(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 September 2002 (12.09.2002)

PCT

(10) International Publication Number WO 02/070663 A2

C12N (51) International Patent Classification7:

(21) International Application Number: PCT/US02/06696

(22) International Filing Date: 5 March 2002 (05.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/799.344 6 March 2001 (06.03.2001) 09/901,151 10 July 2001 (10.07.2001)

- (71) Applicant: PE CORPORATION (NY) [US/US]; 761 Main Avenue, Norwalk, CT 06859 (US).
- (72) Inventors: GONG, Fangcheng; c/o Celera Genomics, 45 West Gude Drive C2-4#21, Rockville, MD 20850

(US). KETCHUM, Karen, A.; c/o Celera Genomics, 45 West Gude Drive C2-4#21, Rockville, MD 20850 (US). DI FRANCESCO, Valentina; c/o Celera Genomics, 45 West Gude Drive C2-4#21, Rockville, MD 20850 (US). BEASLEY, Ellen, M.; c/o Celera Genomics, 45 West Gude Drive C2-4#21, Rockville, MD 20850 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(57) Abstract: The present invention provides amino

acid sequences of peptides that are encoded by genes within the human genome, the enzyme peptides of the

present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the enzyme peptides, and methods of identifying modu-

lators of the enzyme peptides.

[Continued on next page]

(54) Title: ISOLATED HUMAN ENZYME PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN ENZYME PRO-TEINS, AND USES THEREOF

1 TGCTGGGGCA CCTGAAGGAG ACTTGGGGGC ACCCGCGTGG TGCCTCCTGG
51 GTTGTGAGGA GTCGCCGCTG CCGCCACTGC CTGTGCTTCA TGAGGAAGAT
101 GCTCGCCGCC GTCTCCCCGG TGCTTCTCGG CGCTTCTCAG AAGCCGGCAA
151 GCCAGAGGTGT GTAGATTTTG CAAATGATGT TACATTTGAA
201 ATTAAGAAAT GTGACCTTCA CCGGCTGGAA GAAGGCCCTC CTGTCACAAC

FEATURES:

5'UTR: Start Codon: Codon: 3'UTR

Homologous proteins

TOP TO DENOT HIES			
		Score	E
CRAI18000004925454	/altid=gi 387011 /def=gb AAA60058.1((J03503	846	0.0
CRA(18000004920128	/altid=gi14505685 /def=refINP 000275.1 pyru	793	0.0
CRA/18000004938217	/altid=gi16679261 /def=ref/NP 032836.1) pyru	783	0.0
CRA(18000004939896	/altid=gi 66035 /def=pir !DERTF1 pyruvate de	782	0.0
CRA/18000004949905	/altid=gi[129064 /def=sp[P26284]ODPA RAT PYR	779	0.0
CRA;18000004885327	/altid=gi 266686 /def=sp P29804 ODPA PIG PYP	777	0.0
CRA118000004969398	/altid=g1:448580 /def=prf1:1917268A pyruvate	723	0.0
CRA118000005012775	/altid=gi 1079460 /def=pir A49360 pyruvate	718	0.0
CRA 18000004894262	/altid=gil1709452 /def=splP5290010DPA SMIMA	709	0.0
	/altid=gi(4885543 /def=ref(NP 005381.1) pyru	680	0.0

WO 02/070663

WO 02/070663 A2

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

ISOLATED HUMAN ENZYME PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN ENZYME PROTEINS, AND USES THEREOF

FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention is in the field of enzyme proteins that are related to the pyruvate dehydrogenase enzyme subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Many human enzymes serve as targets for the action of pharmaceutically active compounds. Several classes of human enzymes that serve as such targets include helicase, steroid esterase and sulfatase, convertase, synthase, dehydrogenase, monoxygenase, transferase, kinase, glutanase, decarboxylase, isomerase and reductase. It is therefore important in developing new pharmaceutical compounds to identify target enzyme proteins that can be put into high-throughput screening formats. The present invention advances the state of the art by providing novel human drug target enzymes related to the pyruvate dehydrogenase subfamily.

Pyruvate Dehydrogenase Complex, E1 subunit

The novel human protein, and encoding gene, provided by the present invention is related to the pyruvate dehydrogenase E1-alpha precursor protein (see De Meirleir *et al.*, *J. Biol. Chem.* 263 (4), 1991-1995 (1988)). The pyruvate dehydrogenase (PDH) complex is comprised of a plurality of each of three different enzymes: pyruvate decarboxylase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). Each of these three different enzymes is comprised of multiple subunits; the E1 enzyme is a heterotetramer consisting of two alpha and two beta subunits. The E1-alpha subunit contains the E1 active site and is therefore critical for the functioning of the PDH complex. PDH plays an important role in all metabolically active tissues; however, it plays a particularly critical role in the brain since the brain normally obtains all its energy from aerobic oxidation of glucose.

Genetic defects in the PDH complex are the main cause of lactic acidosis, particularly in children. Furthermore, in the majority of cases, the specific genetic defects leading to lactic acidosis are in the E1-alpha subunit. PDH deficiency due to genetic defects can cause fatal lactic acidosis in newborns and chronic neurological dysfunction and neurodegeneration with gross structural abnormalities in the CNS. PDH deficiency is one of the most common pathologies of mitochondrial energy metabolism. It is common for even heterozygous females to show severe clinical symptoms.

5

For a further review of the PDH complex, particularly PDH-E1 and the PDH-E1-alpha subunit, see:

10 1. Bindoff, L. A.; Birch-Machin, M. A.; Farnsworth, L.; Gardner-Medwin, D.; Lindsay, J. G.; Turnbull, D. M. Familial intermittent ataxia due to a defect of the E1 component of pyruvate dehydrogenase complex. J. Neurol. Sci. 93: 311-318, 1989. PubMed ID: 2592988; 2. Blair, H. J.; Reed, V.; Laval, S. H.; Boyd, Y. The locus for pyruvate dehydrogenase E1 alpha-subunit (Pdha1) lies between Plp and Amg on the mouse X 15 chromosome. Mammalian Genome 4: 230-233, 1993. PubMed ID: 7684627; 3. Borglum, A. D.; Flint, T.; Hansen, L. L.; Kruse, T. A. Refined localization of the pyruvate dehydrogenase E1-alpha gene (PDHA1) by linkage analysis. Hum. Genet. 99: 80-82, 1997. PubMed ID: 9003499; 4. Brown, G. K.; Haan, E. A.; Kirby, D. M.; Scholem, R. D.; Wraith, J. E.; Rogers, J. G.; Danks, D. M. 'Cerebral' lactic acidosis: defects in pyruvate metabolism with profound brain damage and minimal systemic acidosis. Europ. J. Pediat. 147: 10-14, 1988. PubMed ID 20 : 3123240; 5. Brown, G. K.; Otero, L. J.; LeGris, M.; Brown, R. M. Pyruvate dehydrogenase deficiency, J. Med. Genet. 31: 875-879, 1994. PubMed ID: 7853374; 6. Brown, R. M.; Dahl, H.-H. M.; Brown, G. K. An homologous locus to the human X-linked pyruvate dehydrogenase E1-alpha subunit gene is located at the distal end of the mouse X chromosome. (Abstract) Cytogenet. Cell Genet. 51: 970, 1989.; 7. Brown, R. M.; Dahl, H.-H. 25 M.; Brown, G. K. X-chromosome localization of the functional gene for the E1-alpha subunit of the human pyruvate dehydrogenase complex. Genomics 4: 174-181, 1989. PubMed ID: 2737678; 8. Brown, R. M.; Dahl, H.-H. M.; Brown, G. K. Regional localization of the Xlinked human pyruvate dehydrogenase E1-alpha subunit gene. (Abstract) Cytogenet. Cell Genet. 51: 970, 1989.; 9. Brown, R. M.; Otero, L. J.; Brown, G. K. Transfection screening for 30 primary defects in the pyruvate dehydrogenase E1-alpha subunit gene. Hum. Molec. Genet. 6: 1361-1367, 1997. PubMed ID: 9259285; 10. Chun, K.; MacKay, N.; Petrova-Benedict, R.; Robinson, B. H. Mutations in the X-linked E1-alpha subunit of pyruvate dehydrogenase leading to deficiency of the pyruvate dehydrogenase complex. Hum. Molec. Genet. 2: 449-

454, 1993. PubMed ID: 8504306; 11. Chun, K.; MacKay, N.; Petrova-Benedict, R.; Robinson, B. H. Pyruvate dehydrogenase deficiency due to a 20-bp deletion in exon 11 of the pyruvate dehydrogenase (PDH) E1-alpha gene. Am. J. Hum. Genet. 49: 414-420, 1991. PubMed ID: 1907799; 12. Dahl, H.-H. M. Pyruvate dehydrogenase E1-alpha deficiency: males and females differ yet again. Am. J. Hum. Genet. 56: 553-557, 1995. PubMed ID: 5 7887408; 13. Dahl, H.-H. M.; Brown, G. K. Pyruvate dehydrogenase deficiency in a male caused by a point mutation (F205L) in the E1-alpha subunit. Hum. Mutat. 3: 152-155, 1994. PubMed ID: 8199595; 14. Dahl, H.-H. M.; Brown, G. K.; Brown, R. M.; Hansen, L. L.; Kerr, D. S.; Wexler, I. D.; Patel, M. S.; De Meirleir, L.; Lissens, W.; Chun, K.; MacKay, N.; 10 Robinson, B. H. Mutations and polymorphisms in the pyruvate dehydrogenase E1-alpha gene. Hum. Mutat. 1: 97-102, 1992. PubMed ID: 1301207; 15. Dahl, H.-H. M.; Hansen, L. L.; Brown, R. M.; Danks, D. M.; Rogers, J. G.; Brown, G. K. X-linked pyruvate dehydrogenase E1-alpha subunit deficiency in heterozygous females: variable manifestation of the same mutation. J. Inherit. Metab. Dis. 15: 835-847, 1992. PubMed ID: 1293379; 16. Dahl, H.-H. M.; Maragos, C.; Brown, R. M.; Hansen, L. L.; Brown, G. K. Pyruvate dehydrogenase 15 deficiency caused by deletion of a 7-bp repeat sequence in the E1-alpha gene. Am. J. Hum. Genet. 47: 286-293, 1990. PubMed ID: 2378353; 17. de Meirleir, L.; Lissens, W.; Vamos, E.; Liebaers, I. Pyruvate dehydrogenase (PDH) deficiency caused by a 21-base pair insertion mutation in the E1-alpha subunit. Hum. Genet. 88: 649-652, 1992. PubMed ID: 1551669; 18. De Meirleir, L.; Specola, N.; Seneca, S.; Lissens, W. Pyruvate dehydrogenase E1-alpha 20 deficiency in a family: different clinical presentation in two siblings. J. Inherit. Metab. Dis. 21: 224-226, 1998. PubMed ID: 9686362; 19. de Meirleir, L. J.; Lissens, W.; Vamos, E.; Liebaers, I.; Pyruvate dehydrogenase deficiency due to a mutation of the E1-alpha subunit. J. Inherit. Metab. Dis. 14: 301-304, 1991. PubMed ID: 1770778; 20. Endo, H.; Hasegawa, K.; Narisawa, K.; Tada, K.; Kagawa, Y.; Ohta, S. Defective gene in lactic acidosis: abnormal 25 pyruvate dehydrogenase E1 alpha-subunit caused by a frame shift. Am. J. Hum. Genet. 44: 358-364, 1989. PubMed ID: 2537010; 21. Endo, H.; Miyabayashi, S.; Tada, K.; Narisawa, K. A four-nucleotide insertion at the E1-alpha gene in a patient with pyruvate dehydrogenase deficiency. J. Inherit. Metab. Dis. 14: 793-799, 1991. PubMed ID: 1779625; 22. Fitzgerald, J.; Wilcox, S. A.; Graves, J. A. M.; Dahl, H.-H. M. A eutherian X-linked gene, PDHA1, is 30 autosomal in marsupials: a model for the evolution of a second, testis-specific variant in eutherian mammals. Genomics 18: 636-642, 1993. PubMed ID: 8307573; 23. Hansen, L. L.; Brown, G. K.; Kirby, D. M.; Dahl, H.-H. M. Characterization of the mutations in three patients with pyruvate dehydrogenase E1-alpha deficiency. J. Inherit. Metab. Dis. 14: 140-

151, 1991. PubMed ID: 1909401; 24. Harris, E. E.; Hey, J. X chromosome evidence for ancient human histories. Proc. Nat. Acad. Sci. 96: 3320-3324, 1999. PubMed ID: 10077682; 25. Ho, L.; Wexler, I. D.; Liu, T.-C.; Thekkumkara, T. J.; Patel, M. S. Characterization of cDNAs encoding human pyruvate dehydrogenase alpha subunit. Proc. Nat. Acad. Sci. 86: 5 5330-5334, 1989. PubMed ID: 2748588; 26. Huq, A. H. M. M.; Ito, M.; Naito, E.; Saijo, T.; Takeda, E.; Kuroda, Y. Demonstration of an unstable variant of pyruvate dehydrogenase protein (E1) in cultured fibroblasts from a patient with congenital lactic acidemia. Pediat. Res. 30: 11-14, 1991. PubMed ID: 1909778; 27. Ito, M.; Huq, A. H. M. M.; Naito, E.; Saijo, T.; Takeda, E.; Kuroda, Y. Mutation of E1-alpha gene in a female patient with pyruvate dehydrogenase deficiency due to rapid degradation of E1 protein. J. Inherit. Metab. Dis. 15: 10 848-856, 1992. PubMed ID: 1338114; 28. Kerr, D. S.; Berry, S. A.; Lusk, M. M.; Ho, L.; Patel, M. S. A deficiency of both subunits of pyruvate dehydrogenase which is not expressed in fibroblasts. Pediat. Res. 24: 95-100, 1988. PubMed ID: 3137520; 29. Lissens, W.; De Meirleir, L.; Seneca, S.; Benelli, C.; Marsac, C.; Poll-The, B. T.; Briones, P.; Ruitenbeek, W.; van Diggelen, O.; Chaigne, D.; Ramaekers, V.; Liebaers, I.: Mutation analysis of the pyruvate 15 dehydrogenase E(1)a gene in eight patients with a pyruvate dehydrogenase complex deficiency. Hum. Mutat. 7: 46-51, 1996. PubMed ID: 8664900; 30. Lissens, W.; De Meirleir, L.; Seneca, S.; Liebaers, I.; Brown, G. K.; Brown, R. M.; Ito, M.; Naito, E.; Kuroda, Y.; Kerr, D. S.; Wexler, I. D.; Patel, M. S.; Robinson, B. H.; Seyda, A. Mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate 20 dehydrogenase complex deficiency. Hum. Mutat. 15: 209-219, 2000. PubMed ID: 10679936; 31. Lissens, W.; Vreken, P.; Barth, P. G.; Wijburg, F. A.; Ruitenbeek, W.; Wanders, R. J. A.; Seneca, S.; Liebaers, I.; De Meirleir, L. Cerebral palsy and pyruvate dehydrogenase deficiency: identification of two new mutations in the E1-alpha gene. Europ. J. Pediat. 158: 25 853-857, 1999. PubMed ID: 10486093; 32. Livingstone, I. R.; Gardner-Medwin, D.; Pennington, R. J. T. Familial intermittent ataxia with possible X-linked recessive inheritance: two patients with abnormal pyruvate metabolism and a response to acetazolamide. J. Neurol. Sci. 64: 89-97, 1984. PubMed ID: 6539810; 33. Matthews, P. M.; Brown, R. M.; Otero, L.; Marchington, D.; Leonard, J. V.; Brown, G. K. Neurodevelopmental abnormalities and lactic acidosis in a girl with a 20-bp deletion in the X-linked pyruvate dehydrogenase E1-alpha 30 subunit gene. Neurology 43: 2025-2030, 1993. PubMed ID: 7692352; 34. Matthews, P. M.; Brown, R. M.; Otero, L. J.; Marchington, D. R.; LeGris, M.; Howes, R.; Meadows, L. S.; Shevell, M.; Scriver, C. R.; Brown, G. K. Pyruvate dehydrogenase deficiency: clinical presentation and molecular genetic characterization of five new patients. Brain 117: 435-443,

