VENTILATED SMOKING MATERIAL PERFORATION APPARATUS, METHOD AND PRODUCT

Inventors: Steve Woodson, (US); Keith Scott, (US)

Correspondence Address:
AKIN GUMP STRAUSS HAUER & FELD LLP
1111 Louisiana Street, 44th Floor
Houston, TX 77002 (US)

Publication Classification

Int. Cl.
A24D 1/02 (2006.01)
A24B 15/00 (2006.01)
A24C 1/38 (2006.01)
B65D 85/12 (2006.01)

U.S. Cl. 131/274; 131/365; 131/281; 206/260

ABSTRACT

An apparatus to make ventilated cigars is disclosed. The apparatus includes a perforating means along a first wrapper paper section and arranged before the first wrapper paper section and the second wrapper paper section are joined together. A roller member rotates the first wrapper paper section. In one embodiment, the roller member includes a set of pins that cooperate with the roller member to perforate the first wrapper paper section proximal to an outer edge surface of the first wrapper paper section.
FIG. 6

1. Install Wrapper Supply
2. Perforate Wrapper
3. Roll Wrapper
4. Add Smoking Material
5. Join Edges
6. Glue Wrapper
7. Cut Wrapper
VENTILATED SMOKING MATERIAL PERFORATION APPARATUS, METHOD AND PRODUCT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 12/283,014, filed Sep. 9, 2008.

FIELD OF THE INVENTION

[0002] The invention relates generally to the field of smoking materials and smoking material producing assemblies, and specifically in one exemplary aspect to a retrofit perforation device to improve aromatic properties of cigars.

DESCRIPTION OF RELATED TECHNOLOGY

[0003] Tobacco assemblies are well known in the art. Such assemblies are utilized to produce cigars and cigarettes of one or more varieties. Some related art patents discussed below (and incorporated by reference in their entirety) are representative art of these conventional assemblies. In one related art example, U.S. Pat. No. 5,623,952 discloses an apparatus including a web of tipping paper that is advanced in a filter tipping machine from a source to a station. In this example, the web is subdivided into uniting bands ready for draping around groups of coaxial plain cigarettes and filter rod sections. The filter rod sections are provided with projecting portions which are at least partially removed by a rotary grinding tool to provide the web with a pattern of perforations which determine the degree of ventilation of the filter cigarettes.

[0004] In yet another related art example, U.S. Pat. No. 4,827,947 discloses a process whereby successive filter cigarettes of unit length or multiple unit length are transported sideways on a first drum-shaped conveyor. The first drum cooperates in a filter tipping machine with a second drum-shaped conveyor to rotate successive cigarettes about their respective axes. As a consequence, the rotating cigarettes come to a temporary halt in a predetermined portion of their path. Such cigarettes are actuated upon by two or more laser beams or light beams which are equidistant from and angularly offset relative to each other in a circumferential direction.

[0005] In yet another related art example, U.S. Pat. No. 4,331,165 discloses a method whereby ventilated cigarettes are made by perforating a wrapper of each filter over an area which lies within perforated perforations in a uniting band joining the filter to a tobacco rod. The filter wrappers are perforated by pins on a rolling plate and fluted drum between which filter portions cut from longer filter rods are rolled to stagger the portions so that they can then be pushed into a single row.

[0006] In contrast to the above instances, tobacco producing apparatus may further be desired to achieve still wider variety of tobacco product options and provide improved user comfort and smoking pleasure as well as provide various types of and configurations for tobacco products without requiring complicated manufacturing processes. For instance, eliminate the need to create perforations to conform to a boundary region about a filter and a tobacco rod. For instance, a cigar producing apparatus may be needed to further aerate or expose a larger effective surface area of smoking materials within a tobacco rod to provide improved aroma and pleasure for a user. In this instance, a manufacturer or user may find it beneficial that an off-the-shelf smoking material producing apparatus be easily retrofitted (or customized) with an improvement mechanism capable of producing an improved variety of tobacco rods. Furthermore, a user may further desire minimal changes to an existing machine including disruption of an existing wrapper paper path situated about a machine rolling path assembly so that any upgrade mechanism remains relatively low cost and reusable and easy to install. In addition, a manufacturer may further desire that the upgrade doesn’t cause significant damage and minimize wear to existing components (e.g., machine parts) of an existing smoking material apparatus when in use.

