PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/35270
GOGF 17/30 Al

(43) International Publication Date: 25 September 1997 (25.09.97)

(21) International Application Number: PCT/US97/04399 | (81) Designated States: AL, AM, AT, AT (Utility model), AU

(Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN,

(22) International Filing Date: 19 March 1997 (19.03.97) CU, CZ, CZ (Utility model), DE, DE (Utility model), DK,

DK (Utility model), EE, EE (Utility model), ES, FI, FI
(Utility model), GB, GE, GH, HU, IL, IS, JP, KE, KG,
(30) Priority Data: KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK,

08/618,507 19 March 1996 (19.03.96) us MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US,
UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ,

(71) Applicant (for all designated States except US): ORACLE UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
CORPORATION [US/US]J; 500 Oracle Parkway, Redwood TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
Shores, CA 94065 (US). GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,

BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SOUDER, Benny
[US/US]; 1577 Winding Way, Belmont, CA 94002 (US). | Published
DOOP, Lip, Boon [MY/US]; 1860 N.W. Circle, San With international search report.
Jose, CA 95131 (US). DOWNING, Alan [US/US]; 4784
Creekwood Drive, Fremont, CA 94555 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff, Taylor
& Zafman L.L.P., 1279 Oakmead Parkway, Sunnyvale, CA
94086 (US).

(54) Title: CONFIGURABLE CONFLICT RESOLUTION IN A COMPUTER IMPLEMENTED DISTRIBUTED DATABASE

(57) Abstract

An apparatus and method for providing adaptable and configurable conflict resolution within a replicated data environment is disclosed.
In a distributed database system having a first node and a second node, the first node including a first data structure, the second node including
a second data structure, a configurable conflict resolution apparatus is disclosed as comprising: 1) a conflict detection module for detecting
a conflicting modification to corresponding portions of the first and the second data structures; 2) a plurality of conflict resolution methods,
one or more of the plurality of conflict resolution methods being configurably associated with the corresponding portions of the first and
the second data structures; and 3) a conflict resolution module for activating a first conflict resolution method of the one or more of the
plurality of conflict resolution methods when the conflict detection module detects the conflicting modification to the corresponding portions
of the first and the second data structures.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People'’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
Us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 97/35270 PCT/US97/04399

1

Configurable Conflict Resolution
in a Computer Implemented Distributed Database

IE F_THE ENTION
The present invention relates to computer implemented database systems.

Specifically, the present invention relates to conflict resolution within a database

system.

DESCRIPTION OF RELATED ART

Modem data processing systems, once the domain of large centralized

mainframe computers, have evolved into collections of dispersed independent
processing systems interconnected by networked links. That is, modern systems
are distributed over many interconnected processing nodes. The efficiency of
these distributed systems depends not only upon the processing power of each
independent node, but also upon the ability of the system to efficiently move
information between processing nodes across the network. It is common for
these distributed data processing systems to support the execution of complex
application programs which typically access large databases of information.
These application programs and distributed systems must be capable of operating
across multiple processing platforms which can be geographically separated by
great distances.

For example, many commercial business operations are geographically
dispersed. Some locations may perform manufacturing or product development
while other locations perform sales, marketing, inventory control, billing, or
various administrative functions. These business operations require the use of

various types of business data including, for example, customer data, order data,

10

15

20

25

WO 97/35270 PCT/US97/04399

2
shipping data, billing data, etc. It will be apparent to those of ordinary skill in

the art that many other types of information may be required to allow a
particular business operation to run efficiently. These various types of business
information are stored in distributed systems for access by application programs
executed by the data processing systems at the local and remote business
locations. These data processing systems, called nodes herein, typically include
computers, processors, or terminals physically resident at the same proximate
location. The distributed systems being accessed by these complex application
programs are typically comprised of many tables, arrays, files, and other
complex interdependent data structures and related programs.

A conventional distributed database technology is replication. Using this
methodology, multiple replicas or instantiations of data structures or programs
can exist in more than one database in a distributed system. In a typical
scenario, a remote database would be used to access a local node in which a
desired distributed data structure is resident. The remote node would then
transfer a copy of the data structure to itself for local processing without the
need for distributed transactions. Although replication increases the speed of
accessing a particular data structure, this methodology produces a problem of
maintaining coherency between multiple replicas of the same data structure or
program. For example, two different nodes may replicate a distributed data
structure and concurrently modify the data structure differently. It then
becomes very difficult to reconcile the two modified replicas or to merge the
updates into a composite version of the data structure. Thus, multiple modifiable
replicas of a data structure introduces a coherency problem.

Within the replication methodology, two basic conventional techniques are
used for maintaining coherency among multiple replicas of the same data

structure. First, synchronous replication may be used. In synchronous (not

10

15

20

25

WO 97/35270 PCT/US97/04399

3
asynchronous) replication, each update or modification of a data structure is

immediately replicated to all other replicas of the data structure existing on any
other processing node of the distributed system as part of their local transaction.
The data structure modification is not allowed to complete until all other replicas
of the data structure have been similarly updated. In this manner, all replicas of
the data structure across the distributed system are guaranteed to be the same.
Although the synchronous replication methodology provides a simple means for
maintaining distributed system coherency, this method is sensitive to network
latencies and intermittent network failures and does not work at all for dormant
clients. Dormant clients are those that cannot perform an update to a data
structure within a predetermined time period. Because each data structure
modification is stalled until all nodes have been updated, network delays impact
each such modification. Further, synchronous replication does not provide a
means for differentiating particular data access transactions as higher or lower
priority. Thus, low priority accesses can still produce significant system delays
when this result may be unnecessary.

The second conventional method for maintaining data structure coherency
in a replication methodology is asynchronous replication. Using this method,
local replicas of a particular data structure can be slightly different for a time
until an asynchronous update is performed. In asynchronous replication, a
distributed node can modify its local copy of a data structure without forcing a
network access as in the synchronous replication methodology. At a
predetermined time interval or on demand, all previously un-replicated
distributed data structure modifications are combined into a minimal set of
updates which are transferred across the network at one time and applied to all
other replicas of the data structure. The asynchronous replication method

provides a means for balancing network traffic over time. The asynchronous

10

15

20

WO 97/35270 PCT/US97/04399

4
method also provides an effective means for tuning the performance of a

particular distributed system; however, a problem of data update conflicts is
introduced. Data update conflicts occur when two distributed nodes modify the
same data object in a distributed data structure before the asynchronous update
process has executed. In this situation, two data objects may be validly updated
locally at two different distributed processing nodes; however, an invalid
combination of the two data objects may be produced when the updates to the
data objects are propagated to other nodes. Although these conflicts can usually
be reduced, it is important in designing any distributed system to understand and
minimize these conflicts as much as possible.

Typically, remote accesses between nodes are performed using a
conventional data manipulation language such as SQL or other conventional
protocol. Alternatively, the remote database can use a remote procedure call
(RPC) to activate a data access procedure on the local database in a synchronous
RPC context. In a synchronous context, the remote database waits for the RPC
to finish before completing the transaction. An RPC can also be used to queue a
request on the local system in an asynchronous RPC context. In an asynchronous
context, the remote database does not wait for the RPC to finish before
completing the transaction. The use of a remote procedure call is well known to
those of ordinary skill in the art.

Another form of replication is procedural replication. In procedural
replication, a procedure invocation is replicated to other nodes in a distributed
system. This is different from an RPC in that the RPC only produces a
procedure execution in the remote node. In procedural replication, a procedure
execution is produced in both the local node and the remote node. As in the use
of RPCs, both synchronous and asynchronous forms of procedural replication

can be implemented. The synchronous form stalls the transaction until the

10

15

20

25

WO 97/35270 PCT/US97/04399

5
procedure execution is completed, while the asynchronous form allows the

transaction to continue before the procedure execution has completed.

Multiple sites in a distributed computing environment often have need to
share information. Various models have been employed in the prior art to
support data sharing. One model employs a single centralized database which is
shared among multiple users at each distributed site. Using this model, only one
copy of the data is maintained in the centralized database. This model, however,
suffers performance limitations because each of the distributed sites are
competing for access to the same database. A second conventional shared
database model used multiple copies of a database, each resident at the distributed
computing sites. As long as each distributed site operates in a read-only mode
(i.e., no data modifications to the shared database), multiple copies of the same
data item can be located at multiple sites without raising any data integrity issues.
However, as multiple users at multiple system locations begin to modify one or
more of the copies of the same data items, data integrity becomes a critical issue.
As a solution to the data integrity problems caused by data modifications or
updates to a shared database, conventional systems employ a distributed database
configuration wherein a master copy of the database resides at one site and slave
copies reside at any of the other distributed sites. Any modifications to the
database are performed only on the master site with the slave locations receiving
a copy of the modified data after the modification is completed on the master
site. Thus, a user at a slave location must access the master copy to modify a
data item. This technique does not provide the ability to update any copy of the
data and to propagate the changes performed on that copy to all other copies of
the data.

A third technique for distributed data sharing is described in co-pending

U.S. patent application serial number 08/126,586, titled "Method and Apparatus

10

15

20

25

WO 97/35270 PCT/US97/04399

6
for Data Replication"”, filed September 24, 1993 and assigned to the assignee of

the present application. In this co-pending application, data replication in a
networked computing environment is described as allowing duplicate copies of
the same data to be resident at more than one site on the network. Any data
modifications or updates are replicated to all other sites in an asynchronous
manner. In this way, modifications to the shared data can be duplicated at other
sites thereby preserving data integrity at each of the distributed sites. Various
details of the replication technique as employed with a database having multiple
rows, each row having multiple columns or attributes, is described in the above-
referenced co-pending patent application.

Another technique for asynchronous data replication is updatable
snapshots. Updatable snapshots are defined to contain a full copy of a master
table or a defined subset of the rows in the master table that satisfy a value-based
selection criterion. Snapshots are refreshed from the master at time-based
intervals or on demand. Any changes to the snapshot are propagated and applied
to masters using asynchronous RPCs as the underlying mechanism. Any changes
to the master table since the last refresh are then propagated and applied to the
snapshot. A snapshot table can only have one master table, but a master table can
be the master for many snapshots.

