
(19) United States
(12) Patent Application Publication

Colrain et al.

US 2016.0321304A9

(10) Pub. No.: US 2016/0321304 A9
(48) Pub. Date: Nov. 3, 2016

CORRECTED PUBLICATION

(54)

(71)

(72)

(21)

(22)

(15)

(65)

(63)

RECOVERING STATEFUL READ-ONLY
DATABASE SESSIONS

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Carol L. Colrain, Redwood Shores,
CA (US); Kevin S. Neel, San Mateo,
CA (US); Tong Zhou, Merrick, NY
(US); Douglas N. Surber, Orinda, CA
(US); Stefan Heinrich Roesch, San
Mateo, CA (US); Nancy R. Ikeda, Los
Altos Hills, CA (US)

Appl. No.: 13/936,061

Filed: Jul. 5, 2013

Prior Publication Data

Correction of US 2013/0297566 A1 Nov. 7, 2013
See (63) Related U.S. Application Data.

US 2013/029756.6 A1 Nov. 7, 2013

Related U.S. Application Data
Continuation of application No. 13/229,641, filed on
Sep. 9, 2011, now Pat. No. 8,549,154.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30289 (2013.01)

(57) ABSTRACT

A process, apparatus, and computer-readable medium are
provided for rebuilding a database session when a previous
database session becomes unavailable and the commands
previously sent for execution on the previous database
session satisfy certain criteria. The process includes deter
mining whether or not a set of commands sent by a client for
execution on the previous database session is acceptable to
replay based at least in part on whether or not the set of
commands satisfies one or more criteria. The process further
includes determining that the previous database session is
unavailable due to a planned or unplanned recoverable error.
In response to determining that the previous database ses
sion is unavailable, if the set of commands is acceptable for
replay, the set of commands is sent for execution on a new
database session to rebuild the state, which was exposed to
the client from the previous database session, on the new
database session. The process masks the outage from the
application.

APPLICATION 101

DRIVER102

DATABASE DATABASE DATABASE
SESSION SESSION SESSION

: 103B 103C 103A

DATABASE 104

Patent Application Publication Nov. 3, 2016 Sheet 1 of 6 US 2016/0321304 A9

FIG. 1

APPLICATION 101

DRIVER102

-

- a

DATABASE DATABASE DATABASE
SESSION | SESSION | | SESSION
103A 103B 103C

1
-

DATABASE 104

Patent Application Publication Nov. 3, 2016 Sheet 2 of 6 US 2016/0321304 A9

FIG. 2

ENABLE REPLAY ATBEGINNING OF REQUEST200

y
MONITOR COMMAND SENTIN REQUEST DURINGRUNTIME 201

DOES THE MONITORED
COMMAND SATISFY ONE OR s
MORE DISQUALIFYING

NO CRITERIA -

ADD MONITORED su
COMMAND TO HISTORY OF PURGE HISTORY OF

COMMANDS AND COMMANDS AND
CALCULATE CHECKSUM DISABLE REPLAY UNTIL
OF APPLICATION-VISIBLE END OF REQUEST
RESULT OF MONITORED

COMMAND
203

w
N /

YES COMMANDS NO MORE YES
INREQUEST REE's

/ NO (AWAIT FURTHER
REQUESTS)

Patent Application Publication Nov. 3, 2016 Sheet 3 of 6 US 2016/0321304 A9

FIG. 3
DETECTUNAVAILABILITY OF THE FIRST DATABASESESSION301

y
IFREPLAYISENABLED, REPLAYINITIATIONTIMEOUTHAS NOT BEEN
EXCEEDED, AND THERE ARE ONE ORMORESTORED COMMANDS TO
REPLAY, BEGINREPLAY AND INITIATESECONDDATABASE SESSION

302

REPLAYA STORED COMMAND ON THE SECOND DATABASE SESSION
303

DOES APPLICATION-VISIBLE RESULT is
FROMREPLAY MATCH

s APPLICATION-VISIBLE RESULT FROM
YES RUNTIME?

MORE N
YES COMMANDS

Y. Y. TO -

REPLAY

| No
ALLOW FAILURE OF THE

END OF SUCCESSFUL REPLAY, FIRST DATABASE SESSION
CONTINUE TO STEP 201FOR WITHOUT REBUILDING
FURTHER COMMANDS TO BE STATE ON SECOND

EXECUTED ON SECOND DATABASE SESSION
DATABASE SESSION 306

Nov. 3, 2016 Sheet 4 of 6 US 2016/0321304 A9 Patent Application Publication

AWIdBHETRWSIQ QNW SGNW?NWOO39&nd “ESIMMEHLO AVTdEH HOHET8WLI?S HI SONWINWOO SCITOHZZF"

* *

US 2016/0321304 A9 Nov. 3, 2016 Sheet 5 of 6 Patent Application Publication

0Z9009

>JOSH [TO

Nov. 3, 2016 Sheet 6 of 6 Patent Application Publication

US 2016/0321304 A9

RECOVERING STATEFUL READ-ONLY
DATABASE SESSIONS

BENEFIT CLAIM; CROSS-REFERENCE TO
RELATED APPLICATIONS

0001. This application claims benefit and priority under
35 U.S.C. S 120 as a Continuation of application Ser. No.
13/229,641, entitled “Recovering Stateful Read-Only Data
base Sessions.” filed Sep. 9, 2011, the entire contents of
which is hereby incorporated by reference as if fully set forth
herein. The applicant(s) hereby rescind any disclaimer of
claim scope in the parent application(s) or the prosecution
history thereof and advise the USPTO that the claims in this
application may be broader than any claim in the parent
application(s).

CROSS-REFERENCE TO RELATED
APPLICATIONS

0002. This application is related to (1) U.S. Pat. No.
7.747,754, entitled “Transparent Migration Of Stateless Ses
sions Across Servers, filed Aug. 12, 2004, the entire con
tents of which is incorporated by reference herein in its
entirety; (2) U.S. Pat. No. 7,502,824, entitled “Database
Shutdown With Session Migration,” filed May 1, 2006; (3)
U.S. Pat. No. 7,552,218, entitled “Transparent Session
Migration Across Servers, filed Aug. 12, 2004, the entire
contents of which is incorporated by reference herein in its
entirety; (4) U.S. Pat. No. 7,415,470, entitled “Capturing
And Re-Creating The State Of A Queue When Migrating A
Session, filed May 17, 2005, the entire contents of which is
incorporated by reference herein in its entirety; (5) U.S. Pat.
No. 7,634.512, entitled “Migrating Temporary Data Of A
Session, filed Apr. 4, 2007, the entire contents of which is
incorporated by reference herein in its entirety; (6) U.S.
patent application Ser. No. 13/076,313, entitled “Applica
tion Workload Capture And Replay System, filed Mar. 30.
2011, the entire contents of which is incorporated by refer
ence herein in its entirety.

FIELD OF THE INVENTION

0003. The present invention relates to recovering state for
a database session that has become unavailable.

BACKGROUND

Database Instances

0004. A database comprises data and metadata that is
stored on one or more storage devices, such as a hard disk,
a stick of random access memory, a cluster or a cloud storage
system. Such data and metadata may be stored in a database
logically, for example, according to relational and/or object
relational database constructs. A database application inter
acts with an instance of a database server (“database
instance') by Submitting, to the database instance, com
mands that cause the database instance to perform opera
tions on data stored in a database. A database command is a
request to access or modify data from a database. The
command may cause the database instance to perform
operations on the data in the database and/or return the data
from the database.
0005. In a multi-node database system, a database may be
served by multiple database instances, and each database
instance may be configured to access all or part of the

Nov. 3, 2016

database. An instance of a server is a combination of
integrated Software components, such as one or more pro
cesses executing on one or more computing devices, and an
allocation of computational resources. Such as memory,
storage, or processor cycles, for executing the integrated
Software components on a processor. A database instance is
a combination of integrated Software components and an
allocation of computational resources for accessing, modi
fying, or otherwise using a database. Database instances
may be grouped into logical domains called services. Mul
tiple database instances may be installed or configured on a
single machine or on separate machines. When processing
database commands, a database instance may access the
database or a cache of information from the database. In one
example, the database is stored in non-volatile memory, and
the cache is stored in Volatile memory.
0006 When multiple database instances share access to
the same data, a database instance may lock a portion of the
database while the portion is in use by the database instance.
For example, the database instance may lock the portion for
exclusive read and/or write access, and other database
instances are prevented from accessing and/or modifying the
portion while the portion is locked. The database instance
then releases the lock when the database instance is finished
accessing and/or modifying that portion of the database.
After the lock is released, other instances may access and/or
modify the portion or obtain a lock on the portion.
0007 Database commands may be submitted to the data
base instance in the form of database statements that con
form to a database language Supported by the database
instance. One non-limiting example of a database language
Supported by many database instances is a Data Manipula
tion Language ("DML') called Structured Query Language
(“SQL'), including proprietary forms of SQL supported by
such database servers as Oracle(R), (e.g. Oracle(R) Database
11 g). SQL data definition language (“DDL) instructions
are issued to a database server to create or configure data
base objects, such as tables, views, or complex types.
Although SQL is mentioned as one example, there are many
other example database languages and exposed interfaces to
the database, any of which may be used in conjunction with
the techniques described herein.
0008 Procedural Language/Structured Query Language
(“PL/SQL) extends SQL by providing constructs found in
procedural languages, resulting in a structural language that
is more powerful than standard SQL. PL/SQL commands
are organized into blocks of variable declarations, Sub
commands that include procedural and SQL commands, and
exception-handling commands. PL/SQL commands may be
sent to a database server to cause the database server to
perform a variety of actions as the PL/SQL commands are
executed. The database server may also receive and execute
Java-based commands, or commands that conform to other
programming languages or constructs.
0009 Multiple database commands may be sent from a
database client to the database instance in a single request to
perform work. The database commands may be processed
by the database instance, and the database instance may
return results to the database client in a single response to all
commands that were Submitted in the request. Handling
multiple commands in a single roundtrip request and
response may result in an efficient use of database connec
tions. In other words, clients generally use database con
nections to Submit requests less frequently when multiple

US 2016/0321304 A9

commands are allowed to be submitted on the requests that
use the database connections.

Applications and Logical Connections
0010 Servers, such as mid-tier servers, provide database
instance connections to applications that request information
from a database. A mid-tier server is a server that provides
access to one or more database servers, distributes work to
one or more database servers, or manages connections to one
or more database servers. An application is any logic run
ning on one or more computing devices that uses a database
connection to retrieve information from the database. The
retrieved information may be presented or displayed to a
user of the application. For example, the application may be
accessed from a browser, where the application receives
input from the user and presents information to the user. The
application may be an application that is accessed through a
web portal, over a network, by the user, an application that
is installed on a machine of the user, or an application that
is distributed among multiple machines.
0011. In one example, an Oracle(R) Fusion(R) Application

is specially configured to retrieve data from an Oracle(R)
database, and display the information to a user of the
Fusion(R) Application. Applications other than Oracle(R)
Fusion(R) Applications currently exist, and other database
applications may be developed in the future without depart
ing from the present disclosure.
0012. In one example, an application issues a request to
a mid-tier server for data from a database. The request may
or may not be sent in response to user input. The mid-tier
server selects a free connection from a connection pool of
free connections to database instances. A database connec
tion that has been selected and/or customized for use by a
client or group of clients is referred to herein as a “database
session.” A database connection may be customized to meet
particular needs as a database session for a particular client,
or the connection may be generalized such that the connec
tion can be used to Support a variety of database sessions for
a variety of clients. The mid-tier server sends the client
request on the selected connection to a database instance,
and the database instance accesses a database to handle the
request. The database server processes the request by
retrieving or modifying data in the database or by retrieving
or modifying the data in a cache of data from the database.
The database server establishes state for the database session
as the database server processes the request.
0013 Mid-tier servers often maintain connection pools,
which include connections to database instances. The con
nection may refer to either a physical mechanism, Such as a
physical port, or a logical configuration, or both. There may
be a one-to-one mapping of logical connections (i.e., data
base sessions) to physical connections. On the other hand,
there may be more than one logical connection associated
with a single physical connection. In one example, the free
connections in the connection pool include only those con
nections that are not allocated to applications for processing
requests. As work completes, connections are returned to the
connection pool and are available for Subsequent applica
tions to borrow from the pool.
0014. In one example, the mid-tier server assigns a logi
cal connection to an application that is requesting access to
the database. The logical connection is mapped, directly or
indirectly, to one of a plurality of physical connections. The
logical connection may be re-assigned to new physical

Nov. 3, 2016

connections without re-assigning a new logical connection
to the application. The logical connection may be exposed to
the application, and the application may continue to refer
ence the same logical connection as the underlying physical
connections change. In one example, a particular logical
connection is represented as a connection object that is
exposed to the application and that is mapped to another
connection object, which may or may not be exposed to the
application, and which may or may not be another logical
connection. Through a hierarchy of logical connections, the
particular logical connection is mapped to a physical con
nection.