[0007] Thus, what is needed are improved smoking material producing apparatus and methodology and smoking material products that permits easy initial configuring and reconfiguring, i.e., provide adaptability, and upgrade capability so that major expensive retooling or retrofitting is avoided if a new smoking material configuration (e.g., perforation pattern) is desired. Furthermore, such improved apparatus and methods would also ideally allow a person other than a mechanic or mechanical servicing professional to implement or attach the improvement mechanism, and would further permit creation of user-customized perforation configurations and customized fit and appearance cigar aeration patterns requiring minimal efforts, e.g., minimal adjustment or removal and replacement or adaptation of an existing perforation tool.

SUMMARY OF THE INVENTION

[0008] In a first aspect of the invention, an apparatus is disclosed to make ventilated tobacco rods. The apparatus joins together first and second wrapper paper sections that are secured at a first and a second end of the wrapper paper sections. Components are provided wherein the first wrapper paper section and the second wrapper paper section are arranged to roll along a machine path. In one embodiment, a perforating means is provided along the first wrapper paper section and arranged before rolling together the first wrapper paper section and the second wrapper paper section. The components include a roller member to rotate the first wrapper paper section. In one embodiment, the roller member comprises pins mounted along a rotating surface to create indentations along an axial direction (e.g., a length) of a tobacco rod.

[0009] In a second aspect of the invention, a machine is disclosed to manufacture a ventilated cigar comprising smoking material wherein wrapper paper sections are joined together and overlap with one another and are secured at a first end of the wrapper paper sections. A perforating means is disclosed whereby a first wrapper paper section and a second wrapper paper section are arranged to roll along at least one machine path. In one embodiment, the perforating means is provided along a first wrapper paper section and before the first wrapper paper section and the second wrapper paper section are joined together. In one variant, a first roller member and a second roller member are mounted so that at least an outer portion of a rotating surface of the first roller member is not aligned with (not facing) at least a portion of a rotating surface of the second roller member. In another variant, the first roller member comprises pins rotationally mounted along an outer surface of the first roller member. The pins cooperate with the first roller member to create indentations in the first wrapper paper section along an outer edge surface
of the first wrapper paper so as to improve air flow ventilation of the smoking material of the cigar.

Another aspect of the invention includes a smoking article comprising an inner wrapper of smokable material containing tobacco that is further surrounded by an outer wrapper of smokable material with vapor passages that maintain an increase in the drug inhaled by the user, and a decrease in draw resistance and an even burn on the cigar.

These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a side perspective view of a cigar manufacturing machine showing the roller member, a gluing mechanism, a guide structure, and cutting mechanism in accordance with an embodiment of the present invention.

Fig. 2 is an exploded side view of the roller member of Fig. 1 in accordance with an embodiment of the present invention.

Fig. 3 is a perspective view of a cigar produced by the cigar manufacturing machine of Fig. 1 in accordance with an embodiment of the present invention.

Fig. 4 is a side perspective view of a cigar manufacturing machine showing an individual loading a smoking substance and the smoking substance supplied to the first and the second wrapping sections while in the guide structure in accordance with an embodiment of the present invention.

Fig. 5 is a side perspective view of Fig. 1 illustrating an exploded view of a guide structure to form rolled wrapper paper to create a desired shaped cigar in accordance with an embodiment of the present invention.

Fig. 6 is a logical flow diagram illustrating one exemplary embodiment of a method for manufacturing a cigar using the cigar apparatus in accordance with the present invention.

Fig. 7 is a perspective view of a cigar produced by the cigar manufacturing machine with a diagonal line of vapor passages generally along the longitudinal axis of the cigar.

Fig. 8 is a perspective view of a cigar produced by the cigar manufacturing machine with a line of vapor passages generally along the longitudinal axis of the cigar, where the vapor passages decrease in size from the tip to the end.

Fig. 9 is a perspective view of a cigar produced by the cigar manufacturing machine with a line of vapor passages generally along the longitudinal axis of the cigar, where the vapor passages increase in size from the tip to the end.