Using replication, update conflicts may occur if two sites concurrently
modify the same data item before the data modification can be propagated to
other sites. If update conflicts are not handled in some convergent manner, the
data integrity of the replicated copies will begin to diverge. It is therefore
necessary to first detect update conflicts and secondly to resolve these conflicts in
a manner that allows sustained data integrity.

Prior art data replication systems either do not handle update conflicts at

all or handle conflicts in a rigid and fixed manner. Those conventional systems

10

15

20

25

WO 97/35270 PCT/US97/04399

7
that do not handle update conflicts at all require that a particular shared database

environment be configured in a way to prevent update conflicts such as by
partitioning data appropriately. Other conventional data replication systems
detect some update conflicts and respond in a predetermined and fixed manner.
This rigid conflict resolution technique of the prior art, however, limits
significantly the adaptability of a replication system to a particular application or
user environment. Conflict resolution is usually highly application specific.
Depending upon the application of particular data items in a shared database, a
desired conflict resolution method may vary significantly from one application
to the next.

If all sites (or nodes) in a replicated environment, such as the one
illustrated in Figure 1, are propagating database changes synchronously,
conflicting updates cannot occur, and there is no need to designate a conflict
resolution method. However, if any sites in the replicated environment are
propagating changes asynchronously, it is advisable to designate a conflict
resolution method for each replicated table. Even if the data environment has
been designed to avoid conflicts (for example, by partitioning data ownership)
there should be provided at a minimum some form of notification mechanism to
alert someone if an unexpected conflict does occur.

Sometimes it may be necessary to provide multiple conflict resolution
methods for a single column or group of columns. These methods would then be
applied in order (using a specified priority ranking) until the conflict is resolved.

This is useful for a variety of reasons. For example, there might be a
preferred method of resolving a conflict that might not always be successful. In
this event, a backup method could be provided to have a greater chance of not
requiring manual intervention to resolve the error. In another case, a4 user-

defined method could be provided that performs logging or notification if the

10

WO 97/35270 PCT/US97/04399

8
conflict cannot be resolved. It would be advantageous to be able to mix any

number of user-defined and previously supplied conflict resolution routines.

Another reason for needing multiple conflict resolution methods is if a
particular method is selected, such as latest timestamp, it would be advantageous
to provide a backup method to guarantee success. The latest timestamp method
uses a special timestamp column to determine and apply the most recent change.
In the unlikely event that the row at the originating site and the row at another
site were changed at precisely the same time, a backup method, such as site
priority, could be provided to break this tie. Prior art systems do not provide a
capability for handling database conflict problems using multiple conflict
resolution methods.

Thus, a better means and method for handling update, uniqueness, and

delete conflicts in a replicated database environment is needed.

10

15

20

25

WO 97/35270 PCT/US97/04399

9

SUMMARY OF THE INVENTION

The present invention is a means and method for providing adaptable and
configurable conflict resolution within a replicated data environment. In a
distributed database system having a first node and a second node, the first node
including a first data structure, the second node including a second data
structure, the present invention is a configurable conflict resolution apparatus
comprising; 1) a conflict detection module for detecting a conflicting
modification to corresponding portions of the first and the second data
structures; 2) a plurality of conflict resolution methods, one or more of the
plurality of conflict resolution methods being configurably associated with the
corresponding portions of the first and the second data structures; and 3) a
conflict resolution module for activating a first conflict resolution method of the
one or more of the plurality of conflict resolution methods when the conflict
detection module detects the conflicting modification to the corresponding
portions of the first and the second data structures.

Therefore, it is an advantage of the present invention that configurable
conflict resolution allows complete flexibility of conflict resolution specification.
It is a further advantage of the present invention that configurable conflict
resolution includes detection and resolution of update, uniqueness, and delete
conflicts. It is a further advantage of the present invention that system-provided
conflict resolution methods are declarative and user-extensible. It 1s a further
advantage of the present invention that various system-provided or user-extended
conflict resolution methods can be applied to resolve a particular conflict. It is a
further advantage of the present invention that a plurality of conflict resolution
methods will be applied to a particular conflict until resolution of the conflict is
achieved or no more methods are available. It is a further advantage of the

present invention that a plurality of conflict resolution methods will be applied in

10

WO 97/35270 PCT/US97/04399

10
the user-specified priority order to a particular conflict. It is a further

advantage of the present invention that a different update conflict resolution
method or set of methods may be specified and employed for each column in a
database table. It is a further advantage of the present invention that a different
uniqueness conflict resolution method or set of methods may be specified and
employed for each uniqueness constraint in a database table. It is a further
advantage of the present invention that detection and resolution of update
conflicts are based on column groups, each of which is a collection of columns
logically treated as a single column, in a database table. It is a further advantage
of the present invention that results of conflict resolutions can be collected

optionally for analysis.

10

15

WO 97/35270 PCT/US97/04399

11

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will be apparent from
the accompanying drawings and from the detailed description of the preferred
embodiment of the present invention as set forth below.

Figure 1 illustrates a typical distributed data processing system.

Figure 2 illustrates a typical architecture of a data processing node within
a distributed processing system.

Figure 3 illustrates a typical update conflict scenario.

Figures 4 and 5 are flowcharts which illustrate the processing logic for
detecting and resolving conflicts in the preferred embodiment.

Figure 6 illustrates a typical update ordering conflict scenario.

Figure 7 illustrates the conflict resolution methods provided in the
preferred embodiment.

Figures 8 and 9 illustrate an example of priority groups.

Figure 10 illustrates the three types of conflict resolution provided by
the present invention.

Figures 11-21 are flowcharts which illustrate the processing logic for

detecting and resolving conflicts in the preferred embodiment.

10

15

20

25

WO 97/35270 PCT/US97/04399

12
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is a means and method for providing adaptable and
configurable conflict resolution in a replicated database system. In the following
detailed description, numerous specific details are set forth in order to provide a
thorough understanding of the present invention. However, it will be apparent
to one of ordinary skill in the art that these specific details need not be used to
practice the present invention. In other instances, well-known structures,
interfaces, and processes have not been shown in detail in order not to
unnecessarily obscure the present invention.

Figure 1 illustrates a typical distributed data processing system comprising
node 1, node 2, and node 3 coupled together with network links 41, 42, and 43.
It will be apparent to those of ordinary skill in the art that an arbitrary number
of nodes in the distributed system may be supported in an arbitrary
configuration. Each node, such as node 1, comprises a data processing system 10
and a set of distributed programs and data 11 stored in a distributed data store
(not shown). The distributed data store can be main memory 104 or mass
storage device 107 shown in Figure 2. A typical architecture of data processing
system 10 is described below in connection with Figure 2. Distributed data 11
comprises a set of programs, data structures, and data objects which may be
shared or replicated by other nodes in the distributed system. Distributed data
11, for example, comprises a set of data structures available to other nodes in the
distributed processing system. Data processing system 10 may directly access
distributed data 11; because, distributed data 11 is local (i.e. located within the
same node) to data processing system 10. In this situation, access between data
processing system 10 and distributed data 11 does not require a network access.
Typically, these local accesses can be performed more quickly than accesses

requiring a network communication. Other nodes (node 2 and node 3) of the

10

15

20

25

WO 97/35270 PCT/US97/04399

13
distributed system illustrated in Figure 1 must access distributed data 11 via a

network access. For example, node 2 and the data processing system 20 therein
must access distributed data 11 via network link 41.

This network access can be the result of a distributed transaction or a
replication operation, for example. As described above, other forms of
distributed transfer technologies can cause network accesses. In a distributed
transaction system, the data processing system 20 of node 2 accesses and
manipulates distributed data 11 within the distributed data store of node 1. In a
replication system, after a local version of the distributed data 11 within the
distributed data store of node 1 has been transferred to the distributed data store
of node 2, the data processing system 20 of node 2 accesses distributed data 11
within the distributed data store of node 1 locally within node 2. This local
copy of the distributed data 21 within the distributed data store of node 2 may
subsequently be manipulated locally by data processing system 20.

The hardware architecture of nodes within the distributed processing
system, such as the one illustrated in Figure 1, can be varied and diverse. There
is no requirement in the present invention that each node have equivalent and
compatible processing systems. It is only necessary that each node of the
distributed processing system be able to communicate on a network or some
communication path coupling the nodes together.

Figure 2 illustrates a typical data processing system upon which one
embodiment of the present invention is implemented. It will be apparent to those
of ordinary skill in the art, however that other alternative systems of various
system architectures may also be used. The data processing system illustrated in
Figure 2 includes a bus or other internal communication means 101 for
communicating information, and a processing means 102 coupled to the bus 101

for processing information. The system further comprises a random access

10

15

20

WO 97/35270 PCT/US97/04399

14
memory (RAM) or other volatile storage device 104 (referred to as main

memory), coupled to bus 101 for storing information and instructions to be
executed by processor 102. Main memory 104 also may be used for storing
temporary variables or other intermediate information during execution of
instructions by processor 102. The system also comprises a read only memory
(ROM) and/or static storage device 106 coupled to bus 101 for storing static
information and instructions for processor 102, and a data storage device 107
such as a magnetic disk or optical disk and its corresponding disk drive. Data
storage device 107 is coupled to bus 101 for storing information and
instructions. The system may further be coupled to a display device 121, such as
a cathode ray tube (CRT) or a liquid crystal display (LCD) coupled to bus 101
for displaying information to a computer user. An alphanumeric input device
122, including alphanumeric and other keys, may also be coupled to bus 101 for
communicating information and command selections to processor 102. An
additional user input device is cursor control 123, such as a mouse, a trackball,
stylus, or cursor direction keys coupled to bus 101 for communicating direction
information and command selections to processor 102, and for controlling
cursor movement on display device 121. Another device which may optionally
be coupled to bus 101 is a hard copy device 124 which may be used for printing
instructions, data, or other information on a medium such as paper, film, or
similar types of media. In the preferred embodiment, a communication device
125 is coupled to bus 101 for use in accessing other nodes of the distributed
system via a network. This communication device 125 may include any of a
number of commercially available networking peripheral devices such as those
used for coupling to an Ethernet, token ring, Internet, or wide area network.
Note that any or all of the components of the system illustrated in Figure 2 and

associated hardware may be used in various embodiments of the present

10

15

20

25

WO 97/35270 PCT/US97/04399

15
invention; however, it will be appreciated by those of ordinary skill in the art

that any configuration of the system may be used for various purposes according
to the particular implementation. In one embodiment of the present invention,
the data processing system illustrated in Figure 2 is an IBM® compatible
personal computer. Processor 102 may be one of the 80X86 compatible
microprocessors such as the 80486 or PENTIUM® brand MiCroprocessors
manufactured by INTEL® Corporation of Santa Clara, California.

