Office de la Propriete Canadian CA 2304620 C 2004/08/10

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 304 620
Un organisme An agency of

d'Industrie Canada Industry Canada 12 BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de dépot PCT/PCT Filing Date: 1998/09/24 (51) Cl.Int."/Int.CL.* HO4L 29/10
(87) Date publication PCT/PCT Publication Date: 1999/04/01| (72) Inventeurs/Inventors:

.1 . ROACH, BRADLEY, US;
(45) Date de deéelivrance/lssue Date: 2004/08/10 FIACCO. PETER. US:

(85) Entree phase nationale/National Entry: 2000/03/22 SCHERER, GREG, US:
(86) N° demande PCT/PCT Application No.: US 1998/020011 BERMAN, STUART, US;
L L DUCKMAN, DAVID, US
(87) N® publication PCT/PCT Publication No.: 1999/016177/ o
e . (73) Proprietaire/Owner:
(30) Prioritée/Priority: 1997/09/24 (08/937,065) US EMULEX CORPORATION, US

(74) Agent: MBM & CO.

(54) Titre : PROCESSEUR DE TRANSMISSION DOTE DE BITS DE COMMANDE MODIFICATEUR DE LISTE TAMPON
(54) Title: COMMUNICATION PROCESSOR HAVING BUFFER LIST MODIFIER CONTROL BITS

20 24
N _ _ _ [
S FIBRE CHANNEL LINK \

||

— ~ R - — 36
NL-PORT
66 RS - Ax Ve 28
FIFO FRAME
l BUFFER
— _~22

32

TRANSMIT TRANSFER RECEIVE
PROTOCOL READY PROTOCOL
ENGINE QUE ENGINE
54
HOST 40
1| 42
HOST HOST
DRIVER | |MEMORY
L

(57) Abrége/Abstract:

A communication processor sends and recelves frames of data and commands. Transmit and recelve protocol engine Is
controlled by host driver software which utilizes predetermined bits to indicate which frame Is the last frame In a series of frames.
This Information Is then placed in the transmit frame before it Is sent.

:':‘;‘:‘-';:;‘:': Bt N,
R A -:::; N7
> \) Q"’...

I*I] . Prven, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 @igmr -~

| SRR RO S 2 _,\‘.s
OPIC - CIPO 191 5

CA 02304620 2000-03-22

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

l (51) International Patent Classification 6 (11) International Publication Number: WO 99/16177
HO04B . A2 . .
(43) International Publication Date: I April 1999 (01.04.99) l
(21) International Application Number: PCT/US98/20011 | (81) Designated States: CA, JP, KR, European patent (AT, BE, CH,
CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 24 September 1998 (24.09.98) PT, SE).
(30) Priority Data: Published
08/937,065 24 September 1997 (24.09.97) US Without international search report and to be republished

upon receipt of that report.

(71) Applicant: EMULEX CORPORATION [US/US]; 3535 Harbor
Boulevard, Costa Mesa, CA 92626 (US).

(72) Inventors: ROACH, Bradley; 111 45th Street, Newport Beach,
CA 92663 (US). FIACCO, Petér, 3420 Fairmont, Yorba
L.inda, CA 92686 (US). SCHERER, Greg; 19621 Crestknoll
Drive, Yorba Linda, CA 92886 (US). BERMAN, Stuart;
2010 Vista Caudal, Newport Beach, CA 92660 (US).
DUCKMAN, David; 76 Argonne Avenue, Long Beach, CA
90803 (US).

(74) Agent: LAND, John; Fish & Richardson P.C., Suite 1400, 4223
Executive Square, La Jolla, CA 92037 (US). |

(54) Title: COMMUNICATION PROCESSOR HAVING BUFFER LIST MODIFIER CONTROL BITS

(57) Abstract

then placed in the transmit frame before it is sent.

T Az) A R A M AR A 0 14 N S e e o ds b gkt sV 1 o0} RO (RO e < T o . - T i 2 G VAR | IR O - L A i i 5 d W i

| |

A communication processor sends and receives frames of data and commands. Transmit and receive protocol engine is controlled by
host driver software which utilizes predetermined bits to indicate which frame is the last frame in a series of frames. This information is

10

15

20

25

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

COMMUNICATION PROCESSOR HAVING
BUFFER LIST MODIFIER CONTROL BITS

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to devices for transferring data in computer networks, and more
particularly to a device utilizing control bits to facilitate generating and transmitting frames

of data across a computer network boundary.

2. Description of Related Art
The number of computers and peripherals has mushroomed in recent years. This has created
a need for improved methods of interconnecting these devices. A wide variety of networking

paradigms have been developed to enable different kinds of computers and peripheral

components to communicate with each other.

There exists a bottleneck in the speed with which data can be exchanged along such
networks. This is not surprising because increases in network architecture speeds have not
kept pace with faster computer processing speeds. The processing power of computer chips
has historically doubled about every 18 months, creating increasingly powerful machines and
bandwidth hungry applications. It has been estimated that one megabit per second of
input/output is generally required per “MIPS” (millions of instructions per second) of

processing power. With CPUs now easily exceeding 200 MIPs, it 1s difficult for network
architecture to keep up with these faster speeds.

Area-wide networks (e.g., LANs and WANSs) and channels are two approaches that have
been developed for computer network architectures. Traditional networks offer a great deal
of flexibility and relatively long distance capabilities. Channels, such as Enterprise System

Connection (ESCON) and Small Computer System Interface (SCSI), have been developed
for high performance and high reliability. Channels typically use dedicated short-distance

connections between computers or between computers and peripherals.

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

Features of both channels and networks have been incorporated into a new network standard
known as “Fibre Channel”. Fibre Channel systems combine the speed and reliability of
channels with the flexibility and connectivity of networks. Fibre Channel products currently
can run at very high data rates, such as 266 or 1062 Mbps. These speeds are sufficient to

handle quite demanding applications such as uncompressed, full motion, high-quality video.

There are generally three ways to deploy Fibre Channel: simple point-to-point connections;
arbitrated loops; and switched fabrics. The simplest topology 1s the point-to-point
configuration, which simply connects any two Fibre Channel systems directly. Arbitrated
loops are Fibre Channel ring connections that provide shared access to bandwidth via

arbitration. Switched Fibre Channel networks, called “fabrics”, yield the highest performance

by leveraging the benefits of cross-point switching.

