
JP 5710852 B2 2015.4.30

10

20

(57)【特許請求の範囲】
【請求項１】
　ワークフローに関係するユーザコードを参照しつつ前記ワークフローを実行する、コン
ピュータにより実装される方法であって、
　ユーザ入力に基づいて、複数のアクティビティを有するコンポーネント化され視覚的に
モデル化されたワークフローを構成するステップと、
　前記ワークフローをシリアライズするために、宣言的表現でシリアライズされたワーク
フローのコンパイルされていない表現を作成するステップと、
　ユーザから、前記ワークフローの複数のアクティビティの１つ以上との関連についての
前記ワークフローのユーザコードを受信するステップであって、前記アクティビティはそ
れぞれメタデータ、インスタンスデータおよび実行ロジックの少なくとも３つの部分を持
ち、前記メタデータは前記ワークフローの構成に関するデータプロパティを定義し、前記
複数のアクティビティは１つ以上の意味論及び動作に関連する、ステップと、
　前記ユーザコードをコンパイルするステップと、
　前記構成されたワークフローを、前記ワークフローの作成されたコンパイルされていな
い表現及び前記コンパイルされたユーザコードの機能として実行するステップであって、
前記メタデータは１つ以上の所定のフィールドに格納され、前記複数のアクティビティの
インスタンス間で共有される、ステップと、
　前記ワークフローモデルの実行に影響を及ぼすために、前記構成されたワークフローが
実行され続けている間に、前記コンパイルされていないワークフローの表現を前記ワーク

(2) JP 5710852 B2 2015.4.30

10

20

30

40

50

フローのコンパイルを行わずに動的に修正するステップであって、前記コンパイルされて
いない表現の修正が前記ワークフローと前記ユーザコードにリアルタイムで直接反映され
るステップ、と
を備えたことを特徴とするコンピュータにより実装される方法。
【請求項２】
　前記各アクティビティは、該アクティビティに関連付けられたアクティビティ実行プロ
グラムを有し、前記構成されたワークフローを実行するステップは、前記コンパイルされ
たユーザコードを参照しつつ前記複数のアクティビティのそれぞれについて前記アクティ
ビティ実行プログラムを実行するステップを含むことを特徴とする請求項１に記載のコン
ピュータにより実装される方法。
【請求項３】
　前記修正されたワークフローを、前記ワークフローの修正された、コンパイルされてい
ない表現及び前記コンパイルされたユーザコードとして実行するステップをさらに備えた
ことを特徴とする請求項１に記載のコンピュータにより実装される方法。
【請求項４】
　前記構成されたワークフローを実行するステップ、および前記修正されたワークフロー
を実行するステップは、前記構成されたワークフロー及び前記修正されたワークフローの
前記コンパイルされていない表現をコンパイルせずに実行するステップを含むことを特徴
とする請求項１に記載のコンピュータにより実装される方法。
【請求項５】
　前記ユーザコードは、前記ワークフローの実行に影響を及ぼす１つ以上のビジネスルー
ルを表すことを特徴とする請求項１に記載のコンピュータにより実装される方法。
【請求項６】
　前記ユーザコードをコンパイルするステップは、前記複数のアクティビティのそれぞれ
に関連付けられた前記ユーザコードをコンパイルするステップを含むことを特徴とする請
求項１に記載のコンピュータにより実装される方法。
【請求項７】
　前記構成されたワークフローを実行するステップは、デッドロック検出および同時実行
制御を課すステップを含むことを特徴とする請求項１に記載のコンピュータにより実装さ
れる方法。
【請求項８】
　１つ以上のコンピュータ読み取り可能記録媒体が、請求項１に記載の前記方法を実行す
るコンピュータ実行可能命令を格納することを特徴とする請求項１に記載のコンピュータ
により実装される方法。
【請求項９】
　ワークフローに関係するユーザコードを参照しつつ前記ワークフローを実行するための
コンピュータ実行可能コンポーネントを格納する１つ以上のコンピュータ読み取り可能記
録媒体であって、前記コンポーネントは、
　視覚的にモデル化されコンポーネント化されたワークフローの前記ユーザコードを実行
可能オブジェクトコードに翻訳するコンパイラコンポーネントであって、ユーザから受け
取られつつある前記ユーザコードが、前記ワークフローの複数のアクティビティの１つ以
上と関連付けることを定義され、前記アクティビティはそれぞれメタデータ、インスタン
スデータおよび実行ロジックの少なくとも３つの部分を持ち、前記メタデータは前記ワー
クフローの構成に関するデータプロパティを定義し、前記複数のアクティビティは１つ以
上の意味論および動作に関連する、コンパイラコンポーネントと、
　ワークフローをシリアライズするために、宣言的表現でシリアライズされたワークフロ
ーのコンパイルされていない表現の機能及び前記コンパイラコンポーネントからの前記ワ
ークフローに関連する前記実行可能オブジェクトコードとして前記ワークフローを実行す
るワークフローコンポーネントであって、前記メタデータは、１つ以上の所定のフィール
ドに格納され、複数のアクティビティのインスタンス間で共有される、ワークフローコン

(3) JP 5710852 B2 2015.4.30

10

20

30

40

50

ポーネントと、
　前記ワークフローモデルの実行に影響を及ぼすために、前記ワークフローが前記ワーク
フローコンポーネントにより実行され続けている間に、前記ユーザが前記コンパイルされ
ていないワークフローの表現を前記ワークフローのコンパイルを行わずに動的に修正でき
るようにするデザイナコンポーネントであって、前記コンパイルされていない表現の修正
が前記ワークフローと前記ユーザコードにリアルタイムで直接反映されるもの、と
を備えたことを特徴とするコンピュータ読み取り可能記録媒体。
【請求項１０】
　前記ワークフローコンポーネントは、前記修正されたコンパイルされていないワークフ
ローの表現及び前記コンパイルされたユーザコードに基づいて前記修正されたワークフロ
ーをさらに実行することを特徴とする請求項９に記載のコンピュータ読み取り可能記録媒
体。
【請求項１１】
　前記ワークフローに関連するアクティビティのそれぞれは、該アクティビティに関連付
けられたアクティビティ実行プログラムを有し、前記ワークフローコンポーネントは、前
記アクティビティのそれぞれに対するアクティビティ実行プログラムによって前記ワーク
フローを実行することを特徴とする請求項１０に記載のコンピュータ読み取り可能記録媒
体。
【請求項１２】
　ワークフローに関係するユーザコードを参照しつつ前記ワークフローを実行するシステ
ムであって、
　コンパイルされていないコンポーネント化されたワークフローの表現および前記ワーク
フローのユーザコードを格納するメモリ領域と、
　ユーザから、前記ワークフローの複数のアクティビティの１つ以上との関連についての
前記ユーザコードを受信するためのインターフェースであって、前記アクティビティはそ
れぞれメタデータ、インスタンスデータおよび実行ロジックの少なくとも３つの部分を持
ち、前記メタデータは前記ワークフローの構成に関するデータプロパティを定義し、前記
複数のアクティビティは１つ以上の意味論及び動作に関連するものと、
　プロセッサであって、
　　ユーザ入力に基づいて、複数のアクティビティを有するコンポーネント化され視覚的
にモデル化されたワークフローを構成するためのコンピュータ実行可能命令と、
　　ワークフローをシリアライズするために、宣言的表現でワークフローのコンパイルさ
れていない表現を作成するためのコンピュータ実行可能命令と、
　　前記メモリ領域内に格納された前記ユーザコードをコンパイルするためのコンピュー
タ実行可能命令と、
　　前記構成されたワークフローを、前記ワークフローのコンパイルされていない表現及
び前記ワークフローに関連する前記メモリ領域内に格納された前記コンパイルされたユー
ザコードの機能として実行するためのコンピュータ実行可能命令であって、前記メタデー
タは１つ以上の所定のフィールドに格納され、前記複数のアクティビティのインスタンス
間で共有される、コンピュータ実行可能命令と、
　　前記ワークフローモデルの実行に影響を及ぼすために、前記構成されたワークフロー
が実行され続けている間に、前記コンパイルされていないワークフローの表現を前記ワー
クフローのコンパイルを行わずに動的に修正できるようにするためのコンピュータ実行可
能命令であって、前記コンパイルされていない表現の修正が前記ワークフローと前記ユー
ザコードにリアルタイムで直接反映されるもの、を実行するように構成されたプロセッサ
と
を備えたことを特徴とするシステム。
【請求項１３】
　前記複数のアクティビティの各々は、それに関連付けられたアクティビティ実行プログ
ラムを有し、前記プロセッサは、前記アクティビティのそれぞれについて前記アクティビ

(4) JP 5710852 B2 2015.4.30

10

20

30

40

50

ティ実行プログラムを実行することにより前記構成されたワークフローを実行するように
構成されていることを特徴とする請求項１２に記載のシステム。
【請求項１４】
　前記メモリ領域に格納されている前記ユーザコードをコンパイルするための手段をさら
に備えたことを特徴とする請求項１２に記載のシステム。
【請求項１５】
　前記構成されたワークフローを、前記ワークフローの修正された、コンパイルされてい
ない表現及び前記コンパイルされたユーザコードの機能として実行するための手段をさら
に備えることを特徴とする請求項１４に記載のシステム。
【請求項１６】
　前記構成されたワークフローが実行され続けている間に、前記ユーザが前記ワークフロ
ーのコンパイルされていない表現を動的に修正できるようにするための手段をさらに備え
たことを特徴とする請求項１５に記載のシステム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、ワークフローモデリングの分野に関し、より詳細には、コンポーネント化さ
れた拡張可能ワークフローモデル（componentized and extensible workflow model）に
関する。
【背景技術】
【０００２】
　既存のシステムでは、ビジネス問題をモデル化することによりビジネス問題を高水準の
ワークフローにマッピングすることを試みる。しかし、現実世界のワークフローは、（ａ
）実行およびモデリングの複雑さ、（ｂ）設計時のフローの構造に関する知識、（ｃ）静
的に定義された、またはアドホック／動的な特性、（ｄ）ライフサイクルにおけるさまざ
まな時点でのフローのオーサリングおよび編集の容易さ、（ｅ）ビジネスロジックとコア
ワークフロープロセスとの弱いまたは強い関連などのさまざまな次元において異なる。既
存のモデルでは、これらすべての要因に対応することはできない。
【０００３】
　さらに、ほとんどの既存のワークフローモデルは、言語ベースのアプローチ（例えば、
ＢＰＥＬ４ＷＳ、ＸＬＡＮＧ／Ｓ、およびＷＳＦＬ）またはアプリケーションベースのア
プローチに基づいている。言語ベースのアプローチは、定義済み言語構文の閉じた集合を
持つ高水準のワークフロー言語であり、これにより、ユーザ／プログラマに対するワーク
フロープロセスのモデル化が容易になる。ワークフロー言語は、言語構文の閉じた集合に
対するすべての意味情報を備え、これによりユーザはワークフローモデルを構築できる。
しかし、言語は、開発者側で拡張することはできず、ワークフローモデルを構成するプリ
ミティブの閉じた集合となっている。言語は、ワークフローシステムベンダが出荷する言
語コンパイラに結び付けられている。ワークフローシステム製品ベンダのみが、将来の製
品バージョンにおいて新しい言語構文の集合を加えて言語を拡張することによりモデルを
拡張することができる。このため、多くの場合、言語に関連付けられたコンパイラのアッ
プグレードが必要となる。
【０００４】
　アプリケーションベースのアプローチは、アプリケーション内に領域特有の問題を解決
するためのワークフロー機能を備えるアプリケーションである。これらのアプリケーショ
ンは、本当に拡張可能であるとはいえず、またプログラム可能なモデルも持たない。
【０００５】
　既存のアプローチでは、複雑さ、先見、動的ワークフロー、オーサリングの容易さ、お
よびビジネスロジックとコアワークフローとの関連度の強さの課題が適切に扱えない。さ
まざまなクラスのワークフローをモデル化するビジュアルワークフローデザイナ（visual
 workflow designers）を構築するために利用できる、拡張可能、カスタマイズ可能、お

(5) JP 5710852 B2 2015.4.30

10

20

30

40

50

よび再ホスト可能な（re-hostable）ワークフローデザイナフレームワークはない。既存
のシステムでは、ユーザがグラフィックスを利用してワークフロープロセスの設計を行い
、開発者が選択したプログラミング言語によるビジネスロジックを関連付けることができ
るアプリケーション短期開発（ＲＡＤ）スタイルのワークフロー設計の経験を欠いている
。さらに、インク対応ワークフローデザイナ（ink-enabled workflow designer）もない
。
【０００６】
　さらに、既存システムは、ワークフローの実行のための継ぎ目のないアドホックな、ま
たは動的な編集機能を備えていない。ワークフロープロセスは、本質的に動的であり移動
性を有し、その形態は設計時には全く予見できない。ワークフロープロセスは、構造化様
式で始まり、最終的には、その実行存続期間の過程で発展し変化する。ワークフロービル
ダが設計時にさまざまな種類のワークフローモデルをオーサリングするだけでなく、継ぎ
目のない方式でアドホックな、または動的な変更を実行中のワークフローに加えられるよ
うにするワークフローオーサリングフレームワーク（workflow authoring framework）が
必要である。ワークフロープロセスが展開された後、実行されていても、ビジネス要件に
変更があれば、多くの場合、現在実行中のワークフロープロセスを変更または編集せざる
を得ない。ワークフロープロセスの実行時オーサリングを行えるシステムが必要である。
【０００７】
　さらに、ワークフロープロセスでは、ワークフロープロセスの複数のステップにまたが
る分野横断的に直交する、かつ入り組んだ諸問題を取り扱う。例えば、ワークフロープロ
セスの一部が長い実行トランザクションに参加するように設計されているが、同じプロセ
スの他の部分は同時実行用に設計されている。同じワークフロープロセスのさらに他の部
分では、追跡を必要とするが、他の部分ではビジネスまたはアプリケーションレベルの例
外を扱う。特定の動作をワークフロープロセスの１つまたは複数の部分に適用する必要が
ある。
【０００８】
　いくつかのワークフローモデリングアプローチは、すべての例外および人間介入を含む
ビジネスプロセス全体の完全なフローベースの記述を必要とするので実用的でない。これ
らのアプローチのいくつかは、例外が発生したときの追加機能を用意しているが、他のア
プローチでは、ビジネスプロセスをモデル化するフローベースのアプローチの代わりに制
約ベースのアプローチのみを採用する。既存システムでは、フローベースまたは制約ベー
スのアプローチのいずれかを実装する。このようなシステムは、柔軟性が低すぎて、ビジ
ネスの数多くの一般的状況をモデル化できない。
【発明の開示】
【発明が解決しようとする課題】
【０００９】
　したがって、これらの欠点およびその他の欠点の１つまたは複数を解決する、コンポー
ネント化された拡張可能なワークフローモデルが望まれる。
【課題を解決するための手段】
【００１０】
　本発明のいくつかの実施形態は、コンポーネント化されたワークフローモデルを構築す
る拡張可能なフレームワークを実現する。特に、ワークフロープロセスの各ステップは、
ワークフローステップの設計時の態様、コンパイル時の態様、および実行時の態様を記述
する関連コンポーネントモデルを持つ。さらに、開発者は、これらのコンポーネントをオ
ーサリングすることによりコアワークフローモデルを拡張することができる。本発明は、
高度に形式的なマシン同士のプロセス、制約ベースのアドホックなヒューマンワークフロ
ー、およびフローベースのアプローチおよび制約ベースのアプローチの混合を持つワーク
フローを含む、さまざまな種類のワークフローの実行を調整するのに十分柔軟であり強力
なワークフローエンジンを含む。ワークフローエンジンでは、実行中ワークフローに対す
るアクティベーション、実行、クエリ、および制御の機能を使用できる。例えば、本発明