Effect of Database Session Unavailability on the
Application

0015. As an application uses a database session to access
a database, the application builds up state on the database
session. For example, application uses the database session
to obtain locks, create temporary variables or database
objects, establish user-specific information, establish appli
cation-specific information, establish cursor information,
create temporary arrangements or selections of data, and/or
perform other partially completed operations on data for
further processing in the database session. If the database
session fails before the further processing occurs, the locks,
temporary variables or database objects, user-specific infor
mation, application-specific information, cursor informa
tion, temporary arrangements or selections of data, and/or
the partially completed operations become unavailable to the
application, even if the application attempts to reference this
information in a new database session.
0016. In one example, the database session may fail or
otherwise becomes unavailable if a database instance upon
which the database session depends fails or otherwise
becomes unavailable. In many cases, failure of the database
session causes the application to fail in order to avoid
corrupting data in the database, and the user must restart the
application or components of the application and start over
with obtaining locks, creating temporary variables or data
base objects, establishing user-specific information, estab
lishing application-specific information, establishing cursor
information, creating temporary arrangements or selections
of data, and/or partially completing operations on data for
further processing in the database session. In one example,
upon failure of the database session, the user may be left
hanging with a blue screen or interrupted with an error
message.
0017. In another example, once the database session has
failed, the user may be prevented from entering any infor
mation or causing any commands to be submitted to the
database before the page is reloaded. Also, reloading the
page without checking what data was stored to the database
could lead to a duplicate Submission. The application may
prevent the user from Submitting any commands that depend
on the state that was lost in the failed database session or
may misbehave if needed information is no longer available.
In a particular example, fields already presented to the user
may be grayed to indicate that, in order to avoid corrupting
data stored in the database, the fields can no longer be
modified by the application.
0018. Even if the database session fails over to a second
database instance, the second database instance may not
have any information about the database session beyond
what was committed to the database prior to the failure. In

US 2016/0321304 A9

order to avoid corrupting the data in the database, applica
tions may reset the information that is displayed to the user
to information that matches the data already committed to
the database. In other words, when a database instance fails,
a user may lose temporary information that would have been
available to the user just prior to the failure. Some of the lost
information may correspond to information that was being
displayed, modified, selected, or arranged by the application
and/or user that was using a now unavailable database
session, or information that was about to be returned to the
application and/or user on the now unavailable database
session. The user is often forced to re-enter fields of data
again.
0019. The loss of information already entered, modified,
selected, and/or arranged by a user may result in user
frustration and wasted time in re-entry, re-modification,
re-selection, and/or re-arrangement of the information after
the application or application component has restarted. The
lost information may be information that was retrieved by
the user from others, for example, by video, Voice, email, or
text message. In some cases, the lost information may no
longer be retrievable. Losing information can be particularly
costly when the user is being assisted by a Support service
provider as the failure occurs. Loss of information may
require further communications with the Support service
provider, or may even cause the user to lose faith in the
reliability of the application, the mid-tier server, or the
database server, or the company that provides the applica
tion, the mid-tier server, and/or the database server. Further,
the user may be selecting, entering, or modifying time
sensitive information prior to failure. Requiring the user to
re-enter the time-sensitive information after the failure may
result in a delay that causes loss of business, value, or
reputation of the user to business clients or business ventures
of the user. Requiring re-entry may also result in a loss of
opportunity for the user. For example, the user may miss out
on items or opportunities that the user had previously
selected.
0020. The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

0021. In the drawings:
0022 FIG. 1 illustrates an example database system that
allows an application to access a database in a database
session.
0023 FIG. 2 illustrates an example process for enabling
and disabling replay, and maintaining a history of commands
for replay.
0024 FIG. 3 illustrates an example processes for recov
ering a stateful database session.
0025 FIG. 4 illustrates an example runtime workflow for
a system using a particular driver.
0026 FIG. 5 illustrates an example failover workflow for
a system using a particular driver.
0027 FIG. 6 illustrates an example computer system
upon which techniques described herein may be imple
mented. In various embodiments, a set of Such example
computer systems or different computer systems, each of

Nov. 3, 2016

which may or may not include all of the components of the
example computer system, may function together to provide
the functionality described herein.

DETAILED DESCRIPTION

0028. In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur
ing the present invention.

General Overview

0029 Techniques are disclosed herein for recovering
state on a new database session when commands previously
Submitted on a previous database session satisfy certain
criteria. Although the techniques may be described with
reference to specific embodiments, the functionality
described herein may be provided by the performance of a
set of one or more processes, by a set of one or more stored
instructions that, when executed, cause performance of the
processes, or by a set of one or more machines specially
configured to perform the processes. The process includes
determining whether or not a set of commands sent by a
client for execution on the previous database session is
acceptable to replay based at least in part on whether or not
the set of commands satisfies one or more criteria. In one
embodiment, any given command of the set of commands
that satisfies the one or more criteria may disqualify the
entire set of commands for replay. The process further
includes determining that the previous database session is
not available. In response to determining that the previous
database session is not available, if the set of commands is
acceptable for replay, the set of commands is sent for
execution on a new database session to rebuild client-visible
state, or state that could have been exposed to the client on
the previous database session, on the new database session,
and/or to resubmit and complete a failed transaction, and/or
to retrieve data lost from the commands sent to the previous
session. If the state has been successfully rebuilt on the
second database session, the second database session may be
used for execution of further commands sent by the client.
For example, after sending the set of commands for execu
tion on the new database session, one or more other com
mands may be sent for execution on the new database
session. The one or more other commands may depend on
the state that was exposed to the client on the previous
database session. One or more other commands may be
executed on the rebuilt session even if the one or more other
commands depend on the State that was exposed to the client
on the previous database session. Thus, the process masks
the outage from the application.
0030. In one embodiment, operation of the application is
delayed while, in a manner that is optionally transparent to
the application and/or to the user, the set of commands is
replayed on the second database session. Operation of the
application resumes when replay of the set of commands has
completed. Once operation of the application has resumed,
the application may submit further commands on the second
database session and receive further results on the second
database session in response to execution of the further

US 2016/0321304 A9

commands. In one embodiment, the application does not
need to receive any information that indicates the first
database session has failed over to the second database
session. For example, the application may be unaware that
a first database instance executing commands on the first
database session has failed and been replaced by a second
database instance executing the commands on the second
database session. Beyond the consumption of time and
resources to replay the commands, the failover might not
have any effect on the application or the user. Further
commands Submitted by the application on the second
database session may depend on session state information
that was created as a result of replaying the commands on
the second database session, and matches or Substantively
matches the session state that existed on the first database
session when the first database session became unavailable.
Information that is accessible to the application, including
optionally information that is displayed to, created by,
modified by, arranged by, or selected by the user, may be
further modified, selected, or arranged by commands that
depend on Session state that was developed on the first
database session and restored to the second database session.
In particular examples, recovering the session state may
recover locks that were obtained prior to unavailability of
the first database session, temporary variables or objects that
were created prior to unavailability of the first database
session, user-specific information that was established prior
to unavailability of the first database session, application
specific information that was established prior to unavail
ability of the first database session, cursor information that
was established prior to unavailability of the first database
session, temporary arrangements or selections of data that
were established prior to unavailability of the first database
session, and/or partially completed or uncommitted opera
tions on data (Such as insert, update, or delete) Submitted
prior to unavailability of the first database session.
0031. Without recovering the database session state, the
user may otherwise be prevented from further modifying,
selecting, or arranging data by executing commands that
depend on Session state that was developed on the first
database session. For example, when the first database
session fails, without replay, fields of the application may be
grayed out to the user, indicating that the fields cannot be
further modified. As another example, when the first data
base session fails, without replay, the application may crash
or, worse, corrupt the data stored in the database by falsely
assuming that a new database session is aware of the session
state that existed on the first database session.

0032 To the user and/or to the application, recovering
commands to re-establish the state of a database session
appears merely as a delay in operation of the application.
Causing a delay in operation of the application, while the
commands are recovered to re-build the database session
state, is an acceptable consequence of re-establishing the
database session state when a database session being used by
the application becomes unavailable. Logical corruption of
the data may occur if recovery is not performed, or if
recovery is not performed correctly. If the state of a database
session is lost when the database session becomes unavail
able, then the application might be affected by more than a
mere delay in execution. Losing session state may corrupt
the application, resulting in application failure, unexpected
rollback and loss of information already entered, or, worse,
corruption of information stored in the database. Further,

Nov. 3, 2016

applications may be delayed for any number of reasons other
than for preservation of session state during a replay of
commands. For example, applications may be delayed while
waiting for a connection, while waiting for results, or while
Some other computation or communication is being per
formed relating to functionality of the application.
0033. In one embodiment, the process includes receiving,
on the first database session, a first set of results in response
to the set of commands that were sent on the first database
session. The process also includes receiving, on the second
database session, a second set of results in response to the set
of commands that were replayed on the second database
session. The process includes determining whether the first
set of results matches the second set of results. If the first set
of results matches the second set of results, the process
includes causing operation of the application to resume with
session state preserved. Otherwise, if replay of the com
mands did not produce the same results as when the com
mands were originally executed, the second database session
may not have correctly restored client-side state information
that was built up on the client session. To avoid errors, if
session state was not correctly restored, further commands
from the application cannot rely on session state that was
built up on the client session. The application or components
of the application may need to restart to avoid any depen
dence on prior session state.
0034. In one embodiment, the process includes receiving
a first response on the first database session and extracting
the first set of results from the first response. The process
also includes receiving a second response on the second
database session and extracting the second set of results
from the second response. The first set of results that is
extracted from the first response includes a first subset of
results that could have been visible to (i.e. were exposed to
or could have been accessed by) the application but not a
second subset of results that could not have been visible to
the application. The second set of results that is extracted
from the second response includes a third subset of results
that could have been visible to the application but not a
fourth subset of results that could not have been visible to
the application. In a particular embodiment, the first Subset
and the third subset are the same only when client state is
preserved, but the second subset and the fourth subset may
be different even if client state is preserved. The client state
is the information that has been exposed to the application
as the application interacts with the database. In other words,
the client state is the information that is visible to the
application, and the information upon which the application
may be making decisions.
0035. In one embodiment, the process includes determin
ing a first value using a procedure by inputting, to the
procedure, a first set of application-visible results received
on the first database session in response to the set of
commands sent on the first database session. The process
also includes determining a second value using the proce
dure by inputting, to the procedure, a second set of appli
cation-visible results in response to the set of commands
sent on the second database session. The procedure evalu
ates whether the first set of application-visible results
matches the second set of application-visible results. In one
embodiment, the process includes determining whether the
first value matches the second value, and the process
includes causing operation of the application to resume in
response to determining that the first value matches the

US 2016/0321304 A9

second value. In a particular embodiment, the procedure is
a checksum procedure, and the value is a checksum value.
In one example, the checksum value is a fixed size or a
limited size regardless of a size of the first set of results and
a size of the second set of results. In various other embodi
ments, the procedure may be any procedure that accounts for
results from both runtime and replay of the set of commands.
In a simple example, the results from runtime and replay
may be compared to each other without using any proce
dures to reduce or limit the amount of data to be compared.
In one embodiment, the checksum incorporates all results
that were visible to the client. These results includes the
rows returned, the row count returned, the error text and
error message, function and/or procedure results, and in one
embodiment DML returning.
0036. In one embodiment, the process includes determin
ing whether each command satisfies one or more criteria by
evaluating each command on a command-by-command
basis or searching the set of commands for any commands
that actually change the state of the database, any commands
that could change the state of the database, any commands
that actually start or complete a transaction, or any com
mands that could start or complete a transaction. As used
herein, a transaction includes one or more commands that
commit additions, modifications, deletions, or other changes
to information stored in the database. In one embodiment,
the process includes: storing a particular set of commands
that, if executed, could otherwise start or complete a trans
action, for example, by committing changes to the database,
or storing a particular set of commands that, if executed,
could otherwise change the state of the database. In the
example, the process may include evaluating each command
on a command-by-command basis or searching the set of
commands for any commands in the particular set of com
mands.

0037. The process may include, but need not include,
determining whether or not the detected commands actually
changed the state of the database, or actually started or
completed a transaction. If the set of commands does not
include any commands that could change the State of the
database, or commands that could start or complete a
transaction, then, in one embodiment, the set of commands
is acceptable or safe for replay. In one embodiment, a
database instance serving a database session may inform the
client as to whether any commands of the set of commands
made any important changes, such as starting or completing
transactions, or otherwise whether the set of commands is
acceptable or safe for replay. In response to determining that
the set of commands is safe for replay, the process includes
causing a delay in operation of the application and replaying
the set of commands without the risk of those commands
executing twice to change the state of the database, or to start
a transaction that was already started.
0038. If the set of commands does include commands
that may change the State of the database or may start or
complete a transaction, then the process may include avoid
ing replay and also failing to preserve the state of the
database session. Replay may be avoided due to the risk of
replaying commands that could execute twice to change the
state of the database, or start a transaction that was already
started. Executing these types of commands twice could
result in errors due to a database session state that is
unexpected by the application. Replaying these types of
commands could result in duplicate insertions or other

Nov. 3, 2016

unwanted database changes, possibly causing corruption of
the data stored in the database.