The Fibre Channel fabric works something like a traditional phone system. The fabric can
connect varied devices such as work stations, PCs, servers, routers, main frames, and storage
devices that have Fibre Channel interface ports. Each such device can have an origination
port that “calls” the fabric by entering the address of a destination port in a frame header. The
Fibre Channel specification defines the structure of this frame. (This frame structure raises
data transfer issues that will be discussed below and addressed by the present invention). The
Fibre Channel fabric does all the work of setting up the desired connection, hence the frame
originator does not need to be concerned with complex routing algorithms. There are no
complicated permanent virtual circuits (PVCs) to set up. Fibre Channel fabrics can handle
more than 16 million addresses, and so are capable of accommodating very large networks.
The fabric can be enlarged by simply adding ports. The aggregate data rate of a fully

configured Fibre Channel network can be 1n the tera-bit-per-second range.

Each of the three basic types of Fibre Channel connections are shown in FIGURE 1, which
shows a number of ways of using Fibre Channel technology. In particular, point-to-point
connections 10 are shown connecting mainframes to each other. A Fibre Channel arbitrated

loop 11 is shown connecting disk storage units. A Fibre Channel switch fabric 12 connects

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

work stations 13, mainframes 14, servers 15, disk drives 16 and local area networks (LANS)
17. The LANS include, for example, Ethernet, Token Ring and FDDI networks.

An ANSI specification (X3.230-1994) defines the Fibre Channel network. The specification
distributes Fibre Channel functions among five layers. As shown in FIGURE 2, the five
functional layers of the Fibre Channel are: FC-0 - the physical media layer; FC-1 - the coding
and decoding layer; FC-2 - the actual transport mechanism, including the framing protocol
and flow control between nodes; FC-3 - the common services layer; and FC-4 - the upper

layer protocol.

While the Fibre Channel operates at relatively high speed, it would be desirable to increase
speeds further to meet the needs of faster processors. One way to do this would be to
eliminate, or reduce, delays that occur at interface points. One such delay occurs during the
transfer of a frame from the FC-1 layer to the FC-2 layer. At this interface, devices linked by
a Fibre Channel data link receive Fibre Channel frames serially. A protocol engine receives
these frames and processes them at the next layer, the FC-2 layer shown in FIGURE 2. The

functions of the protocol engine includes validating each frame; queuing up DMA operations

to transfer each frame to the host; and building transmit frames.

The high bit speeds of the Fibre Channel data link places extreme demands on the protocol
engine. Hence, some protocol engines can only operate in half-duplex mode, which means
that the protocol engine can process data in only one direction at a time. This significantly
slows down speed of the data transfer since either the transmit or the receive task must wait

while the other task 1s performed.

Full-duplex protocol engines can process both received and transmitted frames

simultaneously. Hence full-duplex protocol engines significantly improve data ‘throughput.
However, in full-duplex protocol engines, usually a microprocessor with local RAM handles

the transmit and receive operations. The use of a microprocessor for this function greatly

increases the cost of the protocol engine.

o L Al Tt bk ¢ 1dd Akl AL A S s e e aaa L,) CHRAGERCMIC . L OLh Lt [y CSIk, 4eft s s ce e DT ORI DRI B AT WA TN, el

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

Conventional protocol engines also sometimes rely on the involvement of a host CPU on a

frame-by-frame basis. For example, validation of received frames and generation of

‘acknowledgments to received frames typically involve the host CPU. Involving the host CPU

limits frame transmission and reception rates and prevents the host CPU from performing

other tasks.

Moreover, a transmit protocol engine must have advance notice of the frame payload data
size in order to build a transmit frame “header”. One way to accomplish this 1s for the
transmit protocol engine to access computer memory where a series of frames have been
stored and modify the header field in the last frame. However, if the transmit protocol engine
cannot determine whether or not the current frame is the final frame before transferring

payload data, this extra step slows the process of building and transmitting the frame header,

and hence slows the overall communication data rate.

In view of the foregoing, objects of the invention include: increasing data transfer processing
speeds in high speed networks such as the Fibre Channel network; providing a technique that
can speed up a protocol engine’s processing of data frames; providing a protocol engine that
can perform high speed full duplex processing of data without involving the host CPU on a
frame-by-frame basis; and providing a way for a transmit protocol engine to predetermine
whether or not the current frame is the final frame, as well as having advance notice of the

frame payload data size.

SUMMARY OF THE INVENTION
The invention is directed to the processing and transferring of frames of data in a computer
data link. The invention is a full-duplex communication processor that uses dual micro-coded
engines and specialized hardware to build transmit frames and to validate receive frames
without involving a host CPU on a frame-by-frame basis and without a resident
microprocessor. A preferred embodiment of the invention uses independent transmit and
receive protocol processors. These independent processors communicate with each other

using a transfer queue. A context manager provides context information that is used by the

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

receive processor to validate received frames and by the transmit processor to build transmit
frames.

The context information points to a buffer bit which gives the address and size of bufier
segments and control bits (Buffer List Modifier Bits) for each segment. The transmit protocol
processor uses these control bits to determine how the data in the buffer segments can be
transmitted in a sequence of frames. This information increases the speed with which the
transmit protocol processor can build and transmit the transmit frame header. In a preferred
embodiment, the data channel is a Fibre Channel data link and the full-duplex

communication processor is configured to process FC-2 protocol Fibre Channel frames.

The details of the preferred embodiment of the present invention are set forth in the

accompanying drawings and the description below. Once the details of the invention are
known, numerous additional innovations and changes will become obvious to one skilled in

the art.

BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a block diagram of a prior art complex computer network utilizing Fibre
Channel technology.

FIGURE 2 is a diagram of the five functional layers of the prior art Fibre Channel standard.

FIGURE 3 is a simplified block diagram of a communication processing system 1n

accordance with a preferred embodiment of the invention.

FIGURE 4 is a diagram of a typical prior art Fibre Channel frame of data.

FIGURE 5 is a simplified block diagram of a full-duplex communication processor in

accordance with a preferred embodiment of the invention.