Fig. 10 is a perspective view of a cigar produced by the cigar manufacturing machine with a triangular pattern of vapor passages generally along the longitudinal axis of the cigar.

DETAILED DESCRIPTION

Overview

In one salient aspect, the present invention discloses apparatus and methods for operation and processing of smoking materials for, inter alia, producing cigars as well as custom capabilities, in one variant, to produce various indentation configuration areas on cigars responsive to, for instance, a manufacturer’s or user’s desired custom configuration. In particular, the present invention discloses an apparatus and method configured using a roller member having a drill bit pattern, for instance, based on customized perforation criteria, e.g., surface area density and the like. Furthermore, the present invention discloses a technique to pinch wrapper paper(s), for example, using a guide section before the wrapper paper(s) is/are secured along an edge. In addition, the present invention further discloses a cigar that contains perforations along an outside edge to improve drag capability (as well as aeration) of smoking material disposed within the wrapper paper.

Accordingly, the apparatus advantageously allows multiple configuration styles and supports many different system configurations through its ability to provide to a user significant flexibility of rapid adjustment to create new "customized" fit, e.g., using interchangeable drill bits. In addition, the principles of the present invention are applicable to retrofitting a tobacco rod producing machine (e.g., a cigar producing apparatus) to improve its capabilities in the area of visibility of wrapper paper supply as well as easy tension adjustment because, for instance, all the rolling supply mechanisms and the roller mechanism are substantially contained within a single plane (and attachable externally to a housing of a conventional cigar machine).

Exemplary Extension Apparatus

Referring now to Figs. 1-5, exemplary embodiments of the cigar perforation apparatus of the invention are described in detail. It will be appreciated that while described primarily in the context of a cigar perforation apparatus, at least portions of the apparatus and methods described herein may be used in other applications, such as for example and without limitation applications, including tobacco material rolling or packaging, hemp material rolling or packaging products, herbal rolling or packaging machines, herbal aromatic machines or other applications, such as storage and aeration of herbal products and the like. Moreover, it will be recognized that the present invention may find utility beyond purely herbal and tobacco concern. For example, the “perforation apparatus” described subsequently may be conceivably modified with the addition of sections or components including adding functionality; e.g., extra rows or sections of indentations to help improve aromatic effect of smoking material in a state environment, decreasing stress of employees using aroma therapy during a break time, etc. A myriad other functions will be recognized by those of ordinary skill in the art given the present disclosure.

Referring to Fig. 1, an apparatus 100 is disclosed to manufacture a ventilated cigar, e.g., cigar 102, with smoking material 104, e.g., tobacco, herbs, herbal products, or the like (as shown in Fig. 4). Apparatus 100 setup, in one embodiment, a first wrapper paper section 106, e.g., 38 mm wide brown rolling paper, is loaded onto roller supply mechanism 108 rotatably attached to apparatus 100. In one variation of this embodiment, second wrapper paper section 110, e.g., 36 mm wide green-rolling paper that, in one variant, is flavored or scented loads onto roller supply mechanism 112. In one exemplary embodiment, a perforation mechanism 115 indents first wrapper paper section 106 before rolling
together, e.g., integrally wrapping, first wrapper paper section 106 and second wrapper paper section 110 to form rolled wrapper paper section 107.

[0027] Referring to FIG. 2, perforating means 2 (positioned as shown in FIG. 1) following roller supply mechanism 108 perforates first wrapper paper section 106 as being supplied from roller supply mechanism 108. In one embodiment, components of apparatus 100 include first roller member (e.g., first roller drum) 115 and second roller member (e.g., second roller drum) 122 being supplied by one or more roller supply mechanisms, e.g., mechanism 108 and 112. In this embodiment, first roller member 115 and second roller member 122 are mounted so that at least an outer portion of a rotating surface 125 of first roller member 115 is not aligned with at least a portion of rotating surface 127 of second roller member 122. Advantageously, this misalignment minimizes damage to wrapper paper sections not destined for being perforated by first roller member 115.