(6) JP 5710852 B2 2015.4.30

10

20

30

40

50

では、実行ワークフローにアドホックな動的変更を加えることができる。ワークフローエ
ンジンは、サーバおよびクライアント環境の両方を含むさまざまなホスト環境において再
ホスト可能または埋め込み可能である。それぞれの特定のホスト環境では、ワークフロー
エンジンをサービスプロバイダ群に結合する。サービスプロバイダの集約機能により、特
定のホスト環境で実行できるワークフローの種類が決定される。
【００１１】
　本発明の他の実施形態では、ワークフローモデルをシリアライゼーションするために拡
張オーケストレーションマークアップ言語（extensible orchestration markup language
）（ＸＯＭＬ）などの宣言形式を備える。宣言形式を使用すると、ユーザはコンポーネン
トの集合を書くことによりワークフローモデルを拡張することができる。ワークフロープ
ロセスのさまざまなステップに対応する意味論は、コンパイル時に与えられたコンポーネ
ントの意味論の妥当性を確認し、それを強制するアクティビティバリデータコンポーネン
ト（activity validator component）内にカプセル化される。本発明の宣言形式の実施態
様では、さらに、データの宣言およびデータとワークフローモデルのさまざまな要素との
関連付けが可能である。宣言形式では、ワークフローを通じてデータを変換する操作をサ
ポートする。例えば、この形式は、ワークフローモデル内のデータベースまたはファイル
、コードスニペット、およびビジネスルールなどの外部データソースを宣言的に表す。
【００１２】
　本発明の一実施態様では、さまざまなクラスのワークフローをモデル化するグラフィカ
ル／ビジュアルワークフローデザイナを構築する拡張可能、カスタマイズ可能、および再
ホスト可能なワークフローデザイナフレームワークを提供する。本発明の他の実施態様で
は、ユーザが任意のプログラミング言語によりグラフィックスを利用してワークフロープ
ロセスの設計を行い、ビジネスロジックの関連付けを行うことができるようにするアプリ
ケーション短期開発スタイルのワークフロー設計のエクスペリエンスをサポートする。本
発明の実施態様は、さらに、ペンおよびタブレット技術を使用してインクもサポートする
。本発明は、ユーザにより描画されたワークフローが内部表現に変換されるフリーフォー
ムドローイングサーフェス（free form drawing surface）を備える。本発明は、既存の
ドローイングサーフェス上のインク編集（例えば、追加／削除アクティビティ）、および
既存のワークフローのインク注釈（例えば、デザインサーフェス（design surface）に手
書きされたコメント、提案、または注意喚起）を介してワークフローの作成および修正を
サポートする。
【００１３】
　本発明のさらに他の実施態様では、宣言的方法により分野横断的な動作を捕捉し、その
動作をワークフローモデルの選択された部分に適用するためのコンポーネントを備える。
本発明の他の実施態様は、それに関連付けられている動作の背景状況においてワークフロ
ーモデルの選択された部分を実行する。本発明の実施態様は、フレームワーク、再利用可
能コンポーネント、およびワークフロープロセスモデルの複数のステップにまたがる分野
横断的に直交する、かつ入り組んだ諸問題を扱うための言語を提供する。　
　本発明の一態様によれば、コンピュータにより実装される方法は、ワークフローに関係
するユーザコードを参照しつつワークフローを実行する。このコンピュータにより実装さ
れる方法は、ユーザコードをコンパイルすることを含む。この方法は、さらに、コンパイ
ルされていないワークフローをコンパイルされたコードで実行することも含む。この方法
は、さらに、コンパイルされていないワークフローが実行されている間にユーザがコンパ
イルされていないワークフローを動的に修正できるようにすることも含む。
【００１４】
　本発明の他の態様によれば、１つまたは複数のコンピュータ読み取り可能媒体は、ワー
クフローに関係するユーザコードを参照しつつワークフローを実行するためのコンピュー
タ実行可能コンポーネントを格納する。これらのコンポーネントは、ユーザコードを実行
可能オブジェクトコードに翻訳するためのコンパイラコンポーネントを含む。これらのコ
ンポーネントは、さらに、コンパイルされていないワークフローをコンパイラコンポーネ

(7) JP 5710852 B2 2015.4.30

10

20

30

40

50

ントから得られた実行可能オブジェクトコードで実行するためのワークフローコンポーネ
ントも含む。これらのコンポーネントは、さらに、コンパイルされていないワークフロー
がワークフローコンポーネントにより実行されている間にユーザがコンパイルされていな
いワークフローを動的に修正できるようにするデザイナコンポーネントも含む。
【００１５】
　本発明のさらに他の態様によれば、システムは、ワークフローに関係するユーザコード
を参照しつつワークフローを実行する。このシステムは、コンパイルされていないワーク
フローおよびユーザコードを格納するメモリ領域を備える。このシステムは、さらに、メ
モリ領域内に格納されているユーザコードをコンパイルするためのコンピュータ実行可能
命令と、コンパイルされていないワークフローをコンパイルされたコードで実行するため
のコンピュータ実行可能命令と、コンパイルされていないワークフローが実行されている
間に、ユーザがコンパイルされていないワークフローを動的に修正できるようにするため
のコンピュータ実行可能命令を実行するように構成されたプロセッサを備える。
【００１６】
　それとは別に、本発明は、他のさまざまな方法および装置を含むことができる。
【００１７】
　他の特徴は、一部は明白であり、また一部は以下で指摘される。
【発明を実施するための最良の形態】
【００１８】
　本発明のいくつかの実施形態では、ビジネスプロセスなどのプロセスを表すワークフロ
ーをモデル化する。ビジネスプロセスとは、予測可能で再現可能な成果が得られる従属す
る、順序付けられたタスク、アクティビティなどのことである。組織の運営手順、制度に
関する実務知識、および情報資源を含めて、ビジネスプロセスは、効率よく、時機を逃す
ことなく定義済みのビジネス目的を達成するように設計される。効率的な環境では、プロ
セスの機能コンポーネントは、絶え間なく変化する企業要件に対処するために、容易に識
別し、適合し、展開することができる。ワークフローは、ビジネスプロセス内のタスクと
やり取りするエンドユーザ体験である。タスクは、アクティビティ、コンポーネントなど
としてモデル化され、それぞれ人またはマシンにより実行される一単位の作業である。一
実施形態では、複数のアクティビティが一人のユーザに提示される。ユーザは、ワークフ
ローを作成する複数のアクティビティを選択して編成する。作成されたワークフローは、
実行され、ビジネスプロセスをモデル化する。図１を参照すると、ワークフロー１００の
実施例は、タスクおよび制御フロー複合アクティビティを含んでいる。
【００１９】
　一実施例では、オーケストレーションエンジンワークフローモデルは、さまざまなクラ
スのワークフローのモデリング、オーサリング、および実行をサポートする。実施例は、
整然とした順序で、または非同期イベントの集合として実行される構造化されたステップ
の集合に関して与えられた問題をモデル化することを含む。オーケストレーションエンジ
ンは、スケジュールの実行を調整する。スケジュールは、ツリー構造で階層的に配列され
たアクティビティの整理された集合である。実行アクティビティの実行コンテキストおよ
び実行アクティビティから見える共有データは、スコープにより規定される。それぞれの
アクティビティは、ワークフロープロセス内のステップに対するメタデータをカプセル化
するコンポーネントを表す。アクティビティは、ワークフローモデルでの実行の基本単位
であり、関連付けられたプロパティ、ハンドラ、制約、およびイベントを持つ。それぞれ
のアクティビティは、任意のプログラミング言語のユーザコードにより構成することがで
きる。例えば、ユーザコードは、共通言語ランタイム（ＣＬＲ）言語で書かれたビジネス
もしくはアプリケーションロジックまたはルールを表すことができる。それぞれのアクテ
ィビティは、ユーザコードでの実行へのインターセプト前フックおよびインターセプト後
フック（pre-interception hooks and post-interception hooks）をサポートする。それ
ぞれのアクティビティは、関連付けられたランタイム実行意味論および動作（例えば、状
態管理、トランザクション、イベント処理、および例外処理）を持つ。アクティビティは

(8) JP 5710852 B2 2015.4.30

10

20

30

40

50

、他のアクティビティと状態を共有できる。アクティビティは、プリミティブなアクティ
ビティであるか、または複合アクティビティにグループ化することができる。プリミティ
ブつまり基本アクティビティは、下位構造（例えば、子アクティビティ）を持たず、した
がって、ツリー構造内の葉ノードである。複合アクティビティは、下位構造を含む（例え
ば、これは、１つまたは複数の子アクティビティの親である）。
【００２０】
　一実施形態では、アクティビティは、単純アクティビティ、コンテナアクティビティ、
およびルートアクティビティの３種類がある。この実施形態では、モデルには１つのルー
トアクティビティがあり、ルートアクティビティの内側に単純アクティビティまたはコン
テナアクティビティは全くないか、またはいくらかある。コンテナアクティビティは、単
純またはコンテナアクティビティを含むことができる。ワークフロープロセス全体は、高
位のワークフロープロセスを構築するアクティビティとして使用することができる。さら
に、アクティビティは、中断可能であるか、または非中断可能とすることができる。非中
断可能複合アクティビティは、中断可能アクティビティを含まない。非中断可能アクティ
ビティには、アクティビティにブロックさせるサービスはない。
【００２１】
　オーケストレーションエンジンは、アクティビティの集まりの例を示している。図２を
参照すると、アクティビティ継承ツリーにアクティビティの実施例が示されている。図２
に一覧として示されているアクティビティの実施例は、付録Ａで詳しく説明する。さらに
、ユーザは、ワークフローモデルを拡張するために１つまたは複数のアクティビティを書
くことができる。例えば、ユーザは、特定のビジネス問題、領域、ワークフロー標準（例
えば、ビジネスプロセス実行言語）、またはターゲットプラットフォームに対するアクテ
ィビティを書くことができる。オーケストレーションエンジンは、例えば、コードを分析
するサービス、タイプ解決およびタイプシステム、シリアライゼーションするサービス、
およびレンダリングを含むアクティビティを書くためのさまざまなサービスの集合をユー
ザに提供することができる。
【００２２】
　一実施形態では、それぞれのアクティビティは、メタデータ、インスタンスデータ、お
よび実行ロジックの少なくとも３つの部分を持つ。アクティビティのメタデータは、構成
することができるデータプロパティを定義する。例えば、いくつかのアクティビティは、
アクティビティ抽象基本クラスで定義されているメタデータの共通集合を共有することが
できる。それぞれのアクティビティは、このクラスを拡張することによりそのニーズに応
じて独自の追加メタデータプロパティを宣言する。
【００２３】
　メタデータプロパティの値は、アクティビティが構成されたスケジュールのいくつかの
インスタンスの範囲において、そのアクティビティのすべてのインスタンスにより共有さ
れる。例えば、ユーザがスケジュールＡを作成し、送信アクティビティをそれに追加した
場合、送信アクティビティはそのメタデータの一部として識別情報（例えば、「００１」
）を与えられる。スケジュールに追加される第２の送信アクティビティは、その独自の一
意的な識別情報（例えば、「００２」）を受け取ることになる。スケジュールＡの複数の
インスタンスが作成され、実行されると、送信「００１」のすべてのインスタンスはメタ
データ値を共有する。対照的に、アクティビティのインスタンスデータは、実行スケジュ
ールインスタンス内のアクティビティのインスタンスに特有のデータの集合を定義する。
例えば、遅延アクティビティは、遅延アクティビティのタイムアウト値を表す日時値であ
るインスタンスデータに関する読み取り専用プロパティを与えることができる。この値は
、遅延アクティビティが実行を開始した後利用可能になり、遅延アクティビティの１つ１
つのインスタンスについて十中八九異なる。参照を「インスタンス」で修飾せずに、スケ
ジュールのインスタンス、特にアクティビティおよびタスクのインスタンスを参照するの
がふつうである。
【００２４】