2 R U e U= e . RPNV SP T TRIIT LY . W FT TN SR P R . .

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

FIGURE 6 is a diagram of the host data structures in a preferred embodiment of the

invention.

FIGURE 7 is a diagram of an Exchange Context Resource Index (XR]) in accordance with a

preferred embodiment of the invention.

FIGURE 8 is a diagram of a Buffer Pointer List Entry format in a preferred embodiment of

the invention.

FIGURE 9 is a diagram of a Buffer Point List format in a preferred embodiment of the

invention.

Iike reference numbers and designations in the various drawings refer to like elements.

DETAILED DESCRIPTION OF THE INVENTION
The invention is a full-duplex communication processor that improves frame transmission
and frame reception rates in high speed data links such as the Fibre Channel. By using
independent transmit and receive microcoded engines communicating directly to host driver
software, full-duplex inter-processor communication is accomplished without involving the
host CPU. The use of Buffer List Modifier Control Bits speeds the building and transmitting

of transmit frames by giving the transmit processor advance notice of which frame buffer

contains the last frame.

FIGURE 3 shows a Fibre Channel communication system 20 utilizing the full-duplex
communication processor 22 in accordance with a preferred embodiment of the invention.
Qerial data is received along a Fibre Channel data link 24. Frames generally will comprise
three portions, a preamble, a data or “payload™ portion, and a trailer portion. In a Fibre
Channel data link, for example, the Fibre Channel framé consists of a start of frame (SOF)
word (four bytes); a data portion comprising a frame header (six bytes), between zero and
2112 payload bytes, and a cyclical redundancy check (CRC) word (4 bytes); and an end of
frame (EOF) word (4 bytes). The frame header is used to control link applications, control

-6-

. Lo o g s, LS B Ak At ittt A 4 Rt Sl a1 280 LaaA L .
Cre M et |\w..,m;mm)mw RS ER A=ty o oo o .
m. H . e A T T IR SRR L MBS I e -t

CA 02304620 2003-12-01

device protocol transiers, and detect missing or out of order frames. The CRC word indicates

whether there is a problem in the transmission, such as a data corruption, or whether some

part of the frame was dropped during transmission.

Frames received from the Fibre Channel data link 24 are processed by an NL port 36 which
decodes and parallelizes the incoming senal data into words. The NL port 36 assembles the
words into frames. The NL port 36 also checks the CRC word for each frame recetved and
adds a resulting “good-bad” CRC status indicator to other status information bits within an
EOF status word that is generated from the EOF word. The NL port 36 then writes the
frames into a receive frame FIFO buffer 28.

Fibre Channel frames are then received by the full-duplex communication processor 22, also
referred to as a protocol engine. Several functions are performed by the full duplex
communication processor 22, including: 1) queuing up a host command to write the datain a
received frame into host memory through direct memory access (DMA); 2) validating the
frame header to ensure that the frame 1s the next logical frame that should be received; 3)
determining whether the frame is defective or not; and 4) generating transmit frames in

response to a received frame or host-generated transmit command.

Unlike conventional protocol engines, the full-duplex communication processor 22 does not
include a microprocessor. Instead, dual microcoded engines are employed 1n order to
separate the protocol engine receive tasks from the protocol engine transmit tasks. In
particular, the full-duplex communication processor 22 includes a receive protocol engine 30

and a transmit protocol engine 32. These protocol engines communicate to each other
through a transfer ready queue 60. The receive protocol engine 30 validates the receive frame

headers received from the receive frame buffer 28. The transmit protocol engine 32 builds

10

15

20

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

transmit frames and sends them to the Fibre Channel data link 24 through a transmit FIFO 66

and the NL port 36.

cessor 22 works in conjunction with a host computer 40

and host memory 42. In particular, the transmit and
ate directly to the host driver software 38. Full-

The full duplex communication pro
that includes host driver software 38

receive protocol engines 30, 32 communic

duplex communication 18 ~chieved because the receive and transmit protocol engines operate

independently and concurrently. An interlocked context information table is used to permit

in more detail below.

The full-duplex communication processor 22 is able to process frames without involving the

host CPU on a frame-by-frame basis. For example, one function of the full-duplex

communication processor 22 is to allow a remote device to send a frame along the Fibre

“wake up” the transmit protocol
to the Fibre Channel link

Channel link 24 to the receive protocol engine 30 which will
engine 32 to send data 10 the remote device through the NL port 36

24. Such data may reside, for example, in the host memory 42.

FIGURE 5 shows additional details of the full-duplex communication processor 22 of a

preferred embodiment of the invention. The full-duplex communication processor 22

includes data structures resident in host memory 42, which may include contiguous and non-

contiguous physical memory.

" buffer control unit 48 which places the received frame in a receive buffer 50. The frame

header in the receive buffer 50 is then automatically placed into the receive protocol engine

30.

. ST R ARl oY deiqdenant e e g e
RN I T T LT oY ' F Y VR B R —
: Sk < SRR K.
2RI b a3 | 3 T L S AR 1) SR L LA TS AL (A - Co bt 10 v
et g N I T A e LTt P e e e e

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

A lookup field inside each frame header includes a pointer to an associated context. In
general, the associated context is initialized by the host driver 38 within the host memory 42,
and contains :nformation indicating where to put a particular frame of data in host memory
42. More particularly, the context contains fields such as maximum frame size, current buffer
pointer and length, and small computer systems interface (SCSI) state information, defined in
a list of bufters.

The host memory unit 42 typically will comprise many megabytes of memory, and each
particular frame will fit into one slot in that memory. Each frame header tells the receive
protocol engine 30 which context to access or “pull down” for that particular frame so that
the receive protocol engine can validate that frame . The context is pulled down from the
host memory 42 under control of the context manager engine 52 through a host memory

‘nterface 54. The receive protocol engine sequencer 46 then validates the frame.

Once frame validation is complete, the context pointed to by a frame header will tell the
receive protocol engine 30 what to do with the frame. There are a number of possibilities,

including: 1) send the frame out the Routing Control/Type (R_CTL/TYPE) ring control unit
56 where it then is sent to host memory 42 through the host memory interface 54; 2) send the

frame through the Buffer List ring control unit 58 to one segment in the buffer pointer list
inside host memory; and 3) process a non-data receive frame and associated payload . (For

example, the frame may be a communication frame such as a “transfer ready” that tells the

protocol engine 32).