[0028] Continuing with this embodiment, first roller member 115 integrally contains pins 118. In this example, pins 118 are rotationally mounted along outer surface 125 of first roller member 115. In this same example, pins 118 operatively couple with second roller member 122 to create indentations 114 in first wrapper paper section 106, in one example, proximal to outer edge surface 148 (shown in FIG. 4) (or within the area 130 as shown in FIG. 2) of first wrapper paper section 106 to improve ventilation of smoking material 104. In one exemplary embodiment, pins 118 operatively couple with second roller member 122 to create indentations 114 in first wrapper paper section 106 substantially along a rotation direction of first wrapper paper section 106 and proximal to outer edge surface 148 of first wrapper paper section 106 to improve ventilation of smoking material 104. Advantageously, ventilation of smoking material 104 is improved by perforations 114 (as illustrated by aroma 164 including flavor or sent emitted by smoking material, for instance, wraps about and flows around and through cigar 102, as compared to conventional cigars that are primarily limited to ventilation on either end.

[0029] In one variant, pins 118, e.g., series of drilling bits, are mounted substantially orthogonal to a direction of motion 120 of roller member 115 to create indentations 114 in correspondence with a shape of drilling bits as first wrapper paper section 106 is rolled. In one variant, drilling bits may be interchangeable with other indentation apparatus to form a custom set of slits or cuts within, for example, first wrapper paper section 106. In another variant, pins may create a series of perforations covering a predetermined area 130, for example, about outer edge surface 148 (e.g., in one alternative embodiment, aligned with direction of rotation of roller member 115) of first wrapper paper section 106. In one variant, perforation means 2 includes guide pin 126 rotatably mounted before roller member 115 and guide pin 128 rotatably mounted after roller member 122 to provide a tension/alignment means of the first wrapper paper section 106 and the second wrapper paper section 110 before being rolled together. In one variant, pins 118 may be rotated several revolutions over first wrapper paper section 106 to create one or more series of perforations, e.g., on such row being perforations 114.

[0030] As best illustrated in FIGS. 4 and 5, after both wrappers are joined (e.g., rolled), smoking material is disposed on first wrapper paper section 106 and second wrapper paper 110. More specifically, rolled wrapper paper section 107 operatively couples through guide pin 156 and guide pin 158 to smoking material dispenser 134, e.g., a chute or opening for dispensing tobacco material, receiving smoking material 104, for instance, from opening 101. In one embodiment, guide pins 156, 158 provide tension adjustment of the wrapper paper section 107. To form a cylindrical shape of cigar 102, first guide section 138 and second guide section 140 are utilized. In one embodiment, first guide section 138 includes width taper 139 that gradually decreases from width 141 (of first wrapper paper section 106, e.g., 38 mm, to width 142, e.g., between a range of 5 to 10 mm. In the same embodiment, first guide section 138 includes a c-shaped cavity (e.g., a half cylindrical shaped cavity), in one embodiment, that changes size in accordance with dimensionality (e.g. width) of taper 139. In operation, as a portion of wrapper paper section 107 travels along taper 139, edges of the wrapper paper section 107 extend upward along walls of c-shaped cavity (e.g., half cylindrical shape) toward second guide section 140. Second guide section 140 includes a mating cylindrical cavity that accepts, e.g., folds over, edges of wrapper paper section 107 as a result of rolling along taper 139. In one variant, at width 142, a cylindrical shaped tobacco rod 153 is formed as edges of the wrapper paper section 107 are folded toward each other along inside surfaces of cylindrical shaped cavity of second guide section 140. In this embodiment, wrapper paper alignment guides 138, 140 pinch, e.g., fold, opposing edges of first and the second paper sections 106, 110 toward another in a gradual fashion to create, for instance, a cylindrical shaped tobacco rod 153.

[0031] To maintain and secure a cylindrical shape, gluing mechanism, e.g., glue gun 152, secures the first wrapping paper section 106 to the second wrapping paper section 110 to secure wrapper paper of tobacco rod 153. In one embodiment, glue mechanism, e.g., glue gun 152, is disposed orthogonal relative to direction of movement of wrapper paper section 107, applies an adhesive, e.g., glue or epoxy based compound, to affix together edges of wrapper paper section 107. Sawing apparatus 160 slices tobacco rod 153 to form a series of tobacco rods, e.g., one or more tobacco rods such as cigar 102, for example, that are approximately 4.5 inches in length. Following, first end 162 of cigar 102 is rolled or sealed by conventional means, for instance, hand twisted and, in one instance, glued or bonded when twisted or folded to maintain smoking material within cigar 102.