0039. In one embodiment, the process includes determin
ing whether or not commands in the set of commands satisfy
one or more criteria during runtime of the set of commands,
before the process detects the unavailability of the first
database session. Determining whether or not the commands
satisfy the criteria may be performed on each command
individually as the command is sent, on a request that
includes several commands, or on Some other grouping of
commands. In one embodiment, an entire set of commands
is disqualified upon detecting that a given command in the
set of commands is disqualified. In this embodiment, evalu
ation of commands may stop upon detecting a disqualifying
command, and resume after the set of commands is com
plete. For example, replay may be disabled upon detecting
a first disqualifying command in a request of commands, and
replay may be re-enabled at the end of the request. In
response to determining that the set of commands includes
at least one command that satisfies the one or more criteria,
the process includes setting a flag that indicates a boundary
of a transaction or other disqualifying criteria was detected
in the set of commands. In a particular embodiment, the
process includes setting a flag when the process detects that
a transaction has been started or other disqualifying criteria
has been detected in one or more of the commands, and
clearing the flag when the process detects the end of the set
of commands, detects that a transaction has been completed,
or detects other re-qualifying criteria has been detected in
one or more other of the commands. By setting the flag when
disqualifying criteria is present in a set of commands, the
first criteria violation may disable replay for the entire set of
commands. Replay continues to be disabled until the flag is
cleared.

0040. In one embodiment, the process includes causing a
delay in operation of the application, sending the set of
commands for execution on a second database session, and
causing operation of the application to resume without
requiring the application to disregard locks, temporary vari
ables or database objects, user-specific information, appli
cation-specific information, cursor information, temporary
arrangements or selections of data, and/or the partially
completed operations that were already achieved during the
first database session.

0041. In one embodiment, commands are replayed on the
second database session against states of the database in
which the commands were previously executed on the first
database session. In another embodiment, commands are
replayed on the second database session against current
states of the database. In a particular embodiment, a first
Subset of one or more commands is sent for execution on the
second database session at States of the database in which the
first set of commands were previously executed on the first
database session. The previous states of the database may be
identified and recreated using identifiers, such as a System
Change Numbers (“SCNs'), that are associated with each
command in the first set of commands. In the particular
embodiment, a second Subset of one or more commands may
be executed on the second database session using current
states of the database.

0042. In one embodiment, some or all of the processes
described herein are performed by one or more devices
running a Java Database Connectivity (JDBC) driver that
is logically positioned between the application and the

US 2016/0321304 A9

database instances. The JDBC driver exposes an Application
Programming Interface (API), or set of procedures, to
applications. The applications make calls to procedures,
using the API, to access the database. The JDBC driver may
record conversations between the driver and the application.
JDBC conversations include, for example, a name of a
procedure called by the application, arguments to the pro
cedure provided by the application, and other information
such as results available to the application after the results
are retrieved by the driver from the database instance. The
techniques described herein are not limited to a JDBC driver.
Features described herein may be implemented in any client
driver.

0043 FIG. 1 illustrates an example database system that
allows an application to access a database in a database
session. As shown, application 101 is in communication
with driver 102. For example, driver 102 may expose an API
to application 101, and application 101 may use the API to
make calls to driver 102. At a particular time, driver 102 is
in communication with database 104 on database session
103A, as illustrated with the dotted line. Database session
103A provides access to database 104 by allowing applica
tion 101 to send commands for execution against database
104. Database session 103A provides results to driver 102.
and driver 102 makes the results accessible to application
101. All recorded commands in the history of commands
may be purged when a command is found not to be replay
able.

0044. During operation, driver 102 may record API calls
and arguments to the API calls made by application 101.
Driver 102 may also record results received by driver 102 on
database session 103A in response to database commands
sent by driver 102 on database session 103A. In one embodi
ment, driver 102 retains, after sending the calls, only if all
calls So far satisfy a set of qualifying criteria and/or do not
satisfy a set of disqualifying criteria. Driver 102 may purge
calls and results when a request associated with the calls
ends. Calls and results that are not purged remain accessible
to driver 102.

0045. After the particular time, driver 102 detects
unavailability of database session 103A. In response, driver
102 elects to restore session state to database session 103B.
In one example, driver 102 determines, on a command-by
command basis as each command is received, whether
commands in the set of sent commands satisfy one or more
criteria. In one embodiment, if any command of the set of
sent commands satisfies the one or more disqualifying
criteria, then replay is disabled for the entire set of com
mands, and, to avoid the risk of extremely adverse conse
quences that could result from one or more of the commands
being replayed, no commands from the set of commands are
replayed on database session 103B. If no commands in the
set of recorded commands satisfy the one or more disquali
fying criteria, then the set of commands may safely be
replayed on database session 103B, without the risk of
extremely adverse consequences that could occur by replay
ing commands that satisfy the one or more disqualifying
criteria.
0046) Operation of application 101 may experience a
delay as commands are replayed on database session 103B.
Once the commands are replayed, driver 102 may determine
whether the application-visible results that were received in
response to the commands sent on the second database
session are the same as the application-visible results that

Nov. 3, 2016

were received in response to the commands sent on the first
database session. If the application-visible results were the
same for both occurrences of execution of the commands,
then driver 102 may safely presume that the database session
103B is substantively the same as database session 103Ajust
prior to unavailability of first database session 103A. There
fore, operation of application 101 may be resumed, and
further commands may be submitted from application 101 to
driver 102 for execution on database session 103B. Appli
cation 101 need not be aware, or even account for, failover
of the database session from database session 103A to
database session 103B. Database session 103B could also
become unavailable, and session state could be preserved in
the same manner as the session is migrated to database
Session 103C.

0047 FIG. 2 illustrates an example process for enabling
and disabling replay, and maintaining a history of commands
for replay. The process includes detecting the beginning of
a request and, in step 200, replay may be enabled at the
beginning of the request. In step 201, the process includes,
optionally on a command-by-command basis as each com
ment is received, monitoring a command that is sent on a
first database session during runtime. In step 202, a deter
mination is made as to whether or not the monitored
command satisfies one or more criteria, Such as disqualify
ing criteria. If the monitored command does not satisfy the
one or more disqualifying criteria, then, in step 203, the
process includes adding the monitored command to a history
of commands, and calculating a checksum of an application
visible result of the monitored command. If there are more
commands in the request, as determined in step 204, then the
process continues at step 201. If there are no more com
mands in the request, then, if there are any further requests,
the process continues at step 200 for the next request. The
history of commands may be cleared as requests are com
pleted and changes are committed to the database. If there
are no more commands in the request and there are no more
requests, then the process may await further requests from
the client.

0048 If the monitored command does satisfy disqualify
ing criteria, as determined in step 202, then, in step 206, the
process includes disabling replay and purging the history of
commands until the end of the request. Upon the end of the
request, if replay was disabled in step 206, then replay may
be re-enabled in step 200 for the next request. If there are no
other requests, then the process may await further requests
from the client.

0049 FIG. 3 illustrates an example process for recover
ing a stateful database session. In step 301, the process
includes detecting unavailability of a first database session,
for example, while commands are being sent for execution
on the first database session during runtime according to the
process illustrated in FIG. 2. Having detected an error, the
process may include, before initiating replay, confirming
that replay is enabled, that the replay expire time has not
been expired, and/or that the last command sent is safe to
replay. In one example, replay is enabled, and the commands
previously sent for execution have been saved in the history
of commands. The process also includes, in response to
detecting unavailability, if replay is enabled, replay initiation
timeout has not been exceeded (e.g., timed out), and there
are one or more stored commands to replay, in step 302,
begin replay and initiate a second database session on which
to send replayed commands. Optionally, commands may be

US 2016/0321304 A9

replayed one-by-one, comparing the application-visible
results during runtime to the application-visible results dur
ing replay after each command is replayed. In one example,
when reaching the last call, no results have been received
from the server for this call. This call is resubmitted in a
recording mode. If it satisfies the criteria for recording this
call is recorded and the client continues as per FIG. 2.
0050. In step 303, if commands are replayed one-by-one,
a stored command is replayed on the second database
session. In step 304, the process includes determining
whether the application-visible result from replay matches
the application-visible result from runtime. If the results
match, then replay was successful for the replayed com
mand. If there are any more commands to replay, as deter
mined in step 305, then the process resumes at step 303. If
all commands have been replayed and the results from the
replayed commands matched results from corresponding
runtime commands, then the client state, or application
visible portion of the first database session state, has been
restored on the second database session. If replay is suc
cessful, the process may continue in step 202 of FIG. 2 by
executing and monitoring further commands on the second
database session. In step 306, if the application-visible
results do not match, then failure of the first database session
is allowed without rebuilding client state on the second
database session. For example, the application may crash or
otherwise be unable to communicate with the database.

Driver Between Application and Database Instances
0051. In one embodiment, a driver is logically positioned
between the application and the database instances. In one
embodiment, the driver is configured to carry out monitoring
commands initiated by the application and sent on a first
database session, determining whether or not commands in
the monitored commands satisfy a set of stored criteria,
retaining commands for replay based on whether or not the
commands satisfy the set of stored criteria, detecting
unavailability of a first database session, pausing operation
of the application, replaying the retained commands on a
second database session, determining whether the client
visible results of the commands sent on the first database
session match results of commands replayed on the second
database session, and/or resuming operation of the applica
tion. The driver may be part of the application, part of the
database server, part of a mid-tier server that is separate from
the application and the database server, or part of some other
logic that is separate from the application, the database
server, and the mid-tier server. For example, a driver layer
may exist on the client side, with access to any or all requests
issued by the client against the database. Functionality
described as being executed by the driver may also be
executed by the application, by the database server, by a
mid-tier server that is separate from the application and the
database server, or by any other mechanism such as other
mechanisms for accessing the database.
0.052. In one embodiment, the driver is a Java Database
Connectivity (“JDBC) driver. In various other embodi
ments, the driver may be an Oracle Call Interface (“OCI)
driver, an Open Database Connectivity (“ODBC) driver, a
C Sharp driver, a Systems Network Architecture (“SNA')
driver, or any other specially programmed driver that
accomplishes functionality as described herein. JDBC is an
API or set of procedures that a higher-level component may
call to access the database. JDBC provides connectivity

Nov. 3, 2016

between the Java programming language and a wide range
of databases. A JDBC conversation between the application
and the driver may include the name of a called procedure,
arguments to the called procedure, and other information,
such as results received from execution of the called pro
cedure, to determine whether the procedure achieves the
same results when replayed. The driver records the JDBC
conversation and uses the JDBC conversation to verify that
a replay of commands during failover has restored the
database session. The driver maintains the history of com
mands for the duration of the conversation, purging closed
calls for completed queries and completed requests. The
replay duration is limited by purging closed cursors, and at
request boundaries dependent on the nature of the session
State.

0053. The driver provides an API that exposes a plurality
of procedures to the application. In one embodiment, the
API exposes a begin request method and an end request
method to the application. A request is a unit of work
Submitted by an application to execute some functionality. A
request has an initialization phase, an execution phase, and
an end phase. Requests are demarcated or delimited by the
application using the begin request and end request methods.
These API calls are embedded when borrowing and return
ing requests from connection pools. Using the request
boundaries, the driver and the server to know where requests
begin and end for dedicated sessions, and sessions pooled
above the driverpools. For driver connection pools, a begin
request is issued at connection check-out and an end request
is issued at connection check-in so that the server knows
where requests begin and end. They need to be added to
frameworks that hold connections for long periods, use these
connections for handling requests, and do not return the
requests to the lower level pools between requests. A request
may use a connection pool or may use a dedicated session
for a connection pool, and each get connection adds a begin
request marker. Each return to the pool adds an end request
marker. If not using a connection pool, requests are also
marked using explicit begin request/end request markers.
0054. At failover, to ensure correctness, in one embodi
ment a brand new session is created. This ensures that the
session contains no residual state due to a previous use from
a connection pool. An initialization callback is registered on
a per-connection basis on the Replay Data Source in the
Replay Driver. The initialization callback is executed during
the initialization phase when the Replay DataSource gets a
new physical connection at replay. Using the callback at
replay allows applications to re-establish the connections
starting point after a failover and before replay starts, as was
set up at original execution. The initialization actions within
the callback are equivalent to or the same as those applied
on the original connection. If the callback invocation fails,
replay fails on the new connection. In one embodiment, the
connection pool is responsible for implementing this driver
level Initialization Callback. As part of the implementation,
the connection pool maps the callback method call to the
pool-level Initialization APIs such as Connection Labeling
Callback or pool-level Initialization Callback, such that
connection initialization is equivalent at original execution
and replay. If a transaction (top-level or embedded) is
opened during the callback invocation (original or at recon
nect), the transaction is committed or rolled back before the
callback completes. If this is violated, in one embodiment,
the Replay Driver throws an exception and does not replay.

