude of the level. It is only when a predetermined magnitude of the level is exceeded that the switching element 29 switches on and connects the outputs 23, 24 to the inputs 21, 22 and thus applies the PV voltage to the direct-current lines 13, 14.

As will still be explained in greater detail in conjunction with figure 2, a low-frequency, usually system-frequency signal of low amplitude compared with the earth potential is applied to the negative direct-current input (DC-) in commercial inverters 30 as soon as the inverter 30 is connected to an operating power supply system 50. This also applies when the internal switching element 33 of the inverter 30 is switched off, for example at night when no power sufficient for feeding-in is provided by the PV generator 10. It is only when the isolating element 40 preceding the inverter 30, e.g. a main switch of the PV system or a main fuse switch of the complete building, is opened or when the power supply system 50 does not provide any voltage that no low-frequency signal is observed at the negative direct-current input (DC-) of the inverter 30. In consequence, the switching element 29 switches simultaneously with or with a short delay time only compared to the isolating element 40 preceding the inverter 30 due to the detection of the system-frequency signal. For this purpose the control mechanism of the switching element 29 of the safety device 20 is provided without the necessity of a dedicated signal line for signal transmission. Also, no dedicated signal generator is needed for generating a
radio-frequency control signal. Instead, the system-
frequency (interference) signal produced inherently by
the inverter 30 is utilized for controlling the
switching element 29. In the case of danger, e.g. in
the case of fire, a normal procedure consists in de-
energizing the PV system from the alternating-current
side by means of the isolating element 40. The safety
device 20 according to the application then
automatically also de-energizes the direct-voltage side
due to the fact, that no low-frequency signal is
detected by the evaluating unit 27 at the output 24
connected to the direct-current line 14. Therefore a
safe extinguishing work is guaranteed.

In the text which follows, the origin of the low-
frequency signal used for controlling the switching
element 29 is explained by means of figure 2.

Figure 2 shows an equivalent circuit of the measuring
device 34 of the inverter 30. The purpose of the
measuring device 34 is to provide parameters of the
power supply system, for example the magnitude and the
variation with time of the system voltage for
controlling the inverter 30 and especially for
controlling the DC/AC converter 31 in the form of a
harmless low voltage. In the case shown, the DC-
potential at the negative direct-current input, that is
to say at the input of the inverter 30 connected to the
direct-current line 14 in figure 1 represents the
reference potential within the DC/AC converter 31.
Within the measuring device 34, phase L and the neutral
conductor N of the power supply system 50 are brought
to a more easily managed low-signal level with this DC-
potential as reference potential via a network of
capacitors 341 to 344 and resistors 345 and 346. The
actual measurement of the system voltage parameters is
not shown in the equivalent circuit of figure 2. It
takes place at the test points 347 and 348 symbolized by arrow points.

In this context, it is of relevance to the subject matter of the application that due to the coupling between the AC side and the DC side, a system-frequency alternating voltage with respect to earth potential PE is applied to the negative and/or positive direct-current input of the inverter 30. The amplitude of this alternating-voltage signal depends on the magnitude of the system voltage, the sizes of the coupling elements, that is to say of the coupling capacitors 341 to 344 and of the coupling resistors 345, 346, and on a leakage capacitance 350, which represents the capacitance of the direct-voltage side of the PV system, especially of the PV generator 10 and of the direct-current lines 11, 12 and 13, 14 with respect to the earth potential PE. In figure 2, this leakage capacitance is symbolized by an equivalent capacitor 350.

In many cases, the system-frequency signal is coupled also from the DC- direct-current line 14 via the input capacitor 32 and/or a DC-link capacitor (not shown) to the DC+ direct-current line 13 so that lastly the system-frequency signal is present on both direct-current lines 13, 14. As an alternative option to the case shown, it is also conceivable that, instead of the DC- potential, the DC+ potential is selected as reference potential for the voltage measurement. In this case, the system-frequency signal is first coupled into the DC+ direct-current line 13 from where it is then transmitted via the input capacitor 32 and/or possibly the DC-link capacitor to the DC- direct-current line 14. Here, too, the signal is then lastly present on both direct-current lines 13, 14. As an alternative to the exemplary embodiments shown in fig 1 and fig. 2, in which the filter 26 taps off a signal
present on the DC- direct-current line 14 at the output 24 of the safety device 20, the filter 26 can also be connected to the output 23 in order to tap off a signal present on the DC+ direct-current line 13.