[0032] Advantageously, the present invention’s perforations, e.g., creating indentations, along an outer surface of the cigar along a longitudinal direction (e.g. running from input to output) of cigar 102 so as to maximize air flow area and exposure of smoking material so as to increase drag of a user (e.g., while either inhaling or exhaling aroma 164 as shown in FIG. 3). In addition, perforation apparatus of the present invention may be added to an existing cigar producing machine, e.g., placing roller member, proximal to or integrally applied to a machine roll path (removing one or more roll tension elements) so that the indentation machine is “built into” and “incorporated” as part of a wrapper paper mechanism, e.g., roller supply mechanism. In this exemplary embodiment, supply rollers are located on a front of the machine and in a same plane (same surface) so as to facilitate easy visibility (to determine when the wrapper paper is running low) as well as ease removal or replenishment or interchanging by a user one or more wrapper paper sections.

[0033] In contrast to teachings in present invention, many conventional machines have supply wrapper paper rolls hid-
den inside, e.g., a hidden drawer, or located in a hard to access compartment, e.g. a rear only accessible machine door, of a cigar producing machine. In this exemplary embodiment, because wrapper paper sections of first and second rolls connect to a same guide pin on the same surface as the roller supply mechanism, tension adjustment roll is made easier as compared to conventional tension arrangements requiring multiple, off-axial tension adjustment locations. Furthermore, because perforations are only situated on a first paper wrapper section, wrapper properties of the second paper wrapper section are substantially unchanged (undisturbed) so that perforations may provide full aromatic flavor (e.g., of the second wrapper paper section 110) is favored or aromatically scented.

Furthermore, advantageously, in this embodiment, smoking material is applied to wrapping paper sections on a horizontal surface and first and second guide sections pinch (e.g., folds) wrapping paper section gradually in a tapered manner, e.g., gradually from a horizontal to a vertical directions e.g., an orthogonal direction, before bonding of wrapper paper sections using, for instance, a gluing mechanism. Thus, the inventive concepts and mechanism allows a manufacturer (or after market-user) to achieve a customized cigar perforation device to produce a multitude of custom configurations of cigar perforations, e.g., using detachable drill bits (disclosed below) disclosed above.

Exemplary Methods

Referring now to FIG. 6, an exemplary embodiment of a method 200 for fabricating a cigar using the aforementioned cigar manufacturing apparatus is described. While described primarily in the context of the exemplary embodiments of apparatus 100 shown in FIGS. 1-5, it will be appreciated that the methodology presented herein may be readily adapted to many different configurations of apparatus 100 as recognized by those of ordinary skill in the art.

In step 201, first wrapper section 106 and second wrapper section 108 is installed in a roller supply mechanism. In step 202, first wrapper section 106 is perforated by roller member. In step 204, first wrapper section and second wrapper section are rolled together. In step 206, smoking material is supplied to first wrapper section 106 and second wrapper section 110. In step 208, first wrapper section 106 and second wrapper section 110 are rolled toward first and second guide devices 138, 140 that provide a pinching force so that edges of wrapper section 107 contact one another. In step 210, glue mechanism 152 secures (e.g., using adhesive or glue) edges of wrapper section 107. In one variant of step 210, the glue mechanism 152 holds down (presses down) edges of wrapper section 107. In step 212, cutting mechanism 160 slices the pinched wrapper sections, e.g., tobacco rod 153, to form cigar 102. In one variant of step 212, end 162 of cigar 102 is hand twisted to secure smoking material contained within, such as smoking material 164 contained in the cigar 102.

It will be appreciated that while certain aspects of the invention have been described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application.

Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps

Exemplary Products

Referring now to FIG. 3, an exemplary product 102 of the aforementioned smoking article, manufacturing apparatus, and method is described. The product consists of two smokable wrappers. The inner wrapper is made of general smokable material used in smoking articles. This inner wrapper forms an inner section of smoking article 102, and therefore is shaped as a rolled elongated tube with a substantially uniform cross-sectional area. The inner wrapper encloses the smoking tobacco, or the tobacco filler.