US 2016/0321304 A9

In one embodiment, a new session is created for replay to
ensure that there is no residual state that could otherwise
exist in a checked out session.

0055. The execution phase of the request begins once the
session is initialized and ends after execution of the last
command on the session, as the session is returned to the
pool. In one embodiment, a browser checks out a single
database session and performs many separate requests for
separate users or clients in the database session. In another
embodiment, a web request may correspond to a single
check-out of a database session from a pool, an execution of
commands using the database session, and a check-back-in
of the database session to the pool. If the browser manages
a single database session to perform many requests, in one
embodiment, the browser uses the begin request method and
end request method to indicate, to the driver, when a request
or when the execution phase of a request begins and ends.
The driver receives, according to the exposed application
programming interface, marked request boundaries around a
set of commands that belong to the request.
0056. In one embodiment, the driver maintains a history
of commands and application-visible results for opened
requests and purges the history of commands and applica
tion-visible results for closed requests. The application that
initiated a request does not rely on the session to maintain
any information about previously executed commands or
previously received results from a prior request. To preserve
the expectations for applications that initiate requests, the
history of commands and application-visible results is
purged between requests. Therefore, purging this client state
information between requests does not violate the expecta
tions of applications. At failover, when a prior database
session is unavailable, a new database session is created
Such that there is no residual session state due to using a
checked out database session. The client state is rebuilt using
the recorded history of commands, and verified using the
application-visible results. In one embodiment, cursor infor
mation is retained for many requests such that the cursor
may continue to be selected across requests.
0057. In one embodiment, cursor information is retained
for many requests Such that the cursor may continue to be
selected across requests. By retaining cursor information,
cursors that are used for many requests may be kept.
Database sessions may be allowed to retain certain charac
teristics such that the database sessions are available for
particular applications, users, or for particular purposes. In
one example, an application requests a customized database
session with certain characteristics, and the application is
granted an existing customized session that already has the
certain characteristics, or an existing session that has been
customized to have the certain characteristics. Client state
could be partially erased. This allows the driver to keep
cursors that span requests. Partial erasing involves keeping
open cursors that span requests such that the application may
continue selecting from these cursors across requests with
out losing the potential for client state recovery through
replay.
0058 FIG. 4 illustrates an example runtime workflow for
a system using a particular driver. In the workflow, a
database system is illustrated as driver 400, shared cursor
layer 402, transaction layer 404, and database 406. As
shown, the workflow begins with the session checkout and
initialization phase. In one embodiment, a registered initial
ization callback is executed during the initialization phase

Nov. 3, 2016

when the Replay Data Source gets a new physical connec
tion at replay. Using the callback at replay allows applica
tions to re-establish the connection's starting point after a
failover and before replay starts, as was set up at original
execution. The initialization actions within the callback are
equivalent to or the same as those applied on the original
connection. If the callback invocation fails, replay fails on
the new connection.

0059. Once the connection has been initialized, the driver
connects 414 the client to a database session, and the driver
receives information indicating that the database session is
established 416. A transaction may be reported (item. 450A)
at the transaction layer when the database session is estab
lished or thereafter, as shown. The application or the driver
may perform further initialization (not depicted) on the
database session to prepare the database session for com
mands to be executed by the application. In one illustrated
embodiment, the application may signal the boundaries of a
request with begin request 410 and end request 440A. In
another illustrated embodiment, the application may signal
the boundaries of a request with begin request 410 and end
request 440B.
0060. In query phase 420, the driver receives and holds
422 SQL/PL/SQL commands from the client. As shown, the
driver holds, at step 422, only those commands that are
Suitable for replay. In response to detecting a command in a
set of commands that is unsuitable for replay, the driver
disables replay for an entire set of commands. While replay
is disabled, commands may be purged without losing any
commands that would have otherwise been replayed in the
event the database session becomes unavailable. The com
mands are sent, as shown in item 424, to shared cursor layer
402 for parsing, binding, and execution 426 against database
406. After execution, a result set 428 is returned to driver
400. As shown, driver 400 computes a checksum 430.
Checksum 430 may be stored while the database session
remains active. Query phase 420 may repeat, building up a
history of held commands and stored checksums that rep
resent results of the commands. In one embodiment, a
request is ended 440A at the end of a query phase, with
replay in an enabled State.
0061. In another embodiment, a request is ended 440B at
the end of a commit work phase, concluding a db transaction
phase 442. In database transaction phase 442, Structured
Query Language (SQL) and Procedural Language/Struc
tured Query Language (“PL/SQL) commands 446 are sent
by driver 400 for execution 448 against database 406. SQL
commands may include arrangements, selections, or modi
fications of data, variable declarations, function definitions
and calls, conditions, loops, exceptions, and arrays. PL/SQL
is an extension of the SQL language that Supports procedure
definitions and calls. Procedures that are defined or called by
PL/SQL commands may return multiple values, and may
include definitions and/or calls to other procedures or func
tions. PL/SQL commands often include Data Manipulation
Language (DML) statements to insert, delete, and/or
update data in the database or commands to commit data in
the database. Driver 400 may not have full information
about the possible effects of PL/SQL commands sent to the
database server, and so may treat those commands as poten
tially transactional. If state is built during the committed
transaction, that State may not be re-created without the risk
of re-executing the transaction. It is also possible to re-create
state for a transaction as long as the transaction is not

US 2016/0321304 A9

re-committed. In one embodiment, driver 400 treats PL/SQL
commands as transactional due to the risk that these com
mands could be transactional.

0062. In item 448, a transaction is started to execute the
commands against database 406. The transaction is reported
450B by transaction layer 404, to shared cursor layer 402 as
shown in item 452. A result set 454 is returned to driver 400,
and driver 400 disables replay 456 for the commands, unless
it receives information from Database 406 that those com
mands were not transactional. In one embodiment, a deter
mination of replayability is made per request at runtime. The
checks performed at the time of replay are whether replay
can proceed based on whether or not replay was enabled or
disabled at runtime for the current request, based on whether
timeout has been exceeded for replay, and/or based on
whether the last received command is safe for replay.
0063. In a commit work phase 462, a commit 464 is sent,
through shared cursor layer 402 as shown in item 466, to
transaction layer 404 as shown in item 468. Transaction
layer 404 reports the end of the transaction, flushes redo, and
keeps the session state, as shown in item 470. Database 406
commits the work in item 472 and returns redo records in
item 474. The end of the transaction is reported by transac
tion layer 404 in item 476, and to driver 400 in commit
message 478. In one embodiment (not depicted), replay is
disabled after the commit message is received.
0064 FIG. 5 illustrates an example failover workflow for
a system using an example driver. As shown, the workflow
includes driver 500, database management server
(“DBMS) 502, and transaction layer 504. In step 506,
driver 500 detects unavailability of a database session. In
step 508, a determination is made whether or not replay has
been disabled. Determination of replayability may be made
per request at runtime, and the checks performed at the time
of replay are whether replay can proceed based on whether
or not replay is enabled for the current request, whether or
not timeout has been exceeded, and based on whether or not
the last received command is safe for replay. If replay has
not been disabled, a new connection is created in step 510,
by connecting (step 512) to DBMS 502 and receiving an
indication that a database session has been established (step
514). Further initialization (not depicted) may be performed
by the driver or application to prepare the session for
execution of the recorded commands. Driver begins replay
in step 516. In step 518, open SQL commands are sent in
order according to the SCNs in which the commands were
originally executed against a now failed or failing database
server (not depicted). Transaction layer 504 blocks unex
pected transactions in step 520, and result set 522 is returned
to driver 500. Then, driver sends, at current SCNs of DBMS
502, all SQL and PL/SQL commands in the order in which
they were originally executed against the database server
that is now failed, failing, or going down for planned
operations. Result set 526 is returned to driver 500. Driver
500 verifies replay results executed against DBMS 502
match original results from execution against the now failed
or failing database server for each call passed—any viola
tion disables replay. If any results do not match, in one
embodiment, replay stops immediately, and an error is
returned as if replay had not occurred. Steps 518-526 may be
repeated up to a last uncompleted call, as shown in step 528.
Then, replay ends at step 530. If driver 500 determines that
replay results do not match original results before all com
mands have been replayed, then driver 500 may proceed to

Nov. 3, 2016

end replay 530 prior to completion of all commands that
were executed against the original database server. If any
results do not match, then the database session is not
preserved, and failure occurs as normal.
0065. In one embodiment, once driver 500 has reached
the last uncompleted call, if the call is select, select for
update, alter session, DML, or a transaction that cannot
commit, as determined in step 532, the call is replayed at the
current SCN in step 534. Result set 536 is returned to driver
500, and operation of the application generating the calls
may resume as normal.

Storing Commands Sent During Runtime
0066. The process described herein includes storing com
mands to be sent or already sent for execution against a
database. In one embodiment, command maintenance logic
that is positioned between an application and a database
instance, or that is part of the application or the database
instance, stores commands triggered by the application for
execution by the database instance. The command mainte
nance logic may store any information that allows the
commands to be identified and replayed after failure of the
database instance. In one embodiment, the command main
tenance logic stores a call to a procedure along with argu
ments that were submitted or otherwise existed for the call.
For example, a driver may store a call to an API and
arguments Submitted for the call such that, upon replay, the
driver can use the stored call and arguments to replay the
same commands on a new database session. In one embodi
ment, the command maintenance logic merely selectively
holds or retains calls that are already stored as part of a
conversation between the application and the driver.
0067. In one embodiment, the command maintenance
logic stores commands that were sent after initialization of
a database session, excluding commands that were sent to
initialize the database session for the application. In this
embodiment, the initialization commands do not need to be
retained, monitored, or purged. During replay, the driver
may rely on the application to initialize a new database
session before the monitored commands are replayed on the
new database session. In another embodiment, the command
maintenance logic stores session initialization information
Such that the driver can prepare the new database session for
replay without relying on the application.
0068. In one embodiment, the command maintenance
logic monitors database commands that are sent during
runtime, and keeps track of whether or not replay is enabled.
Once the driver becomes aware that the database session is
unavailable, the command maintenance logic provides the
set of stored commands for replay against a new database
session. The command maintenance logic need not record
commands sent on the new database session prior to comple
tion of replay on the new database session. In one embodi
ment, replay monitoring logic monitors application-visible
results of the commands that were replayed, and Verification
logic verifies that the results from replay match the results
during runtime. Once replay has completed on the new
database session, and when the new database session is used
in replacement of the previous database session, the com
mand maintenance logic may start monitoring the new
database session as if there was no interruption experienced
from the unavailability of the previous database session.
0069. In one embodiment, the command maintenance
logic stores SCNs. Each SCN identifies a state of the

US 2016/0321304 A9

database that existed when the command was created, trans
mitted, received, executed, or committed, or a state of the
database that existed when a response to the command was
created, transmitted, received, executed, or committed. For
example, an SCN may identify a commit state of the
database against which a command was executed. During
replay, the recorded SCN may be submitted with the
recorded command Such that the recorded command may be
replayed against the same database state. The command
maintenance logic may store any database state information
or timing information that allows the commands to be
re-executed in the same manner and against the same data
for which the calls were originally executed.
0070. In one embodiment, the command maintenance
logic keeps the history of commands for the duration of the
conversation by the application using the database session.
The command maintenance logic may purge closed calls for
completed transactions and/or completed requests. The
replay duration is limited by purging closed cursors after a
transaction has completed, and at request boundaries depen
dent on the nature of the session state. Also, when state has
not been changed after startup, cursors may be purged when
they are closed. If state has changed after startup, cursors are
not purged when they are closed.
0071. In one embodiment, the command maintenance
logic maintains a history of commands relevant to applica
tion-visible results from the database instance. For example,
the command maintenance logic may maintain a history of
calls relevant to SQL, PL/SQL, and ALTER SESSION
during a client conversation with the database. During
failover, the calls maintained in the history may be replayed
in chronological order, according to the SCN or Snapshot
time recorded for each of the calls. The SCN may or may not
be preserved, depending on the type of call. For example,
PL/SQL calls may be replayed on second database session
using a current SCN, regardless of the SCN that existed
when those calls were originally played on a first database
session. Therefore, in one embodiment, the SCN is not
recorded for PL/SQL calls but may be recorded for other
calls. In one embodiment, SCNS cannot go backwards
during replay. Once a statement is executed at a current
SCN, all further statements execute after the current SCN. In
one embodiment, due to the complexity of PL/SQL com
mands, replay of PL/SQL commands using prior SCNs is
not allowed by the driver. In another embodiment, the SCN
is not recorded for any calls.
0072. In one embodiment, the command maintenance
logic maintains or records only those commands that are not
part of a transaction. For example, the command mainte
nance logic may set a transaction initiation bit upon sending
a command that does start or complete a transaction or could
start or complete a transaction. For example, when the
command maintenance logic detects that a set of commands
could modify a state of the database, the command mainte
nance logic may set the transaction initiation bit. When the
user call has completed execution, possibly resulting in a
modification to the state of the database, the command
maintenance logic clears the transaction bit. The transaction
initiated bit is cleared every round trip call, and the trans
action initiated bit is set if a call starts a transaction. In one
embodiment, the presence of a transaction
0073. In one embodiment, information that is not neces
sary for replay is stripped away from the commands as they
are recorded. For example, network-layer information,

Nov. 3, 2016

transport-layer information, and other information that may
not affect results of the commands, may be excluded from
the commands as they are captured by the command main
tenance logic. Similarly, information may be stripped from
results of the commands when the information should not be
accessible to or able to be later referenced by the application
in a database session.