(9) JP 5710852 B2 2015.4.30

10

20

30

40

50

　複合アクティビティは、その子アクティビティの集合を他の要素として持つ。子アクテ
ィビティは、一実施形態ではメタデータと考えられる。オーケストレーションエンジンモ
デルでは、スケジュールのインスタンス内で実行時にこのメタデータを操作できることを
明示している。新しい子アクティビティを実行スケジュールインスタンスの一部である複
合アクティビティに追加し、そのスケジュールインスタンスに対するメタデータ（アクテ
ィビティツリー）のみが影響を受けるようにすることが可能である。
【００２５】
　次に図３を参照すると、それぞれのアクティビティは、そのアクティビティに対するコ
ンポーネントモデルを形成する関連付けられたコンポーネントの集合を持つ。関連付けら
れたコンポーネントの集合は、アクティビティエグゼキュータ（activity executor）、
アクティビティデザイナ、アクティビティシリアライザ（activity serializer）、アク
ティビティバリデータ（例えば、意味チェッカー（semantic checker））、およびアクテ
ィビティコードジェネレータを含む。アクティビティエグゼキュータは、アクティビティ
に対する実行意味論を実装するステートレスコンポーネントである。アクティビティエグ
ゼキュータは、アクティビティを実装するためのアクティビティのメタデータを操作する
。コアスケジューラは、アクティビティエグゼキュータのサービスプロバイダとして機能
し、アクティビティエグゼキュータにサービスを提供する。
【００２６】
　アクティビティデザイナは、アクティビティ設計時のビジュアル表現を視覚的に表示す
る。アクティビティデザイナは、デザイナ階層内の１つのノードであり、テーマまたはス
キンを作成して設定できる。アクティビティデザイナは、設計環境（例えば、アプリケー
ションプログラム）でホスティングされ、サービスを介してホスト設計環境とやり取りす
る。アクティビティバリデータでは、コンパイル時だけでなく実行時にもアクティビティ
意味論を課す。アクティビティバリデータは、ワークフローモデルのコンテキストに作用
し、環境が提供するサービス（例えば、コンパイラ、デザイナ、またはランタイム）を使
用する。妥当性検証は、ワークフローのライフサイクルの各時点で実行される。構造準拠
検査は、ワークフローのシリアライゼーション表現を作成するときに、コンパイルすると
きに、およびユーザの要求に対する応答として実行される。意味検査は、コンパイル時に
実行するよりも実行時の方が強く、このため実行インスタンスのアクティビティツリー内
のアクティビティの追加または置換などの実行時オペレーションの安全性を保証すること
ができる。本発明では、例えば、定義済みインターフェイス要件への適合または準拠に関
してアクティビティのそれぞれに関連付けられた意味論を評価する。
【００２７】
　アクティビティシリアライザは、アクティビティのメタデータをシリアライゼーション
するコンポーネントである。アクティビティシリアライザは、さまざまなモデル／フォー
マットシリアライザから呼び出される。ワークフローモデル全体が、拡張可能スキーマに
基づいて宣言的マークアップ言語内にシリアライゼーションされ、さらに、望むとおりに
他のワークフロー言語に変換することができる。
【００２８】
　一実施形態では、アクティビティのコンポーネントモデルは、コンピュータ読み取り可
能媒体上にデータ構造体として格納される。データ構造体において、アクティビティデザ
イナは、アクティビティを視覚的に表現するためデータ（例えば、アイコン）を格納する
画像フィールドにより表される。さらに、１つまたは複数の作者時刻フィールドでは、ア
クティビティに関連付けられているプロパティ、メソッド、およびイベントを定義するメ
タデータを格納する。アクティビティシリアライザは、作者時刻フィールドに格納されて
いるメタデータをアクティビティの宣言的表現に変換するためのデータを格納するシリア
ライザフィールドにより表される。アクティビティジェネレータは、作者時刻フィールド
に格納されているメタデータに関連付けられているソフトウェアコードを格納するビジネ
スロジックフィールドにより表される。アクティビティエグゼキュータは、ビジネスロジ
ックフィールドに格納されているソフトウェアコードを実行するためのデータを格納する

(10) JP 5710852 B2 2015.4.30

10

20

30

40

50

エグゼキュータフィールドにより表される。
【００２９】
　（スコープとスケジュール）
　実行アクティビティの実行コンテキストおよび実行アクティビティから見える共有デー
タは、スコープにより規定される。スコープとは、コアアクティビティのうちの１つであ
る。スコープは、変数および長時間実行しているサービスの状態をトランザクション意味
論、エラー処理意味論、補正、イベントハンドラ、およびデータ状態管理とともにひとま
とめにするための統一言語構文である。スコープは、関連付けられた例外およびイベント
ハンドラを持つことができる。一実施形態では、スコープは、トランザクション、アトミ
ック、長時間実行、または同期化のスコープとすることができる。ユーザ変数に対するｒ
ｅａｄ－ｗｒｉｔｅまたはｗｒｉｔｅ－ｗｒｉｔｅ　アクセスが衝突する場合にユーザの
ために同時実行制御が用意される。スコープは、さらに、トランザクション境界、例外処
理境界、および補正境界でもある。スコープはスケジュール内でネストすることができる
ので、さらに、名前が衝突することなく異なるスコープ（スコープがネストしているとし
ても）内で同じ名前により変数、メッセージ、チャネル、および相関関係集合を宣言する
ことが可能である。
【００３０】
　スケジュール内にネストされているスコープは、そのスケジュールのコンテキスト内で
のみ実行可能である。スケジュールは、アプリケーション（例えば、スタンドアロンの実
行可能エンティティ）として、またはライブラリ（例えば、他のスケジュールから呼び出
すため）としてコンパイルすることができる。ライブラリとしてコンパイルされたスケジ
ュールはすべて、実際に、他のスケジュール内から呼び出すことができる新しいアクティ
ビティ型を構成する。スケジュールのメタデータは、パラメータの宣言を含む。
【００３１】
　スケジュールが作成された後、作成されたスケジュールのインスタンスを実行できる。
スケジュールインスタンスをアクティブにし、制御するプロセスは、オーケストレーショ
ンエンジンが埋め込まれているホスト環境に応じて異なる。オーケストレーションエンジ
ンは、スケジュールをテストするために使用できる余計な機能のない「単純なホスト」を
提供する。さらに、オーケストレーションエンジンは、サービス環境（つまり、ホスト）
とやり取りするため、エンジンおよび外部アプリケーションにより同様に使用される「サ
ービスプロバイダ」モデル（例えば、アプリケーションプログラミングインターフェイス
）の標準化を推進するアクティベーションサービスを提供する。アクティベーションサー
ビスは、特定のスケジュール型のスケジュールインスタンスを作成し、その際に、任意選
択で、パラメータを受け渡す。スケジュールインスタンスは、本質的に、実行スケジュー
ルインスタンスのプロキシであり、インスタンス、スケジュールのメタデータ（アクティ
ビティツリー）への参照、およびインスタンスのサスペンド、レジューム、および終了を
実行するメソッドを一意に識別する識別子を含む。アクティベーションサービスは、さら
に、与えられたスケジュールインスタンス識別子に基づいてスケジュールインスタンスを
見つける操作もサポートする。
【００３２】
　（コードビサイド）
　スコープアクティビティは、スコープアクティビティのビジネスロジックを含む関連す
るコードビサイドクラスを持つことができる。スケジュールはそれ自体スコープであるた
め、スケジュールはコードビサイドクラスも持つことができる。スケジュール内にネスト
されているスコープも、それ独自のコードビサイドクラスを持つことができる。スコープ
内でネストされているアクティビティは、共有データ状態およびビジネスロジックのコン
テナとして働くスコープのコードビサイドクラスを共有する。例えば、コードアクティビ
ティのメタデータは、コードビサイド内に特定のシグネチャを持つメソッドへの参照を含
む。他の実施例では、送信アクティビティのメタデータは、特定のシグネチャのコードビ
サイドメソッドへのオプションの参照に加えてメッセージ宣言およびチャネル宣言への必

(11) JP 5710852 B2 2015.4.30

10

20

30

40

50

須参照を含む。
【００３３】
　コードビサイドの使用例としては、変数、メッセージ、チャネル、および相関関係集合
の宣言、ｉｎ／ｏｕｔ／ｒｅｆパラメータの宣言、追加カスタムプロパティの宣言、送信
するメッセージの準備、受信されたメッセージの処理、論理値を返すコードで表現された
ルールの実装、ローカルで定義されている変数の操作、アクティビティメタデータおよび
インスタンスデータの読み取り、アクティビティインスタンスデータの書き込み（例えば
、実行されようとしているアクティビティに関するプロパティの設定）、イベントの発生
、例外のスロー、横断的なネストされているスコープおよびスケジュール呼び出し境界を
含む実行スケジュールインスタンスのアクティビティツリー内のアクティビティの階層の
列挙およびナビゲート、実行スケジュールインスタンス内で複合アクティビティへの新規
アクティビティの追加、実行スケジュールインスタンス内のアクティビティに関連付けら
れている宣言的ルールの変更、ならびに他の実行スケジュールインスタンスへの参照の取
得および他の実行スケジュールインスタンスの操作が挙げられる。
【００３４】
　図４を参照すると、ブロック図はコンポーネントモデルのライフサイクルの例を示す。
ユーザは、１つまたは複数のコンピュータ読み取り可能媒体に格納されているコンピュー
タ実行可能コンポーネントを対話形式で操作し、ワークフローに関係するユーザコードを
参照しつつワークフローを実行する。コンピュータ実行可能コンポーネントは、コンパイ
ラコンポーネント４０２、ワークフローコンポーネント４０４、デザイナコンポーネント
４０６、およびインターフェイスコンポーネント４０８を含む。インターフェイスコンポ
ーネント４０８は、ユーザからユーザコードを受け取る。コンパイラコンポーネント４０
２は、ユーザコードを実行可能オブジェクトコードにコンパイルを行うか、または他の何
らかの方法で翻訳する。ワークフローコンポーネント４０４は、コンパイルされていない
ワークフローをコンパイラコンポーネント４０２から得られた実行可能オブジェクトコー
ドで実行する。デザイナコンポーネント４０６を使用すると、ユーザはコンパイルされて
いないワークフローを動的に修正することができる。つまり、デザイナコンポーネント４
０６を使用すると、コンパイルされていないワークフローがワークフローコンポーネント
４０４により実行されている間に、ユーザがコンパイルされていないワークフローを修正
できるということである。さらに、本発明では、修正されたワークフローを遂行または実
行する。コンパイルされていないワークフローを実行し、修正されたワークフローを実行
することは、ワークフローをコンパイルせずに実行することを含む。
【００３５】
　一実施形態では、ワークフローは、それに関連付けられたアクティビティエグゼキュー
タをそれぞれ備える複数のアクティビティを含む。このような一実施形態では、ワークフ
ローコンポーネント４０４は、（例えば、コンパイルされたユーザコードを参照しつつ）
アクティビティのそれぞれについてアクティビティエグゼキュータを実行することにより
コンパイルされていないワークフローを実行する。一実施形態では、１つまたは複数のコ
ンピュータ読み取り可能媒体は、本明細書で説明されているメソッドを実行するコンピュ
ータ実行可能命令を格納する。
【００３６】
　図４に示されているようなシステムは、ワークフローに関係するユーザコードを参照し
つつワークフローを実行する。特に、このシステムは、コンパイルされていないワークフ
ローおよびユーザコードを格納するためのメモリ領域を備える。さらに、このシステムは
、メモリ領域内に格納されているユーザコードをコンパイルするためのコンピュータ実行
可能命令と、コンパイルされていないワークフローをコンパイルされたコードで実行する
ためのコンピュータ実行可能命令と、コンパイルされていないワークフローが実行されて
いる間にユーザがコンパイルされていないワークフローを動的に修正できるようにするた
めのコンピュータ実行可能命令を実行するように構成されたプロセッサを備える。図４の
ハードウェア、ソフトウェア、およびシステム例は、メモリ領域内に格納されているユー

(12) JP 5710852 B2 2015.4.30

10

20

30

40

50

ザコードをコンパイルする手段の実施例と、コンパイルされていないワークフローをコン
パイルされたコードで実行する手段の実施例と、コンパイルされていないワークフローが
実行されている間にユーザがコンパイルされていないワークフローを動的に修正できるよ
うにする手段の実施例の構成要素となる。
【００３７】
　（ワークフローステンシル（Workflow Stencils））
　ワークフローステンシル（例えば、ワークフローテンプレートまたはアクティビティパ
ッケージ）は、ルートアクティビティおよびアクティビティの集合を含む。ステンシルは
、領域および／またはホスト固有である。前者の実施例としては、構造化ワークフロース
テンシル、ヒューマンワークフローステンシル、および非構造化ワークフローステンシル
がある。いくつかのステンシルは、場合によっては特定のホスト環境内で連携するように
設計されている１つまたは複数のルートを含むアクティビティの集合として「閉じて」い
てもよい。他のステンシルは、さまざまな程度で「開いて」いてもよい。ステンシルは、
その拡張性ポイントを定める。例えば、開発者は、ＣｕｓｔｏｍＲｏｏｔおよび新しい抽
象ＣｕｓｔｏｍＡｃｔｉｖｉｔｙを書いて、パッケージがＣｕｓｔｏｍＲｏｏｔであり、
さらにＣｕｓｔｏｍＡｃｔｉｖｉｔｙから派生したアクティビティであると宣言する。
【００３８】
　ＢＰＥＬまたはＸＬＡＮＧ／Ｓステンシルの実施例は、状態管理およびトランザクショ
ンに参加する、関連付けられたイベントおよび例外ハンドラを備える、コントラクトファ
ーストモデル（contract first model）をサポートする、分析できる、正しく定義された
アクティベーションおよび終了動作を持つ、という特性を有するルートアクティビティを
含む。ステンシルの実施例は、さらに、メッセージング特有のアクティビティの集合（例
えば、ＳｅｎｄおよびＲｅｃｅｉｖｅおよびその変種）およびＳｃｏｐｅ、Ｌｏｏｐ、Ｃ
ｏｎｄｉｔｉｏｎ、Ｌｉｓｔｅｎ、およびＴｈｒｏｗなどの他の構造化アクティビティを
含む。
【００３９】
　Ｈａｌｉｆａｘ　Ｓｔｅｎｃｉｌの実施例は、暗黙の状態管理関連の例外ハンドラ（０
～ｎ）、イベントベースのモデルをサポートする、適切に定義されたアクティベーション
動作を持つ、および未定義の終了がある、という特性を備えるルートアクティビティを含
む。ルートアクティビティは、０～ｎのＥｖｅｎｔＤｒｉｖｅｎアクティビティを含む。
それぞれのＥｖｅｎｔＤｒｉｖｅｎ　Ａｃｔｉｖｉｔｙは、Ｈａｌｉｆａｘ　Ａｃｔｉｏ
ｎを表す。それぞれのＥｖｅｎｔＤｒｉｖｅｎ　Ａｃｔｉｖｉｔｙは、関連付けられた状
態管理プロトコルを有し、アトミックスコープ内で実行される。
【００４０】
　（デザイナフレームワーク（ユーザインターフェイス））
　オーケストレーションエンジンは、ＷＹＳＷＹＧ方式でさまざまなクラスのワークフロ
ーモデルを設計するためのフレームワークを備える。例えば、図５を参照すると、ワーク
フローオーサリングするための高水準アプリケーションユーザインターフェイスは、ワー
クフローの指定をウィザードに依存している。このフレームワークは、開発者がビジュア
ルワークフローデザイナを書けるようにするサービスおよび動作の集合を含む。これらの
サービスは、ワークフロープロセスのレンダリング、フローを描画するためのインク／タ
ブレットのサポート、および元に戻す／繰り返し、ドラッグ／ドロップ、切り取り／コピ
ー／貼り付け、ズーム、パン、検索／置換、ブックマーク、装飾、妥当性検証エラー用の
スマートタグ、アクティビティ用の有効なドロップターゲットインジケータ、自動レイア
ウト、ビューページ付け、ナビゲーションマーカー、ドラッグインジケータ、ヘッダ／フ
ッタ付き印刷およびプレビューなどの効率的方法を提供する。このようなユーザインター
フェイスを使用することで、タスクおよび制御フロー複合アクティビティ（例えば、シー
ケンス、パラレル、および条件付き）を含む単純なワークフローを構成することができる
。ルール指定（例えば、条件付き分岐ロジック、ｗｈｉｌｅループロジック）、またはデ
ータフロー指定（例えば、タスクＡの出力がタスクＢへの入力である）のいずれにも、コ