1994. PubMed ID: 8032855; 35. Matthews, P. M.; Marchington, D. R.; Squier, M.; Land, J.; Brown, R. M.; Brown, G. K. Molecular genetic characterization of an X-linked form of Leigh's syndrome. Ann. Neurol. 33: 652-655, 1993. PubMed ID: 8498846; 36. Olson, S.; Song, B. J.; Huh, T.-L.; Chi, Y.-T.; Veech, R. L.; McBride, O. W. Three genes for enzymes of the pyruvate dehydrogenase complex map to human chromosomes 3, 7, and X. Am. J. Hum. 5 Genet. 46: 340-349, 1990. PubMed ID: 1967901; 37. Otero, L. J.; Brown, G. K.; Silver, K.; Arnold, D. L.; Matthews, P. M. Association of cerebral dysgenesis and lactic acidemia with X-linked PDH E1-alpha subunit mutations in females. Pediat. Neurol. 13: 327-332, 1995.; 38. Otero, L. J.; Brown, R. M.; Brown, G. K. Arginine 302 mutations in the pyruvate dehydrogenase E1-alpha subunit gene: identification of further patients and in vitro 10 demonstration of pathogenicity. Hum. Mutat. 12: 114-121, 1998. PubMed ID: 9671272; 39. Patel, M. S.; Harris, R. A. Mammalian alpha-keto acid dehydrogenase complexes: gene regulation and genetic defects. FASEB J. 9: 1164-1172, 1995. PubMed ID: 7672509; 40. Robinson, B. H.; MacMillan, H.; Petrova-Benedict, R.; Sherwood, W. G. Variable clinical presentation in patients with defective E1 component of pyruvate dehydrogenase complex. J. 15 Pediat. 111: 525-533, 1987. PubMed ID: 3116190; 41. Seyda, A.; McEachern, G.; Haas, R.; Robinson, B. H. Sequential deletion of C-terminal amino acids of the E1-alpha component of the pyruvate dehydrogenase (PDH) complex leads to reduced steady-state levels of functional E1-alpha-2-beta-2 tetramers: implications for patients with PDH deficiency. Hum. Molec. Genet. 9: 1041-1048, 2000. PubMed ID: 10767328; 42. Shevell, M. I.; Matthews, P. M.; 20 Scriver, C. R.; Brown, R. M.; Otero, L. J.; Legris, M.; Brown, G. K.; Arnold, D. L. Cerebral dysgenesis and lactic acidemia: an MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediat. Neuro. 11: 224-229, 1994.; 43. Szabo, P.; Rex Sheu, K.-F.; Robinson, R. M.; Grzeschik, K.-H.; Blass, J. P. The gene for the alpha polypeptide of pyruvate dehydrogenase is X-linked in humans. Am. J. Hum. Genet. 46: 874-878, 1990. 25 PubMed ID: 2339687; 44. Takakubo, F.; Cartwright, P.; Hoogenraad, N.; Thorburn, D. R.; Collins, F.; Lithgow, T.; Dahl, H.-H. M. An amino acid substitution in the pyruvate dehydrogenase E1-alpha gene, affecting mitochondrial import of the precursor protein. Am. J. Hum. Genet. 57: 772-780, 1995. PubMed ID: 7573035; 45. Takakubo, F.; Thorburn, D. R.; Dahl, H.-H. M. A four-nucleotide insertion hotspot in the X chromosome located pyruvate 30 dehydrogenase E1-alpha gene (PDHA1). Hum. Molec. Genet. 2: 473-474, 1993. PubMed ID: 8504309; 46. Wexler, I. D.; Hemalatha, S. G.; Liu, T.-C.; Berry, S. A.; Kerr, D. S.; Patel, M. S. A mutation in the E1-alpha subunit of pyruvate dehydrogenase associated with variable

expression of pyruvate dehydrogenase complex deficiency. Pediat. Res. 32: 169-174, 1992. PubMed ID: 1508605.

Enzyme proteins, particularly members of the pyruvate dehydrogenase enzyme subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of enzyme proteins. The present invention advances the state of the art by providing previously unidentified human enzyme proteins, and the polynucleotides encoding them, that have homology to members of the pyruvate dehydrogenase enzyme subfamily. These novel compositions are useful in the diagnosis, prevention and treatment of biological processes associated with human diseases.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human enzyme peptides and proteins that are related to the pyruvate dehydrogenase enzyme subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate enzyme activity in cells and tissues that express the enzyme. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain.

25

30

20

5

10

15

DESCRIPTION OF THE FIGURE SHEETS

FIGURE 1 provides the nucleotide sequence of a cDNA molecule that encodes the enzyme protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas

adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain.

FIGURE 2 provides the predicted amino acid sequence of the enzyme of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIGURE 3 provides genomic sequences that span the gene encoding the enzyme protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in Figure 3, SNPs were identified at 22 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

5

10

15

20

25

30

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a enzyme protein or part of a enzyme protein and are related to the pyruvate dehydrogenase enzyme subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human enzyme peptides and proteins that are related to the pyruvate dehydrogenase enzyme subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode these enzyme peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the enzyme of the present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known enzyme proteins of the pyruvate

7

dehydrogenase enzyme subfamily and the expression pattern observed. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. The art has clearly established the commercial importance of members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known pyruvate dehydrogenase family or subfamily of enzyme proteins.

Specific Embodiments

Peptide Molecules

5

10

15

20

25

30

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the enzyme family of proteins and are related to the pyruvate dehydrogenase enzyme subfamily (protein sequences are provided in Figure 2, transcript/cDNA sequences are provided in Figure 1 and genomic sequences are provided in Figure 3). The peptide sequences provided in Figure 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in Figure 3, will be referred herein as the enzyme peptides of the present invention, enzyme peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the enzyme peptides disclosed in the Figure 2, (encoded by the nucleic acid molecule shown in Figure 1, transcript/cDNA or Figure 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

5

10

15

20

25

30

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the enzyme peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated enzyme peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. For example, a nucleic acid molecule encoding the enzyme peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in Figure 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). A protein consists essentially of an amino acid

sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

5

10

15

20

25

30

The present invention further provides proteins that comprise the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the enzyme peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The enzyme peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a enzyme peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the enzyme peptide. "Operatively linked" indicates that the enzyme peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the enzyme peptide.

In some uses, the fusion protein does not affect the activity of the enzyme peptide *per se*. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant enzyme peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together inframe in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which

can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel *et al.*, *Current Protocols in Molecular Biology*, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A enzyme peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the enzyme peptide.

5

10

15

20

25

30

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the enzyme peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (*Computational*

Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

5

10

15

20

25

30

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (*J. Mol. Biol.* 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.* (*Nucleic Acids Res.* 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the enzyme peptides of the present invention as well as being encoded by the same genetic locus as the enzyme peptide provided herein. The gene

encoding the novel enzyme of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

5

10

15

20

25

30

Allelic variants of a enzyme peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the enzyme peptide as well as being encoded by the same genetic locus as the enzyme peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in Figure 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel enzyme of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a enzyme peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

Figure 3 provides information on SNPs that have been found in the gene encoding the enzyme protein of the present invention. SNPs were identified at 22 different nucleotide positions, including non-synonymous coding SNPs at 18 nucleotide positions. Changes in the amino acid sequence caused by these SNPs is indicated in Figure 3 and can readily be determined using the universal genetic code and the protein sequence provided in Figure 2 as a reference. The SNPs located 5' of the ORF and in introns may affect control/regulatory elements.

Paralogs of a enzyme peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the enzyme peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a enzyme peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a enzyme peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the enzyme peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from

mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a enzyme peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

5

10

15

20

25

30

Non-naturally occurring variants of the enzyme peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the enzyme peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a enzyme peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie *et al.*, *Science 247*:1306-1310 (1990).

Variant enzyme peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Figure 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham *et al.*, *Science* 244:1081-1085 (1989)), particularly using the results provided in Figure 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as enzyme activity or in assays such as an *in vitro* proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or

photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

The present invention further provides fragments of the enzyme peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in Figure 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

5

10

15

20

25

30

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a enzyme peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the enzyme peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the enzyme peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in Figure 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in enzyme peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in Figure 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing,

phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as *Proteins - Structure* and Molecular Properties, 2nd Ed., T.E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., *Posttranslational Covalent Modification of Proteins*, B.C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the enzyme peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature enzyme peptide is fused with another compound, such as a compound to increase the half-life of the enzyme peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature enzyme peptide, such as a leader or secretory sequence or a sequence for purification of the mature enzyme peptide or a pro-protein sequence.

20 <u>Protein/Peptide Uses</u>

5

10

15

25

30

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a enzyme-effector protein interaction or enzyme-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual",

2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

5

10

15

30

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, enzymes isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the enzyme. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention. A large percentage of pharmaceutical agents are being developed that modulate the activity of enzyme proteins, particularly members of the pyruvate dehydrogenase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in Figure 1.

20 Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. Such uses can readily be determined using the information provided herein, that which is known in the art, and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to enzymes that are related to members of the pyruvate dehydrogenase subfamily. Such assays involve any of the known enzyme functions or activities or properties useful for diagnosis and treatment of enzyme-related conditions that are specific for the subfamily of enzymes that the one of the present invention belongs to, particularly in cells and tissues that express the enzyme. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach,

pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention.

5

10

15

20

25

30

The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the enzyme, as a biopsy or expanded in cell culture. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the enzyme protein.

The polypeptides can be used to identify compounds that modulate enzyme activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the enzyme. Both the enzymes of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the enzyme. These compounds can be further screened against a functional enzyme to determine the effect of the compound on the enzyme activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the enzyme to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the enzyme protein and a molecule that normally interacts with the enzyme protein, e.g. a substrate or a component of the signal pathway that the enzyme protein normally interacts (for example, another enzyme). Such assays typically include the steps of combining the enzyme protein with a candidate compound under conditions that allow the enzyme protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the enzyme protein and the target, such as any of the associated effects of signal transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.*, *Nature 354*:82-84 (1991); Houghten *et al.*, *Nature 354*:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration amino acids; 2)

phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.*, *Cell* 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

5

10

15

20

25

30

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant enzymes or appropriate fragments containing mutations that affect enzyme function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) enzyme activity. The assays typically involve an assay of events in the signal transduction pathway that indicate enzyme activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the enzyme protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the enzyme can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly Figure 2. Specifically, a biological function of a cell or tissues that expresses the enzyme can be assayed. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention.

Binding and/or activating compounds can also be screened by using chimeric enzyme proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized

by the native enzyme. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the enzyme is derived.

5

10

15

20

25

30

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the enzyme (e.g. binding partners and/or ligands). Thus, a compound is exposed to a enzyme polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble enzyme polypeptide is also added to the mixture. If the test compound interacts with the soluble enzyme polypeptide, it decreases the amount of complex formed or activity from the enzyme target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the enzyme. Thus, the soluble polypeptide that competes with the target enzyme region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the enzyme protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., ³⁵S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of enzyme-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a enzyme-binding protein and a candidate compound are incubated in the enzyme protein-presenting wells and the amount of complex

trapped in the well can be quantitated. Methods for detecting such complexes, in addition to

those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the enzyme protein target molecule, or which are reactive with enzyme protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

5

10

15

20

25

30

Agents that modulate one of the enzymes of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system.

Such model systems are well known in the art and can readily be employed in this context.

Modulators of enzyme protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the enzyme pathway, by treating cells or tissues that express the enzyme. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. These methods of treatment include the steps of administering a modulator of enzyme activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the enzyme proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the enzyme and are involved in enzyme activity. Such enzyme-binding proteins are also likely to be involved in the propagation of signals by the enzyme proteins or enzyme targets as, for example, downstream elements of a enzyme-mediated signaling pathway. Alternatively, such enzyme-binding proteins are likely to be enzyme inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a enzyme protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, *in vivo*, forming a enzyme-dependent complex, the DNA-binding and

activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the enzyme protein.

5

10

15

20

25

30

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a enzyme-modulating agent, an antisense enzyme nucleic acid molecule, a enzyme-specific antibody, or a enzyme-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The enzyme proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. The method involves contacting a biological sample with a compound capable of interacting with the enzyme protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for

the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered enzyme activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

5

10

15

20

25

30

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 (1996)), and Linder, M.W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the enzyme protein in which one or more of the enzyme functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition

that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are more or less active in substrate binding, and enzyme activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. Accordingly, methods for treatment include the use of the enzyme protein or fragments.

<u>Antibodies</u>

5

10

15

20

25

30

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')₂, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein,

an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in Figure 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the enzyme proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or enzyme/binding partner interaction. Figure 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see Figure 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Uses

5

10

15

20

25

30

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of

expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention. Further, such antibodies can be used to detect protein *in situ*, *in vitro*, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the enzyme peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See Figure 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

5

10

15

20

25

30

The present invention further provides isolated nucleic acid molecules that encode a enzyme peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide

sequence that encodes one of the enzyme peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

5

10

15

20

25

30

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence

when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

5

10

15

20

25

30

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In Figures 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (Figure 3) and cDNA/transcript sequences (Figure 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in Figures 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the enzyme peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding

sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

5

10

15

20

25

30

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the enzyme proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in Figures 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify gene-modulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in Figure 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

5

10

15

20

25

30

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel enzyme of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Figure 3 provides information on SNPs that have been found in the gene encoding the enzyme protein of the present invention. SNPs were identified at 22 different nucleotide positions, including non-synonymous coding SNPs at 18 nucleotide positions. Changes in the amino acid sequence caused by these SNPs is indicated in Figure 3 and can readily be determined using the universal genetic code and the protein sequence provided in Figure 2 as a reference. The SNPs located 5' of the ORF and in introns may affect control/regulatory elements.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

5

10

15

20

25

30

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in Figure 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in Figure 2. As illustrated in Figure 3, SNPs were identified at 22 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter *in situ* expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of *in situ* hybridization methods. The gene encoding the novel enzyme of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

5

10

15

20

25

30

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in enzyme protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a enzyme protein, such as by measuring a level of a enzyme-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a enzyme gene has been mutated. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate enzyme nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the enzyme gene, particularly biological and pathological processes that are mediated by the enzyme in cells and tissues that express it. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain. The method typically includes assaying the ability of the compound to modulate the expression of the enzyme nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired enzyme nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the enzyme nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

5

10

15

20

25

30

The assay for enzyme nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the enzyme protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of enzyme gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of enzyme mRNA in the presence of the candidate compound is compared to the level of expression of enzyme mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate enzyme nucleic acid expression in cells and tissues that express the enzyme. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle

rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention. Modulation includes both upregulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

5

10

15

20

25

30

Alternatively, a modulator for enzyme nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the enzyme nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in Figure 1 indicates expression in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, colon adenocarcinoma, and fetal brain.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the enzyme gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in enzyme nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in enzyme genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the enzyme gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the enzyme gene associated with a dysfunction provides a diagnostic tool

for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a enzyme protein.

5

10

15

20

25

30

Individuals carrying mutations in the enzyme gene can be detected at the nucleic acid level by a variety of techniques. Figure 3 provides information on SNPs that have been found in the gene encoding the enzyme protein of the present invention. SNPs were identified at 22 different nucleotide positions, including non-synonymous coding SNPs at 18 nucleotide positions. Changes in the amino acid sequence caused by these SNPs is indicated in Figure 3 and can readily be determined using the universal genetic code and the protein sequence provided in Figure 2 as a reference. The SNPs located 5' of the ORF and in introns may affect control/regulatory elements. The gene encoding the novel enzyme of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a enzyme gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant enzyme gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C.W., (1995) *Biotechniques 19*:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen *et al.*, *Adv. Chromatogr. 36*:127-162 (1996); and Griffin *et al.*, *Appl. Biochem. Biotechnol. 38*:147-159 (1993)).

5

10

15

20

25

30

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the enzyme gene in an individual in order to select an appropriate compound or dosage regimen for treatment. Figure 3 provides information on SNPs that have been found in the gene encoding the enzyme protein of the present invention. SNPs were identified at 22 different nucleotide positions, including non-synonymous coding SNPs at 18 nucleotide positions. Changes in the amino acid sequence caused by these SNPs is indicated in Figure 3 and can readily be determined using the universal genetic code and the protein sequence provided in Figure 2 as a reference. The SNPs located 5' of the ORF and in introns may affect control/regulatory elements.

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the

production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control enzyme gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of enzyme protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into enzyme protein.

5

10

15

20

25

30

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of enzyme nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired enzyme nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the enzyme protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in enzyme gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered *ex vivo* and returned to the patient, are introduced into an individual where the cells produce the desired enzyme protein to treat the individual.