0074. In various embodiments with or without the replay
features described herein, the driver may provide an API that
allows the application to identify a set of packages and
objects for which state should be saved in case the database
instance fails. Once specified by the application, packages
and objects may be saved by the driver and restored upon
failure. The application may specify variables to be saved
during runtime, or the application may specify a triggering
event, such as a commit or a request boundary, that causes
variables to be saved. If state is saved at each commit point,
then a rollback will undo any state changes that were
performed since the last commit. The application may also
specify that state should be saved each time state changes for
specified objects. Saving state each time state changes for
the object might consume too many resources at runtime and
would require a significant amount of management by the
application to specify the objects for which state should
automatically be saved.
0075 Commands may be purged from the saved history
of commands as transactions are completed, or as the
application notifies the driver that the command will no
longer be used, such as when an instance of the application
closes or under other circumstances where an express purge
is directed by the application. In one embodiment, com
mands that remain in the history are only those commands
that were performed after the latest completed transaction. In
other words, commands at or before the latest completed
transaction may be purged from the history of commands to
be replayed. In another embodiment, commands are purged
when the user closes a browser session with the application.
Upon determining that the application session has ended, the
application may notify the driver so that the driver may
purge commands from the history of commands. In another
embodiment, commands are purged upon failure of the
application.
Storing Results from Execution of Commands During Run
time

0076. In one embodiment, the command maintenance
logic also stores results of recorded commands as the results
are received from the database instance during runtime. For
example, the command maintenance logic may record
selected values, affected row counts, error codes and mes
sages, or outbinds that resulted from execution of one or
more commands Submitted in the database session during
runtime. The recorded results of commands may differ when
the commands are executed against different data or differ
ent states of the database. Therefore, in one embodiment,
same results for two different executions of the same com
mands would indicate that each execution of the same
commands was executed against same data or same states of
the database. Further, the same results may indicate that a
database session that originally existed between a first
database instance and an application has been Sufficiently or
Substantively restored between a second database instance
and the application.
0077. In one embodiment, results from execution during
replay may or may not be as results received during runtime;

US 2016/0321304 A9

however, whether or not the results are the same, the
database session state may have been restored or rebuilt so
as to be compatible with the client state. In other words, the
results during replay may include differences from the
results during runtime, so long as the application may
continue to execute database commands on the restored
database session after the delay, even if the database com
mands rely on state that would otherwise be lost by the mere
creation of a new database session without replay. In one
embodiment, if the same application-visible results are
received during runtime and replay, the replay is determined
to have sufficiently restored the client state. The application
may have cached results and has made decisions. When the
results visible to the application are the same during replay
and runtime, the client state is determined to have been
restored to the new database session even if some param
eters not visible to the application are different. For example,
network-level information passed between the client and
server may be different during runtime and replay, but this
information is not exposed to the application.
0078. In one embodiment, the command maintenance
logic stores only those results that are visible or accessible
to the application. The recorded results may include results
that are being displayed by the application to a user of the
application when a first database instance serving the appli
cation fails over to a second database instance. The recorded
results may also include results that are capable of being or
have already been accessed, modified, selected, or arranged
by the application and/or the user of the application. For
example, the results may include only those results that are
or could be exposed to the application by an API between the
command maintenance logic and the application.
0079. In one embodiment, information may be stripped
away from the results as they are recorded. For example, the
command maintenance logic may exclude network-layer
information, transport-layer information, and other informa
tion that depends on factors other than the state of the
database and/or the data stored in the database. By excluding
this other information, the command maintenance logic can
ensure that captured results include only those results that
are to be checked for consistency as the commands are
replayed as long as the commands are replayed against same
data and/or same states of the database.

0080. In various examples, commands may be sent on the
database session but not executed by a database instance
prior to unavailability of the database session; commands
may be sent on the database session and executed by a
database instance but not returned to the application prior to
unavailability of the database session; or commands may be
sent, executed, and returned to the application prior to
unavailability of the database session. In one embodiment,
the command maintenance logic stores information that
indicates whether a command was sent and not returned or
sent, executed, and returned to the application. The com
mand maintenance logic may or may not be aware of
whether a given command was received or executed by a
database instance prior to unavailability of the database
session.

0081. In one embodiment, results have been received and
recorded from all commands sent to the database, possibly
excepting the most recent one command, when determining
whether to proceed with replay. In another embodiment,
results are known for all commands sent, optionally except

Nov. 3, 2016

ing (a) one or more of those commands for which execution
could not have resulted in committing a top-level transaction
if any.
I0082 In one embodiment, replay should be disabled if
any of the commands for which results have not been
received may have committed. Generally, if N+1 commands
have been submitted, and if commands N are known to be
not committed, replay should be disabled if command N-1
may have committed, whether or not a result is known for
command N--1. In one embodiment, several commands are
Submitted on the database session without waiting for
responses. In this embodiment, each command is evaluated
to determine whether (a) the command got results back and
did not commit, or (b) even if no results were received, the
command could or could not have committed. If the com
mand could not have committed even if no results were
received, the command may be determined to be acceptable
or safe for recording and replay.

Determining Whether Commands are Acceptable for Replay

I0083. In one embodiment, command evaluation logic
determines whether or not commands sent during runtime
are acceptable or safe for replay based on whether or not the
commands satisfy certain criteria. The determination of
whether or not commands are acceptable or safe for replay
is made before the commands, which were initially sent on
a first database session, are replayed on a second database
session. In order to determine whether or not the commands
satisfy the criteria, the command evaluation logic, which
may be implemented between the application and database
instance, as part of the application, or as part of the database
instance, may access a stored set of criteria and determine
whether or not commands from the set of commands satisfy
any criteria from the set of criteria. The determination may
be made on a command-by-command basis, or on a set of
commands, such as commands that were Submitted within
the same request boundaries. The criteria may be hard-coded
into the command evaluation logic, or configurable using an
interface provided to a user or administrator of the database
system. For example, an application developer, mid-tier
server developer, or database server developer may add or
remove criteria from the set of criteria when developing
integrated Software with unique dependencies on database
commands. In one embodiment, the criteria are defined Such
that, if commands are allowed to replay, the commands are
expected to produce the same the client visible results. In
this embodiment, replay of each command may be verified
to check whether the command produced the same client
visible results. If the command produced the same client
visible results, then replay may progress. In yet another
embodiment, commit initiates purging of earlier history. In
this embodiment, at commit, the last transaction is purged
and client cursors that span transactions remain.
I0084. If command evaluation logic on a database instance
determines whether or not commands from the set of com
mands satisfy criteria, the command evaluation logic may
store an indication in shared memory or other shared storage
that is accessible to the driver or to the application in the
event that the database session becomes unavailable. In this
embodiment, the driver may determine whether or not the
set of commands satisfies the criteria by accessing the
indication stored by the database instance.
0085. In one embodiment, whether or not a set of com
mands satisfy the criteria is based on whether or not the set

US 2016/0321304 A9

of commands is transactional. A set of commands is trans
actional if one or more of the commands, when executed,
can change the State of the database Such that replay of the
set of commands, without knowing whether the state of the
database was actually changed, would run the risk of chang
ing the state of the database to an unpredictable state.
Session state information may include any information that
can be accessed or referenced by the application during a
database session, even if that information is not permanently
stored in the database and/or is not otherwise available to
other applications or users on other database sessions. Non
transactional session state information is information
includes State that is built up by commands that cannot
commit changes to the database or otherwise modify the
state of the database to an unpredictable state if replayed.
For example, locks that were obtained for the previous
database session, variables that were declared for the pre
vious database session, and other non-transactional session
state information built up during the previous database
session may be preserved by replay. On the other hand,
transactional session state information, including state that is
built up by commands that may commit changes to the
database or otherwise modify the state of the database to an
unpredictable state if replayed, is not preserved, and the
existence of transactional session state information in a
database session causes replay to be disabled for the data
base session.

I0086 Various approaches to defining the criteria may be
used depending on varying risks of undesirable side-effects,
balanced with the desirability of preserving session state and
the cost of identifying commands that are safe to replay.
More conservative approaches may be used when the impor
tance of data integrity and the development and/or runtime
cost of identifying commands that are safe to replay highly
outweigh the undesirability of losing session state when a
session fails. Conservative approaches correctly rebuild the
database session and avoid logical corruption. Correctness is
determined by a strong set of rukes. Weak rules and custom
configuration are excluded when they can lead to logical
corruption.
0087. A looser approach may be used when the applica
tion development team can Sustain the cost of identifying
additional commands that are safe to replay regardless of the
matching criteria that is specified generically with respect to
applications. A loose approach is expensive because it
requires customized identification of commands. One
approach is used when the undesirability of losing session
state when a session fails outweighs the importance of data
integrity and the development and/or runtime cost of iden
tifying commands that are safe to replay. In many imple
mentations, data integrity is a primary concern, even though
a variety of approaches are described herein.
0088. In one embodiment, the command evaluation logic
keeps track of whether a current history of commands is safe
for replay asynchronously with detection of whether or not
the database session on which the commands were pro
cessed is available. The command evaluation logic may
determine whether the command satisfies criteria before,
during, or after the command is sent for execution on the
original database session and before, during, or after
unavailability of the original database session. For example,
the command evaluation logic may determine whether com
mands are safe for replay as the commands are received
from the application during runtime. The driver may disable

Nov. 3, 2016

replay for a set of commands if any commands from the set
of commands satisfy or do not satisfy a set of criteria. If any
single command from a set of commands is unsafe to replay,
then replay of the set of commands should be disabled to
avoid replay of the single command. For example, replay
may be disabled for a set of commands if one of the
commands in the set starts a transaction. If the current
history of commands would include commands that disable
replay, these commands and other commands in the history
may be purged so that the history of commands only retains
commands when replay of the commands would be enabled.
Keeping the history of commands free of any commands
when replay is disabled frees up memory. Replay may be
re-enabled when the driver detects one or more other com
mands that satisfy criteria for re-enabling replay. When
replay is re-enabled, the command evaluation logic may
resume retaining commands in the history of commands.
I0089. In a particular example, replay is disabled when the
driver sends a command that starts or completes a transac
tion or could start or complete a transaction in the database
session. While replay is disabled, the driver may purge
commands from the history of commands until the driver
sends a command that ends the actual or potential transac
tion. Upon sending the command that ends the actual or
potential transaction, the driver may re-enable replay and
resume retention of the history of commands to be replayed.
0090. In another embodiment, the command evaluation
logic determines whether the current history of commands is
safe for replay after detecting that the database session on
which the commands were sent has become unavailable. In
one example, the command evaluation logic determines
whether the current history of commands is safe for replay
in response to detecting the unavailability. In another
example, the command evaluation logic determines whether
the current history of commands is safe for replay in
response to newly receiving a command to be sent for
execution after detecting the unavailability of the database
session.

0091. In one embodiment, the command evaluation logic,
Such as logic in the client driver, avoids replay of the
commands if any of the commands satisfy the set of criteria.
In another embodiment, the command evaluation logic
avoids replay of the commands only if all of the commands
satisfy the set of criteria. In these embodiments, the criteria
may define characteristics of commands that are not desir
able for replay. For example, the criteria may define char
acteristics of commands that would create different states of
the database if executed twice rather than once. As another
example, the criteria may define characteristics of com
mands that would cause an error at one or more levels of the
database system if executed twice rather than once. In one
example, the criteria may identify commands that, when
executed, add, delete, or modify data stored in the database
or start or complete a transaction. Replay may also be
avoided, based on the criteria, if the commands include a
distributed transaction, or if the commands are dependent on
environment variables such as timing, etc., that are unlikely
to be preserved during replay.
0092. In yet another embodiment, the command evalua
tion logic causes replay of the commands if any of the
commands satisfy the set of criteria. In another embodiment,
the command evaluation logic causes replay of the com
mands only if all of the commands satisfy the set of criteria.
In these embodiments, the criteria may define characteristics

US 2016/0321304 A9

of commands that are safe for replay. For example, the
criteria may define characteristics of commands that do not
change the state of the database, whether or not the com
mands are executed twice. As another example, the criteria
may define characteristics of commands that would not
cause an error if executed twice rather than once. In one
example, the criteria may identify commands that, when
executed, select or arrange data stored in the database
without the possibility of committing changes to the data
base.