Figure 3 shows a second exemplary embodiment of a safety device 20 which could be used in a PV system shown in figure 1. Identical reference symbols identify identical or equivalent elements as in figure 1 in this and also in the following figures. Devices for supplying power to the components of the safety device 20 are again not shown.

The basic structure of the safety device 20 of figure 3 corresponds to that of figure 1. With regard to the inputs and outputs 21-24, the switching element 29 and the driver circuit 28, reference is made to the description in conjunction with figure 1. For coupling the system-frequency signal out at the output 24, an inductive coupling 261 is used here, for example implemented by a Rogowski coil. The Rogowski coil thus forms a current measuring device for low-frequency current which flows via the output 24. After filtering by the filter 26, the current signal coupled out is supplied, together with the earth potential PE, to the evaluating unit 27. The evaluating unit 27 is constructed, for example, as a comparator which is preceded by a rectifying amplifier. When the level of the signal at the output of the filter 26 exceeds a first predetermined value, the driver circuit 28 turns on the switching element 29. If the level drops below a second predetermined value, the driver circuit 28 turns the switching element 29 off again. The first predetermined value corresponds to a first turn-on threshold value for the signal and the second predetermined value corresponds to a turn-off threshold value. Preferably, a switching hysteresis is provided in that the turn-off threshold value is below the turn-
on threshold value in order to achieve a secure switching behavior. Furthermore, the gain of the amplifier in the evaluating unit 27 is preferably adjustable in order to adapt the safety device 20 to the signal level of the system-frequency signal since the latter, as is stated in conjunction with figure 2, can be different individually for different PV systems. It also can differ within a certain tolerance band for an individual but fixed PV system with respect to time. This is due to the fact that the leakage capacitance between the PV-generator and earth potential PE depends among other parameters on environmental conditions – e.g. weather – which conditions may change during time.

In the exemplary embodiment of figure 3, the system-frequency signal is detected as current signal. In order to ensure that a low-frequency current signal can flow on at least DC-direct-current lines 14 and can be observed at the output 24 even with the switching element 29 opened, a capacitor 262 is provided which provides a path for a low-frequency current toward the earth potential PE. As an alternative, a capacitor 263 (shown dashed in figure 3) can also be provided which bridges the switching contact, connected to the output 24, of the switching element 29. Such a capacitor 263 provides for a low-frequency current flow toward the earth potential via the PV generator 10, e.g. when the PV generator 10 is earthed with one of its terminals (single-pole earthing).

Figure 4 shows a further exemplary embodiment of a safety device 20. In distinction from the exemplary embodiment of figure 3, the filter 26 is here coupled directly to the output 24. Thus, it is not a current signal but a voltage signal which is detected. As an alternative, it is also possible to detect both a current and a voltage signal. The operating states and the environmental conditions, e.g. humidity, influence
the leakage capacitance (compare equivalent capacitor 350 in figure 2) of the PV generator 10 and thus its impedance with respect to the earth potential PE. Depending on the impedance with respect to earth potential PE, the voltage or the current signal is more distinct at the output 24. Detecting both current and voltage signal offers the advantage that an informative signal is available independently of the operating states and environmental conditions of the inverter 30 and of the PV generator 10.

In addition, the switching element 29 is constructed in three stages in this exemplary embodiment. Apart from the turn-on and turn-off stages, an intermediate switching stage is provided in which the inputs and outputs 21, 22 and 23, 24, respectively, are connected via in each case one high-resistance resistor 291, 292.

With the isolating element 40 initially turned on but the internal switching element 33 of the inverter 30 being turned off (e.g. at night), the system-frequency signal only shows a low level at the output 24. When the PV voltage then rises and the safety device 20 starts to operate, it detects the presence of the system-frequency signal and, as in the exemplary embodiment of figure 3, immediately turns on the switching element 29. After turning on the switching element 29 the level of the signal is reduced due to the added leakage capacitance of the PV generator 10 with respect to the earth potential PE. This could lead to the level of the system-frequency signal dropping below the threshold value at which the switching element 29 turns off again. In order to prevent this, the intermediate switching stage of the switching element 29 is first activated when the turn-on threshold is exceeded in the exemplary embodiment of figure 4 and, if the turn-on threshold is also exceeded after a predetermined time has elapsed which, for
example, lies within a range of a few 10 seconds, the switching element 29 is first turned on completely. By means of the intermediate switching stage, direct voltage is applied to the input of the inverter 30 whereupon this starts to operate and turns on the internal switching element 33. The influence of the capacitance of the PV generator is reduced by the resistors 291, 292 which is why the turn-on level is initially exceeded further. As a rule, the level of the system-frequency signal also rises due to the internal switching element 33 being turned on. After a predetermined time has elapsed, the switching element 29 is turned on completely. In this situation as a result the level of the system-frequency signal is sufficiently high so that it no longer drops below the turn-off threshold even due to the completely effective leakage capacitance of the PV generator 10.