The second case involves sending a frame to a buffer pointer list, which 1s a sequential list of
buffer descriptors. The first entry in the list contains the total transfer size in bytes. In the
Tustrated embodiment, only word transfers are performed by the full-duplex communication
processor 22. Hence, if the total transter size is not an integral number of 4-byte words,

additional bytes are transferred to the next boundary. Subsequent entries in the buffer list

e A AL A R R (T g .

e e oo Ol 9 R RLHTCR s (L A AN ket .

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

consist of two parts each, one part being an address that points to the start of a buffer and the
other part being the size and usage of the buffer.

In accordance with the invention, each buffer pointer list includes bufter list modifier (BLM)
bits that describe the buffer usage and which are used to build an outgoing Fibre Channel
frame header (the FC-2 header) for each transmit frame. The full-duplex communication
processor 22 must build the frame header and corresponding frame control (F_CTL) bits, and
transfer the frame header to a transmit FIFO 66 before transferring the payload via a DMA
operation. The BLM bits and the buffer lengths in the buffer lists assist the full-duplex
communication processor 22 in determining whether a frame is the last one in a series of
sames. For the receive protocol engine, the BLM bits control proper placement of received
data and status information into the bufter segments. The BLM bits are described 1n more

detail below.

One example of a task performed by the full-duplex communication processor 22 is the

processing of a command to write data to a disk drive on the Fibre Channel link 24 from a

transfers the command to the disk drive which sends back a transfer ready message to the
receive protocol engine 30 indicating that the disk drive is ready to accept the data. This
message goes to the transfer ready queue 60 which instructs the transmit protocol engine 32

to retrieve the data from host memory 42, generate a frame and transmit the data to the disk

drive.

The transmit protocol engine 32 1s triggered by either of two events: one is the presence of an
entry in the transfer ready queue 60, and the other is by action of the command ring
controller 62. An Exchange Context Resource Index (XRI), described below, 1s used to
process each command. The command ring is a circular queue of command entries, generally
read and write commands. These read and write commands can be used, for example, to
communicate commands to a remote device such as a disk drive. The size and base memory
address of the command ring is specified in a command ring base register which contains

“put” and “get” pointers that are used for managing the command ring as follows: the host

-10-

v am ol ap aren 3 LANDY SRONINEIIT MG I L APV LI B e

10

15

20

25

CA 02304620 2000-03-22

WO 99/16177 | PCT/US98/20011

driver 38 manages the put pointer, incrementing the pointer whenever a command is queued

to the command ring 62. The fuli-duplex communication processor 22 manages the get

pointer, incrementing the pointer whenever a command is read from the ring.

A command other than a full-frame transmission provides a pointer to a buffer pointer list.
The buffer pointer list contains the total transfer size in the first buffer list entry and bufter
pointer-size pairs in subsequent buffer list entries. The XRI field in the command will then
be used to instruct the context manager 52 to pull down the appropriate context to the
transmit protocol engine 32. This transfer, called an exchange, tells the transmit protocol
engine 32 where the engine is in that particular buffer ring list, how much data the frame has
and what stage it is in, efc. The context also contains the next frame header. The next frame
header is initially built by the host driver 38 but thereafter the transmit protocol engine 32
builds subsequent frame headers. The context manager 52 retrieves each frame header from

the host memory 42 and passes the header to the transmit header controller 68, which sends

the frame header to the NL port 36 through the transmit FIFO 66.

Once a frame header is built, the system begins following the buffer list in a process that
gathers data from host memory. The context for a command contains a pointer to the buffer
list. One entry at a time is pulled down from the buffer list by the buffer list ring controller
70. The frame header is transferred to the transmit FIFO 66 through a transmit header control
68. A payload segmenter 72 begins to pull in payload (frame data) and put the payload data
into the transmit FIFO 66. Once a frame header and the payload data are in the transmit FIFO
66, the last task is to write an end of frame (EOF) word to the transmit FIFO 66. The EOF
word is an indication to the NL port 36 to begin transmitting the assembled frame onto the
Fiber Channel link 24. Once all frames are sent out successfully, a response 1s generated

which is sent to the host driver 38, indicating that the frames associated with the pending

command were, in fact, sent out successfully.

Likewise, the receive protocol engine 30 contains an acknowledge FIFO 74 which generates

an acknowledge frame (basically a modified form of the receive frame header) that is sent

back over the Fibre Channel link 24 to the sender to acknowledge receipt.

-11-

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

The full-duplex communication processor 22 also includes receive and transmit protocol
engine registers 76 and 78. These registers contain autonomous protocol management
functions that are linked and synchronized through the context registers in the context
manager 52. The context manager 52 manages coherency and caching of exchange context
from the host memory 42, and also synchronizes accesses by the receive and transmit

protocol engine 30, 32 to the cached exchange context contained in the context registers 80.

In the preferred embodiment, the context manager 52 and the receive and transmit protocol
engines 30, 32 communicate with the host 40 through host memory interface 54 which
includes a peripheral components interface (PCI), direct memory access (DMA) controller
(not shown), and a PClI slave interface (not shown). The protocol engine registers 76, 78
contain the PCI slave interface and interrupt controller for the protocol engines 30, 32. The
context manager 52, receive and transmit protocol engines 30, 32 provide status to and from

the protocol engine register 76, 78 for the PCI slave interface and interrupt controller.

The receive and transmit protocol engines 30, 32 implement the Fibre Channel protocol by
using two independent programmable sequencers 46 and 63. The use of sequencers 46, 63
allows the protocol engine state machine to be implemented in a variable writable control
store RAM, which is downloaded into the receive and transmit protocol engine registers 76,
78 during initialization. The host 40 can access this writable control store RAM and can read

and write the writable control store RAM through a protocol register map. The use of the

sequencers adds great flexibility to the protocol engine state machine implementation since,

by changing code in the writable control store RAM, new or different functionality can be

downloaded to the full-duplex communication processor 22.