The invention also encompasses kits for detecting the presence of a enzyme nucleic acid in a biological sample. Experimental data as provided in Figure 1 indicates that the enzyme proteins of the present invention are expressed in humans in teratocarcinoma of neuronal precursor cells, skin, skin melanotic melanoma, muscle rhabdomyosarcoma, brain neuroblastoma, brain, breast, stomach, pancreas adenocarcinoma, uterus serous papillary carcinoma, brain anaplastic oligodendroglioma, and colon adenocarcinoma, as indicated by virtual northern blot analysis, and in fetal brain, as indicated by the tissue source of the cDNA clone of the present invention. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting enzyme nucleic acid in a biological sample; means for determining the amount of enzyme nucleic acid in the sample; and means for comparing the amount of enzyme nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect enzyme protein mRNA or DNA.

Nucleic Acid Arrays

5

10

15

20

25

30

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in Figures 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in US Patent 5,837,832, Chee *et al.*, PCT application W095/11995 (Chee *et al.*), Lockhart, D. J. *et al.* (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. *et al.* (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown *et al.*, US Patent No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million.

The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.

5

10

15

20

25

30

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler *et al.*) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large-scale correlation studies on the sequences, expression patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the enzyme proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically

involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the enzyme gene of the present invention. Figure 3 provides information on SNPs that have been found in the gene encoding the enzyme protein of the present invention. SNPs were identified at 22 different nucleotide positions, including non-synonymous coding SNPs at 18 nucleotide positions. Changes in the amino acid sequence caused by these SNPs is indicated in Figure 3 and can readily be determined using the universal genetic code and the protein sequence provided in Figure 2 as a reference. The SNPs located 5' of the ORF and in introns may affect control/regulatory elements.

5

10

15

20

25

30

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, *An Introduction to Radioimmunoassay and Related Techniques*, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. *et al.*, *Techniques in Immunocytochemistry*, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., *Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips

of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified enzyme gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/host cells

5

10

15

20

25

30

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the

vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

5

10

15

20

25

30

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from E. coli, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual. 2nd. ed.*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

5

10

15

20

25

30

The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, *Streptomyces*, and *Salmonella typhimurium*. Eukaryotic cells include, but are not limited to, yeast, insect cells such as *Drosophila*, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enteroenzyme. Typical fusion expression vectors include pGEX (Smith *et al.*, *Gene 67*:31-40 (1988)), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, *Gene 69*:301-315 (1988)) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology 185*:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example *E. coli*. (Wada *et al.*, *Nucleic Acids Res. 20*:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., *S. cerevisiae* include pYepSec1 (Baldari, *et al.*, *EMBO J. 6*:229-234 (1987)), pMFa (Kurjan *et al.*, *Cell 30*:933-943(1982)), pJRY88 (Schultz *et al.*, *Gene 54*:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, CA).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith *et al.*, *Mol. Cell Biol. 3*:2156-2165 (1983)) and the pVL series (Lucklow *et al.*, *Virology 170*:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. *Nature 329*:840(1987)) and pMT2PC (Kaufman *et al.*, *EMBO J. 6*:187-195 (1987)).

5

10

15

20

25

30

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be

introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

5

10

15

20

25

30

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells.

However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell- free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multitransmembrane domain containing proteins such as enzymes, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with enzymes, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon

the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of vectors and host cells

5

10

15

20

25

30

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a enzyme protein or peptide that can be further purified to produce desired amounts of enzyme protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the enzyme protein or enzyme protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native enzyme protein is useful for assaying compounds that stimulate or inhibit enzyme protein function.

Host cells are also useful for identifying enzyme protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant enzyme protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native enzyme protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a enzyme protein and identifying and evaluating modulators of enzyme protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the enzyme protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not

already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the enzyme protein to particular cells.

5

10

15

20

25

30

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, both by Leder *et al.*, U.S. Patent No. 4,873,191 by Wagner *et al.* and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, e.g., Lakso *et al. PNAS 89*:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman *et al. Science 251*:1351-1355 (1991). If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. *et al. Nature 385*:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an *in vivo* context. Accordingly, the various physiological factors that are present *in vivo* and that could effect substrate binding, enzyme protein activation, and signal transduction, may not be evident from *in vitro* cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay *in vivo* enzyme protein function, including substrate interaction, the effect of specific mutant enzyme proteins on enzyme protein function and substrate interaction, and the effect of chimeric enzyme proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more enzyme protein functions.

10

15

5

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

Claims

That which is claimed is:

1. An isolated peptide consisting of an amino acid sequence selected from the group consisting of:

- (a) an amino acid sequence shown in SEQ ID NO:2;
- (b) an amino acid sequence of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said allelic variant is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) an amino acid sequence of an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said ortholog is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3; and
- (d) a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids.
- 2. An isolated peptide comprising an amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence shown in SEQ ID NO:2;
- (b) an amino acid sequence of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said allelic variant is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) an amino acid sequence of an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said ortholog is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3; and
- (d) a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids.
 - 3. An isolated antibody that selectively binds to a peptide of claim 2.

4. An isolated nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- (b) a nucleotide sequence that encodes of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) a nucleotide sequence that encodes an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (d) a nucleotide sequence that encodes a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids; and
- (e) a nucleotide sequence that is the complement of a nucleotide sequence of (a)-(d).
- 5. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- (b) a nucleotide sequence that encodes of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) a nucleotide sequence that encodes an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (d) a nucleotide sequence that encodes a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids; and
- (e) a nucleotide sequence that is the complement of a nucleotide sequence of (a)-(d).
 - 6. A gene chip comprising a nucleic acid molecule of claim 5.

7. A transgenic non-human animal comprising a nucleic acid molecule of claim 5.

- 8. A nucleic acid vector comprising a nucleic acid molecule of claim 5.
- 9. A host cell containing the vector of claim 8.
- 10. A method for producing any of the peptides of claim 1 comprising introducing a nucleotide sequence encoding any of the amino acid sequences in (a)-(d) into a host cell, and culturing the host cell under conditions in which the peptides are expressed from the nucleotide sequence.
- 11. A method for producing any of the peptides of claim 2 comprising introducing a nucleotide sequence encoding any of the amino acid sequences in (a)-(d) into a host cell, and culturing the host cell under conditions in which the peptides are expressed from the nucleotide sequence.
- 12. A method for detecting the presence of any of the peptides of claim 2 in a sample, said method comprising contacting said sample with a detection agent that specifically allows detection of the presence of the peptide in the sample and then detecting the presence of the peptide.
- 13. A method for detecting the presence of a nucleic acid molecule of claim 5 in a sample, said method comprising contacting the sample with an oligonucleotide that hybridizes to said nucleic acid molecule under stringent conditions and determining whether the oligonucleotide binds to said nucleic acid molecule in the sample.
- 14. A method for identifying a modulator of a peptide of claim 2, said method comprising contacting said peptide with an agent and determining if said agent has modulated the function or activity of said peptide.
- 15. The method of claim 14, wherein said agent is administered to a host cell comprising an expression vector that expresses said peptide.

16. A method for identifying an agent that binds to any of the peptides of claim 2, said method comprising contacting the peptide with an agent and assaying the contacted mixture to determine whether a complex is formed with the agent bound to the peptide.

- 17. A pharmaceutical composition comprising an agent identified by the method of claim 16 and a pharmaceutically acceptable carrier therefor.
- 18. A method for treating a disease or condition mediated by a human enzyme protein, said method comprising administering to a patient a pharmaceutically effective amount of an agent identified by the method of claim 16.
- 19. A method for identifying a modulator of the expression of a peptide of claim 2, said method comprising contacting a cell expressing said peptide with an agent, and determining if said agent has modulated the expression of said peptide.
- 20. An isolated human enzyme peptide having an amino acid sequence that shares at least 70% homology with an amino acid sequence shown in SEQ ID NO:2.
- 21. A peptide according to claim 20 that shares at least 90 percent homology with an amino acid sequence shown in SEQ ID NO:2.
- 22. An isolated nucleic acid molecule encoding a human enzyme peptide, said nucleic acid molecule sharing at least 80 percent homology with a nucleic acid molecule shown in SEQ ID NOS:1 or 3.
- 23. A nucleic acid molecule according to claim 22 that shares at least 90 percent homology with a nucleic acid molecule shown in SEQ ID NOS:1 or 3.

```
1 TGCTGGGGCA CCTGAAGGAG ACTTGGGGGC ACCCGCGTCG TGCCTCCTGG
 51 GTTGTGAGGA GTCGCCGCTG CCGCCACTGC CTGTGCTTCA TGAGGAAGAT
 101 GCTCGCCGCC GTCTCCCGCG TGCTGTCTGG CGCTTCTCAG AAGCCGGCAA
 151 GCAGAGTGCT GGTAGCATCC CGTAATTTTG CAAATGATGC TACATTTGAA
 201 ATTAAGAAAT GTGACCTTCA CCGGCTGGAA GAAGGCCCTC CTGTCACAAC
 251 AGTGCTCACC AGGGAGGATG GGCTCAAATA CTACAGGATG ATGCAGACTG
 301 TACGCCGAAT GGAGTTGAAA GCAGATCAGC TGTATAAACA GAAAATTATT
 351 CGTGGTTTCT GTCACTTGTG TGATGGTCAG TTTCTCCTTC CTCTAACACA
 401 GGAAGCTTGC TGTGTGGGCC TGGAGGCCGG CATCAACCCC ACAGACCATC
 451 TCATCACAGC CTACCGGGCT CACGGCTTTA CTTTCACCCG GGGCCTTTCC
 501 GTCCGAGAAA TTCTCGCAGA GCTTACAGGA CGAAAAGGAG GTTGTGCTAA
 551 AGCGAAAGGA GGATCGATGC ACATGTATGC CAAGAACTTC TACGGGGGCA
 601 ATGGCATCGT GGGAGCGCAG GTGCCCCTGG GCGCTGGGAT TGCTCTAGCC
 651 TGTAAGTATA ATGGAAAAGA TGAGGTCTGC CTGACTTTAT ATGGCGATGG
 701 TGCTGCTAAC CAGGGCCAGA TATTCGAAGC TTACAACATG GCAGCTTTGT
 751 GGAAATTACC TTGTATTTTC ATCTGTGAGA ATAATCGCTA TGGAATGGGA
 801 ACGTCTGTTG AGAGAGCGGC AGCCAGCACT GATTACTACA AGAGAGGCGA
 851 TTTCATTCCT GGGCTGAGAG TGGATGGAAT GGATATCCTG TGCGTCCGAG
 901 AGGCAACAAG GTTTGCTGCT GCCTATTGTA GATCTGGGAA GGGGCCCATC
 951 CTGATGGAGC TGCAGACTTA CCGTTACCAC GGACACAGTA TGAGTGACCC
1001 TGGAGTCAGT TACCGTACAC GAGAAGAAAT TCAGGAAGTA AGAAGTAAGA
1051 GTGACCCTAT TATGCTTCTC AAGGACAGGA TGGTGAACAG CAATCTTGCC
1101 AGTGTGGAAG AACTAAAGGA AATTGATGTG GAAGTGAGGA AGGAGATTGA
1151 GGATGCTGCC CAGTTTGCCA CGGCCGATCC TGAGCCACCT TTGGAAGAGC
1201 TGGGCTACCA CATCTACTCC AGCGACCCAC CTTTTGAAGT TCGTGGTGCC
1251 AATCAGTGGA TCAAGTTTAA GTCAGTCAGT TAAGGGGAGG AGAAGGAGAG
1301 GTTATACCTT CAGGGGGCTA CCAGACAGTG TTCTCAACTT GGTTAAGGAG
1351 GAAGAAAACC CAGTCAATGA AATTCAATGA AATTCTTGGA AACTTCCATT
1401 AAGTGTGTAG ATTGAGCAGG TAGTAATTGC ATGCAGTTTG TACATTAGTG
1451 CATTAAAAGA TGAATTATTG AGTGCTTAAA AAAAAAAAA AAAAAAAAA
```

FEATURES:

5'UTR: 1-89 Start Codon: 90 Stop Codon: 1281 3'UTR: 1284

Homologous proteins: Top 10 BLAST Hits

TOP TO DEFICE HITCO			
		Score	E
CRA 18000004925454	/altid=gi 387011 /def=gb AAA60055.1 (J03503	846	0.0
CRA 18000004920128	/altid=gi 4505685 /def=ref NP_000275.1 pyru	793	0.0
CRA 18000004938217	/altid=gi 6679261 /def=ref NP_032836.1 pyru	783	0.0
CRA 18000004939896	/altid=gi 66035 /def=pir DERTP1 pyruvate de	782	0.0
CRA!18000004949905	/altid=gi 129064 /def=sp P26284 ODPA RAT PYR	779	0.0
CRA 18000004885327	/altid=gi 266686 /def=sp P29804 ODPA PIG PYR	77 7	0.0
CRA 18000004969398	/altid=gi 448580 /def=prf 1917268A pyruvate	729	0.0
CRA 18000005012775	/altid=gi 1079460 /def=pir A49360 pyruvate	718	0.0
CRA 18000004884262	/altid=gi 1709452 /def=sp P52900 ODPA_SMIMA	709	0.0
CRA 18000004925713	/altid=gi 4885543 /def=ref NP_005381.1 pyru	680	0.0

BLAST hits to dbEST: gi|10991237 /dataset=dbest /taxon=96... 1354 0.0 gi|14051054 /dataset=dbest /taxon=960... 1415 0.0 gi|14076211 /dataset=dbest /taxon=960... 1382 0.0 gi|11251518 /dataset=dbest /taxon=960... 1340 0.0 gi|13914836 /dataset=dbest /taxon=960... 1298 0.0 gi|2539160 /dataset=dbest /taxon=9606 ... 1037 0.0 gi|3214685 /dataset=dbest /taxon=9606 ... 1015 0.0 gi|5933458 /dataset=dbest /taxon=9606 ... 955 0.0 gi|4988948 /dataset=dbest /taxon=9606 ... 842 0.0 gi|4900594 /dataset=dbest /taxon=9606 ... 856 0.0 gi|4534604 /dataset=dbest /taxon=9606 ... 819 0.0 gi|7455087 /dataset=dbest /taxon=9606... 789 0.0

EXPRESSION INFORMATION FOR MODULATORY USE:

library source:

```
Expression information from BLAST dbEST hits:

gi|10991237 Neuronal precursor cells-teratocarcinoma
gi|14051054 skin
gi|14076211 skin melanotic melanoma, high MDR (cell line)
gi|11251518 muscle rhabdomyosarcoma
gi|13914836 brain neuroblastoma, cell line
gi|2539160 whole brain
gi|3214685 breast
gi|5933458 stomach
gi|4988948 pancreas - adenocarcinoma
gi|4900594 uterus - serous papillary carcinoma, high grade
gi|4534604 brain - anaplastic oligodendroglioma
gi|7455087 colon - moderately-differentiated adenocarcinoma
```

Tissue source of cDNA clone:

Fetal whole brain

```
1 MRKMLAAVSR VLSGASQKPA SRVLVASRNF ANDATFEIKK CDLHRLEEGP
51 PVTTVLTRED GLKYYRMMQT VRRMELKADQ LYKQKIIRGF CHLCDGQFLL
101 PLTQEACCVG LEAGINPTDH LITAYRAHGF TFTRGLSVRE ILAELTGRKG
151 GCAKAKGGSM HMYAKNFYGG NGIVGAQVPL GAGIALACKY NGKDEVCLTL
201 YGDGAANQGQ IFEAYNMAAL WKLPCIFICE NNRYGMGTSV ERAAASTDYY
251 KRGDFIPGLR VDGMDILCVR EATRFAAAYC RSGKGPILME LQTYRYHGHS
301 MSDPGVSYRT REEIQEVRSK SDPIMLLKDR MVNSNLASVE ELKEIDVEVR
351 KEIEDAAQFA TADPEPPLEE LGYHIYSSDP PFEVRGANQW IKFKSVS (SEQ ID NO:2)
```

FEATURES:

Functional domains and key regions:

[1] PDOC00005 PS00005 PKC_PHOSPHO_SITE Protein kinase C phosphorylation site

```
Number of matches: 7

1 16-18 SQK
2 70-72 TVR
3 137-139 SVR
4 146-148 TGR
5 282-284 SGK
6 293-295 TYR
7 307-309 SYR
```

[2] PDOC00006 PS00006 CK2_PHOSPHO_SITE Casein kinase II phosphorylation site

```
Number of matches: 7
1 57-60 TRED
2 137-140 SVRE
3 238-241 TSVE
4 300-303 SMSD
5 310-313 TREE
6 319-322 SKSD
7 338-341 SVEE
```

[3] PDOC00008 PS00008 MYRISTYL N-myristoylation site

```
Number of matches: 7

1 110-115 GLEAGI
2 114-119 GINPTD
3 151-156 GCAKAK
4 172-177 GIVGAQ
5 181-186 GAGIAL
6 183-188 GIALAC
7 235-240 GMGTSV
```