It is also conceivable to use the intermediate switching stage of the switching element 29 as additional control for the existence of the release signal during a turn-off procedure of the switching element 29. If the level of the signal at the output 24 drops below the second predetermined value, the intermediate switching stage is first activated. In this switching stage, a check is made whether the level still drops below the second predetermined value for complete turn-off. If this is so, the complete turn-off is effected, otherwise, the switching element is turned on again completely after a predetermined time has elapsed.

In an alternative embodiment of the safety device 20, it is also conceivable that both a low-frequency voltage and a low-frequency current signal is detected. The switching element 29 then turns on if either current or voltage signal are above a predetermined level. In such a case, it is possible to achieve that
the system-frequency signal is reliably detected independently of environmental conditions, e.g. humidity, which influence the impedance of the PV generator 10 with respect to the earth potential PE.

Figure 5 shows a further exemplary embodiment of a safety device 20. In distinction from the exemplary embodiments previously shown, the amplitude of the PV voltage at inputs 21 and 22 is also evaluated here, apart from the low-frequency signal at output 24, and taken into consideration in controlling the switching element 29. For this purpose, a voltage threshold switch 281 is provided, the output of which is connected to the driver circuit 28. It is only when the PV voltage exceeds a predetermined value and the system-frequency signal meets the predetermined criteria already described before that the switching element 29 turns on. Taking into consideration the amplitude of the PV voltage it can be prevented that the inverter undertakes a turn-on attempt when the PV voltage, and thus the power maximally provided by the PV generator, is not yet sufficient for operating the inverter, e.g. at the break of dawn. Such turn-on attempts lead to unnecessary switching processes of the switching element 29 and possibly also of the internal switching element 33 which reduces their service life.

As in the exemplary embodiment of figure 4, the system-frequency signal at the output 24 is detected voltage-coupled. It is shown somewhat more detailed in the present case. The signal present at the output of filter 26 is limited in amplitude via a voltage divider of the resistor 271 and a further resistor 272 connected in parallel with a Zener diode arrangement 273 in order to prevent a destruction or overdriving of the subsequent components. The voltage-limited signal is firstly amplified by an amplifier 274. The amplifier 274 preferably has an adjustable gain factor which
provides for optimum adaptation to the magnitude of the system-frequency signal and thus to the individual PV system. The amplified signal is rectified in a downstream rectifier 275, smoothed and supplied to a comparator 277 where it is compared with a reference voltage which is provided by a reference voltage source 276 connected to earth potential.

Figure 6 shows an extension of the circuit from figure 5. Two detection circuits are provided here starting from the output of filter 26. A first one corresponds to that shown in figure 5 and is presently formed by two resistors 271a, 272a, a zener diode arrangement 273a, an amplifier 274a, a rectifier 275a, a reference voltage source 276a and a comparator 277a. A second detection circuit has a second rectifier 275b, a second reference voltage source 276b and a second comparator 277b. The second rectifier 275b is connected to the output of the filter 26 via a switch 278, a resistor 272b and a zener diode arrangement 273b being provided again for voltage limiting. The outputs of the two comparators 277a, 277b are linked to one another via an Or element 282 and then supplied to the driver circuit 28. In this arrangement, the second detection circuit has a distinctly higher sensitivity than the first one. The switch 278 is closed at first. The second detection circuit is suitable for reliably turning on the switching element 29 even at the lowest signal levels to be expected of the system-frequency signal at output 24. If distinctly higher signal levels occur in the operation of the inverter 30, the first detection circuit also responds and also drives the switching element 29 via the Or element 282 and the driver circuit 28. In the case of the existence of relatively high signal levels, the switch 278 is preferably opened and as a result the second detection circuit is protected against overdriving.
Figure 7 shows in a representation similar to figure 1 diagrammatically the basic structure of a PV system with safety devices in a further exemplary embodiment.