The full-duplex communication processor 22 can be implemented on a single chip (such as

an application specific integrated circuit (ASIC)), alone or together with other functions. For
example, in the illustrated embodiment, the full-duplex communication processor 22 can
cache one instance of the most recent transmit and receive context. However, by adding

additional on-chip memory, additional instances of context can be cached.

-12-

= 0 g A Lt T P M A FH e By =t e et

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

Buffer Pointer List
FIGURE 6 shows the major data structures in the illustrated embodiment of the full dupiex

communication processor_ 79 The Buffer Pointer List shown in FIGURE 6 1s a sequential list

of buffer descriptors. The first entry in the list contains the total transfer size in bytes;

5 however, since the full duplex communication processor 22 performs only word transfers, if

the total transfer size is not an integral number of 4-byte words, additional bytes are

transferred to the next word boundary. Subsequent entries in the buffer list consist of two

parts each, one being an address that points to the start of a buffer and the other being the

size in words of the buffer and control bits. However, a starting word address and a buffer

10 word count parameter are used so the host must align the buffer starting address to a 32-bit

word address.

In the illustrated embodiment, a Buffer Pointer List always starts on a quadword (1 6-byte)

boundary. The last entry is always a NULL descriptor. A Buffer Pointer List must exist in

contiguous physical memory. The format of the buffer descriptors and the layout of the list

are illustrated in FIGURE 8, Buffer Pointer List Entry Format, and FIGURE 9, Bufter

15

Pbinter List Format.

The bit Buffer Pointer List Entry format and Buffer Pointer List format of the illustrated

20 embodiment are described in detail for one possible embodiment as follows:

Bits [31:0] Total Transfer Size (TTSZ)
The Total Transfer Size is the total number of bytes to be transmitted or received. In

the case of FCP I/O’s the total transfer size does not include the FCP_CMD,
25 FCP XFR RDY or FCP_RSP frames.

Bits [31:2] Buffer Starting Word Address (BSWA)
This field contains the following information depending on the buffer list entry (BLE)

position in the buﬁ'ef list. For the first BLE the BSWA field is not used. For all
subsequent BLEs except the last, the BSWA field contains the starting word address
of a buffer. For the last BLE, the BSWA field contains the IOTAG. The last BLE 1s

30

-13-

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011 -

indicated by setting a zero in the BWC (length) field. All BSWA values from
0000,0000h to FFFF,FFFCh are valid.

Bits [31:24] Buffer List Modifiers (BLM)
The BLM bits cause the transmit protocol engine 32 to set or clear certain bits in the FC2

Header. These bits are valid for every BLE except the first BLE, where these bits are
redefined as the upper total transfer size bits 31-24. The BLM bits are used as follows:

Bit [31] Receive Buffer

This is a receive buffer and will not be sent.

10 Bit [30] First Frame Indication
When set, the transmit protocol engine 32 will set the SOF delimiter to SOF13 for one

frame.
Bit[29] F_CTL.fs bit
When set, the transmit protocol engine 32 will set the first-frame-of-exchange F_CTL
15 bit.
‘Bit[28] F_CTL.sibit
When set, the transmit protocol engine 32 will set the sequence-initiative bit in the

F CTL field for the last frame transmitted for this sequence.

Bit[27] F_CTL.es bit

20 When set, the transmit protocol engine 32 will set the end-of-sequence bit in the

F CTL field for the last frame transmitted for this sequence.
Bit[26] F_CTL.sbut
When set, the transmit protocol engine 32 will set the last-sequence bitinthe F CTL

field for the last frame transmitted for this sequence to terminate the exchange.

25 Bit [25] SEQ_COMPLETE
When set, the transmit protocol engine 32 will complete the sequence when all the

data pointed to by this BLE 1s sent.
Bit [24] FCP_DATA
When set, the transmit protocol engine 32 will replace the header TYPE field with

30 FCP DATA.

: et “"“*l'“'i-'s“‘.lwwmm“w'ct -
. ., B RN “lm.. ,m.tmmwmw,.“. ..

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

Bits [23:18] Reserved BLM
The Reserved BLM bits are mapped to the sequencer for future use, except for the first

BLE, where these bits are defined as bits 23-18 of the total transfer size.

Bit [17:2] Buffer Word Count (BWC)
These bits define the length in 32-bit words of the buffer or the Total Transter size,
depending on the BLE position in the buffer list. For the first BLE, these bits provide bits
17-2 of the Total Transfer size. For all subsequent BLEs except the last, this field defines

the buffer word count. For the last BLE the BWC field is reserved and must have a zero

value.

Bit [1:0] Reserved Bits
Must be written as zero, except for the first BLE, where bits 1-0 define the residual byte

length of the total transfer.

Bits[31:0] VO Tag (I0TAG)
Instead of a BSWA, the last BLE can contain a value that is of use to the Host Driver to
identify the operation on completion. This field is not processed by the full-duplex

communication processor 22. For normal completion of a Transmit Sequence command,

word 1 of the response points to this word.

XRi Context

In the preferred embodiment, each context is divided into two host memory structures:
remote port context and exchange context. An exchange context is contained in an Exchange
Context Resource Index (XRI) which is used to process a command. In particular, an
exchange context is a structure that describes a complete exchange or controls transmission
of one or more sequences. The structure is pointed to by an entry in an exchange pointer
table. An XRI context contains the supporting context needed for an operation to take place
immediately or through separate sequences. The data to send, or the buffers to receive data,
are described by a buffer pointer list consisting of a set of buffer list entries that point to the

actual buffers. As described above, a buffer list entry contains the address and length of a

-15-

X okt oo N HN AR T ey e IV SO0 Rt Frie 4 b L v ———————— e

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

buffer and control bits to indicate sequence initiative, end of exchange, end of sequence, efc.
For multiple-sequence operations the XRI context provides storage for working-register

contents.

In the preferred embodiment, the XRI contexts are used by the full-duplex communication
processor 22 for: Fibre Channel Protocol (FCP) exchanges that it originates; for transmission
exchanges; for Receive Frame validation; and for temporary purposes to control transmission
of a single frame or multiple frame sequences. The XRI context may be used by the host

driver 38 for keeping track of exchanges for which data is received into buffer ring bufters.