The outer wrapper, made of the similar general smokable material used in smoking articles, surrounds the inner wrapper, so that the outer wrapper is in substantial contact with the inner wrapper. When rolled, the outer wrapper is the outer section of smoking article 102. Similar to the inner wrapper, the outer wrapper is shaped as a rolled elongated tube with a substantially uniform cross-sectional area. The outer wrapper includes vapor passages disposed about and extending through the outer wrapper. These vapor passages improve air flow ventilation and facilitate smoke inhalation as previously described.

As the smoking article is smoked, the vapor passages introduce additional air into the smoking article, by for example, the user puffing on the smoking article. This additional air through the vapor passages can create a substantially even burn along the plane perpendicular to the length of the smoking article throughout the smoking experience.

The vapor passages also increase the drag inhaled by the user by increasing airflow through the wrapper material into the tobacco. This increased airflow results in an increase of smoke inhaled by the user. The ease of smoking, or the airflow through a smoking article may be measured by the draw resistance, or the draw pressure differential between the tip and the end of the smoking article, as determined by the DrawMaster. The DrawMaster is a draw testing machine manufactured by International Machine Technology, Inc., and is considered the industry standard machine for testing draw resistance in cigars and cigarillos.

In one aspect of the invention, the smoking article creates an airflow increase, and thereby an increase in user drag. One embodiment maintains a draw resistance lower than 45, due to the air flow through the vapor passages. The purpose of the vapor passages is to increase—not decrease—the amount of tobacco smoke inhaled by the user, or increase the drag.

The vapor passages also increase the amount of smoke exiting the smoking article while it is not being smoked, or an increase in the aroma of the smoking article. During periods of non-smoking, and as the smoking article continues to burn, the vapor passages allow an increased amount of smoke to be released from the smoking article through the vapor passages to surround the user or others with the aroma of the tobacco. As shown in FIG. 3, as the user holds the smoking article 102 while it is being burned, an increased amount of smoke 164 is released from the smoking article 102 surrounding the user with desired tobacco aroma.

As shown in FIG. 3, the smoking article contains an outer wrapper with a line of vapor passages 114 running lengthwise along the smoking article 102. In another aspect, as shown in FIG. 7, the smoking article 102 contains an outer wrapper with a line of vapor passages 168 running diagonal
along the axis of the smoking article 102. In FIG. 8, the vapor passages are a line of vapor passages 166 where the size of the vapor passages 166 decrease in size from the tip 119 of the smoking article 102 to the end 117. As shown in FIG. 9 the size of the vapor passages 167 increase from the tip 119 of the smoking article 102 to the end 117. As shown in FIG. 10, the smoking article 102 contains an outer wrapper with a line of vapor passages 168 in a triangular pattern. Although the figures show a single line of vapor passages, the outer wrapper can have multiple lines or multiple triangular patterns of vapor passages.

Another aspect can include an embodiment, where both the inner and outer wrappers of the smoking article contain vapor passages, to further maintain a substantially even burn and to further decrease the draw. This increases the smoking experience by creating a more substantial drag for the user. The vapor passages on the inner and outer wrapper may be aligned or unaligned.

The outer and inner wrappers may also be flavored. The smoking article may contain only a single flavored wrapper (only the inner or outer wrapper) or both wrappers can be flavored. If both wrappers are flavored, they can be flavored with the same flavoring or different flavorings.

It should also be noted, that the longitudinal ends of the inner wrapper can be sealed or not. The smoking article can also be packaged, such as in a resealable pouch. The resealable pouch helps to keep the smoking articles fresh after initial opening of the pouch. This also helps to increase the shelf-life of the smoking articles.

An aspect of the invention will be described in further detail by reference to the example below which is given for illustrative purposes only and is not intended to limit the scope of the claimed invention.

Example 1

Cigar A was made comprising an inner wrapper made of a homogenized tobacco material, such as BB material, with a length of 109.23 mm and a width of 36 mm, and an outer wrapper made of homogenized tobacco material with a length of 109.23 mm and a width of 38 mm. The outer wrapper further contained a generally straight line of vapor passages running parallel to the lengthwise axis of the cigar. The vapor passages were small cuts of approximately 2.25 mm length, spaced approximately a 3.0 mm apart.