In the PV system of figure 7, a number of PV generators 10, for example three in this case, are provided which are also called PV part-generators 10 in the text which follows. Each of the PV part-generators 10 is connected to a separate safety device 20. The outputs of the safety devices 20, which, for reasons of clarity, are not provided with reference symbols in the figure, are connected in series with one another. The series circuit of the safety devices 20 corresponds in the case that the switching elements 29 are closed in each case, also to a series circuit of the PV part-generators 10. Said series circuit of the PV part-generators is connected to the input of the inverter 30. The latter, in turn, is linked to a power supply system 50 via an isolating element 40 (e.g. a system mains switch). The isolating element 40 and the power supply system 50 are not shown in figure 5 for reasons of space.

With respect to the safety devices 20 and the inverter 30, reference is made to the description in conjunction with the preceding figures. In the distinction from the exemplary embodiments shown before, however, capacitors 264 are additionally provided between the outputs of the safety devices 20 in the example of figure 7. Similar to the capacitors 262 and 263 in figure 3, the capacitors 264 ensure that even with switching elements 29 opened, a low-frequency signal is present at the outputs of all the safety devices 20. Such a low-frequency, especially system-frequency signal can thus be detected separately by each of the safety devices 20 whereupon the corresponding safety devices 20 switch on their switching elements 29. When this has occurred at each of the safety devices 20, the PV voltage of the PV
part-generators summed together by the series circuit is applied to the direct-current lines 13, 14 and therefore to the input of the inverter 30.

Such a safety device 20 with capacitor 264 at the outputs is especially suitable for integration with a single PV module as PV part-generator 10. In an especially preferred embodiment, the safety device 20 can then be integrated into a connecting socket of the PV module. This completely avoids exposing lines to which a potentially hazardous voltage is applied.

Figure 8 diagrammatically shows the basic structure of a PV system comprising a safety device in a further exemplary embodiment. In the basic structure, this PV system corresponds to that shown in figure 7. A number of PV part-generators 10 are again arranged to be serially interconnectable and coupled to an inverter 30. In distinction from the exemplary embodiment shown in figure 7, one switching unit 20b is presently provided for each of the PV part-generators 10. Each of the switching units 20b is connected to a central detection device 20a via a control line 20c. The switching units 20b, together with the control lines 20c and the central detection device 20a are forming the safety device 20. The central detection device 20a is preferably arranged close to the generator in order to keep the wiring expenditure in the control lines 20c as low as possible. The central detection device 20a has such components of the safety device 20 which can be used jointly in conjunction with all the PV part-generators 10, for example the filter 26 and the evaluating unit 27. The switching units 20b in each case comprise at least the switching element 29 and possibly, as in the present example, a driver circuit 28 for the switching element 29. However, the driver circuit 28 could possibly also be arranged centrally in the detection device 20a.
List of reference designations

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>PV generator</td>
</tr>
<tr>
<td>11, 12</td>
<td>connecting line</td>
</tr>
<tr>
<td>13, 14</td>
<td>direct-current line</td>
</tr>
<tr>
<td>15, 16</td>
<td>connecting line</td>
</tr>
<tr>
<td>17, 18</td>
<td>alternating-current line</td>
</tr>
<tr>
<td>20</td>
<td>safety device</td>
</tr>
<tr>
<td>20a</td>
<td>central detection device</td>
</tr>
<tr>
<td>20b</td>
<td>switching unit</td>
</tr>
<tr>
<td>20c</td>
<td>control line</td>
</tr>
<tr>
<td>21, 22</td>
<td>input</td>
</tr>
<tr>
<td>23, 24</td>
<td>output</td>
</tr>
<tr>
<td>25</td>
<td>terminal</td>
</tr>
<tr>
<td>26</td>
<td>filter</td>
</tr>
<tr>
<td>261</td>
<td>inductive coupling</td>
</tr>
<tr>
<td>262-264</td>
<td>capacitor</td>
</tr>
<tr>
<td>27</td>
<td>evaluating unit</td>
</tr>
<tr>
<td>271, 272</td>
<td>resistor</td>
</tr>
<tr>
<td>273</td>
<td>Zener diode arrangement</td>
</tr>
<tr>
<td>274</td>
<td>amplifier</td>
</tr>
<tr>
<td>275</td>
<td>rectifier</td>
</tr>
<tr>
<td>276</td>
<td>reference voltage source</td>
</tr>
<tr>
<td>277</td>
<td>comparator</td>
</tr>
<tr>
<td>28</td>
<td>driver circuit</td>
</tr>
<tr>
<td>281</td>
<td>voltage threshold switch</td>
</tr>
<tr>
<td>282</td>
<td>Or element</td>
</tr>
<tr>
<td>29</td>
<td>switching element</td>
</tr>
<tr>
<td>291, 292</td>
<td>high-resistance resistor</td>
</tr>
<tr>
<td>30</td>
<td>inverter</td>
</tr>
<tr>
<td>31</td>
<td>DC/AC converter</td>
</tr>
<tr>
<td>32</td>
<td>input capacitor</td>
</tr>
</tbody>
</table>
33 internal switching element
34 measuring arrangement
341-344 coupling capacitor
345-346 coupling resistor
347, 348 test point
350 leakage capacitance
40 isolating element
50 power supply system