0093. In one embodiment, commands may be identified
based on the names of the commands or the names of calls
to the commands. For example, a "SELECT command may
be identified as a command that selects or arranges data but
does not affect the State of the database. As another example,
and “UPDATE command may be identified as a command
that, if committed by a "COMMIT' command, changes or
could change the state of the database.
0094 Correctness of a command for replay may be
determined in the client driver by a default set of rules. In
one embodiment, additional or alternative rules may be
defined on an application-specific basis. In another embodi
ment, the rules are generic with respect to the application,
and the rules do not require updating or modifying the
application. In this embodiment, commands may be checked
on a command-by-command basis in a manner transparent
to the application.
0095. In another embodiment, commands may be iden

tified based on information passed with the commands or
mapped to the commands. However, passing additional
information with the commands may involve re-configura
tion of the application to pass the additional information, and
this is a major development and certification cost. That said,
in one example, a command may be passed with a variable
that indicates whether or not the command is safe for replay.
In another example, a listing of safe and unsafe commands
is configured on the driver to avoid making any development
changes to the application. The command may be mapped to
a value that indicates whether or not the command is safe for
replay. In a particular example, the mapping is created by a
user, administrator, or developer, based on the effects of the
commands on the database. Commands that are safe for
replay are stored in association with information that indi
cates those commands are safe, and commands that are
unsafe for replay are stored in association with information
that indicates those commands are unsafe.

0096. In one embodiment, the command evaluation logic
uses the criteria to exclude Some commands that could be
safe for replay in order to avoid the risk of including any
commands that are unsafe for replay. For example, com
mands may be excluded from replay if the commands could
potentially start or complete a transaction, without deter
mining whether or not the commands actually started or
completed a transaction in any given execution of the
commands. Defining the criteria in this manner may allow
the command evaluation logic to make quicker determina
tions of whether or not a received command is safe to replay.
On the other hand, excluding commands that could be safe
for replay could prevent the database system from taking full
advantage of the replay functionality. In one embodiment,
replay is allowed to complete, thereby rebuilding the client
state on a new session, only when the replay safely re
establishes the same client visible results. As commands
from a request are replayed, optionally on a command-by

Nov. 3, 2016

command basis, replay logic reexecutes the request as the
request was defined in the application.
0097. In one embodiment, the command evaluation logic
causes replay of the commands on a second database session
only if the command evaluation logic has received confir
mation that all of the commands that were executed on the
first database session during runtime and returned State. In
other words, the command evaluation logic may prevent
replay and allow the session state to be lost whenever the
commands include at least one command for which execu
tion on the first database session cannot be confirmed.

0098. In another embodiment, the command evaluation
logic causes replay of commands on the second database
session even if the replay logic has not received confirma
tion that all of the commands were executed on the first
database session during runtime. The command evaluation
logic may allow certain commands but not others to be
replayed to the second database instance even if those
commands have already been executed against the database.
The command evaluation logic may use the criteria to
determine which commands are safe to replay even though
these commands may execute twice against the database.
0099. In one embodiment, the command evaluation logic
determines whether commands are safe to replay based at
least in part on a transaction state associated with a request.
The transaction state associated with the request shows that
the request is transactional if the request leaves a transaction
open after execution of a set of commands in the request.
Looking at the transaction state associated with the request
may be insufficient to detect that the PL/SQL execution
issued transactions and committed the work before returning
to the user. Therefore, even if the transaction state of the
request is cleared, a transaction may have been opened and
closed within the request. Replaying commands from the
request has the unacceptable risk of creating duplicate
transactions if any of the commands could start or complete
a transaction. For example, replaying PL/SQL commands
could start or complete a transaction at replay by following
a different code path than was followed when the transaction
was started during runtime. As another example, replaying a
command to insert a row could insert a duplicate row if the
command was played during both runtime and replay.
0100. In one embodiment, an indicator, called a TRANS
ACTION INITIATED BIT, is computed per call roundtrip
on the database session. The call roundtrip includes one or
more commands sent on the database session, and a possible
response to the one or more commands by a database
instance to indicate that the one or more commands were
processed and possibly initiated a transaction. The response
may include a set of results from processing the one or more
commands. The transaction initiated bit indicates whether
the set of commands defined by the request includes any
commands that could start or complete a transaction.
0101. In one embodiment, the transaction initiated bit is
set in all cases where a transaction started except when the
request only includes autonomous transactions and recursive
transactions. For example, the transaction initiated bit may
be set for local transactions, anonymous blocks with a
transaction, remote or distributed transactions, auto-commit
with a transaction, remote procedure calls with a transaction,
Data Definition Language (“DDL) commands, DDL com
mands via DBMS SQL, transactions embedded in PL/SQL,
remote or distributed transactions started from PL/SQL,

US 2016/0321304 A9

transactions embedded in server-side Java, or remote or
distributed transactions in server-side Java.
0102 Various embodiments will differ on which com
mands are worth the risk to replay and which commands are
not worth the risk to replay. In one example, commands to
send files, write PL/SQL output, send notifications, and
make web requests may be replayed in addition to com
mands that select, arrange, or perform some other operation
on data without committing a modification to the database.
Therefore, in one embodiment, the transaction initiated bit is
not set for commands to send files, write PL/SQL output,
send notifications, make web requests, select data, arrange
data, perform other operations without committing a modi
fication to the database, and/or for any other autonomous
transaction.
0103) In one example, a call is identified as transactional
when that call includes executing any of the following
commands: an insert command, an update command, a
delete command, or a select for update command or a DDL
or DCL command or a procedure or function that embodies
any of these commands. The transaction initiated bit may be
set for the request even if the request includes other com
mands that, on their own, would not have qualified as
transactional. In one embodiment, if a call is transactional,
the call is not replayed, and replay is disabled for this
request. The transaction initiated bit may be set even if a call
both starts and commits in one or more transactions. The
transaction initiated bit indicates an intention to start a
transaction in any call, and the transaction initiated bit may
be updated at each new call. The transaction initiated bit may
be cleared when the call is completed or when the request is
completed.
0104. The driver may use the transaction initiation bit to
keep track of whether replay is safe for a current call. The
transaction initiation bit is set when the call includes any
command that started a transaction, and the transaction
initiation bit is cleared when the call is completed or when
the request is completed. The transaction initiation bit may
be maintained by the driver in a manner that is transparent
to the application, and the transaction initiation bit may or
may not be exposed to the application. In one embodiment,
if the last submitted commands either returned with a
transaction initiation bit cleared or were SELECT-type of
statements for a conversation where the transaction bit is not
needed, the driver may safely replay commands without the
risk of starting a transaction.
0105. The transaction initiated bit is used because a call
may both start and commit one or more transactions. The
transaction initiated bit indicates an intention to start a
transaction in any call. It is cleared for each new call. In one
embodiment transactions are not replayed. Replay is dis
abled and a history of commands is purged as soon as the
transaction-initiated bit is seen on return from a call as it is
unsafe to replay.

Detecting Unavailability of Database Session
0106. In one embodiment, monitoring logic receives
information that indicates a database session has become
unavailable to the application. For example, the information
may indicate that the database instance has failed or is about
to fail, or a service or other resource provided to the
application by the database instance has failed or is about to
fail. The unavailability of the database session could result
from a planned or unplanned outage. For planned outages,

Nov. 3, 2016

the information received by the monitoring logic indicates
that an outage is planned even though the database session
may still be available. Indicating a planned “down” or
outage allows work to be completed before failing over and
recovering the session. Indeed, when using a connection
pool, if all work completed, there is no need to recover the
session because the application request has completed. Con
versely, if using a dedicated session, the replay will move the
session to another instance, allowing for the planned outage.
In one embodiment, a database instance may be made
unavailable to one service but not to another service, in order
to reduce a load on instances in the database system. The
monitoring logic may receive information from any agent or
component that keeps track of the availability of the original
database session. The monitoring logic may respond to the
information by closing the database session (for example, a
session served by an unavailable database instance), opening
a new database session (for example, a session served by a
new database instance), and causing replay of commands,
which were previously sent on the now unavailable database
session, on the new database session. When used to “shed
work in this manner, the replay will be at a less loaded
database instance.

0107. In one embodiment, the monitoring logic checks
for whether or not the database session is available each time
the application Submits commands for execution on the
database session. Therefore, detection of whether or not the
database session has become unavailable may be performed
synchronously with receipt of a command to be executed on
the database session. This technique may be available if the
socket is closed. If the node or network fails, an error is not
received until after TCP/IP keepalive expires.
0108. In one embodiment, an efficient technique for
monitoring receives a Fast Application Notification (“FAN)
events asynchronously with commands. The FAN event
comes in, eliminating both wasted code path checking
whether the session is available, and eliminates the need to
wait on TCP keepalive.
0109 The FAN monitoring logic subscribes to a service
that publishes availability information to subscribers. For
example, the monitoring logic may receive updated infor
mation in Fast Application Notification (“FAN) events.
With fast notification of changes through which a number of
events are published for system state changes, applications
can quickly recover and sessions can quickly be rebalanced.
When a resource associated with a service experiences a
change in status. Such as a termination or a start/restart, a
notification event is immediately published for use by vari
ous subscribers to the event. For example, a notification
event is issued when a database instance becomes available
or unavailable, or when a service becomes available or
unavailable on an instance. Notification events contain
information to enable subscribers to identify, based on
matching a session signature, the particular sessions that are
affected by the change in status, and to respond accordingly.
This allows sessions to be quickly aborted and ongoing
processing to be quickly terminated when a resource fails,
and allows fast rebalancing of work when a resource is
restarted.

0110. The notification events occur for status changes for
services and for the resources that Support the services, such
as a particular instance, an instance, a node or a database
cluster. When a service offered by one or more instances
starts, a notification event (UP) is issued that may be used to

US 2016/0321304 A9

start applications that are dependent on the service. When
the service offered by one or more instances terminates, and
also when an instance, node, or network terminates, a
notification event (DOWN) is issued to halt the dependent
applications. When managing clusterware can no longer
manage the service because the service has exceeded its
failure threshold, a notification event (NOT RESTART
ING) is issued to interrupt applications retrying the service.
In one embodiment, the NOT RESTARTING event initiates
Switching to a disaster service.
0111. Upon connecting to the cluster, a unique signature

(i.e., a locator) is generated for an associated session and
recorded on a handle as part of the connection. In an
embodiment, the signature comprises a service identifier, a
node identifier, and database unique name, and an instance
identifier, each of which is associated with the session. In the
context of a database cluster, notification events contain
information to enable subscribers to identify the particular
sessions that are affected by the change in status, i.e., the
signatures of the affected sessions. For Some types of events,
information used to identify affected sessions includes iden
tification of the service and the database associated with the
status change. For other types of events, the information
used to identify affected sessions additionally includes iden
tification of the instance and node associated with the status
change. The affected sessions are the sessions with signa
tures that match the signature included in the event payload.
0112 There are different times when replay can start after
the detection. The monitoring logic may receive information
from the FAN events, clear the dead sessions, but not
immediately initiate replay. For example, upon receiving a
command to execute on a known-to-be unavailable session,
the driver establishes a new session on which to rebuild
client state that existed for the previous, unavailable session.
In another embodiment, the driver may start replay in
response to detecting unavailability.
0113. In one embodiment, the monitoring logic triggers
replay on an available database session in response to
receiving a command to be executed on a database session
that has already become unavailable. In this embodiment,
the monitoring logic may detect that the database session has
become unavailable without restoring the database session.
For example, replay is unnecessary if no further commands
are executed in the database session after the database
session has become unavailable. In one embodiment, the
monitoring logic knows that the session is unavailable by
FAN or a received error. Replay is invoked if there is a
command in-flight or, if there is a command not in flight,
replay is invoked when the application next sends a com
mand. If the application never sends a command, replay
does not occur.

0114. In another embodiment, the replay logic triggers
replay on an available database session before receiving a
command to be executed on a database session that is
unavailable. In this manner, the database session may be
restored before the application Submits any other commands
on the database session. Upon receiving another command
to be executed on the database session, the monitoring logic
may have already caused replay to be started or completed
to restore the database session. Thus, the newly received
command may be executed more efficiently if the database
session has already been restored or is partially restored.