[4] PDOC00009 PS00009 AMIDATION Amidation site

146-149 TGRK

[5] PDOC00016 PS00016 RGD Cell attachment sequence

252-254 RGD

Membrane spanning structure and domains:

Helix	Begin	End	Score	Certainty
1	169	189	1.097	Certain

BLAST Alignment to Top Hit: >CRA|18000004925454 /altid=gi|387011 /def=gb|AAA60055.1| (J03503) pyruvate dehydrogenase E1-alpha precursor [Homo sapiens] /org=Homo sapiens /taxon=9606 /dataset=nraa /length=414 Length = 414Score = 846 bits (2163), Expect = 0.0Identities = 411/421 (97%), Positives = 411/421 (97%) Frame = +3ETWGHPRRASWVVRSRRCRHCLCFMRKMLAAVSRVLSGASQKPASRVLVASRNFANDATF 197 Query: 18 ETWGHPRRASWVVRSRRCRHCLCFMRKMLAAVSRVLSGASQKPASRVLVASRNFANDATF ETWGHPRRASWVVRSRRCRHCLCFMRKMLAAVSRVLSGASQKPASRVLVASRNFANDATF 60 Sbjct: 1 Query: 198 EIKKCDLHRLEEGPPVTTVLTREDGLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDG 377 EIKKCDLHRLEEGPPVTTVLTREDGLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDG EIKKCDLHRLEEGPPVTTVLTREDGLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDG 120 Sbict: 61 Query: 378 QFLLPLTQEACCVGLEAGINPTDHLITAYRAHGFTFTRGLSVREILAELTGRKGGCAKAK 557 EACCVGLEAGINPTDHLITAYRAHGFTFTRGLSVREILAELTGRKGGCAK K Sbjct: 121 Q----EACCVGLEAGINPTDHLITAYRAHGFTFTRGLSVREILAELTGRKGGCAKGK 173 GGSMHMYAKNFYGGNGIVGAQVPLGAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYN 737 Query: 558 GGSMHMYAKNFYGGNGIVGAOVPLGAGIALACKYNGKDEVCLTLYGDGAANOGOIFEAYN Sbjct: 174 GGSMHMYAKNFYGGNGIVGAQVPLGAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYN 233 Query: 738 MAALWKLPCIFICENNRYGMGTSVERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFA 917 MAALWKLPCIFICENNRYGMGTSVERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFA Sbjct: 234 MAALWKLPCIFICENNRYGMGTSVERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFA 293 Query: 918 AAYCRSGKGPILMELQTYRYHGHSMSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNL 1097 AAYCRSGKGPILMELQTYRYHGHSMSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNL Sbjct: 294 AAYCRSGKGPILMELQTYRYHGHSMSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNL 353 Query: 1098 ASVEELKEIDVEVRKEIEDAAQFATADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSV 1277 ASVEELKEIDVEVRKEIED AQFA ADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSV Sbjct: 354 ASVEELKEIDVEVRKEIEDPAQFAAADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSV 413 Query: 1278 S 1280 Sbjct: 414 S 414 (SEQ ID NO:4) >CRA|18000004920128 /altid=gi|4505685 /def=ref|NP_000275.1| pyruvate dehydrogenase (lipoamide) alpha 1; Pyruvate dehydrogenase, E1-alpha polypeptide-1 [Homo sapiens] /org=Homo sapiens /taxon=9606 /dataset=nraa /length=390 Length = 390Score = 793 bits (2025), Expect = 0.0Identities = 389/397 (97%), Positives = 389/397 (97%) Frame = +3MRKMLAAVSRVLSGASQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED 269 Query: 90 MRKMLAAVSRVLSGASQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED Sbjct: 1 MRKMLAAVSRVLSGASQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED 60 Query: 270 GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQFLLPLTQEACCVGLEAGINPTDH 449 EACCVGLEAGINPTDH GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQ GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQ-----EACCVGLEAGINPTDH 113 Sbjct: 61 Query: 450 LITAYRAHGFTFTRGLSVREILAELTGRKGGCAKAKGGSMHMYAKNFYGGNGIVGAQVPL 629 LITAYRAHGFTFTRGLSVREILAELTGRKGGCAK KGGSMHMYAKNFYGGNGIVGAQVPL Sbjct: 114 LITAYRAHGFTFTRGLSVREILAELTGRKGGCAKGKGGSMHMYAKNFYGGNGIVGAQVPL 173 Query: 630 GAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSV 809 GAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSV

Sbjct: 174	GAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSV	233
Query: 810	ERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFAAAYCRSGKGPILMELQTYRYHGHS ERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFAAAYCRSGKGPILMELQTYRYHGHS	989
Sbjct: 234		293
Query: 990	MSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFA MSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFA	1169
Sbjct: 294	· ·	353
Query: 117	O TADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS 1280 TADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS	
Sbjct: 354	-	
>CRA 18000	004938217 /altid=gi 6679261 /def=ref NP_032836.1 pyruvate dehydrogenase Elalpha subunit [Mus musculus] /org=Mus musculus /taxon=10090 /dataset=nraa /length=390 Length = 390	
	783 bits (1999), Expect = 0.0 s = 382/397 (96%), Positives = 387/397 (97%) 3	
Query: 90	MRKMLAAVSRVLSGASQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED MRKMLAAVSRVL+G++QKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED	269
Sbjct: 1	MRKMLAAVSRVLAGSAQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED	60
Query: 270	GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQFLLPLTQEACCVGLEAGINPTDH GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQ EACCVGLEAGINPTDH	449
Sbjct: 61	GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQEACCVGLEAGINPTDH	113
Query: 450	LITAYRAHGFTFTRGLSVREILAELTGRKGGCAKAKGGSMHMYAKNFYGGNGIVGAQVPL LITAYRAHGFTFTRGL VR ILAELTGR+GGCAK KGGSMHMYAKNFYGGNGIVGAQVPL	629
Sbjct: 11		173
Query: 630	GAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSV GAGIALACKYNGKDEVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSV	809
Sbjct: 17	_ _	233
Query: 810	ERAAASTDYYKRGDFIPGLRVDGMDILCVREATRFAAAYCRSGKGPILMELQTYRYHGHS ERAAASTDYYKRGDFIPGLRVDGMDILCVREAT+FAAAYCRSGKGPILMELQTYRYHGHS	989
Sbjct: 23		293
Query: 990	MSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFA MSDPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFA	1169
Sbjct: 29	ve	353
Query: 11	O TADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS 1280 TADPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS	
Sbjct: 35		

Hmmer search results (Pfam):

Model	Description	Score	E-value	N
PF00676	Dehydrogenase El component	598.5	4e-176	1
PF01579	Domain of unknown function	3.0	2.3	1

Parsed for domains:

Model	Domain	seq-f	seq-t	_	hmm-f	hmm-t		score	E-value
PF01579								3.0	2.3
PF00676	1/1	66	369		1	327	[]	598.5	4e-176

1	AGTTGTTCCT	TCTAACCCAT	TGATTTGTTC	AATCATGTAT	TTAAGTAGGA
		A CHIMCHIMCCH			
51	CCTATATTTT	ACTTGTTCCT	TGCTATATCT	TCAGTGTGTA	GTACAGTGTC
101	TGACACAAAA	TCGGTGCTCA	ATAATAGGTG	TTGGATGAAT	GAGCAAATGA
		=			
151	ATGAATGAAT	TCATATTCAT	ATGGCCTACA	GAGTTCCCGT	ACATGCACAA
201	CCAATATCAC	CACCCCGTGG	AGATGACTCC	CAAATTAATA	TTTTTAGCAA
251	ATGTTCCAGA	CTTACAACTC	CAACTTCCCG	GGGGACATCT	TCAGATAGCT
301	GTGCCACTGC	CACCACCAGG	TCAACATGTC	CCAAACCATT	CAGACCAGCT
		•			
351	TTTTCTCCTG	AGCTGGACAT	CTGGCCTCCA	ACCTTTTCAT	TCTCTTTTAC
401	CTTTCATATT	CTATCAGCAG	CAGCAGCTGC	TGAAATCATA	CCATGCAAGT
451	TTCTCACGTC	CATCTCTGCC	TTTTAATGGC	GCCCTCTCAC	TCCTTTAAGA
501	AGTTTTCTTC	CACTGCAACA	CGATCTCTCA	GTCCAGAGTC	TGGCCCAGTG
551	CCCAAATTAT	TTCTCTAGCT	ATGCTGAGAG	CTGGTCATGC	TTTGAACTTC
601	TGCTTTGAAT	A CHURTO A CITIC	ACACTGGGAG	AGAATTATCT	CAMMCCACCA
601	IGCIIIGAAI	ACTTTCAGTG			CATTGGACCA
651	TTGTCATTGT	TAGAAAATTC	ATTGTTATGC	TGAAATGAAA	TGATTTTATT
701	CACACACACA	CACACACACA	CACAAAATAG	CTCTTCCTCC	TGGAACATGA
	CACACACACA	CACACACACA			
751	CTGGCCTGAA	AATGTGTGAA	GACATATCCA	ATCCTCTCTG	GTTTTACTGT
0.01	mcamcca amm	TTCTGTTCTC	CTCCTGGCAG	GAGGATTATA	TTTCACCTTG
801	TCATCCAATT	TICIGITCIC	CICCIGGCAG	GAGGATTATA	TITCACCITG
851	TGGAACTCAG	ACATGGTCGG	GTAACTAGCT	CTGGTCCGTG	AAAATTGAGA
901	GGAAGTGACA	TGTGTCACTT	CTGGGCAGAA	GCTTTGAGAG	CCGGTTTAAA
901	GGAAGIGACA				CCGGIIIAAA
951	TGATCCCTTT	TCTCTTCATC	CATGAGACAA	GCTAAGTTCC	AGAGAGAGGG
1001	TGCCACGCTG	TGAGGGACCT	GTGTTACGAG	TACGATGGCT	CGCGTCACTT
1051	CAAATTCTTG	AAATCACTGA	AATTTGGAGG	TCAGTTGTTA	CATCATAACC
1101	CAGCCAATTC	TAGTTAGCCT	GTTTTCTTCC	TAACTTCTTT	AATCGTTCTT
1151	CATAAGTCAC	AATCGCAGCC	CCTCACCGTT	CTGACCACTG	TCCCCTGGAT
1201	TCCACTCAGT	TTACTCATTA	TCCCCCTTAA	AATGTGGAGC	CCAAATCTGA
1251	ACCCGGAACC	CCAGGTGCAA	TCCCACTAGG	ACACAACACA	ATGGGTTCCT
1301	GAGCCCTTTG	ATCCTCTGAA	TAGAGCCCCT	TGTTGCTTTG	GTGTTTTGTC
1351	TCTGTGTGTG	CTTTTATCAT	CGGCTGAGCC	ACGCTGTTAA	CTCGCAGTGA
1401	GCCTGTGAAC	CAATAACTAG	AGAAAAAAGA	TTTTTCCCAT	TGTCCTCTCG
1451	ACATATATTG	GGAAACAAAT	TTTTTGATCC	GCGTTCAAGT	AGACAGGGCA
1501	GAACTGTCCA	ACTGCTACGT	GATCTTTTAA	AGACAAAGTT	AGTGGCAGAC
1551	CATTTACAGA	AACCAGATGT	TCTGTCTTTT	GGCTCTGAGC	ATGCTGCTAA
1601	TCTTCATCAT	CTAGTGTACT	GAACGAGATG	TACTGAACGA	GGGCTGCAGA
1651	GCTGCAGCAC	CGGCAGGAGT	AGGCGCTCGG	TAGGACGGGG	CCTGCACAAC
1701	CTCCCCGGTA	GTCAGCAGAG	CGGAATCTAG	GAAGGCTCCT	TTCCCGCGGC
1751	GCCCTGGAGG	CGGGGGCCCC	ACCTTCCCAC	GCAGGCGCTA	TCAAGCCCCG
1801	CCTCCTCACC	CGCCCGCGGC	GTGGCGTCGG	AAAGAGCCCT	CAGCCCCTCC
				TO A COCOTTO	
1851	CTCTCTGGCG	CTGATACCCA	ATGGGCAGCC	TCAGGCCTTT	AGCGGGGGCG
1901	GGGCACCCCC	TGGACGCCGT	TCTGGTTGGC	CCGCGGCCCG	GCGCAGCGCA
1951	TGACGTTATT	ACGACTCTGT	CACGCCGCGG	TGCGACTGAG	GCGTGGCGTC
	IGACGITATI	ACGACICIGI			
2001	TGCTGGGGCA	CCTGAAGGAG	ACTTGGGGGC	ACCCGCGTCG	TGCCTCCTGG
2051	GTTGTGAGGA	GTCGCCGCTG	CCGCCACTGC	CTGTGCTTCA	TGAGGAAGAT
2031		GICGCCGCIG	CCGCCACIGC		IGAGGAAGAI
2101	GCTCGCCGCC	GTCTCCCGCG	TGCTGTCTGG	CGCTTCTCAG	AAGCCGGTGA
2151	CACCTCCCC	GCGGGCCGGG	ATCCCCCCCCC	AGTGGGGCTG	Negeegggee
2201	GGAGGGCAGG	GCGGGCCAGG	CCGGGCCACC	CAGAGCGGGG	TGGAAGGCGC
	CAGGGGAGCC				
2301	CTGGCCTCGG	GAGAAGCGGC	ACGGACCGGG	ATCACGCCAA	GGTCCGTGTG
2351	AACTTCCCCC	TTCTCGACAC	CCACCTCCCC	CCCCCGGGGCC	CAGCTGTGCG
	CCAGGCGAAG				
2451	GAAAGGGTGG	CCTCGGCCTC	CTTCGAGTCT	CCAATTGACC	CCACTCATTT
	CGGATCTTCT				
2551	GAATCTGGAG	ACAGGGTGGC	TTCGTTCAAA	CAGCACCCTC	ACCATTGACT
	AGCCCTGTGA				
2651	TAAAATGTTT	GCTCGAAGTG	GAGTTAATCT	CTAAATGGAG	ATAAGAGTTA
	TCTCTGAAAT				
2751	GAGATAATAA	GAGTCCCCAC	CTCTTGGGGT	TGTCTTGAGG	ATTCAACGAG
	TGACACGTGT				
2851	ATGTGTGTTG	AATAGTGTTA	TTTATTGAGT	CTCCAGTTCG	GTATACATTT
	CTTGAACACC				
2951	TTCAGAAACA	AACTTCCTCC	TCTTCCCTCT	CCCTCAACAT	CTGAGCTTTT
	CTTGGCAGTG				
3051	TCCCCTCCCC	TTACCTACAC	ATTCTTAGGG	TACAAGTAGC	TAAAGCAAAG
3101	AGCAACGATG	CTTGAGGGGT	GGGGGGTAGA	GTTTAGCACT	ATTTCATGGC
	CTCAGCATTT				
3201	GGCACAGTGA	GGTCGTGTTA	ATTGGTGTAA	CTGCAGGCCT	CGGGATTCTG
					_
3071			$\Phi \nabla C C C \Phi C \Phi \Delta$	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CCDDCDCDTT
	GTATTTCCCC GTCAAAAGGT	CAGGACTTGA			