Cigar B was a traditional cigar found on the market that did not utilize a line of openings on the outer surface of the cigar, in this example it was the Swisher Sweet.

Cigar A had a ring gauge of 29.25 and Cigar B had a ring gauge of 27.75. Although Cigar A is slightly larger than Cigar B, both cigars were proportionally packed with tobacco relative to their individual sizes.

Both Cigar A and B were draw tested using the Drawmaster testing machine to determine the pressure differential between the tip and end of the Cigars. Cigar A resulted in a draw pressure differential of 35, while Cigar B resulted in a draw pressure differential of 45—substantially higher than Cigar A.

Further, both Cigar A and B were secured by clamps to minimize movement, and both were lit at the tip of the Cigars. Both Cigars were allowed to naturally burn without any additional user assistance. From manual inspection, Cigar A maintained a substantially more even burn than Cigar B. Further, to the average cigar smoker, Cigar A would produce a greater amount of smoke per inhalation, or an increase in drag, as compared to Cigar B.

While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.

What is claimed is:

1. A smoking article comprising:
an inner wrapper of smokable material, creating a generally longitudinal tube of a substantially uniform cross-sectional area, wherein the longitudinal tube contains tobacco filler; and
an outer wrapper of smokable material in substantial contact with the inner wrapper, the outer wrapper having vapor passages disposed about and extending through the outer wrapper.

2. The smoking article of claim 1, wherein the vapor passages facilitate smoke inhalation by reducing draw resistance when the smoking article is consumed by a user.

3. The smoking article of claim 2, wherein the draw resistance is less than 45.

4. The smoking article of claim 1, wherein the vapor passages facilitate a substantially even burn of the smoking article when the smoking article is consumed by a user.

5. The smoking article of claim 1, wherein the vapor passages are disposed generally along a longitudinal axis of the smoking article.

6. The smoking article of claim 5 further comprising a first end and a second end, wherein the vapor passages increase in size along the length of the smoking article generally from the first end to the second end.

7. The smoking article of claim 1, wherein the vapor passages are disposed generally at an angle offset a longitudinal axis of the smoking article.

8. The smoking article of claim 1, wherein the vapor passages are disposed in a substantially triangular pattern along the outer wrapper.

9. The smoking article of claim 1 further comprising a first end and a second end, wherein the vapor passages vary in size.

10. The smoking article of claim 1, wherein the smoking article is packaged for sale.

11. The smoking article of claim 1, wherein the outer wrapper is flavored.

12. The smoking article of claim 1, wherein the inner wrapper is flavored.

13. The smoking article of claim 1, wherein the inner wrapper further comprises vapor passages disposed about and extending through the inner wrapper.

14. The smoking article of claim 13, wherein the inner wrapper vapor passages and the outer wrapper vapor passages are not aligned.

15. A method of creating a perforated smoking article, the method comprising:
surrounding tobacco filler with a sheet of smokable material to form an inner smoking article, the inner smoking article being a generally longitudinal tube of a substantially uniform cross-sectional area; and
surrounding the inner smoking article with an outer wrapper of smokable material, the outer wrapper having vapor passages disposed about and extending through the outer wrapper.

16. The method of claim 15, wherein the vapor passages facilitate smoke inhalation by reducing draw resistance when the smoking article is consumed by a user.

17. The method of claim 16, wherein the draw resistance is less than 45.

18. The method of claim 15, wherein the vapor passages facilitate a substantially even burn of the smoking article when the smoking article is consumed by a user.

19. The method of claim 15, wherein the vapor passages are disposed generally along a longitudinal axis of the smoking article.

20. A packaged smoking article comprising:
 an inner wrapper of smokable material, creating a generally longitudinal tube of a substantially uniform cross-sectional area, wherein the longitudinal tube contains tobacco filler;
 an outer wrapper of smokable material in substantial contact with the inner wrapper, the outer wrapper having vapor passages disposed about and extending through the outer wrapper, and
 a resealable pouch having the smoking article disposed therein, wherein the resealable pouch is capable of increasing a shelf life of the smoking article.