Nov. 3, 2016

Replaying Commands
0.115. In one embodiment, replay is disabled by the driver
based on whether or not the commands satisfy one or more
criteria. For example, replay may be disabled if any com
mands satisfy disqualifying criteria, or, alternately, if not all
of the commands satisfy qualifying criteria. For example,
replay may be disabled if there are any transactional com
mands in the set of commands. In another embodiment,
replay of a set of commands may be disabled by the driver
if a threshold amount of time has passed since the commands
were originally played on the now unavailable database
session. In yet another embodiment, replay is not executed
(i.e., is avoided) if an outage of the original database session
is due to an error caused by the commands submitted by the
application. When a non-recoverable error occurs, at call
level, the error and call are recorded in the history. Replay
replays the same error to produce the same client visible
results. For example, an error caused by an application may
be discovered when a particular error code is received in
response to commands Submitted by the application. In
another embodiment, replay may be explicitly disabled by
instructions passed from the user or application to the driver.
In other words, an enabled replay state set by the driver may
be temporarily or permanently overridden by an application.
Providing an option for the application to explicitly disable
replay may be useful when the application or user is aware
that replay would be undesirable for a set of commands even
though it may not be apparent to the driver. When a
non-recoverable error occurs, at call level, the call is saved
to the history and the error code and error text are indicated
in the checksum as they are a part of the client visible results.
To Succeed, replay must replay the same error for the same
call, rebuilding the same client visible results.
0116. If replay is not avoided, then replay logic proceeds
to replay commands on a newly established database ses
Sion, thereby restoring the session state that existed in the
previous database session. In one embodiment, replay of the
recorded commands in a new database session causes pres
ervation of non-transactional database session state. For
example, locks that were obtained for the previous database
session, variables that were declared for the previous data
base session, and other session state information built up
during the previous database session is preserved as the
previous database session is replaced by a new database
session.
0117 To replay commands on a second database session,
the replay logic first establishes the second database session
with an available database instance and replaces the previ
ous database session with the second database session. In
one embodiment, a logical connection object that is held for
the application is remapped, directly or indirectly, from an
unavailable database instance to an available database
instance. Upon replacement, connection pool logic is noti
fied by the replay logic that the logical connection has been
changed, and, in response, the connection pool logic
changes stored State information about the logical connec
tion.
0118. In one embodiment, the second database session is
known, by the replay logic, to be available to the application.
The techniques described herein are not limited to any
particular technique for selecting a second database session
on which commands are to be replayed. The selection of the
second database session may be arbitrary or according to a
set of performance-based and/or load-based rules.

US 2016/0321304 A9

0119. In one embodiment, replay is never attempted if the
application never makes a call to the replay logic after the
first database session becomes unavailable. Whether or not
the first database session is unavailable, there may be no
need to re-establish the database session if there are no
further commands that require execution on the database
session. Therefore, in one embodiment, replay may be
performed on an as-needed basis, when the driver has
received a command for execution and the database session
on which the command would otherwise be sent has become
unavailable.

0120 In another embodiment, replay starts before receiv
ing further commands from the application. Replay may
start early so that the replay is already completed or partially
completed before another call is received from the applica
tion. In a particular embodiment, replay may be started early
for applications that show a pattern of frequently executing
commands on database session, and on an as-needed basis
for applications that do not show a pattern of frequently
executing commands on database sessions. The pattern may
be based on a frequency in which the application sends
commands for execution within a specified period of time.
In other words, the driver may be configured with logic that
tracks and adapts to patterns of access by applications. The
driver may keep a database session available, by replaying
early when database sessions fail, for applications that show
patterns of frequent access or sets of consecutive requests.
0121. During replay, the calls maintained in the history
may be replayed in chronological order, optionally accord
ing to SCNs recorded for the calls. Replay of the commands
in chronological order on a new database session rebuilds
the session state that existed in the original database session
and could have been exposed to the application. Rebuilding
the session state in this manner ensures that execution of
later commands reference the same objects, variables, or
values that would have been referenced had the original
database session not become unavailable.

0122. An SCN identifies a state of the database in which
a call was initially made and/or executed. The SCN may or
may not be preserved, depending on the type of call, during
replay. For example, certain procedures, such as PL/SQL
procedures, may be replayed at current SCNs regardless of
the SCNs in which the procedures were originally called. In
another embodiment, the chronological order of the com
mands is not strictly preserved. The session state may be
preserved even by executing out-of-order commands during
replay, as long as the out-of-order commands would produce
the same results as the original commands as executed
during runtime. In one embodiment, out-of-order replay is
allowed only if a cursor was submitted at an earlier SCN, is
still open, and is being accessed. In this embodiment, no
other out of order is allowed because going backwards and
forwards in command-order may lead to data corruption.
The consistency of the results may be checked after replay
to ensure that the execution of the replayed commands
caused the same results as execution of the runtime com
mands.

0123. In one embodiment, for a command to be replayed
on a second database session at the original SCN in which
the command was played on the original database session,
the replay logic sets the SCN for the command and replays
the call at the original SCN. For example, select statements
may be replayed on the second database session at SCNs
recorded by the command maintenance logic that reflect

Nov. 3, 2016

states of the database when the select statements were
originally executed on the first database session. In yet
another embodiment, a first command is replayed at the
same SCN in which the command was executed during
runtime, and later commands are replayed sequentially after
the first command, with naturally increasing replay SCNs,
ordered by the SCNs in which the calls were originally
executed on the first database session. For commands to be
replayed on the second database session at the current SCN,
the replay logic replays the command without setting the
SCN. As an example, PL/SQL commands may be replayed
at current SCNS. In one embodiment, once replay has begun
at the current SCNs, replay continues at the current SCNs
until all commands have been replayed on the second
database session.

0.124. In one embodiment, the replay logic re-executes
only those commands that are relevant to the application
visible results from the database server. For example, the
history of SQL and PL/SQL calls may be recorded and
replayed. The replayed commands may have originally
produced results that are capable of being or have already
been accessed, modified, selected, or arranged by the appli
cation and/or the user of the application. For example, the
commands may have produced results that are or could be
exposed to the application by an API between the driver and
the application.
0.125. In one embodiment, commands may be replayed
on the second database session even if results of the com
mands have not been received from the failed or failing
database instance. If the commands for which results have
not been received are the type of commands that could not
change the State of the database and/or could start or
complete a transaction, then the commands may be replayed
against the second database session without the risk of
creating a duplicate transaction, creating a duplicate object
in the database, or referencing a deleted object in the
database.

I0126. In one embodiment, to avoid the risk of submitting
a commit operation twice, PL/SQL commands are not
replayed if results were not received on the unavailable
database session prior to the database session becoming
unavailable. On the other hand, if results were received from
the PL/SQL commands, then the PL/SQL commands may
safely be replayed. In one embodiment, select operations
and other operations (such as update, insert, or delete)
without auto-commit may be replayed even if results were
not received, because there is no risk that the select or other
operation permanently changed the state of the database.
I0127. In one embodiment, the replay logic replays com
mands that have been performed since a last commit opera
tion was executed against the database. In one embodiment,
the commands include commands that do not start or com
plete a transaction and/or change the state of the database.
0128 Replaying commands against the second database
instance allows recovery of non-transactional session state
(“NTSS). NTSS is state of a database session that exists
outside the transaction and that is not protected by redo.
NTSS can be created through declarative or procedural calls
initiated by the client drivers or from triggers within the
server. Examples of declarative mechanisms to create Such
states are attribute settings for MODULE, ACTION, OPTI
MIZER PLAN, NLS settings, date formats, time Zone, and
so on. Examples of procedural mechanisms that can set

US 2016/0321304 A9

NTSS include ALTER SESSION, PL/SQL procedures that
populate global variables, LOB processing, AQ processing,
and cursors, for example.
0129. Because NTSS is unprotected by redo, NTSS does
not survive failures using prior techniques. Chronological
replay of commands from a known, good starting position,
rather than Transparent Session Migration (TSM), allows
the database system to restore NTSS for failed sessions.
TSM is also not suitable for recovering from unplanned
outages, as TSM uses a point in time capture while the
system is available and has no roll forward capability.
0130 Transparent Application Failover (TAF) also fails

to provide the benefits of this solution. TAF is unable to
handle applications that rely on any state that changes after
the initial session setup. Using TAF, if a session fails over to
another instance, states for PL/SQL packages and Java in the
database are lost after failover. Unlike the techniques
described herein, TAF cannot fail over any use of global
variables or global cursors or global objects created by the
package state. TAF also cannot fail over ALTER SESSION
statements that change the environment after initial setup.
0131. As described herein, the driver re-establishes the
database session state by re-executing the same operations
on the second database session as were executed on the
unavailable database session prior to the unavailable session
becoming unavailable. If the data returned on the second
database session matches the data that was returned on the
unavailable database session, optionally as indicated by
checksums on the data, then the application may safely
resume the second database session, using the same tempo
rary variables and objects that were previously referenced in
the now unavailable database session.
0.132. With the session state preserved, the application
can reliably continue to execute commands that build on the
session state in an environment where the session state has
been effectively checked for consistency. The replay of
commands that is used to re-establish this database state may
be transparent to the user, taking place without requiring
knowledge by the user or input from the user. In one
embodiment, although the replay consumes time, the replay
has no other effect on the application or user. In one
embodiment, after replay has completed, the application
may submit further commands on the second database
session that are dependent on the session state information
that existed for the first database session and was restored by
replaying commands on the second database session.
Verifying that Results of Replay Match Original Results
0133. In one embodiment, result verification logic
ensures that the results of replaying the commands on a
second database session match results of executing the
commands on the first database session during runtime. In
one embodiment, the result verification logic verifies that the
results of replay match the original results by comparing
only the application visible results, or results that could be
exposed to the application through the API used to send
commands on the database sessions. Application visible
results may include values retrieved from the database, error
ID numbers, error messages, error text, rowset information,
the number of rows returned, the ordering of rows, function
output of the procedure, or any other information that is
exposed to the application by the API. The application
visible results might exclude network-level or transport
level information that frames the application-level informa
tion. For example, the application visible results might

Nov. 3, 2016

exclude packet serial numbers, which are likely to differ for
information transmitted to and from different database
instances.
I0134. In one embodiment, the result verification logic
computes a checksum based on each result, on a per call
basis, received on the first database session during runtime,
and each result from replay on the second database session.
Instead of comparing portions of the results to each other, or
comparing the results to each other bit-by-bit, the result
verification logic may compare the checksums in order to
determine whether the results match. In one embodiment,
the result verification logic uses a Cyclic Redundancy Check
(“CRC) checksum, such as a 64-bit CRC checksum per call
and accumulates across calls, so that chance matches
between the checksums are extremely unlikely when the
underlying results do not match. In another embodiment, the
checksum is a Secure Hash Algorithm (“SHA) checksum.
The checksum may or may not be a cryptographic check
Sum, and, in one embodiment, it is sufficient that the
checksum create a strong likelihood (rather than a certainty)
that one set of results matches another set of results when the
checksum for the one set matches the checksum for the other
set. For any one cursor, there can be either a checksum per
fetch, or an accumulated checksum that is built up across all
fetches for that cursor. The checksum per fetch finds mis
matches at replay early at the cost of a little more memory
to hold these checksums in the history.
0.135. In one embodiment, the checksums for the first
results are created during normal runtime at history collec
tion. The result verification logic discards the results once
the checksum for each result has been computed. At replay,
the checksums are recomputed. The result verification logic
compares the checksums. If the original and replayed check
Sums mismatch, the replay is rejected and an error is
returned to the client.