(13) JP 5710852 B2 2015.4.30

10

20

30

40

50

ードの入力（または既存のコンパイル済みコードへの依存）は不要である。（ルールおよ
びデータフローを含む）スケジュールのシリアライゼーションされた表現は、コードビサ
イドが必要ないいくつかのシナリオにおいて自己充足しており、完全である。
【００４１】
　本発明のデザイナフレームワークを使用することで、本発明のオーケストレーションエ
ンジンは、ソフトウェアコードをビジュアルな形でワークフローモデルに関連付ける機能
をサポートするアプリケーション短期開発（ＲＡＤ）スタイルのビジュアルワークフロー
デザイナを含む。ワークフロー内のそれぞれのアクティビティは、関連付けられたアクテ
ィビティデザイナを備える。それぞれのアクティビティデザイナは、フレームワークサー
ビスに関して作成される。本発明のフレームワークは、さらに、ビジュアルデザイナモデ
ルも含む。ビジュアルデザイナモデルは、ワークフローモデルで記述された関係を介して
互いにリンクされているアクティビティデザイナの集合を含む。図６は、ワークフローデ
ザイナの実施例を示す。本発明は、ユーザコードとワークフローモデルとの間のラウンド
トリッピングをリアルタイムで可能にする「Ｃｏｄｅ－Ｂｅｓｉｄｅ」、「Ｃｏｄｅ－Ｗ
ｉｔｈｉｎ」、および「Ｃｏｄｅ－Ｏｎｌｙ」を含むコードをワークフローモデルに関連
付けるさまざまなモードを含む。本発明は、さらに、ユーザがワークフロー構築している
最中にリアルタイムで意味論的エラーを提示する。
【００４２】
　一実施形態では、本発明は、デザイナフレームワークのユーザインターフェイス内の複
数のアクティビティを識別するパッケージをユーザに提示する。本発明は、さらに、ユー
ザから、提示されたアクティビティの選択および階層的編成結果を受け取る。本発明では
、受け取ったアクティビティをシリアライゼーションし、ワークフローの永続的表現を作
成する。本発明は、さらに、ユーザから、ワークフロー内の複数のアクティビティのうち
の１つとの関連付けのためのビジネスロジックを表すソフトウェアコードを受け取る。本
発明は、さらに、関連付けられている１つまたは複数の意味論を持つユーザ定義アクティ
ビティも受け取ることができる。本発明は、定義済みインターフェイス要件への適合に関
して意味論を評価する意味チェッカーまたはバリデータを含む。意味論が定義済みインタ
ーフェイス要件に適合している場合、本発明では、ユーザ定義アクティビティを複数のア
クティビティのうちの１つとして提示する。本発明は、さらに、そのソフトウェアコード
をコンパイルして１つまたは複数のバイナリファイルを作成する。例えば、本発明は、シ
リアライゼーションされたワークフロー表現およびソフトウェアコードをワークフローの
実行可能表現を含む単一のアセンブリにコンパイルする。本発明は、作成されたワークフ
ローを実行する。一実施形態では、１つまたは複数のコンピュータ読み取り可能媒体は、
メソッドを実行するコンピュータ実行可能命令を持つ。
【００４３】
　オーケストレーションエンジンデザイナによって、ユーザは、他の作成済みスケジュー
ルを使用し、それらを使用して上位のスケジュールを再帰的に作成することができる。ス
ケジュールのインライン展開では、ユーザはスケジュールコンテンツをインラインで表示
し、コンテンツを切り取ったりコピーしたりすることができる。スケジュールのインライ
ン展開を有効にし、スケジュールを読み取り専用にするには、インラインスケジュールに
対して別のデザインサーフェスおよびデザイナホストを作成する。さらに、複合スケジュ
ールデザイナはそれ独自の階層を持つ。呼び出されたスケジュールはロードされ、ユーザ
によってデザイナが展開されたときに表示される。一実施形態では、デザイナは、アクテ
ィビティがデザインサーフェス上でアクティビティドロップまたはコピーされた場合に縮
小する。プロパティは、呼び出し側アクティビティデザイナをホスティングされたスケジ
ュールのルートデザイナに連鎖する。下記の関数は、デザイナからアクティビティの追加
および削除を行うことを禁止する。
　　internal static bool AreAllComponentsInWritableContext(ICollection component
s)
　　internal static bool IsContextReadOnly(IServiceProvider serviceProvider)

(14) JP 5710852 B2 2015.4.30

10

20

30

40

50

【００４４】
　これらの関数は、アクティビティが挿入されるコンテキストが書き込み可能かどうかを
チェックするためにインフラストラクチャにより呼び出される。ホスティングされたデザ
イナでは、これらの関数は偽を返す。さらに、プロパティの修正が禁止される。他の関数
は、適切なコンポーネントからアクティビティデザイナをフェッチする。
　　internal static ServiceDesigner GetSafeRootDesigner(IServiceProvider service
Provider)
　　internal static ICompositeActivityDesigner GetSafeParentDesigner(object obj)
　　internal static IActivityDesigner GetSafeDesigner(object obj)
【００４５】
　一実施例において、ユーザは、スケジュールを作成し、それをアクティビティとしてコ
ンパイルする。コンパイルに成功すると、スケジュールはツールボックス上に表示される
。ユーザは、コンパイルされたスケジュールの使用が望ましいスケジュールを開くか、ま
たは作成する。ユーザは、ツールボックスからコンパイル済みスケジュールをドラッグ＆
ドロップする。縮小されたスケジュールデザイナがデザインサーフェスに示される。ユー
ザがドロップされたコンパイル済みスケジュールのコンテンツを表示したい場合、ユーザ
はそのスケジュールデザイナを展開して、呼び出されたスケジュールのコンテンツを読み
取り専用状態でインライン表示する。呼び出されたスケジュールのインライン化により、
ユーザはスケジュールデザイナ同士を切り換えなくても呼び出されたスケジュールを表示
することができる。この機能は、既存のスケジュールを再利用して上位スケジュールを作
成する開発者に有用な機能である。
【００４６】
　（テーマ／スキンを使用したデザイナフレームワークのカスタマイズのサポート）
　デザイナフレームワークを使用して書かれたワークフローデザイナは、ワークフローテ
ーマを使用してカスタマイズすることができる。これらは、デザイナのさまざまな態様を
宣言的に記述する拡張マークアップ言語（ＸＭＬ）ファイルとすることができる。ワーク
フローデザイナは、アクティビティを拡張するパートナのサポートをウィザードで対応し
ている。ワークフローデザイナによりサポートされるユーザインターフェイス機能の例と
して、限定はしないが、元に戻す／繰り返し、ドラッグ／ドロップ、切り取り／コピー／
貼り付け、ズーム、パン、検索／置換、ブックマーク、装飾、妥当性検証エラー用のスマ
ートタグ、アクティビティ用の有効なドロップターゲットインジケータ、自動レイアウト
、ビューページ付け、ナビゲーションマーカー、ドラッグインジケータ、ヘッダ／フッタ
付き印刷およびプレビュー、およびドキュメントアウトライン統合がある。ワークフロー
デザイナは、ＸＭＬメタデータを使用してデザイナのルック＆フィールをカスタマイズで
きるカスタムデザイナテーマ／スキンをサポートする。ワークフローデザイナでは、バッ
クグラウンドコンパイルをサポートする。一実施例では、スケジュールを設計しながら妥
当性検証エラーを調べるスマートタグおよびスマートアクションが用意される。ワークフ
ローデザイナは、任意のコンテナ（例えば、アプリケーションプログラム、シェルなど）
でホスティングすることができる。
【００４７】
　オーケストレーションエンジンプログラムの一実施例は、送信アクティビティが後に続
く受信アクティビティを含む。このプロセスでは、メッセージを受信し、それを送出する
。ユーザは、「Ｈｅｌｌｏ　Ｗｏｒｌｄ」と呼ばれるプロジェクトを作成し、オーケスト
レーションアイテムをプロジェクトに追加する。ユーザは、その後、スコープアクティビ
ティをデザインサーフェス上にドラッグ＆ドロップする。次に、ユーザは、送信アクティ
ビティが後に続く受信アクティビティをスコープ上にドロップする。図６は、デザイナ内
の結果として得られるワークフロー７００を例示している。それぞれのアクティビティデ
ザイナは、オブジェクトモデル上のユーザインターフェイス表現を提供する。開発者は、
オブジェクトモデルを直接プログラムして、アクティビティのプロパティを設定するか、
またはデザイナを使用することができる。オーケストレーションエンジンデザイナを使用

(15) JP 5710852 B2 2015.4.30

10

20

30

40

50

することにより、開発者はツールボックスからアクティビティを選択し、それをデザイナ
サーフェス上にドラッグすることができる。アクティビティがすでにスケジュールに入れ
られており、移動する必要がある場合、開発者は、それを選択して（それをクリックする
ことにより）、そのアクティビティを入れる必要のあるスケジュールの領域にドラッグす
ることができる。開発者がコントロールキーを押しながらドラッグ＆ドロップを行うと、
選択されたアクティビティのコピーが作成される。
【００４８】
　アクティブな配置では、可能なドロップポイント（ターゲット）をデザインサーフェス
上にビジュアルインジケータとして用意する。自動スクロール機能も、ドラッグ＆ドロッ
プのコンテキスト内で関与する。大きなスケジュールを取り扱う場合、現在ビューポート
内にないデザイナの領域へのナビゲーションは、入れるスケジュールの領域に向かってア
クティビティをドラッグすることによりアクセス可能である。
【００４９】
　ドラッグ＆ドロップは、同じプロジェクト内のスケジュール間で、また同じソリューシ
ョン内の他のプロジェクト内のスケジュール間でサポートされる。アクティビティがデザ
インサーフェス上に配置された後、開発者はそのアクティビティの構成を設定する。各ア
クティビティは、スケジュールが有効なものとなるように開発者が構成する一連のプロパ
ティを持つ。これらのプロパティは、プロパティブラウザで編集可能である。すべてのア
クティビティは、プロパティブラウザ内にどのようなプロパティを表示できるかを制御す
る。開発者がさまざまなアクティビティを構成するのを補助するため、デザイナは、さま
ざまなダイアログまたは「サブデザイナ」を備えている。ダイアログの各々は、アクティ
ビティのさまざまなプロパティについて呼び出される。
【００５０】
　オーケストレーションエンジンは、ツールボックス内に提示されるアクティビティをカ
スタマイズすることができる。開発者がカスタムアクティビティまたはスケジュールを作
成する場合、最終結果はアセンブリである。ダイアログを使用することにより、開発者は
、アセンブリロケーションに移動してブラウズし、そのアセンブリを選択してオーケスト
レーションエンジンアクティビティとして現れるようにすることができる。それとは別に
、開発者は、オーケストレーションエンジンのインストールパス内にそのアセンブリを置
くことができ、オーケストレーションエンジンアクティビティとして存在することになる
。
【００５１】
　（アプリケーションプログラミングインターフェイス（ＡＰＩ））
　他の実施形態では、本発明は、さまざまなワークフローオペレーションを実行するため
のアプリケーションプログラミングインターフェイス（ＡＰＩ）を備える。本発明は、ワ
ークフローをオーサリングするためのデザインアプリケーションプログラミングインター
フェイスを含む。デザインアプリケーションプログラミングインターフェイスは、ワーク
フローをオーサリングする手段およびアクティビティのうちの１つまたは複数を選択して
ワークフローを作成する手段を備える。本発明は、さらに、デザインアプリケーションプ
ログラミングインターフェイスを介してオーサリングされたワークフローをコンパイルす
るためのコンパイルアプリケーションプログラミングインターフェイスも含む。コンパイ
ルアプリケーションプログラミングインターフェイスは、ワークフローをシリアライゼー
ションする手段、ワークフローの視覚的な表示をカスタマイズする手段、デザインアプリ
ケーションプログラミングインターフェイスを介してオーサリングされたワークフローを
コンパイルする手段、ワークフローの妥当性確認を行う手段を含む。
【００５２】
　本発明は、さらに、型をワークフロー内のアクティビティのそれぞれに関連付けるため
のタイププロバイダアプリケーションプログラミングインターフェイスも含む。タイププ
ロバイダアプリケーションプログラミングインターフェイスは、型をワークフロー内のア
クティビティのそれぞれに関連付ける手段および型をワークフロー内のアクティビティの

(16) JP 5710852 B2 2015.4.30

10

20

30

40

50

それぞれに関連付ける手段を含む。
【００５３】
　１つまたは複数のアプリケーションプログラミングインターフェイスは、ワークフロー
をオーサリングする手段の実施例、アクティビティの１つまたは複数を選択してワークフ
ローを作成する手段の実施例、ワークフローをシリアライズする手段の実施例、ワークフ
ローの視覚的表示をカスタマイズする手段の実施例、ワークフローの妥当性確認を行う手
段の実施例、ワークフローをコンパイルする手段の実施例、および型をワークフロー内の
アクティビティのそれぞれに関連付ける手段の実施例を含む。
【００５４】
　（アクティビティ実行フレームワーク）
　スケジュールおよびスコープを除き、エンジンは、アクティビティを抽象エンティティ
として表示し、特定のアクティビティの特定のデータまたは意味論を知らずにアクティビ
ティの実行を簡単に調整する。一実施形態では、４つのエンティティは、アクティビティ
自体、実行中のアクティビティの親アクティビティ、実行中のアクティビティを取り囲む
スコープ、およびオーケストレーションエンジンの実行中にやり取りをする。それぞれの
エンティティは異なる関数を持つ。
【００５５】
　完了をアクティビティコーディネータに知らせることなくアクティビティの実行メソッ
ドが戻る場合、そのアクティビティは、論理的待ち状態にあると識別される。このような
アクティビティは、オーケストレーションエンジンによりキャンセルするか、または継続
することができる（例えば、待っているアイテムまたはイベントが利用可能になるか、ま
たは実行され、エンジンによりこれにアクティビティが通知された後）。
【００５６】
　論理的待ち状態に決して入らないいくつかのアクティビティは、決してキャンセルでき
ない。実施例は、送信アクティビティおよびコードアクティビティを含むが、これらは外
部イベントまたはサブスクリプションへの要求なしで実行されるからである。スレッドを
渡された後（つまり、実行メソッドがオーケストレーションエンジンにより呼ばれた後）
、これらのアクティビティは完了するまで動作し続ける。完了を通知するまでスレッドを
返さないので、オーケストレーションエンジンにはキャンセルする機会が決して与えられ
ない。
【００５７】
　オーケストレーションエンジンのランタイムは、ルールを使用して、オーケストレーシ
ョンエンジンアクティビティが実行されるイベントをトリガする。オーケストレーション
エンジンデザイナは、関連付けられたルールを実行時に評価し、イベントを取り出するユ
ーザ機能を提供する。オーケストレーションエンジンデザイナを利用することで、ユーザ
は、拡張性アーキテクチャを用意することによりさまざまな種類のルール技術を使用でき
る。デザイナは、使用されるルールの型には関知しない。
【００５８】
　一実施形態では、デザイナは、ルールをアクティビティに関連付ける手段として論理式
ハンドラをサポートしている。これは、ユーザコードファイル内で、ユーザが真または偽
の値を返すメソッドを書くことを意味し、それに基づいてルールがトリガされる。現在、
Ｉｎｆｏ　ＡｇｅｎｔおよびＢｕｓｉｎｅｓｓ　Ｒｕｌｅｓ　Ｅｎｇｉｎｅ（ＢＲＥ）を
含むルールを評価するために使用することもできる複数の技術がある。これを達成するた
めに、デザイナは、ルール技術開発者がデザイナでカスタムユーザインターフェイスをホ
スティングできるようにする拡張性アーキテクチャを備える。デザイナは、コードステー
トメントコレクションの形でルールをシリアライゼーションするカスタムユーザインター
フェイスライター向けの手段を用意している。デザイナは、コードステートメントコレク
ションが中に挿入されているユーザコードファイル内にブールハンドラを生成し出力する
。オーケストレーションエンジンは、ルールライターにより使用することもできる既定の
ユーザインターフェイスを含む。ルール技術プロバイダは、カスタムルール宣言を作成し