The distributed data, such as distributed data 11 illustrated in Figure 1, can
be stored in main memory 104, mass storage device 107, or other storage
medium locally accessible to processor 102. It will also be apparent to those of
ordinary skill in the art that the methods and processes described herein can be
implemented as software stored in main memory 104 or read only memory 106
and executed by processor 102. This software may also be resident on an article
of manufacture comprising a computer usable mass storage medium 108 having
computer readable program code embodied therein and being readable by the
mass storage device 107 and for causing the processor 102 to perform
configurable conflict resolution in accordance with the teachings herein.

The following sections describe how to resolve update, uniqueness, and
delete conflicts in an asynchronously replicated environment using the preferred
embodiment of the present invention. General topics within these sections
include the following: 1) the types of conflicts detected and resolved in the
preferred embodiment, 2) how column groups are used in conflict detection, 3)
detecting and resolving update, uniqueness, and delete conflicts, 4) how to select
a conflict resolution method, 5) how to avoid ordering conflicts, 6) the details of
particular update, uniqueness and delete conflict resolution methods, 7) how to
use column groups, priority groups, and site priority, and 8) how to provide

automatic generation of audit information. It will be apparent to those of

10

15

20

25

WO 97/35270 PCT/US97/04399

16
ordinary skill in the art that the preferred embodiment of the present invention

is disclosed. Other alternative embodiments are within the scope of the present

invention.

T f Conflicts

Referring to Figure 3, an example illustrates a typical update conflict
scenario. In the example of Figure 3, a master site A 310 and a master site B 320
is shown. An update operation 312 is performed on a table 311 at site 310 to
produce table 314. A different update operation 322 is performed on table 321 at
site 320 to produce table 324. The present invention uses the modification
information 316 and 326 and compares the old and new values of the row from
the originating site with the old and current values for the same row at the
receiving site 320. The present invention detects a conflict 330 if there are any
differences between these values for any column in the row. If no conflicts are
detected, the row at the receiving site is modified to contain the new value for
each column. If a conflict is detected, the present invention applies one or more
of the appropriate conflict resolution routines in priority order until the conflict
is resolved, or until no more conflict resolution routines are available. Any
unresolved conflicts are logged as errors.

There are three types of conflicts detected by the preferred embodiment of
the present invention. These conflicts are: 1) uniqueness conflicts, 2) update
conflicts, and 3) delete conflicts. It will be apparent to those of ordinary skill in
the art that other conflicts may equivalently be defined.

Referring to Figure 10, the basic conflict resolution functional block 1010
of the preferred embodiment of the present invention is shown. The conflict
resolution functional block 1010 receives a table identifier and a modification

operation related to the identified table. This information is used by the conflict

10

15

20

25

WO 97/35270 PCT/US97/04399

17
resolution functional block 1010 to detect and resolve update conflicts in block

1012, to detect and resolve uniqueness conflicts in block 1014, and to detect and
resolve delete conflicts in block 1016. The details of the processing performed in

block 1010 are shown and described in the following sections.

Detecting and Resolving Update Conflicts Column Groups

The present invention uses the concept of a column group to detect and
resolve update conflicts. A column group links a collection of columns in a table
to a single "logical column". A column group can consist of any number of
columns, from a single column, to all of the columns in a table. Each column,
however, can belong to only one column group.

Because the update conflict detection mechanism or module of the
preferred embodiment detects conflicts on a column group by column group
basis, all columns must be a part of some column group. However, all of the
columns in a table need not be assigned to a column group. Any column not
assigned to a column group is automatically assigned by the present invention to
a "shadow" column group for the purpose of conflict detection. This shadow
column group is not user visible, and you cannot assign a conflict resolution
method to the columns in the group. You can only designate a conflict
resolution method for columns in a user-defined column group.

By defining column groups, it is possible to associate different methods of
resolving conflicts for different types of data. For example, numeric data lends
itself well to some sort of arithmetic method of resolving conflicts, while
conflicts with character data might be better resolved using a timestamp to apply
the most recent change.

Because each column group is evaluated individually, portions of a row in

a table may be updated using the data from the originating site, while other

10

15

20

WO 97/35270 PCT/US97/04399

18
portions may maintain the values of the data at the destination site. That is,

although the use of a conflict resolution mechanism may result in convergence
(ultimately all sites have the same values for a row), with multiple column
groups, it might not result in data integrity. Thus, if two or more columns in a
table must remain consistent (for example, if multiple columns are used to store
address information), these columns should be placed in the same column group.

Referring now to Figures 4 and 5, the processing logic for detecting and
resolving update conflicts in a column group is illustrated. There is a change
indicator for every column group defined for a table. For every row updated,
the change indicators are used to show which column groups have been updated.
When an update to a row is replicated from the originating site to the receiving
site, the change indicators for the row are forwarded to the receiving site. The
receiving site is then able to determine which column groups in the row have
been updated at the originating site (Blocks 410 and 412 in Figure 4).

Not all old and new values of all columns in a replicated row are copied
and forwarded to the receiving site. Only the old and new values of a column
group that has been updated are copied and forwarded to the receiving site.
However, the old primary key values for the row are always copied and
forwarded to the receiving site.

At the receiving site, the old primary key values of the replicated row are
used to uniquely identify the row to apply the update. If there is no row or
more than one row has been identified, then an unresolvable update conflict has
occurred. When an unresolvable update conflict occurs, an error is raised, and
the control is returned to the transaction that replicates the row.

Once the receiving site has uniquely identified the row to apply the update,
it uses the change indicators to identify the column groups that have been

changed at the originating site. For those column groups whose values have been

10

15

20

25

WO 97/35270 PCT/US97/04399

19
modified at the originating site, it compares the old values of each of these

column groups with the current values of the same column group at the
receiving site.

A column group has an update conflict if both the originating site and the
receiving site have updated the column group before propagating their updates to
each other. The update conflict for a column group is detected by comparing the
old values from the originating site with the current values at the receiving site.
If the old values do not match the current values, there is an update conflict.
Conversely, if the old values match the current values, there is no update conflict
(Block 414).

When there is no update conflict for a column group, the current values at
the receiving site are updated with the new values from the originating site
(blocks 428 and 526).

Once an update conflict has been detected for a column group (Path 416),
the update conflict resolution routines that have been assigned to the column
group are applied to resolve the update conflict. The conflict resolution routines
are applied one by one in priority order until the conflict is resolved (Block 420
in Figure 4 and Block 516 in Figure 5). The conflict is resolved when one of the
conflict resolution routines can determine the appropriate new values for the
column group (Path 426). When the update conflict is resolved for the column
group, the current values of the column grouped at the receiving site are updated
with the newly determined values (blocks 428 and 526). On the other hand, if
there is no conflict resolution routine assigned to the column group, or none of
the assigned conflict resolution routines can resolve the update conflict (Path 512
in Figure 5), an error is raised, and the control is returned to the transaction that
replicates the row.

For optimization, the current values of all column groups at the receiving

10

15

20

25

WO 97/35270 PCT/US97/04399

20
site can be updated with their new values using a single UPDATE command,

instead of individual UPDATE commands from each column group. For further
optimization, the receiving site does not lock the row for update that it has
uniquely identified to apply the update. As a result, any local running
transactions at the receiving site can potentially introduce new update conflicts
while current update conflicts are being resolved. Thus, if both optimization
approaches are being used, the receiving site must check for any new update

conflict after it has resolved the current update conflicts.

Detecting and Resolving Uniqueness Conflicts

A database table can have one or more unique constraints. A unique
constraint can be on one or more columns. A uniqueness constraint enforces that
the values of those columns are unique in the database table.

When an insert of a new row is replicated from the originating site to the
receiving site, the new values of all columns are copied and forwarded to the
receiving site.

A uniqueness conflict occurs when a uniqueness constraint is violated
during an insert or update of the replicated row at the receiving site. The
uniqueness conflict is detected by comparing the new values from the originating
site with the current values of all existing rows at the receiving site. The
comparison is performed by each uniqueness constraint. There is a uniqueness~
conflict for a uniqueness constraint if there is already an existing row at the
receiving site whose current values match the new values of those unique
columns.

For optimization, uniqueness conflicts can be detected by trapping
exceptions from the violations of unique indexes or uniqueness constraints.

Once a uniqueness conflict has been detected for a uniqueness constraint,

10

15

20

25

WO 97/35270 PCT/US97/04399

21
the conflict resolution routines that have been assigned to the uniqueness

constraint are applied to resolve the uniqueness conflict. The conflict resolution
routines are applied one by one in priority order until the conflict is resolved.
The conflict is resolved when one of the conflict resolution routines can
determine the appropriate new values for the unique columns from the
originating site. On the other hand, if there are no conflict resolution routines
assigned to the uniqueness constraint, or none of the assigned conflict resolution
routines can resolve the uniqueness conflict, an error is raised, and control is
returned to the transaction that replicates the row. When all uniqueness conflicts
have been resolved, the replicated row with any newly determined new column
values is then applied to the database table. Any local running transactions at the
receiving site can potentially introduce new uniqueness conflicts while current
uniqueness conflicts are being resolved. Thus, the receiving: site must check for
any new uniqueness conflicts after it has resolved all the current uniqueness

conflicts.