N neutral conductor
L phase
PE earth potential
Claims

1. A safety device (20) for a photovoltaic system for feeding into a power supply system (50), the safety device (20) comprising at least one input (21, 22) for connection to a PV generator (10) and at least one output (23, 24) for connection to an inverter (30), and comprising a switching element (29) for de-energizing the at least one output (23, 24), characterized in that the safety device (20) comprises an evaluating unit (27) which is arranged for switching the switching element (29) in dependence on a low-frequency signal present at the at least one output (23, 24).

2. The safety device (20) as claimed in claim 1, in which the evaluating unit (27) is arranged for measuring the low-frequency signal as a voltage signal.

3. The safety device (20) as claimed in claim 2, comprising a terminal (25) for connection to an earth potential (PE), the evaluating unit (27) being arranged for determining the voltage signal between the at least one output (23, 24) and the earth potential (PE).

4. The safety device (20) as claimed in one of claims 1 to 3, in which the evaluating unit (27) is arranged for measuring the low-frequency signal as a current signal.

5. The safety device (20) as claimed in claim 4, comprising a current measuring device connected to the evaluating unit (27), the evaluating unit (27) being arranged for determining a current flowing via the at least one output (23, 24) as current signal.
6. The safety device (20) as claimed in one of claims 1 to 5, in which the low-frequency signal comprises a frequency which corresponds to an integral multiple of the system frequency in the power supply system (50).

7. The safety device (20) as claimed in claim 6, in which the low-frequency signal comprises a frequency which corresponds at least to once and at most to 10-times the system frequency in the power supply system (50).

8. The safety device (20) as claimed in one of claims 1 to 7, comprising a filter (26), especially a band-pass filter.

9. The safety device (20) as claimed in one of claims 1 to 8, comprising an amplifier (274, 274a, 274b) for the low-frequency signal.

10. The safety device (20) as claimed in one of claims 1 to 9, the safety device (20) being arranged for connecting the at least one input (21, 22) to the at least one output (23, 24) at a signal level above a first threshold value.

11. The safety device (20) as claimed in one of claims 1 to 10, the safety device (20) being arranged for de-energizing the at least one output (23, 24) at a signal level below a second threshold value.

12. The safety device (20) as claimed in claim 10 and 11, the second threshold value being below the first threshold value.

13. The safety device (20) as claimed in one of claims 1 to 12, a de-energizing of the at least one
output (23, 24) taking place via a short circuit of the inputs (21, 22) of the safety device (20).

14. The safety device (20) as claimed in one of claims 1 to 12, a de-energizing of the at least one output (23, 24) taking place via a separating of the connection of the at least one input (21, 22) and the at least one output (23, 24).

15. The safety device (20) as claimed in one of claims 1 to 14, the switching element (29) comprising means for extinguishing an arc.

16. The safety device (20) as claimed in one of claims 1 to 15, comprising a central detection unit (20a) with the evaluating unit (27) and at least one switching unit (20b) with the switching element (29), the central detection unit (20a) and the at least one switching unit (20b) being accommodated in separate housings.

17. A method for operating a safety device (20) for a photovoltaic system for feeding into a power supply system (50), the safety device (20) comprising at least one input (21, 22) for connection to a PV generator (10) and at least one output (23, 24) for connection to an inverter (30), and comprising a switching element (29) for de-energizing the at least one output (23, 24), comprising the following steps:

- determining a level of a low-frequency signal at the at least one output (23, 24);
- connecting the at least one output (23, 24) to the at least one input (21, 22), if the level of the low-frequency signal is above a first threshold value, and
- de-energizing the at least one output (23, 24) if the level of the low-frequency signal is below a second threshold value.

18. The method as claimed in claim 17 in which the level of the low-frequency signal is determined at a frequency which corresponds to an integral multiple of the system frequency in the power supply system (50).

19. The method as claimed in claim 18, in which the low-frequency signal has a frequency which corresponds at least to once and at most to 10-times the system frequency in the power supply system (50).