(17) JP 5710852 B2 2015.4.30

10

20

30

40

50

、そのカスタムルール宣言に関連付けられたユーザインターフェイスタイプエディタを書
き、ルールユーザインターフェイスをホスティングするカスタムユーザインターフェイス
を作成し、保存後にコードステートメントを生成することによりオーケストレーションエ
ンジンデザイナにルールを追加する。
【００５９】
　一実施例では、ユーザは、ルールがアタッチされる必要のあるアクティビティデザイナ
を選択し、プロパティブラウザでルールプロパティを特定し、ドロップダウン内の「Ｒｕ
ｌｅＥｘｐｒｅｓｓｉｏｎＨａｎｄｌｅｒ」を選択し（「Ｓｔａｔｅｍｅｎｔｓ」プロパ
ティがユーザインターフェイス内のＲｕｌｅ　Ｐｒｏｐｅｒｔｙの下に表示されるように
する）、「Ｓｔａｔｅｍｅｎｔｓ」プロパティ内のユーザコードメソッド名を指定し、ユ
ーザインターフェイスタイプエディタを呼び出してルール特有のユーザインターフェイス
をホスティングするダイアログを呼び出し、新しい述語行を作成しそれらをグループ化す
ることによりダイアログ内でルールを定義する。ユーザインターフェイスは、ユーザコー
ドファイルにメソッドを生成して出力する。メソッド名は、プロパティブラウザでユーザ
が指定したのと同じものである。ルールを作成することに相当するコードステートメント
が、ルール用のユーザコードメソッド内に挿入される。
【００６０】
　（実行時のメッセージング）
　実行ワークフローでは、スケジュールに送られるメッセージは、特定のスケジュールイ
ンスタンス向けである。例えば、発注書＃１２３に対するインボイスをその発注書を発信
した（例えば、送出した）のと同じスケジュールインスタンスに送り返さなければならな
い。受信メッセージと適切なスケジュールインスタンスとを照合するために、メッセージ
およびスケジュールインスタンスは相関関係集合を共有する。相関関係集合は、メッセー
ジ内の識別子フィールドがスケジュールインスタンスにより保持される同じ型の識別子と
突き合わせて照合されることを意味する一価相関関係集合でよい。多プロパティ相関関係
集合も可能であり、データベーステーブル内の複数列主キーに類似している。
【００６１】
　スケジュールインスタンスにより保持されている相関関係集合の値は、スケジュールイ
ンスタンスがメッセージを送出するか（例えば、値は送信発注書の識別子フィールドから
取り出せる）、またはメッセージを受信するときに初期化される。その後、この相関関係
集合値は、そのスケジュールインスタンスの状態の一部となる。後続の受信メッセージが
到着すると、スケジュールインスタンス状態で保持されている相関関係集合値は、予想さ
れる型の受信メッセージにより保持されている識別子と突き合わせて照合される。一致が
見つかった場合、相関関係集合は満たされ、メッセージがスケジュールインスタンスに配
送される。
【００６２】
　相関関係集合の実装はオーケストレーションエンジンおよびホスト環境に左右されるが
、一実施形態では、ユーザは相関関係集合を宣言してスケジュールインスタンスを正しく
動作するようにする。他の実施形態では、いくつかのアクティビティ（例えば、Ｓｅｎｄ
Ｒｅｑｕｅｓｔ／ＲｅｃｅｉｖｅＲｅｓｐｏｎｓｅアクティビティおよびＲｅｃｅｉｖｅ
Ｒｅｑｕｅｓｔ／ＳｅｎｄＲｅｓｐｏｎｓｅアクティビティ）は、ユーザと無関係に相関
関係集合をセットアップする。送信および受信アクティビティにより広範にわたる妥当性
チェックが実行され、相関関係集合が正しく初期化され、追随されるようにする。
【００６３】
　（実行ワークフローの動的編集）
　オーケストレーションエンジンは、さまざまな種類のワークフローをオーサリングする
（そして、その後、ビジュアル化し、実行する）ためのフレームワークを提供する。実施
例としては、ｅｖｅｎｔ－ｃｏｎｄｉｔｉｏｎ－ａｃｔｉｏｎ（ＥＣＡ）スタイルのワー
クフローまたは構造化フローまたはルール駆動フローがある。さらに、ワークフローのモ
デル化方法に関係なく、フレームワークにより、ユーザは設計時と同じ方法で、またはワ

(18) JP 5710852 B2 2015.4.30

10

20

30

40

50

ークフロープロセスを再コンパイルしなくてもワークフロープロセスが実行しているとき
であってもワークフローをオーサリングまたは編集することができる。フレームワークを
使用すると、ユーザはランタイムと高忠実度の設計時表現との間のラウンドトリッピング
が可能になる。アドホックな変更は、プロセスモデルに対し実行時に加えられる変更であ
る。ユーザは、そのスケジュールモデルを実行インスタンスに問い合わせ、モデルに変更
を加えることができる。例えば、ユーザは、バッチ式でアクティビティの追加、削除、ま
たは置換を行うことができ、その後、バッチ変更をコミットまたはロールバックすること
ができる。一実施形態では、モデルは更新の後に妥当性確認が行われる。本発明の多くの
ワークフローシナリオでは、「設計時オーサリング」および「ランタイム実行」との間の
分離のぼかし、またはさらには除去がある。
【００６４】
　スケジュールインスタンスは、実際に、それらのインスタンスのスケジュール型につい
て定義されているアクティビティ型（メタデータ）ツリーを他のインスタンスと共有する
。しかし、スケジュールインスタンスは、実行を開始した後、新しいアクティビティの追
加または宣言的ルールの操作を介してオンザフライで変更できる。そのような修正された
スケジュールインスタンスを取り出し、新しいスケジュール型として「名前を付けて保存
」するか、またはより一般的に、インスタンスからシリアライゼーションされた表現を単
純に復元することが可能である。つまり、実行スケジュールインスタンスを、シリアライ
ゼーションし、その後、デザイナ（例えば、オーサリング環境）またはランタイムビジュ
アル化ツールに持ち込むことができる。
【００６５】
　さらに、上級開発者は、スケジュールを丸ごとソフトウェアコードとしてオーサリング
することも可能である。スケジュール型を直接オーサリングする場合も、開発者は、単に
、スケジュールのコードビサイドクラスのソフトウェアコードにＩｎｉｔｉａｌｉｚｅＳ
ｃｈｅｄｕｌｅＭｏｄｅｌという静的メソッドを入れ、このメソッドに［Ｓｃｈｅｄｕｌ
ｅＣｒｅａｔｏｒ］属性でマークするだけである。一実施形態では、静的メソッドは、パ
ラメータを取らず、Ｓｃｈｅｄｕｌｅオブジェクトを返す。随伴するシリアライゼーショ
ンされたファイルはないが、スケジュールのシリアライゼーションされた表現は、作成さ
れるＳｃｈｅｄｕｌｅオブジェクトから復元できる。これは、単一のソフトウェアコード
ファイルを使用してスケジュールを作成できることを意味しているが、妥当性チェックは
、このファイルには実行されえない。オーケストレーションエンジンのコンパイルにより
、スケジュール型の基礎となっているアクティビティツリーの構造上および意味論的な有
効性が保証される。他の実施形態では、コンパイルおよび妥当性検証を内部で実行し、実
行される実際の型を生成するが、コードの入力は不要である。スケジュール型のコンパイ
ルは、コンパイル時オブジェクトモデルから実行時オブジェクトモデルへの変換がない分
、超軽量なプロセスとなっている。本質的に、コンパイルは、単に、スケジュールのオブ
ジェクトモデル表現をコードビサイドと組み合わせて新しい型を生成するだけである。一
実施形態では、基本的に、コンパイル済みコードビサイドがオブジェクトモデル内のアク
ティビティにより要求される内容と一致するか、またはコードビサイドがコンパイル済み
フォーム（アセンブリ）内にすでに存在している可能性がある場合には、特定のスケジュ
ールについてコードビサイドを全く生成する必要はないと考えられる。
【００６６】
　シリアライゼーションされたスケジュールをコンパイルする場合、そのスケジュールに
対するコードビサイドとして実際に使用される既存のコンパイル済み型を指すことが可能
である。このコンパイル済み型の派生型が作成され、この新しい型はコードビサイドとし
て使用され、一意的な型が新しいスケジュールを表すように作成されることが保証される
。
【００６７】
　（シリアライゼーションアーキテクチャ）
　シリアライゼーションインフラストラクチャは、オーケストレーションエンジンのアク

(19) JP 5710852 B2 2015.4.30

10

20

30

40

50

ティビティツリーをシリアライゼーションする、モジュール方式の、形式に依存しない、
容易に拡張可能なメカニズムを提供する。
【００６８】
　特に、呼び出し側（例えば、アプリケーションプログラムまたはユーザ）は、シリアラ
イゼーションマネージャからシリアライザにオブジェクト（またはアクティビティ）Ａを
要求する。オブジェクトＡの型のメタデータ属性により、オブジェクトＡは要求された型
のシリアライザにバインドされる。次に、呼び出し側は、オブジェクトＡをシリアライゼ
ーションするようにシリアライザに要求する。続いて、オブジェクトＡのシリアライザは
オブジェクトＡをシリアライゼーションする。シリアライザは、遭遇するオブジェクト毎
に、シリアライゼーションしながら、シリアライゼーションマネージャに追加シリアライ
ザを要求する。シリアライゼーションの結果が呼び出し側に返される。
【００６９】
　オーケストレーションエンジンコンポーネントモデル内のすべてのアクティビティは、
シリアライゼーションに参加することができる。シリアライザコンポーネントは、一実施
形態ではアクティビティクラス自体の一部ではない。その代わりに、このコンポーネント
は、アクティビティに関連付けられたクラス内のシリアライザ属性に注釈を入れることに
より指定される。シリアライザ属性は、そのアクティビティ型のオブジェクトをシリアラ
イゼーションするために使用されるクラスを指す。他の実施形態では、ある１つのアクテ
ィビティ型のプロバイダコンポーネントが、そのアクティビティにより与えられる既定の
シリアライザをオーバーライドする。
【００７０】
　デザイナシリアライゼーションは、メタデータ、シリアライザ、およびシリアライゼー
ションマネージャに基づく。メタデータ属性は、型をシリアライザに関係付けるために使
用される。「ブートストラッピング」属性は、シリアライザを持たない型に対しシリアラ
イザを提供するオブジェクトをインストールするために使用することができる。シリアラ
イザは、特定の１つの型またはある範囲の複数の型をシリアライゼーションする方法を認
識するオブジェクトである。それぞれのデータ形式に対して１つの基本クラスがある。例
えば、オブジェクトをＸＭＬに変換する方法を認識するＸｍｌＳｅｒｉａｌｉｚｅｒ基本
クラスが考えられる。本発明は、特定のシリアライゼーション形式に関係しない一般的な
アーキテクチャである。シリアライゼーションマネージャは、オブジェクトグラフをシリ
アライゼーションするために使用されるさまざまなシリアライザに対する情報ストアとな
るオブジェクトである。例えば、５０個のオブジェクトのグラフは、すべてそれ独自の出
力を生成する５０個の異なるシリアライザを持つことができる。これらのシリアライザが
シリアライゼーションマネージャを使用して、必要に応じて互いに通信し合うことができ
る。
【００７１】
　一実施形態では、汎用オブジェクトメタデータを使用するシリアライザに結合されたシ
リアライゼーションプロバイダを使用することにより、与えられた型に対するシリアライ
ザを用意する機会がオブジェクトに与えられるコールバックメカニズムを実現する。Ａｄ
ｄＳｅｒｉａｌｉｚａｔｉｏｎＰｒｏｖｉｄｅｒなどのメソッドを通じて、シリアライゼ
ーションマネージャにシリアライゼーションプロバイダを用意することができる。シリア
ライゼーションプロバイダは、ＤｅｆａｕｌｔＳｅｒｉａｌｉｚａｔｉｏｎＰｒｏｖｉｄ
ｅｒＡｔｔｒｉｂｕｔｅなどの属性をシリアライザに追加することによりシリアライゼー
ションマネージャに自動的に追加できる。
【００７２】
　一実施形態では、オブジェクトはｘｍｌ要素としてシリアライゼーションされる、オブ
ジェクトのプロパティは単純プロパティ（例えば、ｘｍｌ属性としてシリアライゼーショ
ンされる）または複合プロパティ（子要素としてシリアライゼーションされる）として分
類される、オブジェクトの子オブジェクトは子要素としてシリアライゼーションされる、
というルールに従って形式が示される。子オブジェクトの定義は、オブジェクト毎に異な

(20) JP 5710852 B2 2015.4.30

10

20

30

40

50

ることがある。以下の実施例は、子オブジェクトの１つとしてＳｅｎｄアクティビティを
持つ、ｗｈｉｌｅアクティビティのシリアライゼーションである。
【００７３】
【表１】