An example of an XRI context is shown in FIGURE 7. The first word is the XRI control-
status word. The XRI control-status word contains configuration fields that are set by the
host driver. The Total Transfer Size word reflects sequencer activity. For Fibre Channel
protocol (FCP) originated exchanges, the XRI control-status word shows the remaining byte
count for write operations and the cumulative received byte count for read operations. For
transmit sequence commands, the XRI control-status word shows the remaining byte count 1f
the operation is halted before the complete sequence is transmitted. The Rxeng control-status
word is used by the receive protocol engine 30 to validate frames. The Current Buffer List

Address word reflects sequencer activity, as does the Current Buffer Offset Address word.

The buffer list modifier (BLM) bits are set from the corresponding bits of a buffer list entry
(BLE) read under sequencer control. The Residual Buffer Length in word five reflects
sequencer activity. Whenever a sequencer reads a BLE, this field receives the buffer word
count. Whenever a sequencer issues a DMA operation to transfer data to or from the buffer,

the word count is reduced by the length of the transfer data. The Current Buffer Burst Length

word also reflects transmit sequencer activity.

The Fibre Channel FC-2 header, in words 7-12, is used to generate header information for

each frame transmitted by the transmit protocol engine 22.

-16-

T L L

e e b A W | RN SEEI0 i UMM DG IO A T T T i e AR A TSI B B A (e e

10

15

20

25

30

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

R CTL/TYPE Buffer Rings

Referring again to FIGURE 5, the R_CTL/TYPE ring control 56 controls buffer rings that
are used to receive all frames except FCP responder frames, i.e., for a locally originated FCP
exchange. Three R_CTL/TYPE buffer rings assist the host in demultiplexing incoming
frames for the appropriate driver entry points. An R_CTL/TYPE buffer ring is a fixed-size.
sequential list of buffer descriptors. The list is managed by hardware as a logical ring. Buffer
descriptors are like buffer list entries in a buffer pointer list, but do not contain BLM bits.

The host driver 42 specifies the location and size of each buffer ring in the corresponding
base register. Specific registers specify which entries in the R_CTL/TYPE buffer rings are
valid. Each register consists of a put pointer and a get pointer. The receive buffers for each
ring are used in the exact order in which the host driver put the corresponding buffer .

descriptions into the ring.

Loop initialization is initiated locally under host control or remotely by some other port. The
host driver 38, the transmit and receive sequencers 46, 63, and the NL port 36 logic, all work
together to complete the loop initialization procedure. During this procedure, the host driver
either originates or passes on Fibre Channel Extended Link Services (ELS) frames that

determine the addresses and capabilities of the ports on the loop. The host driver 38 1s

responsible for issuing Loop Initialization Select Master (LISM) ELS frames which facilitate

the loop initialization process.

Initialization is needed because both the receive and transmit protocol engines 30, 32 are
basically two autonomous engines running in full-duplex and they have very minimal
communication between the two of them. During initialization, the transmit protocol engine
32 is turned off and the receive protocol engine 30 is allowed to receive frames and then send
them through the transmit protocol engine 32. Thus, the receive protocol engine takes up
“ownership” of the transmit protocol engine hardware and uses that hardware to forward

frames, in particular, the LISM frames which are transmitted utilizing the transmit LISM

control module 82.

-17-

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

Buffer List Modifier Bit Interpreter
The full duplex communication processor 22 uses the buffer list moditier (BLM) bits to build

the outgoing Fibre Channel FC2 header. It must build the header and the corresponding
F CTL bits, and transfer it into the transmit FIFO before DMAing the payload. The BLM

5 bits and the buffer lengths in the buffer list assist the processor 22 in determining whether the
frame is the last one. These parameters are interpreted by the full-duplex communication

processor 22 as shown by the following pseudo-code:

-]18-

10

15

20

25

30

35

CA 02304620 2000-03-22

WO 99/16177 PCT/US98/20011

if (first frame of command or xfr_rdy)
if (BLM.first_frame)

SOF = SOF13
else SOF = SOFn3// Set SOF13/n3 delimiter
else SOF = SOFn3

if (BLM.first_sequence) F_CTL.fs =1
else F CTL.fs= 0// Set F_CTL first frame bit

if BLM.FCP_DATA) R_CTL =FCP_DATA, F_CTL.rop=1
// Set up FCP_DATA frame
if (sequence complete)
if BLM.si) F_CTL.s1=1
if (BLM.es) F CTL.es=1
if (BLM.Is)F_ CTL.Is=1
F CTL.fill_bytes = fill bytes from burst length running count
SOF.Last Frame =1

where:
sequence_complete = (total transfer size = max frame size) |
(Burst size = max frame size) |

(BLM.SEQ COMP && (remaining buffer size <= max frame size))
max frame size = min(N Port max frame size, 1k)

if FCP burst size = FCP_XFR_RDY burst length field

else burst size = total transfer size
The BLM bits are updated in the XRI Context as each BLE is processed by the full-duplex
communication processor 22. In certain exception conditions, the driver must update the
BLM bits in the XRI Context before issuing a Restart command to resume sequence

transmission. As an example, the BLM first_frame bit must be clear to resume transmitting a

sequence after the first frame has already been transmitted.

By helping the processor 22 determine whether a frame is the last one, the BLM bits allows
the transmit protocal engine 32 to build the transmit frame header in one pass, without
advance notice of the frame payload data size. Also, the BLM bits permit the transmit
protocal engine 32 to load the transmit header words into the transmit buffer prior to any
knowledge of the transmit payload size. This simplifies the transmit buffer FIFO 66

architecture without requiring repositioning of the address logic on the address pointer.

C e et 1 R LT L TN SN [l L ww oo a4 Ly At (ARSI ORI SR -+ PR RO s gttt rin: s3me=sete

CA 02304620 2003-12-01

It will be appreciated by those skilled 1n the art that the BLM bits can be used with similar
advantages in other communication processors, such as those which utilize a single protocol

engine for transmit and receive processes.

A number of embodiments of the present invention have been described. Nevertheless, it will
be understood that various modifications may be made without departing from the spirit and
scope of the invention. Accordingly, it 1s to be understood that the invention is not to be

limited by the specific illustrated embodiments, but only by the scope of the claims.