3351	ATGACAAAAC	TGCCGGGTGC	GGTGCTCAGG	CCTGTAATCC	CAGCATTTTG
3401	GGAGGCTGAG	GCAGGTGGAT	CACCTGAAGG	TCAGAAGTTC	GAGATCAGCC
3451	TGGCCAACAT	GGTGAAACCC	CGTCTCTACT	AAAAATACAA	AATTAGCCGG
3501	TCGTGGTGGC	GGGCTCCTGT	AATCCCAGCT	ACTCGGGAGG	CTGAGGCGGG
3551	AGAATAGCCT	GAACCCGGGA	GCGGAGTTTG	CAGTGAGCGG	AGATCGTGCC
		-			
3601	ATTGCACTAC	GGCCTGGGCG	ACAAGAAGCA	AGAACTCCGT	ATTTTAAAAA
3651	AAAAAAAAA	AAAAAAAAA	AAAAGCGTTC	CCTTTAGGGA	TATCTGTGGG
				GAAACATCCT	
3701	TAGAGGGCTG	TACCGGTAGT			TCCTTTAGGC
3751	ACCTGATGTA	GGTTTTCTTC	TTCTTCTGCA	AGTCAGGTTC	ATTGTTTCCT
3801	GTATCAGTTT	GCAGGGTCCC	CCCCCCCCG	CCACCTTACA	GTAGGAAGAA
3851	AATTGAGTTC	CAGATATGAA	GTCACCTTTG	AAAGTGCCCA	GGTATCTTTC
3901	CACTTGGTGG	TGTAAACTCT	TCAGATAATT	AGAAGTTTTC	TGTGTCACTC
3951	AACTTGTCAT	GGACTAATTT	AGGAAACATT	CCTGAAGCTT	TTAAGGATAG
				GGGTGGAATA	ATAAACTAAC
4001	AACTAAAAGT	TTCACTTTTA			
4051	GTGTTGACTC	TTTGTATTTT	GTAATTCTTC	ATACTTATGG	ATGTCTTTTT
4101	ACTTAACTAT	AAGTAACAAA	ATAGATCAAC	GTTTTAGTTT	TTTTATATTT
4151	TACATGTAAA	AAGACATTTT	GCATATAAGC	CTTTCACAAA	AATCTTGACA
4201	GTAAACAATA	AGCAGTGGCT	CACCCAAATT	AGGCAGACTT	ACTGCACTAG
4251	ACTCCTACCA	TCTGTGTGAT	ACTCCATGAA	GGGAGGGAGA	AGGGGAGGGA
4301	GAAGGGTAGG	CAGCTGGTCT	GATGGCTGTG	ACACAAGATA	ATCCCCTTAA
4351	CCTCCCAAGA	CGCTGTGTGT	TTTTTCCTTT	TTTATTCTCC	CTGGTTTACT
4401	TTCGTTTTGT	TTGAGACAGG	GTCTCTGTGT	CACCCAGGCT	GGAGTGCAGT
4451	AGCAGGACAG	CTCACTGCAG	CCTTAGCCTG	CTGGGCTCAA	GCGATCCTCC
4501	TGCCTTAGCC	TCCTGAGTAG	CTGGGAACAC	AGGCATGTGC	CACCACCACA
4551	CCCAGCCAAT	TTAAAAAAAT	TTTTTTTAC	TAGAGACATG	GTCTTGCTAC
4601	GTTGCCCAGT	CTGGTCTCCA	TCTCCAGGCT	CAAGCAGTCC	TCCCACCTCG
4651			TACTCTCACT	CTCTTAAAAC	CAGGCAGGTA
	GCCTCCCAAA	GTGCTGGGAT			
4701	GGGAGATTTA	TCTCAGGCTT	AAAGATTGCC	ATTGTCTCAT	CAAAGAGTGT
4751	TTGGTGTGAA	ACTTTGAAAT	GAATATCAAG	ATTGTGTTTT	TATTTTTGAA
4801	TAAGGTTTAT	AGTTTTCATA	GTTCTTATTT	CATGGAAGAA	GATTGAATGC
4851	ATTTAAAATG	TTATTTTATT	GTTTGCATTT	CTGTATGGCT	CCTTTTGTGA
4901	GATCTTTACT	AGCAATGTTT	TGGCTTTATA	AGTGGTAGGT	AAGAGTTTTA
4951	ATTTACACTG	TTAGAATCTG	CDDTTTTTCD	AACGTTTTTC	CTCTTTCACA
5001	TGAATGGTTC	CTATGTATTT		AGTTTTACTT	TTTTTTTAATT
5051	AATTTTTTTT	TTTAGGCTGG	AATGCAGTGG	CACAGTCATA	GCTCACTGTA
5101	GCCTCAGGTG	TGTGCCACCA	TACCTGACTA	ATTTTTTAAT	ATTTATTTTT
5151	GTAGAGATGA	GAGTCTCATG	TTGCCCAGGC	TGGCTTTGAA	CTCCTGGCTT
5201	CAAGTGGTCC	TCCCACCCTG	GCCTCCCAAA	GTGCTGGGGA	TTATAGGTGT
5251	GAGCCATCAT	GCCCGGCCTA	GTTTTTATTT	TTTAAAATTT	GAGTGGGTTG
5301	TTCGTGGTCT	CTGTCAGAGA	GGAATCCCAT	TTAACAGAGA	ATCTTTTTAT
5351	GGCTCTCCAG	AGAAAATGAA	TGGTAAACTT	ATCTTTTCAA	CAAGCTCTCA
5401	CTCAGAAATG	ATACACACAC	ACTTCTGATA	GGACTTTTAG	CTTCTTTAAC
5451	TTTGTTCCTT	TCACTCATAT	CAGTGGTTCT	TATTTTTGAG	ATACACAGTA
5501	ATGAAGCCAT	GGGAGAAAGT	ATCTAAGTAG	CTTTCTGGCA	GTCCTAATCT
5551	TTGCAGGCGC	AAGATTACAG	GCGCATGCCA	CAGCACTGGG	CCCCTTCTTG
5601	CTCTTTATTG	TATAGCATTA	TCCTGCCTCA	TTGTTTCAAC	TCTAGGATTG
	AGAAAGAAGT				
5701	CTGCCTTCCA	AAAACTGCAG	TTTCTGTAGT	TGTATTTGGA	AATTTATTC
5751	ACAATACAAT	AAATTTCTGG	CCCCACAAAA	TATTTATTAA	CTGCCAAGAA
5801	TAACACATCT	GTTTGATTGC	ם מדמדמ ממד	CATTGATTTG	CTGTTTCACC
	TTCTCTCAGC				
5901	TGAGATACAT	TAGTGGACTG	TCTCTGCCTG	TAAGTTAACT	GAAACACTGA
5951	TTCCTAGTAT	TTCAGTTGTT	TTCCTCCAGC	ACTGTCATTG	TCTGTGTTTG
	TTGGCTTTGT			GGTGAAGATA	
		•			
	GCTTTCTGCC			GGTATACTTG	
6101	CTTAACTCTT	CTCACCAAGA	TCAGTCCAGT	GCTGGATTAG	GTAAGGTATG
	AACACATCAG			TCATGTTGGT	
	GTGTGTGAGA				
6251	GGATAAATTT	TGTGGTCTAA	CCTAAACCTT	AGCCATTACA	TAGAATACTT
6301	TTGCTGTGAG	CAGGTTTGCT	CAGTTGTAAA	ACTGGAAAGG	AATCATTTCT
	CACCCCCGC			AACAGTGACA	
	CATCAAGAGA				
6451	AGCCTGTCCA	AGATTTAGGC	TGTTCAAATT	ATAAATTATA	AAACAGCTGG
	CTCAAGCCCA				
	TCTTGTCTCC			TTCAATCAAT	
	TTTTCTTACA				
6651	GATTAAATCA	TAGTTTTATT	TGAAGTATAA	TTTTGGCTTG	CTCAAAATGA

6701	ACAGTATCTG	GTTATGACTA	AGAATGGCAT	GAAAAGGCCA	GACGCAGTGG
6751	CTCATGCCTG	CAATCCCAGT	ACTTTGGGAG	GCCAAGGCAG	GTGGATCACC
6801	TGAGGTCAGG	AGTTGGAGAC	CAGCCTGGCC		AACCCCATCT
6851	CTACTAAAAA	TTAAAAATT	AGCCGGGCCG	TGGTGGTGGG	CACCTGTAAT
6901	CCCAGCTACT	CGGGAGACTG	AGACAGGAGA	AATCACTTGA	ACCCGGGAAG
6951	CGGAGGTTGC	AGTGAGCCGA	GATCGCACCA	CTGCACTCCA	GCCTGGGTGA
7001	TAAAAGCAAA	ACTCCGTCTC	AAAACAAACA	AACAAAAGAA	TGGCATAAAC
7051	AGACACAGCT	CACAGATGAT	CTAGTCTCTT	TAGCCACTAA	TTTCATTATA
7101	TTCTCACTAT	AATTTCTTTG	AAAACAAAGG	ATGGGTTTGT	TTTTTGCCCC
7151	TCTTTGCGCT	GCTTGCCTTC	AGATGCGGGA	TAATCCTGTT	TCATTGGCCA
7201	AAGCATGGAT	TCATTTTGGA	GGCCAAGGAA	GATGCAAACA	CAGTGCACAG
7251	GGTGGAAGAG	AAGCCTATGA	ATATGTTGGG	GCTTATTAAA	TTTCCATAAC
7301	TTCATTCTGA	TAACTGATTA	TTATACTTTC	CAAAATAGCT	GACAATTAAA
7351	AAGTACTGAT	TTGTTTGTAT	ATTTTTGTCT	TTTAAGGCAA	GCAGAGTGCT
7401	GGTAGCATCC	CGTAATTTTG	CAAATGATGC	TACATTTGAA	ATTAAGGTAA
7451	GAGTGTTTTA	CTTTGTTAAT	AATTTTTTCA	CAGGTACACT	CTGATATACA
7501	GTTTTACCTT	TAGAATAGAA	CATCTTGATG	TTCATGATTA	GTCATCATTT
7551	TCTTCTAAAT	GTCCAGGATC	AGAAGTTCAG	AGAAGCTTAT	TCAAAAGTTT
7601	GGAATGTAAT	TCAGTGAAAT	ATTTGAATAA	GAAGAGTCTT	AGTTGTTTCT
7651	TTGAAGGTTC	TTTCAACCTA	TAACTCAGTT	GGCTTCTAGG	GGCTTTCAGT
7701	GAAAATCATC	TTAGAAAGAT	TTCCTTCCCC	CAAGCCCCAT	CTCATTGCAC
7751		ATGGATTTAA	GGAACAGAGG	CGATATGAAG	CATTACTGAT
	AGTGAGGTTT				
7801	GTGCTCCTTT	GCAGTTTTTC	AAGTTCAATA	TTATTTGCAA	TGGAGTTAGA
7851	TCTTAGAGTG	GTCAACAGTG	TTTGCAATGT	AGTATGTGGA	GGATAATAAC
7901	TACCTTATTC	CATTTCAGAA	ATGTGACCTT	CACCGGCTGG	AAGAAGGCCC
7951	TCCTGTCACA	ACAGTGCTCA	CCAGGGAGGA	TGGGCTCAAA	TACTACAGGA
8001	TGATGCAGAC	TGTACGCCGA	ATGGAGTTGA	AAGCAGATCA	GCTGTATAAA
8051	CAGAAAATTA	TTCGTGGTTT	CTGTCACTTG	TGTGATGGTC	AGGTGAGTGG
8101	TAGGTTTGTG	GTGGAACTGT	GTTATTTAGG	TACTGAAGTA	TGGCTTGTAC
8151	TTATTGGGCT	TTACCCTGCC	ATATGTATCA	GAAGAGTTTG	AGGCTGGTAA
8201	TGTAATTTTC	TTTTATTTAT	TTATTTTTTT	GAGACAGTCT	CTCTCTGTCG
8251	CCCAGGTTAG	AGTACAGTGG	TGATCTTGGC	TCACTGCAGC	CTCTGGTTAG
8301	AGTACAGTGT	GATCTTGGCT	CACTGCAGCC	TCTGTCCACT	GGGCTCAAGC
8351	AATCCTCCCA	CCTCAGCCTC	CCGAGTATGT	GGGACCACAG	GTGCACACCA
8401	ACACACCCAG	CTAATTTTTG	TATTTTTTGG	AGATACGGGG	TTTCACTATG
8451	TTGCCCAGGC	TAGTCTCAAA	CTTCTGGGCT	CAAGTGGTCC	GCCCACCTTG
8501	GCCTCCCAAG	GTGCTAGGAT	TACAGGCGTG	AGCCACTGTG	CCTGGCTGAA
8551	GCCAGTATTT	TAGAATTAAA	AAGTAGAATG	CCAAAACCTG	CTATGAAGCT
8601		AATTCATTCA	CACATAACAT	TGCCAGTTTT	CTGTACCTGT
	TAGGCTAAAG				
8651	TCTTAGAGTT	TTACTATTTT	AAAACTTTCT	GGCACTATGA	TCGCCTGTAC
8701	TGTATATAAT	TTGGAGAGAA	AGGATTAGTT	TGTTTTTTGT	TTTGTGGGCT
8751	TAGGTCAAGG	GTTAGAGTCA	AATACCTACA	AGGGCCAGCC	AGGTAGAATA
8801	AATGAGTGAA	GAAGGCTAGG	TATACAAAAC	AGAAAATGGT	GACAGGGACT
8851	CATGCTGAAC	TGGCACCAGC	ATGCCCTACC	CAGAGGAATG	CCATGACTTG
8901	GTTCCAGCCA	GTTGGTGCCA	TGTGGAAATC	AGGGGTAATG	TTTCCTGTTT
		AGAGAAGGCG			
		TTGACATCTG			TCATCATACA
9051	GGAGAAAGGA	AGGAAGTGGC	ACATGTGTGG	GTTGCCAGTT	TATTGCTTCT
91.01	GGTTTGGGCC	TTCCACTCTG	TATTTTGGGG	GAAAATAGCT	ACTTTCTCTG
	GTTATTAATG		CTAGCCCACA		
9201	AACGTTTTTA	TTTAGAAACA	TGTATCATAT	TGCCTCATAG	TTTCTCCTTC
9251	CTCTAACACA	GGAAGCTTGC	TGTGTGGGCC	TGGAGGCCGG	CATCAACCCC
	ACAGACCATC	TCATCACAGC			CTTTCACCCG
9351	GGGCCTTTCC	GTCCGAGAAA	TTCTCGCAGA	GCTTACAGGT	TTGCTGTTGA
9401	TTTACAGAAA	GGGGAAATGA	GTGGATTAAG	TTTTTAAATA	TCTGTGCATT
	AAGATGCTAT	TATGAGTTAA		AAATTTTAAG	TTTCTTTTTT
	TAACCCTCTC		CTCTGGTACT		
9551	ACTGACCATT	TGTGAAGTTC	TCTGGCCCCT	CAGGTAAAAG	TTTAAAACAG
9601	GTTGGTGCTA	TAAAATCACA	GTAGGTTTGG	TTATCATTCA	AGCATGCCAG
		GCAGTCATAG			
		AATTCTAGAA			TTCTTTGTCC
9751	CCCGTGACTA	TTTGTTTGTT	TTGGTGGTTT	TTTTTTTTT	TTTTTTTTGA
	GACTGTGTCT		TCCAGGTGGT	GTGCAGTGGT	GTGATCAGGG
		CCTCCACCTC			
9901	TCCTGAGTAG	CTGGGACTAC	AGGCATGCAC	CACCACACCT	GGCTAATTTT
9951	TGTATTTTTA	GTAGAGATGG	GGTTTCAACA	TGTTGGCCAG	GCTGGTCTCC
		CTCAGGTGAT			