Detecting and Resolving Delete Conflicts

When the deletion of a row is replicated from the originating site to the
receiving site, the old values of all columns are copied and forwarded to the
receiving site.

At the receiving site, the old primary key values of the deleted row from
the originating site are used to uniquely identify the row to delete. If there is no
row or more than one row has been identified, then an unresolvable delete
conflict has occurred. When an unresolvable delete conflict occurs, an error is
raised, and control is returned to the transaction that replicates the delete.

Once the receiving site has uniquely identified the row to delete, it

compares the old values of the deleted row with the current values of the selected

10

15

20

25

WO 97/35270 PCT/US97/04399

22
row. If the old values match the current values, the selected row is deleted from

the receiving site. On the other hand, if the old values do not match the current
values, a delete conflict is detected.

Once a delete conflict has been detected for a database table, the delete
conflict resolution routines that have been assigned to the database table are
applied to resolve the delete conflict. The conflict resolution routines are
applied one by one in priority order until the conflict is resolved. If there is no
delete conflict resolution routine, or none of the assigned delete conflict
resolution routines can resolve the delete conflict, an error is raised, and control
is returned to the transaction that replicates the delete. Any local running
transactions at the receiving site can potentially introduce a new delete conflict
while the current delete conflict is being resolved. Thus, the receiving site must

check for any new delete conflict after it has resolved the current delete conflict.

Declarative Conflict Resolution Methods

The present invention provides various declarative conflict resolution
methods for each type of conflict. The user can choose and declare one or more
conflict resolution methods to be used for each possible conflict. The user can
also declare the priority order of applying the resolution methods when there is
more than one resolution method for a possible conflict.

The standard declarative conflict resolution methods that are provided by
the present invention for each type of conflict are described in the following
sections. It will be apparent to one of ordinary skill in the art that other conflict
resolution methods for each type of conflict may be equivalently defined.

One of the standard declarative conflict resolution methods is the "User
Function" method. The "User Function" method provides user extensibility to

standard conflict resolution routines that are provided by the present invention

10

15

20

25

WO 97/35270 PCT/US97/04399

23
for update conflicts, uniqueness conflicts and delete conflicts. The user can write

their own conflict resolution routines and use them together with the standard
conflict resolution routines. When the user wants to use a user-defined conflict
resolution routine for a possible conflict, they declare a "User Function" method
for the possible conflict and specify the user-defined conflict resolution routine
as the User Function.

The "User Function" method can also be used by the user to do other
useful tasks such as sending out notifications when a conflict cannot be resolved.
The user writes a notification routine and registers it as the User Function for
the "User Function" method.

The standard conflict resolution routines do not support all cases in the
preferred embodiment. For example, they do not support the following
situations: 1) delete conflicts, 2) changes to a primary key, 3) NULLs or
undefined values in the columns designated to be used to resolve the conflict, or
4) referential integrity constraint violations. For these situations, users must
write their own conflict resolution routines, or define a method of resolving the

conflicts after the errors have been raised and logged in some error tables.

Standard Resolution Methods for Update Conflicts

The preferred embodiment provides the following methods of resolving
update conflicts in replicated environments with any number of master sites. It
will be apparent to those of ordinary skill in the art that other update conflict
methods are suggested by this disclosure of the present invention. The methods
are: 1) apply the data with the latest timestamp, 2) apply all data additively, 3)
apply the minimum value, when the column value is always decreasing, and 4)
apply the maximum value, when the column value is always increasing.

There are several additional methods provided that can be used to resolve

10

15

20

WO 97/35270 PCT/US97/04399

24
conflicts in replicated environments with no more than two master sites: 1) apply

the data with the earliest timestamp, 2) apply the minimum value, 3) apply the
maximum value, 4) apply the value from the site with the highest priority, and
5) apply the value assigned the highest priority.

There are several methods that can be used to resolve conflicts in
replicated environment with only one master site and multiple updatable snapshot
sites: 1) average the values, 2) discard the values from the snapshot sites, or 3)
overwrite the values at the master sites.

Finally, there is the "User Function" method that the user uses to resolve
an update conflict with a user-defined conflict resolution routine. These methods

are described in more detail below.

Standard Resolution Methods for Unique Constraint Conflicts

The preferred embodiment provides a variety of methods for resolving
uniqueness conflicts: 1) append the global name of the originating site to the
column value, 2) append a generated sequence number to the column value, or 3)
discard the new transaction from the remote site.

If there is more than one master site, none of these routines result in
convergence and they should only be used with some form of notification
facility.

There is the "User Function" method that the user can use to resolve a

uniqueness conflict with a user-defined conflict resolution routine.

Standard Resolution Method for Delete Conflicts

The preferred embodiment provides one standard resolution method for
resolving delete conflicts, which is the "User Function" method. Although the

present invention has not provided any standard conflict resolution routine for a

10

15

20

WO 97/35270 PCT/US97/04399

25
delete conflict, the delete conflict can still be detected, and resolved with a user-

defined conflict resolution routine. The "User Function” method allows the user
to register a user-defined conflict resolution routine for a potential delete

conflict.

Avoiding Ordering Conflicts

As the above list indicates, many forms of conflict resolution cannot
guarantee convergence if the replicated environment contains more than two
masters. As shown in Figure 6, network failures and infrequent pushing of the
deferred remote procedure call queue increase the chance of non-convergence
there are more than two masters.

In the example shown in Figure 6, changes made at site A are given
priority over conflicting changes at site B, and changes from site B have priority
over changes from site C. Figure 6 illustrates the actions that may occur over
the course of the day in a replicated environment that may lead to the inability of
the multiple sites to make conflicts converge.

These types of ordering conflicts can be avoided when using priority
groups if it is required that the flow of ownership be ordered, as it is in the
work flow model. That is, information must always flow from the ORDER site
to the SHIP site to the BILL site, in a typical business example. If the billing site
receives a change to a row from the ordering site after it has already received a’
change to that row from the shipping site, for example, the billing site will know

to ignore the out-of-order change from the ordering site.

mmary of Standard Conflict Resolution Methods
Figure 7 summarizes the standard conflict resolution methods provided in

the preferred embodiment of the present invention. This figure also shows if

10

15

20

WO 97/35270 PCT/US97/04399

26
these resolution methods can guarantee convergence (all sites ultimately agreeing

on the same value) between multiple master sites and their associated snapshot
sites. Each of these methods is explained in greater detail in the following

sections.

Minimum and Maximum Update Conflict Methods

When the present invention detects a conflict with a column group and
calls the minimum value conflict resolution routine, the processing logic
compares the new value from the originating site with the current value at the
receiving site for a designated column in the column group. This column must
be designated when the minimum value conflict resolution method is selected.

If the two values for the designated column are the same or one of the two
values is undefined, that is, NULL (for example, if the designated column was
not the column causing the conflict), the conflict is not resolved, and the values
of the columns in the column group remain unchanged. If the new value of the
designated column is less than the current value, the column group values from
the originating site are applied at the receiving site. If the new value of the
designated column is greater than the current value, the conflict is resolved by
leaving the current column group values unchanged. The maximum value
method works exactly the same as the minimum value method, except that the
values from the originating site are only applied if the value of the designated
column at the originating site is greater than the value of the designated column
at the receiving site.

There are no restrictions on the datatypes of the columns in the column
group. For minimum value, convergence for more than two master sites is only
guaranteed if the value of the designated column is always decreasing. For

maximum value, the column value must always be increasing.

10

15

20

25

WO 97/35270 PCT/US97/04399

27

Earliest and Latest Timestamp Update Conflict Resolution Methods

The earliest and latest timestamp methods are simply variations on the
minimum and maximum value methods. For the timestamp method, the
designated column must be of the well known type DATE. Whenever any
column in a column group is updated, a conventional application updates the
value of this timestamp column with the local SYSTEM DATE (SYSDATE).
For a change that is applied from another site, the timestamp value should be set
to the timestamp value from the originating site.

For example, suppose that a customer calls his local sales representative to
update his address information. After hanging up the phone, he realizes that he
gave the wrong zip code. When he tries to call his sales representative with the
correct zip code, he discovers that the phone lines in that area have gone down,
so he calls the headquarters number instead, to update his address information
again. When the network connecting the headquarters site with the sales site
comes back up, the present invention will see two updates for the same address,
and detect a conflict. By using the latest timestamp method, the present
invention would select the later update, and apply the address with the correct
zip code. If the replicated environment crosses time zones, all timestamps should
be converted to a common time zone. Otherwise, although the data will
converge, the most recent update may not be applied as expected.

The earliest timestamp method applies the changes from the site with the
earliest timestamp, and the latest timestamp method applies the changes from the
site with the latest timestamp. A backup method, such as site priority, should be
designated to be called in case two sites have the same timestamp. The
timestamping mechanism should be designed to be time zone independent (for

example, by always converting the timestamp to a designated time zone, such as

10

15

20

25

WO 97/35270 PCT/US97/04399

28
GMT).

Because the maximum value method can guarantee convergence if the
value is always increasing, the latest timestamp method can guarantee
convergence (assuming that you have properly designed your timestamping
mechanism). The earliest timestamp method cannot guarantee convergence for
more than two masters (since time is generally not always decreasing).

The earliest and latest timestamp methods require auditing of update
timestamps. Users specify whether the present invention automatically audits
update timestamps or whether an application explicitly audits update timestamps.
If the application audits update timestamps, users must specify which column in
the column group stores the last update timestamp. The datatype of the column
must be of date.