【００７４】
　シリアライゼーションに使用される言語がＸＯＭＬである一実施形態では、それぞれの
ＸＯＭＬ要素は、スケジュールがコンパイルされるときにそれぞれのオブジェクトにシリ
アライゼーションされる。オブジェクトは、単純型と複合型の両方を含む。各アクティビ
ティのＸＯＭＬ表現の間のマッピングとオーサリングオブジェクトモデルへのマッピング
について、次に説明する。ＸＯＭＬのシリアライゼーションは、プリミティブアクティビ
ティと複合アクティビティとで異なる。
【００７５】
　プリミティブアクティビティに対する単純型は、アクティビティ型に関する属性として
シリアライゼーションされる。プリミティブアクティビティに対する複合型は、子要素と
してシリアライゼーションされる。例えば、以下に、ＳｅｎｄアクティビティのＸＯＭＬ
表現を示す。
【００７６】

【表２】

【００７７】
　プリミティブ型のシリアライゼーションと同様に、複合アクティビティに対する単純型
は、アクティビティ型に関する属性としてシリアライゼーションされる。しかし、定義に
より、複合アクティビティはネストされたアクティビティをカプセル化したものである。
それぞれのネストされているアクティビティは、他の子要素としてシリアライゼーション
される。例えば、以下に、ＷｈｉｌｅアクティビティのＸＯＭＬ表現を示す。
【００７８】

(21) JP 5710852 B2 2015.4.30

10

20

30

40

50

【表３】

【００７９】
　プロセス／ワークフロービューとシリアライゼーションされた表現との間に強い関係が
存在する。図８は、スケジュール定義およびビジュアルワークフローと、ワークフローの
シリアライゼーションされた（例えば、ＸＯＭＬ）表現と、ワークフローのコードビサイ
ドとの間の関係を示す図である。いずれかの表現でオーサリングする場合、他方は変更を
招く。そのため、アクティビティ（または複合アクティビティの場合にはその構成要素部
分）に対するＸＯＭＬを修正すると、開発者がプロセス／ワークフロービューの切り換え
を行うときにプロセス／ワークフロービューに直接反映される。逆も言える。プロセス／
ワークフロービュー内のアクティビティを修正すると、ＸＯＭＬ内に適切な修正が生じる
。例えば、プロセス／ワークフロービュー内でアクティビティを削除すると、同じアクテ
ィビティについてＸＯＭＬ内のＸＭＬ要素も削除される。ラウンドトリッピングは、プロ
セス／ワークフロービューとコードビサイドとの間にも生じる。
【００８０】
　ＸＯＭＬコードを作成するときに、ＸＯＭＬ定義が定義済みインターフェイス要件に適
合していない場合、違反しているＸＭＬ要素は、下線が付けられるか、または開発者がそ
れとわかるように他の何らかの方法で視覚的に識別される。開発者がプロセスビューに切
り換えた場合、ＸＯＭＬ内にエラーがあると警告され、デザイナがリンクを表示するので
、開発者はそのリンクをクリックして、違反している要素にナビゲートする。この同じエ
ラーは、タスクペインにも表示され、そのエラーをダブルクリックすると、開発者はＸＯ
ＭＬの違反要素にナビゲートされる。
【００８１】
　（ＸＯＭＬファイルからのアクティビティツリーの作成（デシリアライゼーション））
　一実施形態では、ＣｒｅａｔｅＥｄｉｔｏｒＩｎｓｔａｎｃｅ（）関数が、Ｄｅｓｉｇ
ｎＳｕｒｆａｃｅオブジェクトを作成し、その後、ＤｅｓｉｇｎＳｕｒｆａｃｅオブジェ
クト上でＢｅｇｉｎＬｏａｄ（）関数を呼び出して実際のローダオブジェクトをその中に
渡し、最後に、ＢｅｇｉｎＬｏａｄ（）でＤｅｓｉｇｎｅｒＬｏａｄｅｒ（）関数を呼び
出す。ＰｅｒｆｏｒｍＬｏａｄ（）関数は、テキストバッファオブジェクトを読み込み、
それをオーケストレーションエンジンコンポーネントモデル階層にデシリアライゼーショ
ンする。本発明は、階層内を辿り、アクティビティをデザインサーフェスに挿入し、コン
ポーネントをＶｉｓｕａｌ　Ｓｔｕｄｉｏにロードする。
【００８２】
　本発明は、さらに、ＸＯＭＬの変更を監視し、階層およびアイテム識別の変更を追跡し
て、Ｖｉｓｕａｌ　Ｓｔｕｄｉｏのキャッシュ内の値を更新する。二次ドキュメントデー
タリストは、オーケストレーションエンジンデザイナが作用する、ユーザには見えない二
次ドキュメントのリストを含む。例えば、ユーザはコードビサイドファイルを開いていな
いが、ユーザがオーケストレーションエンジンデザイナ内で変更を加えた場合に、コード
ビサイドファイルに変更が加えられる。このファイルはユーザには見えないので、ファイ
ルは二次ドキュメントとして保持されるＸＯＭＬファイルが保存されると、必ず、二次ド

(22) JP 5710852 B2 2015.4.30

10

20

30

40

キュメントも自動的に保存される。これらのファイルの１つの名前が変更されるか、また
はファイルが削除された場合、本発明では、それに応じて、対応する二次ドキュメントオ
ブジェクトを更新する。
【００８３】
　オブジェクトツリーのデシリアライゼーションガイドラインの例を以下に示す。ｘｍｌ
要素は、まず、親オブジェクトのプロパティとして取り扱われる。親オブジェクトが要素
のタグ名を持つプロパティを持たない場合、その要素は親オブジェクトの子オブジェクト
として取り扱われる。ｘｍｌ要素は、親オブジェクト上の単純プロパティとして取り扱わ
れる。
【００８４】
　上記のシリアライゼーションされたコードを使用するデシリアライゼーションの実施例
では、＜Ｗｈｉｌｅ＞要素は、ｘｍｌ名前空間情報を使用して作成されたオブジェクトと
して取り扱われる。＜ＣｏｎｄｉｔｉｏｎＲｕｌｅ＞要素は、Ｗｈｉｌｅアクティビティ
のプロパティとして取り扱われる。＜ＣｏｄｅＥｘｐｒｅｓｓｉｏｎＲｕｌｅＤｅｃｌａ
ｒａｔｉｏｎ＞要素は、値がＣｏｎｄｉｔｉｏｎＲｕｌｅプロパティに適用されるオブジ
ェクトとして取り扱われる。最初に、＜Ｓｅｎｄ＞要素がＷｈｉｌｅアクティビティのプ
ロパティとして試みられるが、「Ｗｈｉｌｅ」アクティビティは、名前「Ｓｅｎｄ」のプ
ロパティを持たず、したがって、＜Ｓｅｎｄ＞要素はオブジェクトとして取り扱われ、ｗ
ｈｉｌｅアクティビティの子アクティビティとして取り扱われる。＜Ｍｅｓｓａｇｅ＞要
素は、Ｓｅｎｄアクティビティのプロパティとして取り扱われる。Ｓｅｎｄ　上のＭｅｓ
ｓａｇｅプロパティは読み取り専用なので、Ｍｅｓｓａｇｅ要素のコンテンツは、Ｍｅｓ
ｓａｇｅオブジェクトのコンテンツと考えられる。同様のルールが、＜ＯｎＢｅｆｏｒｅ
Ｓｅｎｄ＞および＜ＴｙｐｅｄＣｈａｎｎｅｌ＞要素のデシリアライゼーションに適用さ
れる。
【００８５】
　ＸＯＭＬコードがきちんとした形でない、ＸｏｍｌＤｏｃｕｍｅｎｔがＸＯＭＬコード
内の第１の要素でなく、ＸＯＭＬコード内の第１のアクティビティがデシリアライザでき
ないという第１の条件の下では、ＸＯＭＬデシリアライゼーションは決定的に失敗する。
開発者に対して、ＸＯＭＬビューからプロセス／ワークフロービューへ切り換える場合に
、違反している側のＸＭＬ要素にナビゲートするためのエラーメッセージが提示される。
【００８６】
　（オーケストレーションエンジンデザイナのホスティング）
　デザイナフレームワークは、どのようなアプリケーションプログラムでもホスティング
できる。これは、サードパーティのアプリケーションでそれぞれの環境においてワークフ
ローをレンダリングするのに非常に有用な機能である。またこれにより、サードパーティ
は、デザインサーフェスを再ホスティングおよびカスタマイズすることで、オーケストレ
ーションエンジンデザイナ周辺のツールを開発することができる。本発明のフレームワー
クでは、ホスティングコンテナアプリケーション側でエディタおよび／またはテキストバ
ッファなどのサービス群を用意することを想定している。
【００８７】
　デザイナを再ホストする１ステップでは、ローダおよびデザインサーフェスを作成する
。ローダは、ＸＯＭＬファイルをロードし、アクティビティホストインフラストラクチャ
を構築する役割を持つ。デザインサーフェスは、その中にデザイナホストインフラストラ
クチャを保持し、デザインサーフェスをホスティングし、それとやり取りするサービスを
提供する。デザインサーフェスは、サービスコンテナだけでなくサービスプロバイダとし
ても機能する。一実施例では、以下のコードを実行して、ＸＯＭＬドキュメントをロード
し、その中にアクティビティを保持するデザイナホストを構築する。
【００８８】

(23) JP 5710852 B2 2015.4.30

10

20

30

40

50

【表４】

【００８９】
　以下のサービスでは、デザイナで異なる機能を使用できる。ＩＳｅｌｅｃｔｉｏｎＳｅ
ｒｖｉｃｅ関数は、選択されたオブジェクトを保持する。ＩＴｏｏｌｂｏｘＳｅｒｖｉｃ
ｅ関数は、ツールボックスとのやり取りを管理する。ＩＭｅｎｕＣｏｍｍａｎｄＳｅｒｖ
ｉｃｅ関数は、メニューとのやり取りを管理する。ＩＴｙｐｅＰｒｏｖｉｄｅｒ関数を使
用すると、タイプシステムを利用できる。さらに、高度なデザイナ機能を使用可能にする
デザイナホスティング環境が提供する追加サービスもありえる。
【００９０】
　タイプシステムは、本発明のコンポーネントモデルフレームワーク内の一コンポーネン
トである。デザイナがプロジェクトシステムの内側でホスティングされる場合、Ｔｙｐｅ
Ｐｒｏｖｉｄｅｒオブジェクトがプロジェクト毎に作成される。プロジェクト内のアセン
ブリ参照は、タイププロバイダへプッシュされる。さらに、プロジェクト内のユーザコー
ドファイルが解析され、単一コードコンパイル単位が作成され、タイププロバイダへプッ
シュされる。また、本発明は、タイプシステム内で型を変更させることが可能なプロジェ
クトシステム内のイベントを監視し、その変更に対する応答として型を再ロードする適切
な呼び出しをタイププロバイダに対し実行する。
【００９１】
　（元に戻す／繰り返し）
　スケジュールを作成し、正しく構築した後、開発者は一連の実行済みオペレーションを
ロールバックしたい場合がある。本発明の「元に戻す」および「繰り返し」機能を使用す
ると、どのアクティビティが直接影響を受けているかを例示する視覚的フィードバックが
得られる。例えば、アクティビティ上でプロパティの変更が元に戻される場合、影響を受
けたアクティビティは選択状態になる。複数のオブジェクトの削除が元に戻される場合、
関わっているすべてのオブジェクトが、スケジュールに復元されるときに選択状態になる
。Ｕｎｄｏ／Ｒｅｄｏ（元に戻す／繰り返し）は、他の分野における多くのアプリケーシ
ョン全体を通して使用される共通の機能であり、その意味はよく理解されている。オーケ
ストレーションエンジンデザイナでは、Ｓａｖｅ後に、元に戻す／繰り返しアイテムがパ
ージされることはない。さらに、元に戻す／繰り返しは、プロセス／ワークフロービュー
で、ＸＯＭＬビューで、開発者がビューを切り換えた場合に、およびコードビサイド内で
実行することができる。
【００９２】
　Ｕｎｄｏ／Ｒｅｄｏは、プロセス／ワークフロービュー内のアクション、つまり、アク
ティビティのドラッグ＆ドロップ（例えば、ツールボックスからデザインサーフェスにア
クティビティをドラッグする、スケジュールの一部分から他の部分にアクティビティを移
動する、一方のデザイナから他方のデザイナにアクティビティを移動する）、アクティビ
ティの構成（例えば、アクティビティのプロパティを指定する）、および切り取り／コピ
ー／貼り付け／削除のアクションに対し用意されている。
【００９３】
　一実施形態では、シリアライゼーションされたビュー（例えば、ＸＯＭＬビュー）は、
テキストエディタ標準の元に戻す／繰り返しオペレーションを備えるＸＭＬエディタであ
る。本発明のデザイナは、プロセス／ワークフロービュー内で加えられた変更を示すフィ
ードバックを開発者に提示する。その後、シリアライゼーションされたビュー内で元に戻
した結果として、シリアライゼーションされたコードは失われる。開発者がプロセス／ワ
ークフロービュー内のスケジュールの一部分を構築し、シリアライゼーションされたビュ