-2{)-

- ©E e e S de ML CLARMEAREA | | O L] AT AL { L vwi s U Lot O TR M i ol e . 45 A b e T g e s b e Wb s 40 gy e AR § s R lab e 0 et baas .

CA 02304620 2000-06-13

MCTA® 958/20011
Ntrvuo Ol JAN cuwy

WHAT IS CLAIMED IS:

1 1. A communication processor adapted to be coupled to a computer network and

2 to a host computer, the host computer including host memory, CPU, payload

3 data and host driver software, the communication processor cComprising:

4 a receive processor and a transmit processor coupled to the computer

5 network for receiving and validating received frames of data, and for

6 constructing and transmitting frames of data, wherein the frames of data include

7 headers, and receive and transmit processor being operably coupled to receive

8 and validate said frames of data without fame-by-frame involvement of the

9 CPU and without a restdent microprocessor; and
10 an interface for coupling said receive and transmit processors with said
11 host computer, wherein said host driver software 1s configured to set |
12 predetermined bits in a frame which indicate the last frame in a series of tframes,
13 and said receive and transmit processors are configured to use said
14 predetermined bits to build a transmit frame header containing information
15 regarding the last frame 1n a series of frames.

1 2. A communication processor according to claim 1, further compnsing an

2 interlocked information table contaiming context information wherein the

3 receive processor uses said context information to process said received frames

4 of data and the transmit processor uses said predetermined bits to build a

5 transmit header from said context information so as to build transmit frames and

6 without involving said CPU.

t 3 A communication processor according to claim 1, wherein said transmit and

2 receive processors comprise independent associated transmit and receive

3 microcoded engines.

1 4 A communication processor according to claim 1, wherein each said

2 microcoded engine 1s a sequencer.

1 3. A communication processor according to claim 1, wherein said received frames

2 of data are Fibre Channel frames.

—2 1=

10
11
12
13
14
15

16

10.

IIE Gy A A AR 1 45 1A ARNEN P Mkt 10 1] d st s AL 3 AL s N st e SO AL oo M R R LR MCRIMILTR LM SRR AR 4 | (ORI 40 5 0 1 AN SN SO W AR ORI MR ARGt ' M

CA 02304620 2000-06-13

A communication processor according to claim 5, wherein said receive and

transmit processors each implement an FC-2 Fibre Channel communications

protocol.

A communication processor according to claim 1, comprising: a single

integrated circuit containing said receive and transmit processors.

A communication processor according to claim 1, wherein said interface

includes a direct memory access (DMA) interface.

In a communication processor including a receive processor and a transmit
processor operably coupled to receive and validate frames of data without
frame-by-frame involvement of an external CPU and without a resident
microprocessor, a method of processing a series of frames of data comprising:

receiving a first frame of data by the receive processor from a computer
network;

transferring said first frame of data from said receive processor to a
communication module;

storing contextual information relating to said first frame 1n an
information table;

using said contextual information to validate said first frame;

setting predetermined bits in a frame which indicate the last frame 1n
said series of frames;

constructing, by the transmit processor, a transmit frame containing
information indicating the last frame 1n a senies of frames; and

transferring said transmit frame to said computer network.

A method according to claim 9, wherein said first frame 1s a Fibre Channel

frame and said step of constructing a transmit frame includes constructing a

Fibre Channel transmit frame.

2

——— A SREEP

PRI M el 10 1T 0 18 117 MU T4 M I 2 T 3 40 6 I M e ey IR kA La NI AN B 3 (B0l e FABT S T 0 hm e e aq Ml * e [20 e oo hhhmd e [PAAE - § A AL d YYD RN Y .

10

11

12

13

14

15

16

17

18

19

20

21

11.

12.

13.

14.

15.

CA 02304620 2000-06-13

A method according to claim 10, further comprising the step of coupling said

receive and transmit processors to said host computer through a direct memory
access (DMA) interface.

A computer network comprising:

(a) source and destination computer devices;

(b) a communication channel coupled to said source and destination
computer devices;

(c) a receive processor and a transmit processor coupled to said
communication channel, wherein said receive processor receives and
validates a series of frames of data from said source computer device
where the frames of data include commands, and wherein said transmait
processor constructs transmit frames;

(d) a host computer including a CPU, memory and dniver software;

(€) an interface for coupling said receive and transmit processors with said

host computer;

(f) said driver software in said host computer arranged and configured to set
predetermined bits in a frame which indicates which frame 1s the last
frame 1n said senes; and

(g) said receive and transmit processors being configured to use said
predetermined bits to build a transmit frame header containing
information identifying the last frame in a series of frames, and

(h) th : receive and transmit processors being operably coupled to receive
and validate frames of data without frame-by-frame involvement ot an

external CPU and without a resident microprocessor.

A computer network according to claim 12, wherein said frames of data are

Fibre Channel frames.

A computer network according to claim 12, wherein said receive and transmit

processors each implement an FC-2 Fibre Channel communications protocol.

A computer network according to claim 12, wherein said interface includes a

direct memory access (DMA) interface.

-2 3

AMENDEDN DLy

TRR TN TR 1»\;Mm'wmw“mnw.?.m”wm.ﬁmcm.n e LT LR A T T U ¢ m e sn meedeadded s sevat e T e Y R P

PCTAUR 9872007 1
PEA/US 21 1AM 200D

AR b e A AR 1S it R i PR PR LA

CA 02304620 2003-12-01

1/10

Fibre Channel
Switch Fabric

FIG. 1
(PriorArt)

CA 02304620 2003-12-01

2/10

(1Y 101id)
2 ‘9ld

alul] SIY} Je Spaads asay] jjodans
sjonpo.Jd ou Jnq ‘pJepuels ayi Ul Palj108dSx

9p099(]/ap0IuT
10.)U07) M0J4//000}0.d buield

$99IAJ8S UOLILLIOD

. . vl
!.E pue sng N} el

¢-J4

CA 02304620 2003-12-01

3/10

20. 24
'\
FIBRE CHANNEL LINK
NL-PORT
66
X
FIFO
60
32 ﬂ?
TRANSMIT TRANSFER RECEIVE
PROTOCOL READY PROTOCOL

ENGINE | QUE ENGINE

54

40
42
HOST |
MEMORY

FIG. 3

HOST

38
HOST
| { DRIVER

FIBRE CHANNEL FRAME

FIG. 4
(Prior Art)

36

26

22
30

CA 02304620 2003-12-01

8/
8p020.491) "bas

pup pue
sJ9)s168Y xy Buad| | ssa)sibay X1 buad
@) (soLug 91)
@sr— > anY AQY 434X
g9, 09-
auibus
NYW XL
26 EINIE,
o NVYIW X1
AHOWAW 08
T|||I||I|.|||

8p030.431)\] bas

1H0d IN

9/

m 041

w LIWSNYYL
X9 1diux

m 99
140d IN

- puad Juux Xd Je
Wue X9 10J1ix jd

.