The auditing column stores the last update timestamp of any column in the
column group. The auditing column always stores the timestamp when the
column value(s) were first created. For example, if the earliest change is from a
remote site, this method results in overwriting the current column value with the
replicated column value from the remote site, and updating the auditing column
with the timestamp when the replicated column value was first created, that is,

from the remote site.

Additive and Average Update Conflict Resolution Methods

The additive and average conflict resolution routines work with column
groups consisting of a single numeric column only. The additive routine adds the
difference between the old and new values at the originating site to the current
value at the receiving site as follows:

current value = current value + (new value - old value)

The additive conflict resolution method provides convergence for any

10

15

20

25

WO 97/35270 PCT/US97/04399

29
number of master sites.

The average conflict resolution method averages the new column value
from the originating site with the current value at the receiving site as follows:

current value = (current value + new value)/2

The average method cannot guarantee convergence if the replicated
environment has more than one master. This method is useful for an

environment with a single master site and multiple updatable snapshots.

Priority Group and Site Priority Update Conflict Resolution Methods

Priority groups allow a user to assign a priority level to each possible
value of a particular column. As shown in the example illustrated in Figures 8
and 9, a Priority view 910 shows the priority level 914 assigned to each value
916 that the "priority” column can contain. A priority level for all possible
values of the "priority" column must be specified.

When the priority group method of conflict resolution is selected for a
column group, the user designates which column in the column group is the
"priority " column. When the priority group conflict resolution routine is
invoked to resolve an update conflict in a column group, the processing logic
compares the priority level of the new value from the originating site with that
of the current value at the receiving site for the designated "priority" column in
the column group.

If the two priority levels are the same, or one of them is undefined, the
conflict is not resolved, and the current column group values at the receiving site
remain unchanged.

If the priority level of the new value in the designated "priority" column is
greater than that of the current value at the receiving site, the current column

group values at the receiving site are updated with the new column group values

10

15

20

WO 97/35270 PCT/US97/04399

30
from the originating site. Conversely, if the priority level of the new value in

the designated "priority” column is less than that of the current value at the
receiving site, the conflict is resolved by leaving the current column group
values at the receiving site unchanged.

It will be apparent to one of ordinary skill in the art that the priority
group conflict resolution routine may equivalently interpret that a lower priority
level takes precedence over a higher priority level.

The Priority view 910 displays the values of all priority groups 912
defined at the current location. In the example shown in Figure 8, there are two
different priority groups, “site-priority” and “order-status”. The
CREDIT_STATUS table 920 is shown in Figure 9 as using the "site-priority"
priority group 912; because the site values 918 in the CREDIT_STATUS table
920 correspond to the "site-priority” values 916 shown in Figure 8.

Site priority is a special kind of priority group. With site priority, the
"priority" column designated is automatically updated with the global database
name of the site where the update originated. The Priority view 910 in Figure 8
shows the priority level 914 assigned to each database site 916. Site priority can
be useful if one site is considered to be more likely to have the most accurate
information. For example, in Figures 8 and 9, the Houston site (houston.world)
may be the corporate headquarters, while the New York site (new_york.world)
may be a sales office. The headquarters office (houston.world), in this example,
is considered more likely to have the most accurate information about the credit
that can be extended to each customer. Thus, the headquarters office
(houston.world) priority is set higher ("1") than the sales office
(new_york.world) priority ("2").

When using site priority, convergence with more than two masters is not

guaranteed. You can guarantee convergence with more than two masters when

10

15

20

25

WO 97/35270 PCT/US97/04399

31
you are using priority groups, however, if the value of the "priority" column is

always increasing. That is, the values in the priority column correspond to an
ordered sequence of events; for example: ordered, shipped, billed.

The site priority method requires auditing of the global name of the site
that applied the last update. Users specify whether the present invention or an
application maintains the audit information. If the application maintains the
audit information, users must specify which column in the column group stores
the site global name. The column specified always stores the global name of the

site where the column value(s) were first created.

Overwrite and Discard Update Conflict Resolution Methods,

The overwrite and discard methods ignore the values from either the
originating or receiving site and therefore can never guarantee convergence with
more than one master site. These methods are designed to be used by a single
master site and multiple snapshot sites, or with some form of a user-defined
notification facility. For example, if you have a single master site that you
expect to be used primarily for queries, with all updates being performed at the
snapshot sites, you might select the overwrite method. These methods are also
useful if your primary concern is data convergence (and you have a single
master site), and there is no particular business rule for selecting one update
over the other. You may even choose to use one of these methods if you have
multiple master sites, provided that you supply a notification facility. This
allows you to notify the appropriated personnel, who will be responsible for
ensuring that the data is correctly applied, instead of logging the conflict in the
some error tables and leaving the resolution up of a local database administrator.

The overwrite routine overwrites the current value at the receiving site

with the new value from the originating site. Conversely, the discard method

10

15

20

WO 97/35270 PCT/US97/04399

32
discards the new value from the originating site.

Append Site Name/Append Sequence Uniqueness Conflict Resolution Methods

The append site name and append sequence conflict resolution routines
work by appending a string to a column whose unique constraint has been
violated, that is, duplicate column values have been detected. If the unique
constraint is on more than one column, the user must specify one of the columns
as the column to which the string is appended. Although this allows the column
to be inserted or updated without violating a unique integrity constraint, it does
not provide any form of convergence between multiple master sites. The
resulting discrepancies must be manually resolved; therefore, these methods are
meant to be used with some form of a notification facility. Both methods can be
used on character columns only in the preferred embodiment.

These methods can be useful when the availability of the data may be more
important than the complete accuracy of the data. By selecting one of these
methods, used with a notification scheme, instead of logging a conflict, you allow
the data to become available as soon as it is replicated. By notifying the
appropriate personnel, you ensure that the most knowledgeable person resolves
the duplication.

When a uniqueness conflict is encountered, the append site name routine
appends the global database name of the site originating the transaction to the
new column value from the originating site. Similarly, the append sequence
routine appends a generated sequence number to the new column value from the

originating site.

Discard Uniqueness Conflict Resolution Method

This conflict resolution routine resolves uniqueness conflicts by simply

10

15

20

25

WO 97/35270 PCT/US97/04399

33
discarding the row from the originating site. This method never guarantees

convergence with multiple masters and should be used with a notification
facility.
Compared to the append methods, this method is useful if you want to

minimize the propagation of data until its accuracy can be verified.

User Function Update Conflict Resolution Method

Users can also create their own specific conflict resolution functions.
Configurable conflict resolution allows users to freely mix their own functions
with the standard conflict resolution routines that are provided by the present
invention.

The present invention does not impose any restrictions on user functions.
But, it requires that user functions adhere to the following interface specification

in the preferred embodiment:

. The user conflict resolution function should return TRUE if it has
successfully resolved the conflict.

. The user function should return FALSE if it has not successfully
resolved the conflict.

. The user function should accept column values as parameters.

. The user function should accept old, new and current columns
values. The old, new and current values for a column are received
consecutively. If it can resolve the conflict, it modifies only the new
column values so that the replication procedure can update the
current row with the new column values.

. Parameters that accept new column values should use IN QUT

parameter mode. Others should use IN parameter mode.

10

15

20

25

WO 97/35270 PCT/US97/04399

34
. The last parameter of the function must be a boolean flag.
The function sets the flag to TRUE if it wants to discard the new

column values; otherwise it sets the flag to FALSE.

Users specify which columns in the table constitute the parameters for
each user function.

Users should avoid using the following commands in their conflict
resolution functions. While configurable conflict resolution does not prohibit
these commands, the outcome of replication becomes unpredictable if user

functions use them. User functions should avoid the following:

. Data Definition Language commands
. Transaction Control commands

. Session Control commands

. System Control commands

Note that any transaction or data change made by the user function will

not automatically be replicated.

User Function Uniqueness Conflict Resolution Method

Users can create their own conflict resolution functions. Configurable
conflict resolution allows users to freely mix their own functions with the
standard conflict resolution routines that are provided by the present invention.

The present invention does not impose any restrictions on user functions.
But, it requires that user functions adhere to the following interface
specification:

. The function should return TRUE if it has successfully resolved the

conflict.

. The function should return FALSE if it has not successfully

resolved the conflict.

10

15

20

25

WO 97/35270 PCT/US97/04399

35
. The function should have all parameters with IN OUT mode.
. The function should accept column values as parameters.
. The function should accept new column values. If it can resolve the

conflict, it modifies the new column values so that the replication
procedure can insert or update the current row with the new column
values.

. The last parameter of the function must be a boolean flag. The
function sets the flag to TRUE if it wants to discard the new column
values; otherwise it sets the flag to FALSE.

Users specify which columns in the table constitute the parameters for

each user function.

Users should avoid using the following commands in their conflict
resolution functions. While automatic conflict resolution does not prohibit these
commands, the outcome of replication becomes unpredictable if user functions
use them. User functions should avoid the following:

. Data Definition Language commands

. Transaction Control commands

Session Control commands

System Control commands
Note that any transaction or data change made by the user function will

not automatically be replicated.

User Function Delete Conflict Resolution Method

Users can create their own conflict resolution functions. Configurable
conflict resolution allows users to freely mix their own functions.
The present invention does not impose any restrictions on user functions.

But, it requires that user functions adhere to the following interface

10

15

20

WO 97/35270

PCT/US97/04399

36

specification:

The function should return TRUE if it has successfully resolved the
conflict.

The function should return FALSE if it has not successfully
resolved the conflict.

The function should have all parameters with IN OUT mode.

The function should accept column values as parameters.

The function should accept old column values. If it can resolve the
conflict, it modifies the old column values so that the replication
procedure can delete the current row that matches all old column
values.

The last parameter of the function must be a boolean flag. The
function sets the flag to TRUE if it wants to discard the old column

values; otherwise it sets the flag to FALSE.

Users specify which columns in the table constitute the parameters for

each user function.