10051	GGGTTACAGG	CGTGAGCCAC	CGCACCTGGC	CTGTTTTGTT	TTTTTGAGAC
10101	AGAGTCTCGC	TTTGTTGCCC	AGGCTGGAGT	GCAGTGGCCT	GCCTCAGCCT
10151	CCCAAAATGC	TAGGATTACA	GGCGTGAGCC	ACTGTGCCCG	GTCCTCCTCC
10201	TCCTCCTTTT	TTTTTTTTT	TTTTGAGACA	GAGTTTCACT	CTTTCACCCA
10251				TTTTGGCTCA	CTGCAGCCTC
	GGCTGGAGTG	GCTGGAGTGA	AGTGGTATGA		
10301	CGCCCCCGG	GTTCAAGCAA	TTCTCCTGCC	TCAGCCTCCT	GAGTAGCTAG
10351	GATTATAGGT	GCCCAACCAC	CACACCTGGC	TAATTTCTGT	ATTTTTAGTA
10401	GAGACCAGGT	TTCACCATGT	TGGCCAGGCT	GGTCTTGAAC	TCTTGACCTC
10451	AGGTGATCCA	CCCTCTTCGG	CCTCCCAAAA	TGTTAGGATT	ACAGGCGTGA
10501	GCCGCCGTGC	CCGGCCCTCC	TTGACTCTTG	AACTATGGTT	GTCCCTCTAT
10551	ATATCCAGGG	GATTGGTTCT	AGGACCCTCG	AGTATACAAA	AATCCTCAAA
10601	TACTCAAGTC	CCAAAGTCAG	CCTTCCATAT	CTTCGGGTTT	GCATCCTGAG
10651	AATATTCTAT	TTTCAATACA	TGTGTGGCTG	AAAAAAAATC	TGTGTATAAG
10701	TGTACCTGTG	CAGTTCAAAC	CCTGTTCAAG	GATTGAATAT	ATTTAGTGTA
10751	CTAGTATAGG		AGATGTTTGT	AACTGGCCAG	AAAACCCAGA
10801	AAAGTCCAGG	GTATCATCTG	GATGGAACAT	CTGAAGGAAA	CTAAGTGACT
10851	AGAGAGTAGG	AAAAGCTGGA	AAGGTTGAAG	CACATGGAAC	TAGTGAAAGG
10901	ACAAGGAGAA	ACATGTGTTT	GCCTGGAGGG	ACAGGTACTT	AGACGACTGA
10951	ACTGGCCTCT	GTGTTCTAAT	GGTTGAGCCT	CAGAGTACAT	ATTTGGGGTG
11001	CGGTTTGGTT	TGCTTTGTAG	AGTTGGTTTG	TTCTGCACAT	GTGTATGTTC
11051	TGCCATTTCC	AGGACGAAAA	GGAGGTTGTG	CTAAAGGGAA	AGGAGGATCG
11101	ATGCACATGT	ATGCCAAGAA	CTTCTACGGG	GGCAATGGCA	TCGTGGGAGC
11151	GCAGGTAGTC	AAGGACGAGG	ATTGTGTGCT	GCTTTAGATT	TGGCCCTGGA
11201	CTTTGTCTTG	AAAAACCTTT	CACAGCCCCA	GACAACTTTT	CCTGAAGCTA
11251	GTACAGCCAT	GTGCTGCACA	GTGACGCTTT	GGTCAATGTC	GCATATATGA
11301	TGTTGGACCC	ATAAGATTAT	AATGGAGCTG	AAAAATTCCT	GTCGCCTAGT
11351	GATGTTGTAG	TGGCACAACA	CATTACCTTT	TCTACGTTTA	GGTACACAAA
11401	TATTTTGCCT	ACAGGATTCA	GTAGAGTCAC	ATGCTGTGCA	GGGTTGTAGC
11451	CTAGGAGCAG	TAGGCTCTAC	TATACAGCCT	AGGTGTGCAG	TGGGCTGTAC
11501	CATCTAGGTT	CGTGCATTAC	AGTATGGTGT	TCACATGACA	AAATCGCCTA
11551	GTGATGCAAT	TCTGAGAATA	TATCCCTGTT	GTTAAGTGAC	GCGTGACTAT
11601	TTTGGGGGCT	TGGTTTGCTT	TTAAAGACCT	AGTGCTTCAT	ATCCTACCGT
11651	TTGAGAGATG	AGTAGATTTG	GATGGTGATT	TATAATGTTT	CCTTTTAGGT
11701	GTCTGCTGTT	TTATAAGTAA	GCAGGAACCT	CTAGCAGTGG	AGCCATACCT
11751	TCCCCTTCCT	ATTTATATTT	CAGTACATTA	ATTGCTTTAT	CTTGTCAACT
11801	TCATTTTGGG	GTCCTTGTTC	TCATCAGTTA	GTGAATGATG	AAGAATTAAC
11851	AGCACAAAAT	TATATCCGGA	CTGTTTCTTT	TCCTTTCTAA	TATATTAAGA
11901	TTCTATTATG	TGTTGTTTTT	TTTTAAACCT	AGGTTTTATT	TTTCCTTTTG
11951	AAATGGAGTC	TTGCTCAGCC	GCCCAGGCTG	GAGCAGTGGT	GTAATCTCAG
12001	CTCACTGCAA	CCTCCACCCC	CGGGTTCAAG	CAATTCTCCT	GCCTCAGCCT
12051	CCCGAGTAGC	TGGGAATATA	GTTACGTGCC	ACCATGCCCA	ACCATTTTT
12101	GTATTTTTAG	TAGAGACGGG	GTTTCACCAT	CTTGTCCAGG	ATGGTCTCGA
12151	TCTGTGGACC	TCGTGATCTG	CCCAAAGTGC	TGGGATTACA	GGCGTGAGCC
12201	ACCACGCCCG	GCCAGGTTTT	ATTTTTTAAC	TCTTGAATGC	AGAAATGTTA
12251	GTGCTTACTG	GTTAAAATAG	AACATAGTAT	TTATATATTA	CTTTAGTGCT
12301	TTATTGAAAA	TATCGGAGGT	GGGATAAACA	GAGAGATAGG	GTTGGAAGGA
12351	GAGTTTGTAG	CAGCAGTGTA	ATTTCTGTGT	CAGATTCTGG	CCAGGAGTGA
12401	AAATGCAGGG	CATTAATTAG	TATCTCCCCT	CATGGATTTC	TGTGGTTCCT
12451	TTCTCGGTTG	TCCTTAATGT	TAGGTGCCCC	TGGGCGCTGG	GATTGCTCTA
12501	GCCTGTAAGT	ATAATGGAAA	AGATGAGGTC	TGCCTGACTT	TATATGGCGA
12551	TGGTGCTGCT	AACCAGGTAA	TTATGTCTCT	TAACTTCCCA	AAAACAGTCT
12601		GTCTTTAATA	TTTACAGTTG	AATTTCTAAA	GAAGTAGCAT
		AGGTGAAATA			AAATTTGGTT
	GACTTATGGC		ATTGACCTCT	TAGCGTTGTT	TCACAAGAGA
12751		CACATTCCTG		CACCTTTGCT	CTACATCAGT
12801		GGCCCTGTGG	TAAAGGACCT	CCCCACAACC	TATTGCAAAA
	CAATACAGAC				TCAAATTCGG
				GCTGGCAGTG	
12901		CTGAGTCCTA		TATGCTTCTC	TTGTTACCGA
12951		GTCTGTGGCC		GAAGCCCTGT	TCTAGAGGCT
13001		TGCTGGTTCA			TGATAGATTT
13051		TTTTTTCCAG		ACTGCTAGCA	
13101		GTAGTTGGTT	TGTCACCTTC		
13151		TCTCCTCCAC			ACCACCCAAA
13201		AGAAGAGGAG			
		CAGCAGCTGT			
		CCTTTTCGTA			
13351	ACAACATGGC	AGCTTTGTGG	AAATTACCTT	GTATTTTCAT	CTGTGAGAAT

13401	AATCGCTATG	GAATGGGAAC	GTCTGTTGAG	AGAGCGGCAG	CCAGCACTGA
13451	TTACTACAAG	AGAGGCGATT	TCATTCCTGG	GCTGAGAGTA	AGGACACCTG
13501	TGGTGGGGCC	GGGGCCAAGG	CCAAGGCCAA	GGGTATGTAC	CTTGTGCAGA
13551	CCCTTGACGA	TCTTAGAAAC	ATTGGAGAGT	TTCATTCTCA	TACAGGAGCA
13601	GGTCATGTGA	AAGTAAAATG	GTTTGGGGCA	GTTGGATTCA	TGCTTCGCCC
13651	CTCCCCTGTT	TATTACCAGG	TGGATGGAAT	GGATATCCTG	TGCGTCCGAG
		· ·			
13701	AGGCAACAAG	GTTTGCTGCC	GCCTATNGTA	GATCTGNNNN	иииииииии
13751	ииииииииии	иииииииии	NNNNNNNNN	иииииииии	иииииииии
13801	ииииииииии	ииииииииии	иииииииии	ииииииииии	иииииииии
13851	NNNNNNNNN	ииииииииии	NNNNNNNNN	ииииииииии	NNNNNNNNN
	NININININININININI	иииииииии	ииииииииии	ииииииииии	иииииииии
13901	иииииииии				
13951	иииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии
14001	иииииииии	ииииииииии	иииииииии	ииииииииии	иииииииии
14051	ииииииииии	ииииииииии	NNNNNNNNN	иииииииии	иииииииии
14101	ииииииииии	иииииииии	ииииииииии	иииииииии	иииииииии
14151	ииииииииии	ииииииииии	иииииииии	ииииииииии	иииииииии
14201	ииииииииии	ииииииииии	ииииииииии	ииииииииии	ииииииииии
14251	иииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии
14301	ииииииииии	ииииииииии	ииииииииии	ииииииииии	ииииииииии
14351	ииииииииии	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	иииииииии
					ииииииииии
14401	иииииииии	иииииииии	ииииииииии	ииииииииии	MINIMINIMINIMINI
14451	иииииииии	ииииииииии	ИИИИИИИИИИ	ииииииииии	имимимими
14501	ииииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии
14551	ииииииииии	ииииииииии	иииииииии	NNNNNNNNN	иииииииии
14601	ииииииииии	ииииииииии	иииииииии	NNNNNNNNN	NNNNNNNNN
14651	иииииииии	иииииииии	иииииииии	ииииииииии	иииииииии
14701	иииииииии	иииииииии	ииииииииии	NNNNNNNNN	NNNNNNNNN
14751	иииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии
14801	NNNNNNNNN	ииииииииии	ииииииииии	ииииииииии	ииииииииии
14851	ииииииииии	ииииииииии	NNNNNNNNN	иииииииии	NNNNNNNNN
14901	ииииииииии	ииииииииии	иииииииии	иииииииии	иииииииии
14951	NNNNNNNNN	ииииииииии	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN
15001	иииииииии	иииииииии	иииииииии	иииииииии	ииииииииии
15051	иииииииии	ииииииииии	ииииииииии	ииииииииии	ииииииииии
15101	иииииииии	ииииииииии	NNNNNNNNN	ииииииииии	NNNNNNNNN
15151	ииииииииии	иииииииии	ииииииииии	ииииииииии	NNNNNNNNN
15201	NNNNNNNNN	ииииииииии	иииииииии	NNNNNNNNN	NNNNNNNNN
15251			ииииииииии	иииииииии	ииииииииии
	иииииииии	иииииииии			
15301	иииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии
15351	иииииииии	иииииииии	иииииииии	иииииииии	NNNNNNNNN
15401	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии
15451	ииииииииии	ииииииииии	ииииииииии	ииииииииии	ииииииииии
15501	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии
15551	ииииииииии	иииииииии	иииииииии	ииииииииии	NNNNNNNNN
15601	NNNNNNNNN	иииииииии	ииииииииии	иииииииии	NNNNNNNNN
15651	иииииииии	иииииииии			иииииииии
15701	иииииииии	иииииииии	ииииииииии	NNNNNCCTT	TTAGTGTTAC
15751	TTCAGATGAT	ATAGGCATAA	GATACATTGG	TTTTGCTGGC	TGTGCTTCTT
15801		m > > < < < < > < > < > < > < > < > < >	ACCCA ACCCA		CTCCTTCCCC
	TAGGGGGACT		AGGCAAGGCA	CATGGATTTC	
15851	TAGGGGGACT		AGGCAAGGCA ATTATCACCA		CTGCTTGGCG CTCTGCTGTC
	CTCTGATGTC	TCAAAGTCTA	ATTATCACCA	CATGGATTTC CACACACCAT	CTCTGCTGTC
15901	CTCTGATGTC CCCACCCATG	TCAAAGTCTA TAGTATACAG	ATTATCACCA GAGCCCAAAT	CATGGATTTC CACACACCAT GGGTGGGACA	CTCTGCTGTC AGTGACACTT
	CTCTGATGTC	TCAAAGTCTA TAGTATACAG	ATTATCACCA	CATGGATTTC CACACACCAT	CTCTGCTGTC AGTGACACTT
15901 15951	CTCTGATGTC CCCACCCATG CTTTAGAACC	TCAAAGTCTA TAGTATACAG TTACATCTAA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA	CTCTGCTGTC AGTGACACTT CTTGGCCCCT
15901 15951 16001	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC
15901 15951 16001 16051	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT
15901 15951 16001	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT
15901 15951 16001 16051 16101	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG
15901 15951 16001 16051 16101 16151	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA
15901 15951 16001 16051 16101 16151 16201	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA
15901 15951 16001 16051 16101 16151	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA
15901 15951 16001 16051 16101 16151 16201 16251	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA TTACCGTACA
15901 15951 16001 16051 16101 16151 16201 16251 16301	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA TTACCGTACA TTATGCTTCT
15901 15951 16001 16051 16101 16151 16201 16251	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG	CATGGATTTC CACACACCAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA TTACCGTACA TTATGCTTCT
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401 16451	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGGA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401 16451 16501	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG TGTCCTGGGA	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT CATAAATAGT	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT TCCATAGTTC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC CAAAGTCCCT	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA TGGGGTGGGG
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401 16451 16501	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG TGTCCTGGGA GCTTTTCCTT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT CATAAATAGT TAGTTTCCTC	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT TCCATAGTTC TATTCAAAAT	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC CAAAGTCCCT TGTATTTACTC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA TGGGGTGGGG
15901 15951 16001 16051 16101 16151 16201 16251 16301 16451 16451 16501 16551	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG TGTCCTGGGA GCTTTTCCTT AGATTTTGGT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT CATAAATAGT TAGTTTCCTC GGACTGTGAA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT TCCATAGTTC TATTCAAAAT CCACCATCAC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC CAAAGTCCCT TGTATTACTC AGTGGCAAAG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA TGGGGTGGGG
15901 15951 16001 16051 16101 16151 16201 16251 16301 16351 16401 16451 16501	CTCTGATGTC CCCACCCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG TGTCCTGGGA GCTTTTCCTT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT CATAAATAGT TAGTTTCCTC GGACTGTGAA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT TCCATAGTTC TATTCAAAAT	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC CAAAGTCCCT TGTATTTACTC	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA TGGGGTGGGG
15901 15951 16001 16051 16101 16151 16201 16251 16301 16451 16451 16501 16551	CTCTGATGTC CCCACCATG CTTTAGAACC GTTGTCGGTA TAGAAAAGAC TTTGAAAGTA GTATGCCCCT CAATCCAACC CTGCTCTTAC CGAGAAGAAA CAAGGACAGG TACAGTCACT CCCTGGGTGG TGTCCTGGGA GCTTTTCCTT AGATTTTGGT AGATTTTGGT	TCAAAGTCTA TAGTATACAG TTACATCTAA ATGCCAGGGA AGAAGCAGTT TAACAACAAC TTGTTTCAGA CCATATCATG TGATCGATTA TTCAGGAAGT ATGGTGAACA TGTTCATGGT CCACAGAGTT CATAAATAGT TAGTTTCCTC GGACTGTGAA	ATTATCACCA GAGCCCAAAT ATCAAAGCAG AGCCATGTGA ATTACAGAAT TCTGCCACGC AACACACTTC TTTCATCACG CTACTTTTCC AAGAAGTAAG GCAATCTTGC GGTTTGAAGG TGTGTGGGTT TCCATAGTTC TATTCAAAAT CCACCATCAC	CATGGATTTC CACACACAT GGGTGGGACA CAAGCAAAAA CTCACCAGTG GTTAGGCTGC CTATAGTGAC TGTATTTCAC CCGTCCTTGC CTCCCCATAG AGTGACCCTA CAGTGTGGAA TTGGCTTTAA CCTCCAAGCC CAAAGTCCCT TGTATTACTC AGTGGCAAAG	CTCTGCTGTC AGTGACACTT CTTGGCCCCT TACGGTTTTC GTTCTGGTAT ATAAGCATTG CTCATTGGAA TCTACTGGAA TTACCGTACA TTATGCTTCT GAACTAAAGG AAGTTGCCAC CAGAAAGTGA TGGGGTGGGG

16751	ииииииииии	ииииииииии	ииииииииии	иииииииии	иииииииии	
16801	ииииииииии	иииииииии	ииииииииии	иииииииии	иииииииии	
16851	ииииииииии	ииииииииии	иииииииии	иииииииии	иииииииии	
16901	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
16951	ииииииииии	ииииииииии	иииииииии	иииииииии	иииииииии	
17001	иииииииии	ииииииииии	иииииииии	иииииииии	иииииииии	
17051	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17101	ииииииииии	иииииииии	иииииииии	иииииииии	ииииииииии	
17151	иииииииии	ииииииииии	иииииииии	иииииииии	иииииииии	
17201	ииииииииии	ииииииииии	иииииииии	иииииииии	ииииииииии	
17251	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17301	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17351	ииииииииии	иииииииии	иииииииии	иииииииии	ииииииииии	
17401	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17451	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17501	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17551	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17601	ииииииииии	иииииииии	иииииииии	ииииииииии	иииииииии	
17651	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17701	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17751	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17801	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
		иииииииии				
17901	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
17951	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
18001	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
18051	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
		иииииииии				
18151	ииииииииии	иииииииии	иииииииии	иииииииии	иииииииии	
		ииииииииии				
		иииииииии				
		иииииииии				
18351	ииииииииии	иииииииии	ииииииииии	ииииииииии	иииииииии	(SEQ ID NO:3)

FEATURES:

 Start:
 2090

 Exon:
 2090-2146

 Intron:
 2147-7386

 Exon:
 7387-7446

 Intron:
 7447-7918

 Exon:
 7919-8092

 Intron:
 8093-9240

 Exon:
 9241-9388

 Intron:
 9389-11062

 Exon:
 11063-11154

 Intron:
 1155-12473

 Exon:
 12474-12566

 Intron:
 12567-13331

 Exon:
 13488-13669

 Exon:
 13670-13727

 Intron:
 13728-15920

 Exon:
 15921-16007

 Intron:
 16008-16290

 Exon:
 16291

CHROMOSOME MAP POSITION:

Chromosome X

ALLELIC VARIANTS (SNPs):

DNA				Protein		
Position	Major	Minor	Domain	Position	Major	Minor
1785	G	T	Beyond ORF(5')			
1895	G	A	Beyond ORF(5')			
2118	G	C	Exon	10	R	P

FIGURE 3F

WO 02/070663	PCT/US02/06696

	A					
7932	A	G	Exon	4 4	Н	R
8015	С	T	Exon	72	R	C
8063	С	A	Exon	88	R	S
8066	G	A	Exon	89	G	S
9307	С	G	Exon	120	Н	D
9349	С	T	Exon	134	R	W
9350	G	A	Exon	134	R	Q
11066	G	A	Exon	148	R	Q
11128	G	A	Exon	169	G	R
11135	A	G	Exon	171	N	S
11143	G	A	Exon	174	V	M
12486	G	С	Exon	182	A	P
12558	G	A	Exon	206	A	T
13376	T	C A	Exon	223	F	F L
13378	С	T	Exon	224	P	L
16233	G	C	Intron			
16354	G	A	Exon	330	R	K
16377	T	G	Exon	338	С	G

Context:

DNA Position

1785

TCAAGTAGACAGGCCAGAACTGTCCAACTGCTACGTGATCTTTTAAAGACAAAGTTAGTG
GCAGACCATTTACAGAAACCAGATGTTCTGTCTTTTTGGCTCTGAGCATGCTGCTAATCTT
CATCATCTAGTGTACTGAACGAGATGTACTGAACGAGGGCTGCAGAGCTGCAGCACCGGC
AGGAGTAGGCGCTCGGTAGGACGGGGCCCTGCACAACCTCCCCGGTAGTCAGCAGAGCGGA
ATCTAGGAAGGCTCCTTTCCCGCGGCGCCCCTGGAGGCGGGGCCCCACCTTCCCACGCAG
[G,T]

TGCTAATCTTCATCATGTAGTGTACTGAACGAGATGTACTGAACGAGGGCTGCAGAGCTG
CAGCACCGGCAGGAGTAGGCGCTCGGTAGGACGGGGCCTGCACAACCTCCCCGGTAGTCA
GCAGAGCGGAATCTAGGAAGGCTCCTTTCCCGCGGCGCCCTGGAGGCGGGGCCCCACCT
TCCCACGCAGGCGCTATCAAGCCCCGCCTCCTCACCCGCCGCGGCGTGGCGTCGGAAAG
AGCCCTCAGCCCTCCTCTCTGGCGCTGATACCCAATGGGCAGCCTTCAGGCCTTTAGCG
[G, A]

7932 AAGAGTCTTAGTTGTTTCTTTGAAGGTTCTTTCAACCTATAACTCAGTTGGCTTCTAGGG
GCTTTCAGTGAAAATCATCTTAGAAAGATTTCCTTCCCCCAAGCCCCATCTCATTGCACA
GTGAGGTTTATGGATTTAAGGAACAGAGGCGATATGAAGCATTACTGATGTGCTCCTTTG
CAGTTTTTCAAGTTCAATATTATTTGCAATGGAGTTAGATCTTAGAGTGGTCAACAGTGT
TTGCAATGTAGTATGTGGAGGATAATAACTACCTTATTCCATTTCAGAAATGTGACCTTC
[A,G]

8015 AAAGATTTCCTTCCCCCAAGCCCCATCTCATTGCACAGTGAGGTTTATGGATTTAAGGAA
CAGAGGCGATATGAAGCATTACTGATGTGCTCCTTTGCAGTTTTTCAAGTTCAATATTAT
TTGCAATGGAGTTAGATCTTAGAGTGGTCAACAGTGTTTTGCAATGTAGTATGTGGAGGAT
AATAACTACCTTATTCCATTTCAGAAATGTGACCTTCACCGGCTGGAAGAAGGCCCTCCT
GTCACAACAGTGCTCACCAGGGAGGATGGCTCAAATACTACAGGATGATGCAGACTGTA

GGATTTAAGGAACAGAGGCGATATGAAGCATTACTGATGTGCTCCTTTGCAGTTTTTCAA
GTTCAATATTATTTGCAATGGAGTTAGATCTTAGAGTGGTCAACAGTGTTTGCAATGTAG
TATGTGGAGGATAATAACTACCTTATTCCATTTCAGAAATGTGACCTTCACCGGCTGGAA
GAAGGCCCTCCTGTCACAACAGTGCTCACCAGGGAGGATGGGCTCAAATACTACAGGATG
ATGCAGACTGTACGCCGAATGGAGTTGAAAGCAGATCAGCTGTATAAACAGAAAATTATT
[C, A]

TTTAAGGAACAGAGCGATATGAAGCATTACTGATGTCTCCTTTTGCAGTTTTCAAGTT
CAATATTATTTGCAATGGAGTTAGATCTTAGAGTGGTCAACAGTGTTTTCAATGTAT
GTGGAGGATAATAACTACCTTATTCCATTTCAGAAATGTGACCTTCACCGGCTGGAAGAA
GGCCCTCCTGTCACAACAGTGCTCACCAGGGAGGATGGGCTCAAATACTACAGGATGATG
CAGACTGTACGCCGAATGGAGTTGAAAGCAGATCAGCTGTATAAACAGAAAATTATTCGT
[G, A]

GGCATCAACCCCACAGACCATCTCATCACAGCCTACCGGGCTCACGGCTTTACTTTCACC

GGGGCCTTTCCGTCCGAGAAATTCTCGCAGAGCTTACAGGTTTGCTGTTGATTTACAGAA AGGGGAAATGAGTGGATTAAGTTTTTAAATATCTGTGCATTAAGATGCTATTATGAGTTA ATATTTGTTAAAAATTTTAAGTTTCTTTTTTTAACCCTCTCTCCTTTGGTGCTCTGGTAC TTCTGTTGTGCTCTTGAGTTAACTGACCATTTGTGAAGTTCTCTGGCCCCTCAGGTAAAA GTTTAAAACAGGTTGGTGCTATAAAATCACAGTAGGTTTGGTTATCATTCAAGCATGCCA

> GGGCCTTTCCGTCCGAGAAATTCTCGCAGAGCTTACAGGTTTGCTGTTGATTTACAGAAA GGGGAAATGAGTGGATTAAGTTTTTTAAATATCTGTGCATTAAGATGCTATTATGAGTTAA TATTTGTTAAAAATTTTAAGTTTCTTTTTTTAACCCTCTCTCCTTTGGTGCTCTGGTACT TCTGTTGTGCTCCTTGAGTTAACTGACCATTTGTGAAGTTCTCTGGCCCCTCAGGTAAAAG TTTAAAACAGGTTGGTGCTATAAAATCACAGTAGGTTTGGTTATCATTCAAGCATGCCAG

11066 TCCTAAGATGTTTGTAACTGGCCAGAAAACCCAGAAAAGTCCAGGGTATCATCTGGATGG
AACATCTGAAGGAAACTAAGTGACTAGAGAGTAGGAAAAGCTGGAAAGGTTGAAGCACAT
GGAACTAGTGAAAGGACAAGGAGAAACATGTGTTTGCCTGGAGGGACAGGTACTTAGACG
ACTGAACTGGCCTCTGTGTTCTAATGGTTGAGCCTCAGAGTACATATTTGGGGTGCGGTT
TGGTTTGCTTTGTAGAGTTGGTTTCTGCACATGTGTATGTTCTGCCATTTCCAGGAC
[G, A]

AAAAGGAGGTTGTGCTAAAGGGAAAGGAGGATCGATGCACATGTATGCCAAGAACTTCTA
CGGGGGCAATGGCATCGTGGGAGCGCAGGTAGTCAAGGACGAGGATTGTGTGCTGCTTTA
GATTTGGCCCTGGACTTTGTCTTGAAAAACCTTTCACAGCCCCAGACAACTTTTCCTGAA
GCTAGTACAGCCATGTGCTGCACAGTGACGCTTTGGTCAATGTCGCATATATGATGTTGG
ACCCATAAGATTATAATGGAGCTGAAAAATTCCTGTCGCCTAGTGATGTTGTAGTGGCAC

11128 CATCTGAAGGAAACTAAGTGACTAGAGAGTAGGAAAAGCTGGAAAGGTTGAAGCACATGG
AACTAGTGAAAGGACAAGGAGAAACATGTGTTTGCCTGGAGGGACAGGTACTTAGACGAC
TGAACTGGCCTCTGTGTTCTAATGGTTGAGCCTCAGAGTACATATTTGGGGTGCGGTTTG
GTTTGCTTTGTAGAGTTGGTTTGTTCTGCACATGTGTATGTTCTGCCATTTCCAGGACGA
AAAGGAGGTTGTGCTAAAGGGAAAGGAGGATCGATGCACATGTATGCCAAGAACTTCTAC
[G, A]

GGGGCAATGGCATCGTGGGAGCGCAGGTAGTCAAGGACGAGGATTGTGTGCTGCTTTAGA
TTTGGCCCTGGACTTTGTCTTGAAAAACCTTTCACAGCCCCAGACAACTTTTCCTGAAGC
TAGTACAGCCATGTGCTGCACAGTGACGCTTTGGTCAATGTCGCATATATGATGTTGGAC
CCATAAGATTATAATGGAGCTGAAAAATTCCTGTCGCCTAGTGATGTTGTAGTGGCACAA
CACATTACCTTTTCTACGTTTAGGTACACAAATATTTTGCCTACAGGATTCAGTAGAGTC

AGGAAACTAAGTGACTAGAGAGATAGGAAAAGCTGGAAAGGTTGAAGCACATGGAACTAGT
GAAAGGACAAGGAGAAACATGTGTTTGCCTGGAGGGACAGGTACTTAGACGACTGAACTG
GCCTCTGTGTTCTAATGGTTGAGCCTCAGAGTACATATTTGGGGTGCGGTTTGGTTTGCT
TTGTAGAGTTGGTTTGTTCTGCACATGTGTATGTTCTGCCATTTCCAGGACGAAAAGGAG
GTTGTGCTAAAGGGAAAGGAGGATCGATGCACATGTATGCCAAGAACTTCTACGGGGGCA
[A.G]

TGGCATCGTGGGAGCGCAGGTAGTCAAGGACGAGGATTGTGTGCTGCTTTAGATTTGGCC
CTGGACTTTGTCTTGAAAAACCTTTCACAGCCCCAGACAACTTTTCCTGAAGCTAGTACA
GCCATGTGCTGCACAGTGACGCTTTGGTCAATGTCGCATATATGATGTTGGACCCATAAG
ATTATAATGGAGCTGAAAAATTCCTGTCGCCTAGTGATGTTGTAGTGGCACAACACATTA
CCTTTTCTACGTTTAGGTACACAAATATTTTGCCTACAGGATTCAGTAGAGTCACATGCT

11143 AAGTGACTAGAGATAGGAAAAGCTGGAAAGGTTGAAGCACATGGAACTAGTGAAAGGAC
AAGGAGAAACATGTGTTTGCCTGGAGGGACAGGTACTTAGACGACTGAACTGGCCTCTGT
GTTCTAATGGTTGAGCCTCAGAGTACATATTTGGGGTGCGGTTTGGTTTGCTTTGTAGAG
TTGGTTTGTTCTGCACATGTGTATGTTCTGCCATTTCCAGGACGAAAAGGAGGTTGTGCT
AAAGGGAAAGGAGGATCGATGCACATGTATGCCAAGAACTTCTACGGGGGCAATGGCATC
[G, A]

TGGGAGCGCAGGTAGTCAAGGACGAGGATTGTGTGCTGCTTTAGATTTGGCCCTGGACTT
TGTCTTGAAAAACCTTTCACAGCCCCAGACAACTTTTCCTGAAGCTAGTACAGCCATGTG
CTGCACAGTGACGCTTTGGTCAATGTCGCATATATGATGTTGGACCCATAAGATTATAAT
GGAGCTGAAAAATTCCTGTCGCCTAGTGATGTTGTAGTGGCACAACACATTACCTTTTCT
ACGTTTAGGTACACAAATATTTTTGCCTACAGGATTCAGTAGAGTCACATGCTGTGCAGGG

12486 TTACAGGCGTGAGCCACCACGCCGGCCAGGTTTTATTTTTTAACTCTTGAATGCAGAAA GAAAATATCGGAGGTGGGATAAACAGAGAGATAGGGTTGGAAGGAGAGTTTGTAGCAGCA $\verb|CCCTCATGGATTTCTGTGGTTCCTTTCTCGGTTGTCCTTAATGTTAGGTGCCCCTGGGC|\\$ CTGGGATTGCTCTAGCCTGTAAGTATAATGGAAAAGATGAGGTCTGCCTGACTTTATATG GCGATGGTGCTGCTAACCAGGTAATTATGTCTCTTAACTTCCCAAAAACAGTCTTATTTT CAAAGTCTTTAATATTTACAGTTGAATTTCTAAAGAAGTAGCATATTGCTTATTAGGTGA AATAGCAAGTCCTATGGCTAGCTCAAATTTGGTTGACTTATGGCCAGATTAGAGATTGAC CTCTTAGCGTTGTTTCACAAGAGACTTACGGGGGCACATTCCTGTGAAGGAGCTCACCTT 12558 CTGGTTAAAATAGAACATAGTATTTATATATTACTTTAGTGCTTTATTGAAAATATCGGA GGTGGGATAAACAGAGAGATAGGGTTGGAAGGAGGTTTGTAGCAGCAGTGTAATTTCTG TTCTGTGGTTCCTTTCTCGGTTGTCCTTAATGTTAGGTGCCCCTGGGCGCTGGGATTGCT CTAGCCTGTAAGTATAATGGAAAAGATGAGGTCTGCCTGACTTTATATGGCGATGGTGCT CTAACCAGGTAATTATGTCTCTTAACTTCCCAAAAACAGTCTTATTTTCAAAGTCTTTAA TATTTACAGTTGAATTTCTAAAGAAGTAGCATATTGCTTATTAGGTGAAATAGCAAGTCC TATGGCTAGCTCAAATTTGGTTGACTTATGGCCAGATTAGAGATTGACCTCTTAGCGTTG TTTCACAAGAGACTTACGGGGGCACATTCCTGTGAAGGAGCTCACCTTTGCTCTACATCA GTGCTTGGCAAAGGCCCTGTGGTAAAGGACCTCCCCACAACCTATTGCAAAACAATACAG 13376 CCAAAGCTCGGTTTTAGAAGAGGAGGCTTTCTGTGCTTTATGAAAGCTTTCTGTGCCAGG TCGTAACTACTTCCAGGGCCAGATATTCGAAGCTTACAACATGGCAGCTTTGTGGAAATT [T,C,A]CCTTGTATTTTCATCTGTGAGAATAATCGCTATGGAATGGGAACGTCTGTT 13378 GCAAGAGTATGATGCCTGCTACTTCTCCTCCACCACCCCGCTTTCCCTCACCACCC ${\tt AAAGCTCGGTTTTAGAAGAGGAGGCTTTCTGTGCTTTATGAAAGCTTTCTGTGCCAGGCA}$ GTAACTACTTCCAGGGCCAGATATTCGAAGCTTACAACATGGCAGCTTTGTGGAAATTAC [C.T] TTGTATTTCATCTGTGAGAATAATCGCTATGGAATGGGAA 16233 TGGCCCCTGTTGTCGGTAATGCCAGGGAAGCCATGTGACTCACCAGTGTACGGTTTTCTA GAAAAGACAGAAGCAGTTATTACAGAATGTTAGGCTGCGTTCTGGTATTTTGAAAGTATA ACAACAACTCTGCCACGCCTATAGTGACATAAGCATTGGTATGCCCCTTTGTTTCAGAAA CACACTTCTGTATTTCACCTCATTGGGACAATCCAACCCCATATCATGTTTCATCACGCC [G,C] CCGTACACGAGAAGAATTCAGGAAGTAAGAGTAAGAGTGACCCTATTATGCTTCTCAA GGACAGGATGGTGAACAGCAATCTTGCCAGTGTGGAAGAACTAAAGGTACAGTCACTTGT TCATGGTGGTTTGAAGGTTGGCTTTAAAAGTTGCCACCCCTGGGTGGCCACAGAGTTTGT GTGGGTTCCTCCAAGCCCAGAAAGTGATGTCCTGGGACATAAATAGTTCCATAGTTCCAA $\verb|AAAAGACAGAAGCAGTTATTACAGAATGTTAGGCTGCGTTCTGGTATTTTGAAAGTATAA|$ 16354 CAACAACTCTGCCACGCCTATAGTGACATAAGCATTGGTATGCCCCTTTGTTTCAGAAAC ACACTTCTGTATTTCACCTCATTGGGACAATCCAACCCCATATCATGTTTCATCACGCCG CCGTACACGAGAAGAATTCAGGAAGTAAGAAGTAAGAGTGACCCTATTATGCTTCTCAA GACAGGATGGTGAACAGCAATCTTGCCAGTGTGGAAGAACTAAAGGTACAGTCACTTGTT CATGGTGGTTTGAAGGTTGGCTTTAAAAGTTGCCACCCCTGGGTGGCCACAGAGTTTGTG