(24) JP 5710852 B2 2015.4.30

10

20

30

40

50

ーに切り換えて、その後、元に戻す／繰り返しオペレーションを実行することに決めた場
合、警告が表示される。
【００９４】
　（動作環境の例）
　図９は、コンピュータ１３０の形態の汎用コンピューティング装置の一実施例を示して
いる。本発明の一実施形態では、コンピュータ１３０などのコンピュータは、例示され、
本明細書で説明されている他の図で使用するのに適している。コンピュータ１３０は、１
つまたは複数のプロセッサまたは演算処理装置１３２およびシステムメモリ１３４を備え
る。例示されている実施形態では、システムバス１３６は、システムメモリ１３４を含む
さまざまなシステムコンポーネントをプロセッサ１３２に結合する。バス１３６は、メモ
リバスまたはメモリコントローラ、周辺機器バス、アクセラレイティッドグラフィックス
ポート、およびさまざまなバスアーキテクチャのどれかを使用するプロセッサまたはロー
カルバスを含む数種類のバス構造のうちの１つまたは複数を表している。例えば、限定は
しないが、このようなアーキテクチャとしては、Ｉｎｄｕｓｔｒｙ　Ｓｔａｎｄａｒｄ　
Ａｒｃｈｉｔｅｃｔｕｒｅ（ＩＳＡ）バス、Ｍｉｃｒｏ　Ｃｈａｎｎｅｌ　Ａｒｃｈｉｔ
ｅｃｔｕｒｅ（ＭＣＡ）バス、Ｅｎｈａｎｃｅｄ　ＩＳＡ（ＥＩＳＡ）バス、Ｖｉｄｅｏ
　Ｅｌｅｃｔｒｏｎｉｃｓ　Ｓｔａｎｄａｒｄｓ　Ａｓｓｏｃｉａｔｉｏｎ（ＶＥＳＡ）
ローカルバス、およびＭｅｚｚａｎｉｎｅバスとも呼ばれるＰｅｒｉｐｈｅｒａｌ　Ｃｏ
ｍｐｏｎｅｎｔ　Ｉｎｔｅｒｃｏｎｎｅｃｔ（ＰＣＩ）バスがある。
【００９５】
　コンピュータ１３０は、通常、少なくともある種の形態のコンピュータ読み取り可能媒
体を備える。コンピュータ読み取り可能媒体は、揮発性および不揮発性媒体、取り外し可
能および固定の媒体を含み、コンピュータ１３０によってアクセスできる媒体であればど
のような媒体でもよい。例えば、限定はしないが、コンピュータ読み取り可能媒体は、コ
ンピュータ記憶媒体および通信媒体を含む。コンピュータ記憶媒体は、コンピュータ読み
取り可能命令、データ構造体、プログラムモジュール、またはその他のデータなどの情報
を格納する方法または技術で実装される揮発性および不揮発性、取り外し可能な、および
固定の媒体を含む。例えば、コンピュータ記憶媒体は、ＲＡＭ、ＲＯＭ、ＥＥＰＲＯＭ、
フラッシュメモリまたはその他のメモリ技術、ＣＤ－ＲＯＭ、デジタル多目的ディスク（
ＤＶＤ）またはその他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク
記憶装置またはその他の磁気記憶装置、または所望の情報を格納するために使用すること
ができ、しかもコンピュータ１３０によりアクセスできるその他の媒体を含む。通信媒体
は、通常、コンピュータ読み取り可能命令、データ構造体、プログラムモジュール、また
は搬送波もしくはその他のトランスポートメカニズムなどの変調データ信号によるその他
のデータを具現するものであり、任意の情報配信媒体を含む。当業者は、信号内の情報を
符号化するなどの方法により特性のうちの１つまたは複数が設定または変更される変調デ
ータ信号を熟知している。有線ネットワークまたは直接配線接続などの有線媒体、ならび
に音響、ＲＦ、赤外線、およびその他の無線媒体などの無線媒体は、通信媒体のいくつか
の実施例である。上記のいずれの組み合わせもコンピュータ読み取り可能媒体の範囲に含
まれる。
【００９６】
　システムメモリ１３４は、取り外し可能な、および／または固定の、揮発性および／ま
たは不揮発性メモリの形のコンピュータ記憶媒体を備える。例示されている実施形態では
、システムメモリ１３４は、読み取り専用メモリ（ＲＯＭ）１３８およびランダムアクセ
スメモリ（ＲＡＭ）１４０を含む。起動時などにコンピュータ１３０内の要素間の情報伝
送を助ける基本ルーチンを含む基本入出力システム１４２（ＢＩＯＳ）は、通常、ＲＯＭ
　１３８に格納される。通常、ＲＡＭ　１４０は、演算処理装置１３２に直接アクセス可
能な、および／または演算処理装置１３２によって現在操作されているデータおよび／ま
たはプログラムモジュールを格納する。例えば、限定はしないが、図９は、オペレーティ
ングシステム１４４、アプリケーションプログラム１４６、その他のプログラムモジュー

(25) JP 5710852 B2 2015.4.30

10

20

30

40

50

ル１４８、およびプログラムデータ１５０を例示している。
【００９７】
　コンピュータ１３０はさらに、その他の取り外し可能な／固定の揮発性／不揮発性コン
ピュータ記憶媒体を備えることもできる。例えば、図９は、固定の不揮発性磁気媒体への
読み書きを行うハードディスクドライブ１５４を例示している。図９は、さらに、取り外
し可能不揮発性磁気ディスク１５８への読み書きを行う磁気ディスクドライブ１５６、お
よびＣＤ－ＲＯＭまたはその他の光媒体などの取り外し可能不揮発性光ディスク１６２へ
の読み書きを行う光ディスクドライブ１６０を示している。動作環境の実施例で使用でき
る他の取り外し可能な／固定の揮発性／不揮発性コンピュータ記憶媒体としては、限定は
しないが、磁気テープカセット、フラッシュメモリカード、デジタル多目的ディスク、デ
ジタルビデオテープ、ソリッドステートＲＡＭ、ソリッドステートＲＯＭなどがある。ハ
ードディスクドライブ１５４、および磁気ディスクドライブ１５６、および光ディスクド
ライブ１６０は、通常、インターフェイス１６６などの不揮発性メモリインターフェイス
によりシステムバス１３６に接続される。
【００９８】
　図９に例示されている上記のドライブまたは他の大容量記憶装置およびその関連コンピ
ュータ記憶媒体は、コンピュータ１３０用のコンピュータ読み取り可能命令、データ構造
体、プログラムモジュール、およびその他のデータを格納する機能を備える。例えば、図
９では、ハードディスクドライブ１５４は、オペレーティングシステム１７０、アプリケ
ーションプログラム１７２、その他のプログラムモジュール１７４、およびプログラムデ
ータ１７６を格納するものとして例示されている。これらのコンポーネントは、オペレー
ティングシステム１４４、アプリケーションプログラム１４６、その他のプログラムモジ
ュール１４８、およびプログラムデータ１５０と同じである場合もあれば異なる場合もあ
ることに留意されたい。オペレーティングシステム１７０、アプリケーションプログラム
１７２、その他のプログラムモジュール１７４、およびプログラムデータ１７６に対して
は、ここで、異なる番号を割り当てて、最低でも、それらが異なるコピーであることを示
している。
【００９９】
　ユーザは、キーボード１８０、およびポインティング装置１８２（例えば、マウス、ト
ラックボール、ペン、またはタッチパッド）などのなどの入力装置またはユーザインター
フェイス選択装置を通じてコマンドおよび情報をコンピュータ１３０に入力することがで
きる。他の入力装置（図に示されていない）としては、マイク、ジョイスティック、ゲー
ムパッド、衛星放送受信アンテナ、スキャナなどがある。これらの入力装置およびその他
の入力装置は、システムバス１３６に結合されているユーザ入力インターフェイス１８４
を通じて演算処理装置１３２に接続されるが、パラレルポート、ゲームポート、またはユ
ニバーサルシリアルバス（ＵＳＢ）などの他のインターフェイスおよびバス構造により接
続することもできる。モニタ１８８またはその他の種類の表示装置も、ビデオインターフ
ェイス１９０などのインターフェイスを介してシステムバス１３６に接続される。モニタ
１８８のほかに、コンピュータはプリンタおよびスピーカなどの他の周辺出力装置（図に
示されていない）を備えることが多く、これらは出力周辺機器インターフェイス（図に示
されていない）を通じて接続することができる。
【０１００】
　コンピュータ１３０は、リモートコンピュータ１９４などの１つまたは複数のリモート
コンピュータへの論理接続を使用してネットワーク接続環境で動作することができる。リ
モートコンピュータ１９４は、パーソナルコンピュータ、サーバ、ルータ、ネットワーク
ＰＣ、ピア装置、またはその他の共通ネットワークノードとすることができ、通常は、コ
ンピュータ１３０に関して上で説明されている要素の多くまたはすべてを含む。図９に示
されている論理接続は、ローカルエリアネットワーク（ＬＡＮ）１９６およびワイドエリ
アネットワーク（ＷＡＮ）１９８を含むが、他のネットワークを含むこともできる。ＬＡ
Ｎ　１９６および／またはＷＡＮ　１９８は、有線ネットワーク、無線ネットワーク、そ

(26) JP 5710852 B2 2015.4.30

10

20

30

40

50

れらの組み合わせなどとすることができる。このようなネットワーキング環境は、オフィ
ス、企業規模のコンピュータネットワーク、イントラネット、および大域的コンピュータ
ネットワーク（例えば、インターネット）では一般的である。
【０１０１】
　ローカルエリアネットワーキング環境で使用される場合、コンピュータ１３０は、ネッ
トワークインターフェイスまたはアダプタ１８６を介してＬＡＮ　１９６に接続される。
ワイドエリアネットワーキング環境で使用される場合、コンピュータ１３０は、通常、イ
ンターネットなどのＷＡＮ　１９８上で通信を確立するためモデム１７８またはその他の
手段を備える。モデム１７８は、内蔵でも外付けでもよいが、ユーザ入力インターフェイ
ス１８４、またはその他の適切なメカニズムを介してシステムバス１３６に接続される。
ネットワーク接続環境では、コンピュータ１３０またはその一部に関して示されているプ
ログラムモジュールは、リモートメモリ記憶装置（図に示されていない）に格納されうる
。例えば、限定はしないが、図９には、リモートアプリケーションプログラム１９２がメ
モリ装置に常駐しているように例示されている。図に示されているネットワーク接続は実
施例であり、コンピュータ間の通信リンクを確立するのに他の手段が使用されうる。
【０１０２】
　一般に、コンピュータ１３０のデータプロセッサは、コンピュータのさまざまなコンピ
ュータ読み取り可能記憶媒体にさまざまな時点において格納された命令を使ってプログラ
ムされる。プログラムおよびオペレーティングシステムは、通常、例えば、フロッピー（
登録商標）ディスクまたはＣＤ－ＲＯＭで配布される。そこから、コンピュータの補助記
憶装置にインストールまたはロードされる。実行時に、それらは少なくとも一部はコンピ
ュータの主記憶装置にロードされる。本明細書で説明されている発明は、これらおよび他
のさまざまな種類のコンピュータ読み取り可能記憶媒体を含むが、ただしそのような媒体
にマイクロプロセッサまたはその他のデータプロセッサに関して以下で説明されるステッ
プを実装する命令またはプログラムが格納されている場合である。本発明は、さらに、本
明細書で説明されている方法および手法に従ってプログラムされた場合にコンピュータ自
体も含む。
【０１０３】
　例示の目的に関して、オペレーティングシステムなどのプログラムおよびその他の実行
可能プログラムコンポーネントは、本明細書では異なるブロックとして例示されている。
しかし、そのようなプログラムおよびコンポーネントは、コンピュータの異なる記憶装置
コンポーネント内にさまざまな時点において常駐し、コンピュータの（複数の）データプ
ロセッサにより実行されることは理解される。
【０１０４】
　本発明は、コンピュータ１３０を含む、コンピューティングシステム環境例に関して説
明されているが、他の多くの汎用または専用コンピューティングシステム環境または構成
で動作する。このコンピューティングシステム環境は、本発明の用途または機能の範囲に
関する制限を示唆する意図はない。さらに、コンピューティングシステム環境は、動作環
境例に例示されている１つのコンポーネントまたは複数のコンポーネントの組み合わせに
関係する何らかの依存関係または要求条件がその環境にあるものと解釈すべきでない。本
発明とともに使用するのに適していると思われるよく知られているコンピューティングシ
ステム、環境、および／または構成の例として、パーソナルコンピュータ、サーバコンピ
ュータ、ハンドヘルドまたはラップトップ装置、マルチプロセッサシステム、マイクロプ
ロセッサベースのシステム、セットトップボックス、プログラム可能な家電製品、携帯電
話、ネットワークＰＣ、ミニコンピュータ、メインフレームコンピュータ、上記システム
または装置を含む分散コンピューティング環境などがある。
【０１０５】
　本発明は、１つまたは複数のコンピュータまたはその他の装置により実行される、プロ
グラムモジュールなどのコンピュータ実行可能命令の一般的状況において説明することが
できる。一般に、プログラムモジュールは、限定はしないが、特定のタスクを実行する、

(27) JP 5710852 B2 2015.4.30

10

20

30

40

50

または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネ
ント、およびデータ構造を含む。また、本発明は、通信ネットワークを通じてリンクされ
ているリモート処理装置によりタスクが実行される分散コンピューティング環境で実施す
ることもできる。分散コンピューティング環境では、プログラムモジュールをメモリ記憶
装置などのローカルとリモートの両方のコンピュータ記憶媒体に配置できる。
【０１０６】
　ソフトウェアアーキテクチャの背景状況におけるインターフェイスは、ソフトウェアモ
ジュール、コンポーネント、コード部分、またはコンピュータ実行可能命令の他のシーケ
ンスを含む。例えば、インターフェイスは、第１のモジュールの代わりにコンピューティ
ングタスクを実行するために第２のモジュールにアクセスする第１のモジュールを含む。
第１および第２のモジュールは、一実施例では、オペレーティングシステムによって提供
されるようなアプリケーションプログラミングインターフェイス（ＡＰＩ）、コンポーネ
ントオブジェクトモデル（ＣＯＭ）インターフェイス（例えば、ピアツーピアアプリケー
ション通信用）、および拡張マークアップ言語メタデータ交換形式（ＸＭＩ）インターフ
ェイス（例えば、複数のＷｅｂサービス間の通信用）を含む。
【０１０７】
　インターフェイスは、Ｊａｖａ（登録商標）　２　Ｐｌａｔｆｏｒｍ　Ｅｎｔｅｒｐｒ
ｉｓｅ　Ｅｄｉｔｉｏｎ（Ｊ２ＥＥ）、ＣＯＭ、または分散ＣＯＭ（ＤＣＯＭ）の実施例
などの密結合の同期実装であってよい。それとは別に、またはそれに加えて、インターフ
ェイスは、Ｗｅｂサービスの場合のような疎結合の非同期実装とすることもできる（例え
ば、シンプルオブジェクトアクセスプロトコルを使用する）。一般に、インターフェイス
は、密結合、疎結合、同期、および非同期という特性の任意の組み合わせを含む。さらに
、インターフェイスは、標準プロトコル、専用プロトコル、または標準プロトコルと専用
プロトコルとの任意の組み合わせに適合することができる。
【０１０８】
　本明細書で説明されているインターフェイスは、すべて、単一インターフェイスの一部
であるか、または別々のインターフェイスもしくはそれらの任意の組み合わせとして実装
することができる。これらのインターフェイスは、機能を提供するためにローカルまたは
リモートで実行できる。さらに、これらのインターフェイスが含む機能は、例示されてい
る、または本明細書で説明されている機能よりも多い場合も少ない場合もある。
【０１０９】
　例示され、本明細書で説明されている方法の実行または遂行の順序は、断りのない限り
本質的ではない。つまり、これらの方法の要素は、断りのない限り任意の順序で実行する
ことができ、それらの方法が含む要素は、本明細書で開示されている要素よりも多い場合
も少ない場合もある。例えば、特定の要素を、他の要素の前に、他の要素と同時に、また
は他の要素の後に実行または遂行することは本発明の範囲であると考えられる。
【０１１０】
　本発明または本発明の（複数の）実施形態の要素を導入する際に、英文中の「ａ」、「
ａｎ」、「ｔｈｅ」、および「ｓａｉｄ」という冠詞、したがって和文中の「１つの」、
「その」、「前記」は、それらの要素が１つまたは複数あることを意味することを意図し
ている。「備える」、「含む」、および「持つ、格納する、含む、備える」という言葉は
、包含的であることを意図し、一覧に示されている要素以外にさらに要素がありうること
を意味する。
【０１１１】
　上記の説明に照らして、本発明の複数の目的が達成され、他の有益な結果が得られるこ
とは理解されるであろう。
【０１１２】
　本発明の範囲から逸脱することなく上記の構成、製品、および方法にさまざまな変更を
加えることが可能であるので、上記の説明に含まれ、付属の図面に示されているすべての
事柄は、例示しているのであって、限定する意味はないと解釈するものとする。