Users should avoid using the following commands in their conflict

resolution functions. While automatic conflict resolution does not prohibit these

commands, the outcome of replication becomes unpredictable if user functions

use them. User functions should avoid the following:

Data Definition Language commands
Transaction Control commands
Session Control commands

System Control commands

Note that any transaction or data changes made by the user function will

not automatically be replicated.

10

15

20

WO 97/35270 PCT/US97/04399

37

Conflict Resolution Processing

The following is an example illustrating the preferred embodiment of the
present invention. This example is a demonstration of the process of resolving
both update and uniqueness conflicts that can occur for an update of a row.

Referring to Figures 11-14, flowcharts illustrate the logic steps performed
by the processing logic of the present invention for resolving conflicts. Figures
15-21 are flowcharts illustrating the logic steps performed by the processing
logic of the present invention for resolving conflicts with the automatic
generation of audit information. These flowcharts describe a transaction between
two sites (Master site I and Master site 1) and illustrate the conflict resolution
features of the present invention. These flowcharts are described in detail below.

Referring to Figure 11, a table (called “emp" in this example) is updated
in the first site or Master site I (block 1110). A corresponding trigger (emp$rt)
is fired when the table is updated. The OLD and NEW values (values prior to the
update and values subsequent to the update, respectively) of the table are written
to a transfer buffer (DefTran) in the Master site I in block 1112. A Master Site
II replication update routine (emp3rp.rep_update) is called in block 1114 and
processing for Master site I ends in Figure 11. The perspective of this
description then shifts to the point of view of the Master site II as shown starting
in Figure 12.

Referring now to Figure 12, the "emp" table in Master site II is updated in
block 1210. The "emp" table in each of the Master sites I and II are replicated
copies of each other that may be updated independently at each site where it
resides. After the table is updated in block 1210, a series of tests are executed to
determine if the update caused any conflicts. First, a test is performed to
determine if an update conflict is present. If so, the no_data_found exception is

raised in block 1214 and processing continues at the bubble labeled N shown in

10

15

20

25

WO 97/35270 PCT/US97/04399

38
Figure 13. If a uniqueness conflict occurred, the dup_val_on_index exception is

raised in block 1218 and processing continues at the bubble labeled P shown in
Figure 14. If some other exception occurred, the other exception is raised in
block 1222 and processing continues at the bubble labeled R shown in Figure 13.
If no exception is detected, processing continues at the bubble labeled S shown in
Figure 13.

Referring now to Figure 13, the processing performed when an update
conflict is detected is shown. This processing implements the logic for detecting
and resolving conflicts shown in Figures 4 and 5, which are described above.
Referring again to Figure 13, an update conflict handler
(emp$rr.update_conflict_handler in this example) is called in the Master site 11
in block 1310. The current table values in Master site II are queried in block
1312. The column groups are tested to determine which column group has an
update conflict in block 1314. The corresponding update conflict resolution
routine(s) are called in block 1316. If the update conflict is resolved, block 1320
in Master site II is executed to call the replication update routine
emp$rp.rep_update in this example. Processing then continues at the bubble
labeled E shown in Figure 12 where the emp table is again recursively checked
for update conflicts. If in block 1318 the update conflict is not resolved, an error
is posted in block 1322 and processing terminates at the End bubble shown in
Figure 13.

Referring now to Figure 14, the processing performed when a uniqueness
conflict is detected is shown. First, a uniqueness conflict handler
(empS$rr.unique_conflict_update_handler in this example) is called in the Master
site IT in block 1410. The uniqueness constraint that was violated is determined
in block 1414. The corresponding uniqueness conflict resolution routine(s) are

called in block 1416. Processing continues at the bubble labeled T shown in

10

15

20

25

WO 97/35270 PCT/US97/04399

39
Figure 13 where a test is executed to determine if the uniqueness conflict was

resolved.

Figures 15-21 are flowcharts illustrating the logic steps performed by the
processing logic of the present invention for resolving conflicts with the
automatic generation of audit information. Referring to Figure 15, a table
(called "emp"” in this example) is updated in Master site I (block 1510). A
corresponding trigger (emp$rt) is fired when the table is updated. The OLD and
NEW values of the table are written to a transfer buffer (DefT ran) in the Master
site I in block 1512. Audit columns of the table (emp) are queried for the OLD
audit values (block 1514). The OLD audit values and NEW audit values are
written to the transfer buffer DefTran in block 1516. A Master Site II
replication update routine (emp$rp.rep_update) is called in block 1518 and
processing for Master site I ends in Figure 15. The perspective of this
description then shifts to the point of view of the Master site II for the automatic
generation of audit information as shown starting in Figure 16.

Referring now to Figure 16, a shadow table (emp$ra) corresponding to
the emp table is updated in the Master site II in block 1609. If an update conflict
(block 1611) is found, processing continues at the bubble labeled J shown in
Figure 18. If a uniqueness conflict (block 1613) in the shadow table is found,
processing continues at the bubble labeled G shown in Figure 17 where the emp
table is checked for conflicts. If another exception is found (block 1614),
processing continues at the bubble RR shown in Figure 20. Otherwise,
processing continues at bubble G shown in Figure 17.

Referring now to Figure 17, the table ("emp" in this example) is checked
for conflicts. The "emp" table in Master site II is updated in block 1710. After
the table is updated in block 1710, a series of tests are executed to determine if

the update caused any conflicts. First, a test is performed to determine if an

10

15

20

25

WO 97/35270 PCT/US97/04399

40
update conflict is present. If so, the no_data_found exception is raised in block

1714 and processing continues at the bubble labeled J shown in Figure 18. If a
uniqueness conflict occurred, the dup_val_on_index exception is raised in block
1718 and processing continues at the bubble labeled K shown in Figure 19. If
some other exception occurred, the other exception is raised in block 1722 and
processing continues at the bubble labeled RR shown in Figure 20. If no
exception is detected, processing continues at the bubble labeled SS shown in
Figure 20.

Referring now to Figure 18, the processing performed when an update
conflict is detected in the audit context is shown. First, the update to the audit
table (emp$ra) is rolled back in block 1809. Next, processing then continues at
the bubble labeled NN shown in Figure 20 where the emp table is processed for
update conflicts.

Referring now to Figure 19, the processing performed when a uniqueness
conflict is detected in the audit context is shown. First, the update to the audit
table (emp$ra) is rolled back in block 1909. Next, processing then continues at
the bubble labeled PP shown in Figure 21 where the emp table is processed for
uniqueness conflicts. Once the conflict is resolved or the determination is made
that the conflict cannot be resolved, processing is terminated as shown in Figure
20.

Referring now to Figure 20, the processing performed when an update
conflict is detected is shown with the automatic generation of audit information
selected. First, an update conflict handler (emp$rr.update_conflict_handler, in
this example) is called in the Master site II in block 2010. The current table
values in Master site II are queried in block 2012. The column groups are tested
to determine which column group has an update conflict in block 2014. The

corresponding update conflict resolution routine(s) are called in block 2016. If

10

15

20

25

WO 97/35270 PCT/US97/04399

41
the update conflict is resolved, block 2020 in Master site II is executed to call the

replication update routine emp$rp.rep_update, in this example. Processing then
continues at the bubble labeled EE shown in Figure 16 where the emp table is
again recursively checked for update conflicts. If in block 2018 the update
conflict is not resolved, an error is posted in block 2022 and processing
terminates at the End bubble shown in Figure 20.

Referring now to Figure 21, the processing performed when a uniqueness
conflict is detected is shown with the automatic generation of audit information
selected. First, a uniqueness conflict handler
(emp$rr.unique_conflict_update_handler, in this example) is called in the Master
site I in block 2110. The uniqueness constraint that was violated is determined
in block 2114. The corresponding uniqueness conflict resolution routine(s) are
called in block 2116. Processing continues at the bubble labeled TT shown in
Figure 20 where a test is executed to determine if the uniqueness conflict was
resolved.

This completes the conflict resolution process.

Automatic Generation of Audit Information

Some conflict resolution methods require additional information typically
stored in an audit table, such as last update timestamp or last update site. The
conflict resolution methods that require such audit information are listed below.

A description of the audit information used by these methods is set forth above.

. Earliest timestamp
. Latest timestamp
. Site Priority

When users use one of these conflict resolution methods, they have the

10

15

20

WO 97/35270 PCT/US97/04399

42
option of generating and maintaining the audit information themselves in existing

columns of the same table. If users do not specify which existing columns in the
table store the audit information, the present invention will automatically
generate and maintain the audit information in a shadow table. If users do
specify which existing columns in the table store the audit information, the
present invention will assume that the application will generate and maintain the
audit information.

Every replicated table can have one and only one shadow table in the
preferred embodiment. The present invention creates a shadow table if none
exists, or modifies the table definition if the generated shadow table already
exists. Once a shadow table has been created, the present invention can only add
new columns to the shadow table. It is possible that the present invention may
fail to add new columns to a shadow table if there are obsolete columns in the
shadow table. Some columns become obsolete when users change their use of
conflict resolution methods that require automatic generation of audit
information. It is recommended that the database administrator periodically
removes obsolete columns from the shadow tables.

The present invention treats a shadow table as if it were an extension of
the replicated table. Because of this, the "shadow table" for snapshot replicated
object must be a snapshot at the snapshot site and must be in the same refresh
group as the snapshot replicated object.

A shadow table has the following columns:

. The primary key columns of the table.

. Optionally a date column for every column group that

requires auditing of timestamp.

. Optionally a varchar2(128) column for every column for every

column group that requires auditing of site's global database name.

10

15

20

WO 97/35270 PCT/US97/04399

43

In the preferred embodiment of the present invention, the name of the
shadow table is derived by appending $ra to the table name. The present
invention truncates the table name to accommodate the additional characters
when necessary. If the derived name conflicts with an existing one, the present
invention uses an arbitrary name with $ra appended.