0.136. In one embodiment, for any one call, there can be
a checksum created per fetch for that call or a checksum
aggregated across all fetches for that call. A checksum
recorded per fetch may find a mismatch early if the call is
mismatched when replaying. This is at the cost of saving
checksums per call in the runtime history.
0.137 In one embodiment, each checksum is used as a
seed for computing the next checksum. In this way there is
a higher quality check that the client visible results for the
request are the same.
Causing Operation of Application to Resume with Preserved
State

0.138. As replay replays each command on the second
database session, checksums are compared for each com
mand that completes. Once the result verification logic has
verified that the results during replay match the results
during runtime, the replay logic may return control to the
application to use the database session with session state
preserved. Once the application begins executing new com
mands against the restored session, the new commands are
added to a history of commands in case further replay is
needed. The application may execute further commands on
the database session as normal, as if no failure had ever
occurred. In particular, these further commands may depend
on session state that was recovered when the replayed
commands were replayed on the second database session.
These further commands may access or modify information
that would have been lost from the database session in the
absence of replaying the replayed commands. In one

US 2016/0321304 A9

embodiment, these further commands are responsive to user
input against information that is displayed to the user, and
execution of these further commands depends on the session
state that was preserved by replaying the replayed com
mands. At replay, the driver replays each command check
Sums are compared for each command. If each checksum
matches, then replay continues until completion. Once
replay completes, the continued conversation is added to the
history for that request.
0.139. In one embodiment, before returning control to the
application, the replay logic plays one or more commands on
the second database session that were never executed against
the now unavailable database session. For example, these
commands may be commands that were received after the
now unavailable database session became unavailable, but
before operation of the application was delayed for replay.
In one embodiment, operation of the application was
delayed for replay, and replay was triggered in response to
these commands, and these commands are sent for execution
on the second database session after state has been restored
to the second database session. These commands are accu
mulated in the history So that if the second session also fails,
replay will execute from the beginning of the request on a
third or fourth session, and so on. In one embodiment, this
history accumulates until the request ends or replay is
disabled.
0140 For example, the driver may receive a “begin
request command followed by a first set of one or more
commands, a second set of one or more commands, and a
third set of one or more commands. Until the driver receives
the corresponding “end request' command, the driver may
store the first set of commands and a first set of application
visible results, the second set of commands and a second set
of application-visible results, and the third set of commands
and a third set of application visible results. Before receiving
the “end request command, replay may be accomplished
one or more times to rebuild client state after the driver has
received just the first set of one or more commands, after the
driver has received the first and second set of commands, or
after the driver has received all three sets of commands.
When the driver receives the “end request command, the
driver may clear the history of commands to prepare for
recording a history the next request.
0141. In practice, many web requests, or commands sent
between browsers and database instances, may be read-only.
Frequently, changes are Submitted, if at all, in a single, final
web request. Restoring state for read-only web requests
allows the application to continue using the database session
as if the failure had never occurred. Therefore, the replay
mechanisms described herein provide a significant advan
tage to database systems even if replay is disabled for some
or all other web requests.
0142. Users who are comfortable with the performance of
an application, a mid-tier server, and a database server are
generally loyal to their current software vendors. However,
frustrated users may switch to other software vendors,
whether or not those other software vendors objectively
provide a better expected performance. An application, a
mid-tier server, and a database server that allow a user to
reliably interact with the application without the loss of
information or session state may retain a higher percentage
of users, draw more users, and/or increase the reputation of
the application, the mid-tier server, or the database server, or
even the company providing the application, the mid-tier

Nov. 3, 2016

server, or the database server. Techniques described herein
will promote more reliable applications and servers that are
less likely to session state, even if a database session fails
after temporary entry, modification, selection, and/or
arrangement of data.

Failing to Preserve Session State
0143. In cases where replay is allowed to proceed on the
second database session, and when the replay produces
results that match the initial execution against the now
unavailable database instance, many of the negative effects
that normally result from a session outage can be averted.
0144. In one embodiment, when replay is avoided, the
database session is not restarted, and the session state is not
preserved. In another embodiment, the database session is
restarted without preserving the session state that was estab
lished between the now unavailable database instance and
the application. In either embodiment, replay would affect
the application beyond a mere delay. Session state may also
be lost when the results of replay on the new database
session do not match the results of replay against the now
unavailable database session. Attempts to use a new data
base session with non-preserved State, including any
attempts to reference lost session state information, may
result in errors or, worse, corruption of the data stored in the
database. For this reason, any such deviation in results
disables replay, the failed over session is discarded, and the
application receives an error as replay did not happen. In one
embodiment, before obtaining access to a new database
session, the application is notified that the database session
has failed and could not be restored. In response, the
application may request a new session from the database
server, request further information from the user, and handle
the outage through a customized exception so that the
application does not rely on any variables that existed in the
unavailable database session. In one embodiment, if replay
cannot be performed, while handling the exception, the
application may gray out or lock fields that contain infor
mation that may no longer be congruent with information
stored in the database.

Hardware Overview

0145 According to one embodiment, the techniques
described herein are implemented by one or more special
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro
grammable gate arrays (FPGAs) that are persistently pro
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus
tom hard-wired logic, ASICs, or FPGAs with custom pro
gramming to accomplish the techniques. The special-pur
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.
0146 For example, FIG. 6 is a block diagram that illus
trates a computer system 600 upon which an embodiment of
the invention may be implemented. Computer system 600

US 2016/0321304 A9

includes a bus 602 or other communication mechanism for
communicating information, and a hardware processor 604
coupled with bus 602 for processing information. Hardware
processor 604 may be, for example, a general purpose
microprocessor.
0147 Computer system 600 also includes a main
memory 606, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 602 for storing
information and instructions to be executed by processor
604. Main memory 606 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions to be executed by processor
604. Such instructions, when stored in non-transitory storage
media accessible to processor 604, render computer system
600 into a special-purpose machine that is customized to
perform the operations specified in the instructions.
0148 Computer system 600 further includes a read only
memory (ROM) 608 or other static storage device coupled
to bus 602 for storing static information and instructions for
processor 604. A storage device 610, Such as a magnetic disk
or optical disk, is provided and coupled to bus 602 for
storing information and instructions.
0149 Computer system 600 may be coupled via bus 602

to a display 612, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
614, including alphanumeric and other keys, is coupled to
bus 602 for communicating information and command
selections to processor 604. Another type of user input
device is cursor control 616. Such as a mouse, a trackball, or
cursor direction keys for communicating direction informa
tion and command selections to processor 604 and for
controlling cursor movement on display 612. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.
0150 Computer system 600 may implement the tech
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 600 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 600 in response to
processor 604 executing one or more sequences of one or
more instructions contained in main memory 606. Such
instructions may be read into main memory 606 from
another storage medium, Such as storage device 610. Execu
tion of the sequences of instructions contained in main
memory 606 causes processor 604 to perform the process
steps described herein. In alternative embodiments, hard
wired circuitry may be used in place of or in combination
with software instructions.

0151. The term “storage media' as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 610.
Volatile media includes dynamic memory, such as main
memory 606. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, Solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a

Nov. 3, 2016

RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.
0152 Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 602. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
0153 Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor 604 for execution. For example, the instructions
may initially be carried on a magnetic disk or Solid State
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 600 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 602. Bus 602 carries the
data to main memory 606, from which processor 604
retrieves and executes the instructions. The instructions
received by main memory 606 may optionally be stored on
storage device 610 either before or after execution by
processor 604.
0154 Computer system 600 also includes a communica
tion interface 618 coupled to bus 602. Communication
interface 618 provides a two-way data communication cou
pling to a network link 620 that is connected to a local
network 622. For example, communication interface 618
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele
phone line. As another example, communication interface
618 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire
less links may also be implemented. In any such implemen
tation, communication interface 618 sends and receives
electrical, electromagnetic or optical signals that carry digi
tal data streams representing various types of information.
0155 Network link 620 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 620 may provide a connection
through local network 622 to a host computer 624 or to data
equipment operated by an Internet Service Provider (ISP)
626. ISP 626 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet 628. Local
network 622 and Internet 628 both use electrical, electro
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 620 and through communication interface 618,
which carry the digital data to and from computer system
600, are example forms of transmission media.
0156 Computer system 600 can send messages and
receive data, including program code, through the network
(s), network link 620 and communication interface 618. In
the Internet example, a server 630 might transmit a
requested code for an application program through Internet
628, ISP 626, local network 622 and communication inter
face 618.

US 2016/0321304 A9

0157. The received code may be executed by processor
604 as it is received, and/or stored in storage device 610, or
other non-volatile storage for later execution.
0158. In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
Scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which Such claims issue, including any
Subsequent correction.
What is claimed is:
1. A method comprising:
determining that a first database session is not available

while replay is enabled;
based at least in part on determining that the first database

session is not available while replay is enabled, causing
state, which would have been accessible to a client on
the first database session, to be rebuilt on a second
database session at least in part by:
causing execution on the second database session of a

set of commands that was previously sent by the
client for execution on the first database session;

wherein the method is performed by one or more com
puting devices.

2. The method of claim 1, further comprising enabling
replay based at least in part on determining that the set of
commands satisfies one or more criteria.

3. The method of claim 1, further comprising:
disabling replay and purging another set of commands

based at least in part on determining that the other set
of comments sent for execution does not satisfy one or
more criteria.

4. The method of claim 1, further comprising:
receiving, on the first database session, a first set of results

from executing at least part of the set of commands on
the first database session;

receiving, on the second database session, a second set of
results from executing the at least part of the set of
commands on the second database session;

determining that the state was correctly rebuilt on the
second database session at least in part by verifying that
the first set of results matches the second set of results.

5. The method of claim 1, further comprising:
determining a first value using a procedure by inputting,

to the procedure, a first set of results from executing at
least part of the set of commands on the first database
session, wherein the first value is Smaller in size than
the first set of results;

determining a second value using the procedure by input
ting, to the procedure, a second set of results from
executing the at least part of the set of commands on the
second database session, wherein the second value is
Smaller in size than the second set of results;

determining that the state was correctly rebuilt on the
second database session at least in part by verifying that
the first value matches the second value.

6. The method of claim 1, wherein one or more commands
of the set of commands are executed on the second database
session against one or more past database states in which the
one or more commands were previously executed on the first

20
Nov. 3, 2016

database session, and wherein one or more other commands
of the set of commands are executed on the second database
session against current database states.

7. The method of claim 1, further comprising:
receiving marked boundaries comprising begin markers at

beginnings of requests and end markers at ends of the
requests; and

using the marked boundaries delimit the requests to one or
more server instances that process the requests.

8. The method of claim 1, further comprising, after
causing execution of the set of commands on the second
database session, causing execution of one or more other
commands on the second database session; wherein at least
one of the one or more other commands depends on the state
that was caused to be rebuilt on the second database session.

9. The method of claim 1, wherein the set of commands
is a first set of commands of a first request, further com
prising:

for the first request, determining whether or not the first
set of commands is acceptable to replay based at least
in part on whether the first set of commands satisfies
one or more stored criteria;

for a second request comprising a second set of com
mands, determining whether or not the second set of
commands, separately from the first set of commands,
is acceptable to replay based at least in part on whether
or not the second set of commands satisfies the one or
more stored criteria.

10. The method of claim 1, further comprising, in
response to determining that the state has been Successfully
rebuilt on the second database session, causing operation of
an application that originated the set of commands to
continue using the second database session without inter
rupting operation of the application.

11. One or more non-transitory storage media storing
instructions which, when executed, cause:

determining that a first database session is not available
while replay is enabled;

based at least in part on determining that the first database
session is not available while replay is enabled, causing
state, which would have been accessible to a client on
the first database session, to be rebuilt on a second
database session at least in part by:
causing execution on the second database session of a

set of commands that was previously sent by the
client for execution on the first database session;

wherein the method is performed by one or more com
puting devices.

12. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause
enabling replay based at least in part on determining that the
set of commands satisfies one or more criteria.

13. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause:

disabling replay and purging another set of commands
based at least in part on determining that the other set
of comments sent for execution does not satisfy one or
more criteria.

14. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause:

receiving, on the first database session, a first set of results
from executing at least part of the set of commands on
the first database session;

US 2016/0321304 A9

receiving, on the second database session, a second set of
results from executing the at least part of the set of
commands on the second database session;

determining that the state was correctly rebuilt on the
second database session at least in part by verifying that
the first set of results matches the second set of results.

15. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause:

determining a first value using a procedure by inputting,
to the procedure, a first set of results from executing at
least part of the set of commands on the first database
session, wherein the first value is Smaller in size than
the first set of results;

determining a second value using the procedure by input
ting, to the procedure, a second set of results from
executing the at least part of the set of commands on the
second database session, wherein the second value is
Smaller in size than the second set of results;

determining that the state was correctly rebuilt on the
second database session at least in part by verifying that
the first value matches the second value.

16. The one or more non-transitory storage media of claim
11, wherein one or more commands of the set of commands
are executed on the second database session against one or
more past database states in which the one or more com
mands were previously executed on the first database ses
Sion, and wherein one or more other commands of the set of
commands are executed on the second database session
against current database states.

17. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause:

receiving marked boundaries comprising begin markers at
beginnings of requests and end markers at ends of the
requests; and

Nov. 3, 2016

using the marked boundaries delimit the requests to one or
more server instances that process the requests.

18. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause,
after causing execution of the set of commands on the
second database session, causing execution of one or more
other commands on the second database session; wherein at
least one of the one or more other commands depends on the
state that was caused to be rebuilt on the second database
session.

19. The one or more non-transitory storage media of claim
11, wherein the set of commands is a first set of commands
of a first request, wherein the instructions, when executed,
further cause:

for the first request, determining whether or not the first
set of commands is acceptable to replay based at least
in part on whether the first set of commands satisfies
one or more stored criteria;

for a second request comprising a second set of com
mands, determining whether or not the second set of
commands, separately from the first set of commands,
is acceptable to replay based at least in part on whether
or not the second set of commands satisfies the one or
more stored criteria.

20. The one or more non-transitory storage media of claim
11, wherein the instructions, when executed, further cause,
in response to determining that the State has been Success
fully rebuilt on the second database session, causing opera
tion of an application that originated the set of commands to
continue using the second database session without inter
rupting operation of the application.

k k k k k