(28) JP 5710852 B2 2015.4.30

10

20

30

40

50

【０１１３】
付録Ａ
　（アクティビティの例およびその実装例）
　アクティビティの例としては、Ｓｅｎｄ、ＳｅｎｄＲｅｑｕｅｓｔ、ＳｅｎｄＲｅｓｐ
ｏｎｓｅ、Ｒｅｃｅｉｖｅ、ＲｅｃｅｉｖｅＲｅｑｕｅｓｔ、ＲｅｃｅｉｖｅＲｅｓｐｏ
ｎｓｅ、Ｃｏｄｅ、Ｄｅｌａｙ、Ｆａｕｌｔ、Ｓｕｓｐｅｎｄ、Ｔｅｒｍｉｎａｔｅ、Ｉ
ｎｖｏｋｅＳｃｈｅｄｕｌｅ、ＩｎｖｏｋｅＳｃｈｅｄｕｌｅｓ、Ｉｎｖｏｋｅ　Ｗｅｂ
Ｓｅｒｖｉｃｅ、ＤｏｔＮｅｔＥｖｅｎｔＳｏｕｒｃｅ、ＤｏｔＮｅｔＥｖｅｎｔＳｉｎ
ｋ、Ｓｅｑｕｅｎｃｅ、Ｐａｒａｌｌｅｌ、Ｗｈｉｌｅ、ＣｏｎｄｉｔｉｏｎａｌＢｒａ
ｎｃｈ、Ｃｏｎｄｉｔｉｏｎａｌ、Ｃｏｎｓｔｒａｉｎｅｄ、ＣｏｎｓｔｒａｉｎｅｄＡ
ｃｔｉｖｉｔｙＧｒｏｕｐ（ＣＡＧ）、ＥｖｅｎｔＤｒｉｖｅｎ、Ｌｉｓｔｅｎ、Ｅｖｅ
ｎｔＨａｎｄｌｅｒｓ、ＥｘｃｅｐｔｉｏｎＨａｎｄｌｅｒ、ＥｘｃｅｐｔｉｏｎＨａｎ
ｄｌｅｒｓ、Ｃｏｍｐｅｎｓａｔｅ、ＣｏｍｐｅｎｓａｔｉｏｎＨａｎｄｌｅｒ、Ｓｃｏ
ｐｅ、およびＳｃｈｅｄｕｌｅがある。
【０１１４】
　アクティビティの実施例はそれぞれ、メタデータが関連付けられている。メタデータは
、アクティビティに関連付けられたシリアライザによってワークフローの宣言的表現に移
される。例えば、メタデータは、オプションのコードビサイドメソッドおよびオプション
の相関関係集合のコレクションを含むことができる。
【０１１５】
（Ｓｅｎｄアクティビティ）
　オーケストレーションエンジンは、メッセージを送信する３つのアクティビティ（例え
ば、Ｓｅｎｄ、ＳｅｎｄＲｅｑｕｅｓｔ、およびＳｅｎｄＲｅｓｐｏｎｓｅ）を備え、そ
れぞれ異なる使用事例を対象とする。さらに、これら３つのアクティビティは、何らかの
メタデータを共有するので、抽象基本クラスが３つのすべての上位クラスとして定義され
使用される。
【０１１６】
（Ｒｅｃｅｉｖｅアクティビティ）
　オーケストレーションエンジンは、メッセージを受信する３つのアクティビティ（例え
ば、Ｒｅｃｅｉｖｅ、ＲｅｃｅｉｖｅＲｅｑｕｅｓｔ、およびＲｅｃｅｉｖｅＲｅｓｐｏ
ｎｓｅ）を備え、それぞれ異なる使用事例を対象とする。さらに、これら３つのアクティ
ビティは、何らかのメタデータを共有するので、抽象基本クラスが３つのすべての上位ク
ラスとして定義され使用される。
【０１１７】
（Ｃｏｄｅ）
　Ｃｏｄｅアクティビティは、メタデータで指示されているコードビサイドメソッドを実
行する。
【０１１８】
（Ｄｅｌａｙ）
　Ｄｅｌａｙアクティビティは、その必須コードビサイドメソッドを実行してＤａｔｅＴ
ｉｍｅ値を生成する。そのインスタンスデータのＴｉｍｅｏｕｔＶａｌｕｅプロパティを
この値に内部的に設定する。ＤａｔｅＴｉｍｅが過去であれば、Ｄｅｌａｙは即座に完了
する。そうでなければ、タイマーが作動したときにＤｅｌａｙに通知するようにタイマー
サブスクリプションをセットアップする。タイマーが作動した場合、Ｄｅｌａｙは通知さ
れ、完了する。
【０１１９】
（Ｆａｕｌｔ）
　Ｆａｕｌｔアクティビティは、その必須コードビサイドメソッドを実行してＥｘｃｅｐ
ｔｉｏｎオブジェクトを生成する。その後、この例外をスローする。
【０１２０】

(29) JP 5710852 B2 2015.4.30

10

20

30

40

50

（Ｓｕｓｐｅｎｄ）
　Ｓｕｓｐｅｎｄアクティビティは、現在のスケジュールインスタンスをサスペンドする
。
【０１２１】
（Ｔｅｒｍｉｎａｔｅ）
　Ｔｅｒｍｉｎａｔｅアクティビティは、現在のスケジュールインスタンスを終了する。
【０１２２】
（Ｉｎｖｏｋｅ　Ｓｃｈｅｄｕｌｅ）
　ＩｎｖｏｋｅＳｃｈｅｄｕｌｅアクティビティは、スケジュールを呼び出す。
【０１２３】
（Ｉｎｖｏｋｅ　Ｗｅｂ　Ｓｅｒｖｉｃｅ）
　プロキシクラスを介してＷｅｂサービスを呼び出して、パラメータを指定通り受け渡し
、受信する。
【０１２４】
（ＤｏｔＮｅｔＥｖｅｎｔ　Ｓｉｎｋ）
　すでに呼び出されているスケジュールインスタンスにより指定イベントが発生したとい
う通知が来るのを待つブロック。
【０１２５】
（ＤｏｔＮｅｔＥｖｅｎｔ　Ｓｏｕｒｃｅ）
　指定イベントを発生し、即座に実行を完了する。
【０１２６】
（Ｓｅｑｕｅｎｃｅ）
　Ｓｅｑｕｅｎｃｅアクティビティは、一度に１つずつ、順序正しく子アクティビティの
集合の実行を調整する。
【０１２７】
（Ｐａｒａｌｌｅｌ）
　Ｐａｒａｌｌｅｌアクティビティは、子アクティビティの集合を同時実行する。
【０１２８】
（Ｗｈｉｌｅ）
　子アクティビティを繰り返し実行する。
【０１２９】
（ＣｏｎｄｉｔｉｏｎａｌＢｒａｎｃｈ）
　Ｓｅｑｕｅｎｃｅの意味論に従って、子アクティビティを実行する。
【０１３０】
（Ｃｏｎｄｉｔｉｏｎａｌ）
　Ｃｏｎｄｉｔｉｏｎａｌアクティビティは、ＣｏｎｄｉｔｉｏｎａｌＢｒａｎｃｈアク
ティビティの順序付き集合を含む。
【０１３１】
（Ｃｏｎｓｔｒａｉｎｅｄ）
　制約されているアクティビティの唯一の許容される親はＣＡＧである。ＣＡＧ自体は、
制約されているアクティビティで使用可能および使用不可ルールを用いて、いつ実行する
かを決定する。ＣｏｎｓｔｒａｉｎｅｄアクティビティがＣＡＧにより実行を指示された
場合、それがラップするアクティビティを単に実行するだけである。
【０１３２】
（ＣＡＧ（Ｃｏｎｓｔｒａｉｎｅｄ　Ａｃｔｉｖｉｔｙ　Ｇｒｏｕｐ））
　ＣＡＧは、制約アクティビティのみを含む。ＣＡＧは、実行されると、その使用可能お
よび使用不可制約の評価に基づいて子アクティビティを実行（および再実行）する。
【０１３３】
（Ｔａｓｋ）
　１つまたは複数のプリンシパルにより実行される外部作業単位をモデル化する。

(30) JP 5710852 B2 2015.4.30

10

20

30

40

50

【０１３４】
（Ｅｖｅｎｔ　Ｄｒｉｖｅｎ）
　実行が「イベント」アクティビティによりトリガされるアクティビティをラップする。
【０１３５】
（Ｌｉｓｔｅｎ）
　ｎ個の子ＥｖｅｎｔＤｒｉｖｅｎアクティビティの１つを条件付きで実行する。
【０１３６】
（Ｅｖｅｎｔ　Ｈａｎｄｌｅｒｓ）
　ＥｖｅｎｔＤｒｉｖｅｎアクティビティの集合をラップする。ＥｖｅｎｔＨａｎｄｌｅ
ｒｓアクティビティは、単純に、ＥｖｅｎｔＤｒｉｖｅｎアクティビティの集合を保持し
、これを関連するＳｃｏｐｅが使用する。
【０１３７】
（Ｅｘｃｅｐｔｉｏｎ　Ｈａｎｄｌｅｒ）
　スコープに対するキャッチブロックを表すメタデータでアクティビティをラップする。
【０１３８】
（Ｅｘｃｅｐｔｉｏｎ　Ｈａｎｄｌｅｒｓ）
　ＥｘｃｅｐｔｉｏｎＨａｎｄｌｅｒアクティビティの順序付き集合をラップする。
【０１３９】
（Ｃｏｍｐｅｎｓａｔｅ）
　完了した子スコープを補正する。
【０１４０】
（Ｃｏｍｐｅｎｓａｔｉｏｎ　Ｈａｎｄｌｅｒ）
　スコープに対する補正ハンドラとして定義されている子アクティビティをラップする。
【０１４１】
（Ｓｃｏｐｅ）
　スコープは、トランザクション境界、例外処理境界、補正境界、イベント処理境界、お
よびメッセージ、変数、相関関係集合、およびチャネル宣言の境界（つまり、共有データ
状態）である。Ｓｃｏｐｅ内のアクティビティの実行は順次であり、したがって、含まれ
ているアクティビティは、Ｓｅｑｕｅｎｃｅの場合のように、スコープが構築されたとき
に明示的に順序付けられる。
【０１４２】
（Ｓｃｈｅｄｕｌｅ）
　Ｓｃｈｅｄｕｌｅは、オーケストレーションエンジンが実行する唯一の最上位レベルの
アクティビティである。
【０１４３】
（複合アクティビティ）
　制御フローを使用可能にする複合アクティビティ型は、Ｓｅｑｕｅｎｃｅ、Ｐａｒａｌ
ｌｅｌ、Ｃｏｎｓｔｒａｉｎｅｄ　Ａｃｔｉｖｉｔｙ　Ｇｒｏｕｐ、Ｃｏｎｄｉｔｉｏｎ
ａｌ、Ｗｈｉｌｅ、Ｌｉｓｔｅｎである。さらに、ＳｃｏｐｅおよびＳｃｈｅｄｕｌｅは
、中にあるアクティビティの暗黙のシーケンス動作を含むコンテナとして動作する複合ア
クティビティ型である。
【０１４４】
　対応する参照文字は、図面全体を通して対応する部分を示す。
【図面の簡単な説明】
【０１４５】
【図１】タスクおよび制御フロー複合アクティビティを含むワークフローの実施例を示す
図である。
【図２】アクティビティ継承ツリーの実施例を示す図である。
【図３】コンポーネントモデルの実施例を示す図である。
【図４】コンポーネントモデルのライフサイクルの例を示す図である。

(31) JP 5710852 B2 2015.4.30

10

【図５】ワークフローの指定にウィザードに依存する、ワークフローオーサリングするた
めの高水準アプリケーションユーザインターフェイスを示す図である。
【図６】ワークフローデザイナの実施例を示す図である。
【図７】送信アクティビティが後に続く受信アクティビティを含むオーケストレーション
プログラムを示す図である。
【図８】スケジュール定義およびビジュアルワークフローと、ワークフローのＸＯＭＬに
よるシリアライズされた表現と、ワークフローのコードビサイドとの間の関係を示す図で
ある。
【図９】本発明を実装することができる１つの好適なコンピューティングシステム環境の
一実施例を示すブロック図である。
【符号の説明】
【０１４６】
　　１３０　コンピュータ
　　１５４　ハードディスクドライブ
　　１５６　磁気ディスクドライブ
　　１６０　光ディスクドライブ
　　１７８　モデム
　　１８８　モニタ
　　１９４　リモートコンピュータ

【図１】 【図２】

(32) JP 5710852 B2 2015.4.30

【図３】 【図４】

【図５】 【図６】

(33) JP 5710852 B2 2015.4.30

【図７】 【図８】

【図９】

(34) JP 5710852 B2 2015.4.30

10

20

30

40

フロントページの続き

(74)代理人 100120112
 弁理士　中西　基晴
(74)代理人 100147991
 弁理士　鳥居　健一
(74)代理人 100119781
 弁理士　中村　彰吾
(74)代理人 100162846
 弁理士　大牧　綾子
(74)代理人 100173565
 弁理士　末松　亮太
(74)代理人 100138759
 弁理士　大房　直樹
(74)代理人 100091063
 弁理士　田中　英夫
(72)発明者 バリンダー　エス．マルヒ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
(72)発明者 ダーマ　ケー．シュクラ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
(72)発明者 クマースワミー　ピー．バレゲレプラ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
(72)発明者 マヤンク　メヘタ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
(72)発明者 ロバート　ビー．シュミット
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内

 合議体
 審判長 石井　茂和
 審判官 西村　泰英
 審判官 小林　大介

(56)参考文献 特開２００１－５６８０（ＪＰ，Ａ）
 特開２００３－１７８１７０（ＪＰ，Ａ）
 戸田保一（外３名）著，「ワークフロー」，１９９８年５月３日，株式会社日科技連出版社，第
 １３～３０頁
 蒋海鷹（外２名），電子商取引プロセスにおける電子契約実行支援のためのメッセージ交換モデ
 ル」，ＤＥＷＳ２００３　７－Ｂ－０４、第１４回データ工学ワークショップ（ＤＥＷＳ２００
 ３）論文集

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 9/44

	biblio-graphic-data
	claims
	description
	drawings
	overflow