The present invention uses the exact primary key column names in the
shadow table. As for other columns in the shadow table, the present invention
derives their names according to the type of audit information. The present
invention uses "TIMESTAMP" as the name of a column used for storing
timestamp, and "GLOBAL_NAME" as the name of a column used for storing
site’s global database name. The present invention appends a unique integer to
the column name if that column name already exists.

Thus, an apparatus and method for providing adaptable and configurable
conflict resolution within a replicated data environment is disclosed. Numerous
modifications in form and detail may be made by those of ordinary skill in the
art without departing from the scope of the present invention. Although this
invention has been shown in relation to a particular preferred embodiment, it
should not be considered so limited. Rather, the present invention is limited only

by the scope of the appended claims.

10

15

20

30

WO 97/35270 44 PCT/US97/04399

We claim:

1. In a distributed database system having a first node and a second node, said
first node including a first data structure, said second node including a second
data structure, a configurable conflict resolution apparatus comprising:

a conflict detection module for detecting a conflicting modification to

corresponding portions of said first and said second data structures;

a plurality of conflict resolution methods, one or more of said plurality of
conflict resolution methods being configurably associated with said

corresponding portions of said first and said second data structures; and

a conflict resolution module for activating a first conflict resolution method
of said one or more of said plurality of conflict resolution methods when
said conflict detection module detects said conflicting modification to said

corresponding portions of said first and said second data structures.

2. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
said conflict resolution module further includes processing logic for determining
if said first conflict resolution method successfully resolved said conflicting

modification.

3. The configurable conflict resolution apparatus as claimed in Claim 2 wherein
said conflict resolution module further includes processing logic for activating a
second conflict resolution module if said first conflict resolution method was not

successful in resolving said conflicting modification.

4. The configurable conflict resolution apparatus as claimed in Claim 2 wherein

said conflict resolution module further includes processing logic for activating

WO 97/35270 PCT/US97/04399

10

15

20

30

45
each of said one or more of said plurality of conflict resolution methods until

one or more of said conflict resolution methods is successful in resolving said
conflicting modification or until all conflict resolution methods have been tried

at least once.

5. The configurable conflict resolution apparatus as claimed in Claim 4 wherein
said conflict resolution module further includes processing logic for storing non-
conflicting values in said corresponding portions of said first and said second
data structures if one of said conflict resolution methods was successful in

resolving said conflicting modification.

6. The configurable conflict resolution apparatus as claimed in Claim 5 further
including a means for deferring storing of non-conflicting values until after a
complete portion of said first and said second data structures is checked for other

conflicting modifications.

7. The configurable conflict resolution apparatus as claimed in Claim 4 wherein
said conflict resolution module further includes processing logic for logging an
error if none of said conflict resolution methods was successful in resolving said

conflicting modification.

8. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is registered by a

user.
9. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is a minimum value

method.

10. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

WO 97/35270 PCT/US97/04399

10

15

20

46
at least one of said plurality of conflict resolution methods is a maximum value

method.

11. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is an earliest

timestamp method.

12. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is a priority group
method.

13. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is a site priority
method.

14. The configurable conflict resolution apparatus as claimed in Claim 1 wherein
at least one of said plurality of conflict resolution methods is an overwrite
method.

15. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

at least one of said plurality of conflict resolution methods is a discard method.

16. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

at least one of said plurality of conflict resolution methods is an average value

method.

17. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

at least one of said plurality of conflict resolution methods is an additive value

method.

WO 97/35270 PCT/US97/04399

10

15

20

47
18. The configurable conflict resolution apparawas as claimed in Claim 1 wherein

said conflicting modification is an update conflict.

19. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

said conflicting modification is a uniqueness conflict.

20. The configurable conflict resolution apparatus as claimed in Claim 1 wherein

said conflicting modification is a delete conflict.

21. The configurable conflict resolution apparatus as claimed in Claim 1 further
including audit logic for automatically generating and maintaining audit

information in a shadow data structure.

22. The configurable conflict resolution apparatus as claimed in Claim 1 further
including recursion logic for recursively activating said first conflict resolution
method until no further modification to said corresponding portions of said first

and said second data structures is detected.

23. The configurable conflict resolution apparatus as claimed in Claim 4 wherein
a priority is assigned to each of said plurality of conflict resolution methods and
said conflict resolution module activates each of said plurality of conflict

resolution methods in priority order.

24. In a distributed database system having a first node and a second node, said
first node including a first data structure, said second node including a second
data structure, a method for configurable conflict resolution comprising the steps
of:

detecting a conflicting modification to corresponding portions of said first

and said second data structures;

WO 97/35270 PCT/US97/04399

48
providing a plurality of conflict resolution methods, one or more of said

plurality of conflict resolution methods being configurably associated with

said corresponding portions of said first and said second data structures; and

activating a first conflict resolution method of said one or more of said
plurality of conflict resolution methods when said conflicting modification is

detected in said detecting step.

25. For use in a distributed database system having a first node and a second node,
said first node including a first data structure, said second node including a second
data structure, an articie of manufacture comprising a computer usable mass storage
medium having computer readable program code embodied therein for causing a
processing means to perform configurable conflict resolution, said computer
readable program code in said article of manufacture comprising:

a conflict detection module for causing said processing means to detect a

conflicting modification to corresponding portions of said first and said

second data structures;

a plurality of conflict resolution methods, one or more of said plurality of
conflict resolution methods being configurably associated with said

corresponding portions of said first and said second data structures: and

a conflict resolution module for causing said processing means to activate a
first conflict resolution method of said one or more of said piurality of
conflict resolution methods when said conflict detection module detects said
conflicting modification to said corresponding portions of said first and said

second data structures.

PCT/US97/04399

WO 97/35270

1/20

T
vivQ ONV
SWVHOOHd
431nai1SIo

e
NILSAS
ONISS3004d
viva

[t

vViva ONY
SHVHOOHd
Q31n8ILSI0

i
ViVQ aNY

SWVHOOUd
aanaiy1sIg

or
WI1SAS

ONISS320Hd

viva

I 30N

[1r4
WILSAS
ONISSII0Hd
viva

| B) U |

1 of 20

PCT/US97/04399

WO 97/35270

2/20

HOSS300Hd

o sng
i [[in

INAIG
JOVHOIS

L

-
L

' «

&o/
1602200 Dt
3 IV 22218
SSvw

AHOWIN
ATNO Y 1Y

AHOWAN
Hivit

Sar

301430
MNOIUYINTWWANOO

=

301A30

I AdOD QHVH

&2

3J1A30
TOHINOD
HOSHND

24

QUv08A 3N

4]
AVI4SIQ

<

"D

2 of 20

\
New

FIG uk¢e 2

WO 97135270 PCT/US97/04399
3/20
S Table - .Zmr Trble
emeno L_e.nmv@_[_Comrm__ @mpno l _r‘c__ [_a;:m_
168 T | Jew~es) 2o 10C | Jores | 20
ol l Kira l =S (D! ‘ <imn | 200
/OL I BRALLM l 3S5C / O; i ‘ _,3,?,\/_”?/-- I 35—0
s 7
\ Sl 321
‘Y Masret v”/;‘-.._f"r-f"i UPIATE ;r Corm =
UPDATE :;; SET comm = Site A S/te B ; mmo\:/-‘o =
\CND:QI; cname = Jo«ésl P i~ Szzj WHELS enaml = Jm{ ;
310
2
320
it 24
' { /’3 Vet 3
EMP ,/_;Abl:_ Emr TAble
empno | ename | Comm :!."{-':-: | e.:me.— l _caim
100 | Jones | a5 | > /o0 \ Zones 3co
1of | Kim | 200 Jo/ | o | o0
z o
0L | Basun l 350 /o2 | Szeuw | S00
4
\Curfeuf
7_% DL-'D 3':":
(il 2i& % /
" st 7 7~ -
/o0 I_J/o«é$| 20 Pusa @ /00 | 0
f ChaNG 5 - o oncucs] ‘o0 | Towes\ | 300
/7/00 ‘_T-méj 25 (ou/“(‘,; | i vauds WY \ | S ,
| 1 VALUES /

[
Cufren t

WO 97/35270 PCT/US97/04399
4/20

Processing Logic for Detecting and Resolving
Update Conflicts in a Column Group

——
liet first column group. ’
() e
A
-/

y

Examing change indicators to determine if the columns

N a column group have been changed and, i so. if there

's a conflict between the old, new. and current vaiues.
-412-

Figure 4

r—= No - 417 Is a conflict detacteq?

-414.

Yes- 416
A 4

Call the highest priority
conflict resolution routine
for that cotumn group.
-420-

Did the conflict resolution
routine successfully resoive
the conflict?

'— Yes - 426

y

Cache the appropnate
varues for the column
grcuo. These will not be
aoched until the entire
! row s determined to be No - 424

' arror free.
| 26"

® ®

4 of 20

WO 97/35270

Figure 5

Log an error ang
make no change o0
the :ocai row.
(-518-

PCT/US97/04399

5/20

Ary more conilice

resoiulicn routines ‘cr rig

sstumn greug?

Cal he next migres:
crerity centlics
EIZiLnon coulire o
S oTsiumn grous
‘318

i
v

Y

Any mzre column group

3roues?
-520-

| Yes - 322
No ¢
v

Ucaate the current ‘

column vajues with :he
grouo.
cached column values.

Get the next zclumn

'526- | s24

5 of 20

WO 97/35270

6/20

PCT/US97/04399

; Time | Action

[Shed S8 [Swec

al]Mm«mmmmrmuz

|2

]

12 i

12 (SueAuoomesxe s

IS

2

12

|3 | Site C becomes unavaiasie.

s

12

| Gown

‘e !snoAnum-uomtoSauB.
smnwsuaammrui

Site C is 331l unavadabie.
The uoaate transscon famains n the
| queue a1 Site A

| 5
|

-]

aown

|5 | Site C becomes avasabie win x = 2.
.SunAmqumM:-s.