N AHOWIN

CA 02304620 2003-12-01

P —————— e T . o xR R N Il i i i el i i el Al el

. SNEIS 18/qUIDSSEaY
1804 W == yoga [, peojfeg

04/ .
140d I I ol /2Nm b 29 A Jwsuel) m
96 w
_ m aiux |
0 10 XJ0 1011 m
£ 4nq A Im N9 N4 N_gp @)
l m inj G IX XIG m
06 ;o buu m— (7]
asuodsay @
1s17.Ja4ng
o, 86 - w
va WIDUL 1| 1 auanbag M
IdAL/1LOH w
9§ XY IN3d

AHOWIN om.\

O-l4
LIWSNY4L

CA 02304620 2003-12-01

(deyy [ersed)
548)SIbaYy 8]178414

oi1alld

V9 9id

-
- PUBLILIOY df HUSURY _~| I

(Aiowayy [eaISAUL (Alowwayy [eIISAlY
snonbnuon) snonbiuoy-uop)

(A10wwapy 1eaISAYd
snonbnuo))
buly asuoasay

\ 1817 41d Jng siajing
M X

IR L \ "]

(A1oway [earsAyd (jo-8zis o) paublyy (A1owayy 1eaisAy4 (1o 1eaIsAyd (A1owayy |earsAld
snonbpuoy) Alowapy [eoisAyd — snonbnuon-uoy snonbnuo)y) - snonbijuo)-uop) -

bury puewio snonbnuon) snonbiuoy J8yyy) 1817414 Ing siayng
9/qe| Jld 8abueyax3 X)) abueyox3
Alouiayy JSOH

CA 02304620 2003-12-01

7/10

$8.ManJS ejeq JSoH

Jddcd

1SVEcd
cJdydd

Jdd L
ASVELd
LJdd

Jd0d

1SV80d
0044

49 9l4

l

!

v

«\ooEmS 1RaISAY4 (10w 1RIISAYd |
snonbiuon) snonbiuo)-uop)
bury 414 ing siayng

1]
\
UL

(A1owayy (eaIsAyd (Aiowayy 1eaisAyd
snonbiuoy) snonbiuon-uop)
bury 11 Ing sJajng

l

Il
\
Il

(L10wayy [eaishyg (A1owapy jeshyd
snonbijuon) snonbnuon-uop)
buiy 1id Ing SI9jing

CA 02304620 2003-12-01

8/10

: putertist Bt
7 o5
2
3
RX 4
5

0 Lenath
6| Current Buffer Burst Length :] 5’;;‘2’;8 t
X1 7 R CIL, D ID T

8 resv, S ID

o[SEQ_ID, DF CIL, SEG_CNT
o OXDAID
[Parameter
2 Twe FOL
13

14| Payload Area for Initial Frame

151 (FCP_CMND, Small ELS,
" BLS, Small IP Payload, etc.)

FC2 Header

(8 Words = fcp cmd size)

Host Scratchpad

(FireLite does not access
this area. It can be used for
buffer list start plrs,

last buf list ptr/count/offset
I/0O Tag, N_Port Index)

FIG. 7

CA 02304620 2003-12-01

9/10

QO

QO O

QS

QO

1O

-— eam egy "

-— e e A

- v eme e

ol ek wie AN

- - . -—

ink il e i

-y ol "my -

ol ANk =i B

.

- "D s -

- emy s =i

A T ey =iy

. 8

/

/

/

/

/

T A A e

e spin apie g

etk wih vk e

- e e

8

8

8

8

8

0=IM§

- e e =

s wn W e

R e e T

ol wily = gl

ik s i s

- wh o S

- e -a o

W74 PanIasay |

GLIL /18I

DyL Of
Gl 9]

A) i

i vl auh PR

ISI] J8}ing 8y ajeuILLLIB]

i

ECve

Ecva

i
!
1
§

{

e = -

W1g

h ok b W

Y gl A i

L€

L€

unoy Eo\s 18Jjng b% $Sa8.pPY PIoM uSt&m 18JJng 8:88
19 paniasay

Wy i Wy e

- uiv wb =

oub wmic e

-bh - amn -

Gl

¥MSq
Gl 9/

7511
Gl 9l
DINISAY
GL9l

9L /1L 8l

aam wh am -

ECvg

Ecve

- s o e

wig.

-y am e i

e e i =

- wmy wuis -

LE

33

VQQ EX&J@&..\ 0]ul aZIS 13jSukl] [el0] PeQ]

e el e we=h

- A e -y

Ecve

Ecve

bo— =

- R A u

duy wgr s =

bl
*

= e -

[E

LE

[PIOM

0 PIOM

[PIO

0 PIOM

[PIOM

0 PIOM

CA 02304620 2003-12-01

10/10

Reserved Buffer List Buffer Pointer List Start
Entry O

Buffer List
Entry 1

Buffer List
Entry n

Buffer List
BWC=NULL | Last Entry

Undefined Buffer Pointer List End

FIG. 9

20 24
\ _ _ _ [
ﬁ FIBRE CHANNEL LINK g

I' 1 36

NL-PORT

66 - _~28
N i R
| BUFFER |
%A\ T

32

TRANSMIT
PROTOCOL
ENGINE

TRANSFER
READY
QUE

RECEIVE
PROTOCOL
ENGINE

38~ 1|42
HOST HOST
DRIVER | |MEMORY
S

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - abstract drawing