& iSte8updales x = Slox a7
7

sn.anm-mmmo Site A.
Sites A ana B agree that x « 7
Ste C stiisaysx 2 2

8 snammvmnmsaoc.
saocany:mmmmx-z;
Sa‘tosunmamnvmouns.
Oma.munmwmuw
|mf\gmmm5‘nﬂ.mm

All 8110 2gree Tt x = 7,

|

1
'
f
!
!
!
) funm«mnw.m(zs)msucnc).
! 7
i
l9 { St A Pushes ns Iransacoon
h l{x = $)to Sie C.

i Omm-mmmocur
| o vaius at

! Sﬁocm-nmn«mmudvmn
‘ 81540 A (xw2).

Ste A has a higner promty (30) than Site C
(101,

!
i !Omaammomwmgmo
| OUIGated update 'rom Site A (xa§),

H
| Because of g Qroenng conflict. the sites
| N0 ionger converge

‘ 7

i
|

-, é
F(GL«(LE z

6 of 20

WO 97/35270

7/20

Figure 7

PCT/US97/04399

Conthict Type Resolution Methods| Convergenc. Lomergence \with
\luitinle Masters®
L pdite ‘Vimimum Yes i No.untess always
i lecreasing }
Maximum Yes Nenunless always
¢ nreasing. !
Earhiest umestamp | Yes A
Latest umestamp | Yes Y aath nuckup
et
Prionty group Yes N digess dways
Dorainingy
Site Priority Yes N
Overwnte Yes, une i 0 N l
only i
Discard Yes. one maste: MW |
oniv .
Average Yes. ons T N
onis
I. Additve | Yes <

User Funcuon

| Depenus un -2
deriped runcier

D<penas on user
Jennad tuncuen

L niqueness
Constraint

|
|
|

Append site name | No 1N :
Append sequence | No i o :
lgnore discard No No i

i

User Function

Depends on user
defipec runcuen

Depends on user
Jarined function

Delete

User Funcuion

Depenas on use:
defined runcucn

Depends on user

derined function

7 of 20

WO 97/35270

PCT/US97/04399
8/20
0
" Promy View _air /‘U‘/ e
{ | orerreegrmo | snaney | | .

! SRo-onpray 1 "mm
_ElTF
TiGurs O

E
creait_status Tabie qd
o Jmas | oy ~
5 |t oo
iR ER

8 of 20

WO 97/35270 PCT/US97/04399

9/20

CDNF.’..(_.’ Zc‘fcéu‘no/\/

DearecT an d ol
Resolve —
UPdaTe
CoNFLCTS

Y i Pl
ALODIE (AT 0re DETTLT AxD pet?

R=Sd2LVE —_—_— 2,
—_— I =2
OP*ERATION e UNIGUENESS S

ang Tabe CONFLLTS

DeETET ans |
REDLLT f’"
DELETY |
Cow FL.2TS !

i

F/G'//?c' /(C

9 of 20

WO 97/35270

PCT/US97/04399
10/20

L Conflict Resolution Processing Loglc ’

v

Update table (emp) and
Figure 11 tire corresponding trigger {emp$rt)
in Master site |

-1110.

Write OLD & NEW vaiues to theg
transter buffer (DefTran) in
Master site |
-1112.

Call the Master Site 11
replication update routine
(empSrp.rep_update)
-1114.

To Master Site
1
(Figure 12)

10 of 20

WO 97/35270 PCT/US97/04399
11/20

From Master
Site |
Figure 11

——

Uodate Table (emp)
in Master site ||
-1210-

Figure 12

—_—
;' Raise !
No Data Foung? Ye: —>¢1C_3a13_‘suna : N
-1212- I gxceation | N~
! Lt g, i

Dupticate value on ingex?
-1216-

3‘ R[aise
Yes M« JUD _VEi_2n_.naex -./ P ‘;
N

2¢csotcen

-’:qq. !
!
No
| —
. i Raise sther
i e
Other exception? “es —>i exceotion :qfﬂ\\
1220- | 2220 N
i |
—_—)
No
L No exception |

—>

-1224- —"3

11 of 20

WO 97/35270 PCT/US97/04399
12/20

Figure 13

Call update contiict handier
(empSrrlupdate_conflict_handler)
in Master site 1l
-1310.

Query current vaiues
in Master site I
-1312-

v

Determine which column group
has an update contflict
-1314.

v

Call the Update Conflict
Resolution functions
-1316.

- ®

Canflict resoived?
-1318-

Yes y
¢ Post an error |
— , (DetError) in |
Call replication update routine Master site Il |
emp$rp.rep_update RETCTR |
in Master site 1
-1320. ")

End

12 of 20

WO 97/35270

PCT/US97/04399

13/20

Figure 14 @

Cali uniqueness conflict handler
(empSrr.unique__ccnﬂict_update_Handlerl
In Master site 1l
-141Q-

v

Determine which Umiqueness
Constraint nas been violaies
~1414-

v

Cail the Uniqueness Con¥ic:
Resolution functions
“1416-

o

13 of 20

WO 97/35270

Figure 15

14/20

=

Automatic Generation of Audit Logic

onflict Resoiution Processing Logic with ’

L 2N

Update table (emp) and
fire cerresponding trigger
(empSrt) in Master site |

1510

Write OLD & NEW values to the
transter butffer (DefTran) in
Master site |
-1812.

Query OLD Audit values of
Audit columns in Master site |
-1514.

v

Write OLD & NEW Audit vaiues
to the transfer butfer
(DefTran) in Master site |
-1516-

v

Call the Master Site I
replication update routine
(emp8rp.rep_update)
-1518-

To Master Site
]
Figure 16

14 of 20

PCT/US97/04399

WO 97/35270

PCT/US97/04399
15/20
From Master
Site |]
Figure 15§ Figure 16

o
v &Y

Update Shadow Table (empSra)
n Master site ||
-1609-

No Data Foung?

res P
-1611.
No
Dupticate vaiue on index”? /es b,?
-1613- N
No
Other Exception? Yes /3R

-1614.

15 of 20

WO 97/35270

PCT/US97/04399

16/20

Figure 17

Update Table (emp)
In Master site ||
<1710-

No Data Found?
-1712.

exception

Raise
Yes dup_val_on_index
exception
-1718.

Raise other
Yos —p exception
-1722.

I o] No exception
-1724.

Duplicate vaiye on index?
-1716-

Cther ~exception?
1720-

16 of 20

PCT/US97/04399
WO 97/35270
17/20

Figure 18

Roll back aygit table update
(emp$ra) in Master site
-1809-

17 of 20

WO 97/35270 PCT/US97/04399
18/20

Figure 19

Roll back audit table update
(emp$ra) in Master site 1)
-1809.

18 of 20

WO 97/35270

PCT/US97/04399
19/20

Figure 20

Call update conflict handier
(empSrr.updato_conflict_handlor)
in Master site |)

-2010.

Query current vaiues
in Master site 1|
-2012-

v

Determine which column group
has an update conflict
-2014-

v

Call the Update Conffict
Resolution functions
-2018-

o

Confiict resolved?
-2018-

b4

Yes

* Post an error
. tError) in

Cail repiication update routine (DetE. °.)
Master site I

emp$rp.rep_update 2000,

in Master site !i
-2020.-

y

End

19 of 20

WO 97/35270 PCT/US97/04399
20/20

Figure 21

Call uniqueness conflict handler
(cmpSrr.uniquo_confllct_updm-handlu)
in Master site il
-2110-

Determine which Uniqueness
Constraint has been violated
-2114.

v

Call the Unigueness Conflict
Resolution functions
-2118-

5

20 of 20

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/04399

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GOG6F 17/30
Us CL : 395/617

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/617

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

IBEE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 4,432,057 A (DANIELL et al) 14 February 1984, col 1-5.{ 1-25
Y US 5,212,788 A (LOMET et al) 18 May 1993, col 1-2. 1-25
Y US 5,241,675 A (SHETH et al) 31 August 1993, col 1-5. 1-25
Y US 5,386,559 A (EISENBERG et al) 31 January 1995, col 1-| 1-25
4.
Y US 5,434,994 A (SHAHEEN et al) 18 July 1995, col 1-3. 1-25
Further documents are listed in the continuation of Box C. D Sec patent family annex.
* Sp gorics of cited d b Iater document published afier the international filing date or priority
e N e L . date and not in conflict with the application but cited to understand the
A g the g 1 state of the art which is not considered principle or theory underlying the invention

to be part of particular relevance
E* earlier documeat published on or after the international filing date % document of particular relevance; tho claimed inveation m"".""’e‘n;f
L document which may throw doubis on priority claim(s) or which is when the document is taken alone

cited to establish the publication date of her citation or other

special reason (as specified) °Y* document of particular relevance; the claimod mvention cannot be

considered to immvolve an inventive step when the document is

oM document referring 1o an oral disclosure, use, cxhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art
L m‘;‘:‘:‘:‘dl’m" to the international filing date but later than =g+ document member of the same patent family

Date of the actual completion of the international search

27 MAY 1997

Date of mailing of the international search report

04 JUN 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Auth:é‘;ed zﬁxccr ﬁ}))‘J‘/

Box PCT
Washington, D.C. 20231 YNE AMSBURY
Facsimile No. _ (703) 305-3230 Telephone No. (703) 305 3828

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/04399

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y CAREY ET AL, "ICRSS: Interactive Resiolution Support System | 1-25
for Inter-Group Situations”, Proc. of the Twenty-Second Intl Conf
on System Sciences, Vol III, 3-6 January 1989, p. 512-16.

Y HUANG ET AL, "Experimental Evaluation of Real-Time 1-25
Transaction Processing", Real-Time Systems Symposium, 5-7
December 1989, IEEE Computer Society Press, p. 144-53.

Y FISHMAN ET AL, "A New Perspective on Conflict Resolution in | 1-25
Market Forecasting”, The First Intl Conf. on Al on Wall Street,

9-11 October 1991, p. 97-102.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