16377 GAATGTTAGGCTGCGTTCTGGTATTTTGAAAGTATAACAACACTCTGCCACGCCTATAG
TGACATAAGCATTGGTATGCCCCTTTGTTTCAGAAACACACTTCTGTATTTCACCTCATT

GGGACAATCCAACCCCATATCATGTTTCATCACGCCGTCCTTGCTCTACTGGAACTGCTC
TTACTGATCGATTACTACTTTTCCCTCCCCATAGTTACCGTACACGAGAAGAAATTCAGG
AAGTAAGAAGTAAGAGTGACCCTATTATGCTTCTCAAGGACAGGATGGTGAACAGCAATC
[T,G]

TGCCAGTGTGGAAGAACTAAAGGTACAGTCACTTGTTCATGGTGGTTTGAAGGTTGGCTT
TAAAAGTTGCCACCCCTGGGTGGCCACAGAGTTTGTGTGGGTTCCTCCAAGCCCAGAAAG
TGATGTCCTGGGACATAAATAGTTCCATAGTTCCAAAGTCCCTTGGGGTGGGGGCTTTTC
CTTTAGTTTCCTCTATTCAAAATTGTATTACTCTTCAGATTTCAGATTTTGGTGGACTGT
GAACCACCATCACAGTGGCAAAGCCCCCACAGTAGTATGGTTCTTTTTTCCTAAAAGTAT

SEOUENCE LISTING

```
<110> PE CORPORATION (NY)
<120> ISOLATED HUMAN ENZYME PROTEINS, NUCLEIC
 ACID MOLECULES ENCODING HUMAN ENZYME PROTEINS, AND USES
 THEREOF
<130> CL001155PCT
<140> TO BE ASSIGNED
<141> 2002-02-28
<150> 09/799,344
<151> 2001-03-06
<150> 09/901,151
<151> 2001-07-10
<160> 6
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1546
<212> DNA
<213> Homo sapiens
<400> 1
tgctggggca cctgaaggag acttgggggc acccgcgtcg tgcctcctgg gttgtgagga 60
gtcgccgctg ccgccactgc ctgtgcttca tgaggaagat gctcgccgcc gtctcccgcg 120
tgctgtctgg cgcttctcag aagccggcaa gcagagtgct ggtagcatcc cgtaattttg 180
caaatgatgc tacatttgaa attaagaaat gtgaccttca ccggctggaa gaaggccctc 240
ctgtcacaac agtgctcacc agggaggatg ggctcaaata ctacaggatg atgcagactg 300
tacgccgaat ggagttgaaa gcagatcagc tgtataaaca gaaaattatt cgtggtttct 360
gtcacttgtg tgatggtcag tttctccttc ctctaacaca ggaagcttgc tgtgtgggcc 420
tggaggccgg catcaaccc acagaccatc tcatcacagc ctaccgggct cacggcttta 480
ctttcacccg gggcctttcc gtccgagaaa ttctcgcaga gcttacagga cgaaaaggag 540
gttgtgctaa agcgaaagga ggatcgatgc acatgtatgc caagaacttc tacgggggca 600
atggcatcgt gggagcgcag gtgcccctgg gcgctgggat tgctctagcc tgtaagtata 660
atggaaaaga tgaggtctgc ctgactttat atggcgatgg tgctgctaac cagggccaga 720
tattcgaagc ttacaacatg gcagctttgt ggaaattacc ttgtattttc atctgtgaga 780
ataatcgcta tggaatggga acgtctgttg agagagcggc agccagcact gattactaca 840
agagaggcga tttcattcct gggctgagag tggatggaat ggatatcctg tgcgtccgag 900
aggcaacaag gtttgctgct gcctattgta gatctgggaa ggggcccatc ctgatggagc 960
tgcagactta ccgttaccac ggacacagta tgagtgaccc tggagtcagt taccgtacac 1020
qaqaaqaaat tcaggaagta agaagtaaga qtgaccctat tatgcttctc aaggacagga 1080
tggtgaacag caatcttgcc agtgtggaag aactaaagga aattgatgtg gaagtgagga 1140
aggagattga ggatgctgcc cagtttgcca cggccgatcc tgagccacct ttggaagagc 1200
tgggctacca catctactcc agcgacccac cttttgaagt tcgtggtgcc aatcagtgga 1260
tcaagtttaa gtcagtcagt taaggggagg agaaggagag gttatacctt cagggggcta 1320
ccagacagtg ttctcaactt ggttaaggag gaagaaaacc cagtcaatga aattcaatga 1380
aattottgga aacttocatt aagtgtgtag attgagcagg tagtaattgc atgcagtttg 1440
1546
<210> 2
<211> 397
<212> PRT
<213> Homo sapiens
```

```
<400> 2
Met Arg Lys Met Leu Ala Ala Val Ser Arg Val Leu Ser Gly Ala Ser
                 10
Gln Lys Pro Ala Ser Arg Val Leu Val Ala Ser Arg Asn Phe Ala Asn
Asp Ala Thr Phe Glu Ile Lys Lys Cys Asp Leu His Arg Leu Glu Glu
                    40
Gly Pro Pro Val Thr Thr Val Leu Thr Arg Glu Asp Gly Leu Lys Tyr
Tyr Arg Met Met Gln Thr Val Arg Arg Met Glu Leu Lys Ala Asp Gln
   70
Leu Tyr Lys Gln Lys Ile Ile Arg Gly Phe Cys His Leu Cys Asp Gly
        85 90
Gln Phe Leu Leu Pro Leu Thr Gln Glu Ala Cys Cys Val Gly Leu Glu
   100 105 110
Ala Gly Ile Asn Pro Thr Asp His Leu Ile Thr Ala Tyr Arg Ala His
115 120 125
Gly Phe Thr Phe Thr Arg Gly Leu Ser Val Arg Glu Ile Leu Ala Glu
130 · 135 140
Leu Thr Gly Arg Lys Gly Gly Cys Ala Lys Ala Lys Gly Gly Ser Met
145 150 155 160
His Met Tyr Ala Lys Asn Phe Tyr Gly Gly Asn Gly Ile Val Gly Ala
        165 170 175
Gln Val Pro Leu Gly Ala Gly Ile Ala Leu Ala Cys Lys Tyr Asn Gly
 180 185 190
Lys Asp Glu Val Cys Leu Thr Leu Tyr Gly Asp Gly Ala Ala Asn Gln
195 200
Gly Gln Ile Phe Glu Ala Tyr Asn Met Ala Ala Leu Trp Lys Leu Pro
  210 215 220
Cys Ile Phe Ile Cys Glu Asn Asn Arg Tyr Gly Met Gly Thr Ser Val
225 230
                             235 240
Glu Arg Ala Ala Ser Thr Asp Tyr Tyr Lys Arg Gly Asp Phe Ile
         245 250 255
Pro Gly Leu Arg Val Asp Gly Met Asp Ile Leu Cys Val Arg Glu Ala
                 265
Thr Arg Phe Ala Ala Ala Tyr Cys Arg Ser Gly Lys Gly Pro Ile Leu
                    280
Met Glu Leu Gln Thr Tyr Arg Tyr His Gly His Ser Met Ser Asp Pro
                  295
Gly Val Ser Tyr Arg Thr Arg Glu Glu Ile Gln Glu Val Arg Ser Lys
               310
                              315
Ser Asp Pro Ile Met Leu Leu Lys Asp Arg Met Val Asn Ser Asn Leu
                           330
            325
Ala Ser Val Glu Glu Leu Lys Glu Ile Asp Val Glu Val Arg Lys Glu
                        345
                                        350
Ile Glu Asp Ala Ala Gln Phe Ala Thr Ala Asp Pro Glu Pro Pro Leu
                        365
      355
                     360
Glu Glu Leu Gly Tyr His Ile Tyr Ser Ser Asp Pro Pro Phe Glu Val
                  375 380
Arg Gly Ala Asn Gln Trp Ile Lys Phe Lys Ser Val Ser
               390
```

<210> 3

<211> 18400

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

 $\langle 222 \rangle$ (1)...(18400) $\langle 223 \rangle$ n = A,T,C or G

<400> 3 agttgttcct tctaacccat tgatttgttc aatcatgtat ttaagtagga cctatatttt 60 acttgtteet tgetatatet teagtgtgta gtacagtgte tgacacaaaa teggtgetea 120 ataataggtg ttggatgaat gagcaaatga atgaatgaat tcatattcat atggcctaca 180 gagttcccgt acatgcacaa ccaatatcac caccccgtgg agatgactcc caaattaata 240 tttttagcaa atgttccaga cttacaactc caacttcccg ggggacatct tcagatagct 300 gtgccactgc caccaccagg tcaacatgtc ccaaaccatt cagaccagct ttttctcctg 360 agetggaeat etggeeteea acetttteat tetettttae ettteatatt etateageag 420 cagcagctgc tgaaatcata ccatgcaagt ttctcacgtc catctctgcc ttttaatggc 480 qccctctcac tcctttaaga agttttcttc cactgcaaca cgatctctca gtccagagtc 540 tggcccagtg cccaaattat ttctctagct atgctgagag ctggtcatgc tttgaacttc 600 tgctttgaat actttcagtg acactgggag agaattatct cattggacca ttgtcattgt 660 tagaaaattc attgttatgc tgaaatgaaa tgattttatt cacacacaca cacacacaca 720 cacaaaatag ctcttcctcc tggaacatga ctggcctgaa aatgtgtgaa gacatatcca 780 atcottctctg gttttactgt tcatccaatt ttctgttctc ctcctggcag gaggattata 840 tttcaccttg tggaactcag acatggtcgg gtaactagct ctggtccgtg aaaattgaga 900 qqaaqtqaca tqtqtcactt ctqqqcagaa gctttqaqaq ccgqtttaaa tgatcccttt 960 totottoato catgagacaa gotaagttoo agagagaggg tgccacgctg tgagggacot 1020 gtgttacgag tacgatggct cgcgtcactt caaattcttg aaatcactga aatttggagg 1080 tcagttgtta catcataacc cagccaattc tagttagcct gttttcttcc taacttcttt 1140 aatcgttctt cataagtcac aatcgcagcc cctcaccgtt ctgaccactg tcccctggat 1200 tccactcagt ttactcatta tcccccttaa aatgtggagc ccaaatctga acccggaacc 1260 ccaggtgcaa tcccactagg acacaacaca atgggttcct gagccctttg atcctctgaa 1320 tagagecect tgttgetttg gtgttttgte tetgtgtgtg ettttateat eggetgagee 1380 acgctgttaa ctcgcagtga gcctgtgaac caataactag agaaaaaaga tttttcccat 1440 tgtcctctcg acatatattg ggaaacaaat tttttgatcc gcgttcaagt agacagggca 1500 gaactgtcca actgctacgt gatcttttaa agacaaagtt agtggcagac catttacaga 1560 aaccagatgt totgtotttt ggototgago atgotgotaa tottoatoat otagtgtact 1620 gaacgagatg tactgaacga gggctgcaga gctgcagcac cggcaggagt aggcgctcgg 1680 taggacgggg cctgcacaac ctccccggta gtcagcagag cggaatctag gaaggctcct 1740 ttcccgcggc gccctggagg cgggggccc accttcccac gcaggcgcta tcaagccccg 1800 cctcctcacc cgcccgcggc gtggcgtcgg aaagagccct cagcccctcc ctctctggcg 1860 ctgataccca atgggcagcc tcaggccttt agcgggggcg gggcaccccc tggacgccgt 1920 tetggttgge cegeggeeg gegeagegea tgaegttatt acgaetetgt caegeegegg 1980 tgcgactgag gcgtggcgtc tgctggggca cctgaaggag acttgggggc acccgcgtcg 2040 tgcctcctgg gttgtgagga gtcgccgctg ccgccactgc ctgtgcttca tgaggaagat 2100 getegeegee gteteeegeg tgetgtetgg egetteteag aageeggtga gaeeteeegg 2160 gcgggccggg atggggcgc agtggggctg aggcgggcc ggagggcagg gcgggccagg 2220 ccgggccacc cagagcggg tggaaggcgc caggggagcc ggggagcctt tacttcgcct 2280 ccgcgccctg cattccgttc ctggcctcgg gagaagcggc acggaccggg atcacgccaa 2340 ggtccgtgtg aacttccccc ttctcgacac ccacctcccg cccccgggcc cagctgtgcg 2400 ccaggcgaag tcggtgtgct caagaggtgc ctgttgggtt acaggacacg gaaagggtgg 2460 cctcggcctc cttcgagtct ccaattgacc ccactcattt cggatcttct aacttaattt 2520 ctcttgaccg agaggctttg taatagcgta gaatctggag acagggtggc ttcgttcaaa 2580 cagcaccete accattgact agecetgtga cettgageaa gtttttaaac gteeegggga 2640 cccggtttcc taaaatgttt gctcgaagtg gagttaatct ctaaatggag ataagagtta 2700 tctctgaaat gttatcggtt attaaaatgt tatcagttaa ctctaaaatg gagataataa 2760 gagtccccac ctcttggggt tgtcttgagg attcaacgag tgacacgtgt ggaaacgatt 2820 ccaaatagca cctggcacat aatcgataac atgtgtgttg aatagtgtta tttattgagt 2880 ctccagttcg gtatacattt cttgaacacc tgtgctcagt tctgaggcgg gttcacagaa 2940 ggtcagcctc ttcagaaaca aacttcctcc tcttccctct ccctcaacat ctgagctttt 3000 $\verb|ttacctacac|| attest aggg|| tacaagtage|| taaagcaaag|| agcaacgatg|| cttgaggggt|| 3120$ ggggggtaga gtttagcact atttcatggc ctcagcattt agaggtgcct aacacctgag 3180 ctagcattct gacccccta ggcacagtga ggtcgtgtta attggtgtaa ctgcaggcct 3240 cgggattctg gtatttcccc caggacttga taccgctcta cttagtacag gcaagagatt 3300 gtcaaaaggt aaagaggtat gccctctag gaatcctgtt gcctaaaata atgacaaaac 3360 tgccgggtgc ggtgctcagg cctgtaatcc cagcattttg ggaggctgag gcaggtggat 3420

cacctgaagg tcagaagttc gagatcagcc tggccaacat ggtgaaaccc cgtctctact 3480 aaaaatacaa aattagccgg tcgtggtggc gggctcctgt aatcccagct actcgggagg 3540 ctgaggcggg agaatagcct gaacccggga gcggagtttg cagtgagcgg agatcgtgcc 3600 attgcactac ggcctgggcg acaagaagca agaactccgt attttaaaaa aaaaaaaaa 3660 aaaaaaaaa aaaagcgttc cctttaggga tatctgtggg tagagggctg taccggtagt 3720 tacgggctca gaaacatcct tcctttaggc acctgatgta ggttttcttc ttcttctgca 3780 agtcaggttc attgtttcct gtatcagttt gcagggtccc ccccccccg ccaccttaca 3840 gtaggaagaa aattgagttc cagatatgaa gtcacctttg aaagtgccca ggtatctttc 3900 cacttggtgg tgtaaactct tcagataatt agaagttttc tgtgtcactc aacttgtcat 3960 ggactaattt aggaaacatt cctgaagctt ttaaggatag aactaaaagt ttcactttta 4020 tttttttaaa gggtggaata ataaactaac gtgttgactc tttgtatttt gtaattcttc 4080 atacttatgg atgtcttttt acttaactat aagtaacaaa atagatcaac gttttagttt 4140 ttttatatta tacatgtaaa aagacatttt gcatataagc ctttcacaaa aatcttgaca 4200 gtaaacaata agcagtggct cacccaaatt aggcagactt actgcactag actcctacca 4260 tctgtgtgat actccatgaa gggagggaga aggggaggga gaagggtagg cagctggtct 4320 gatggctgtg acacaagata atccccttaa cctcccaaga cgctgtgtgt tttttccttt 4380 tttattctcc ctggtttact ttcgttttgt ttgagacagg gtctctgtgt cacccaggct 4440 ggagtgcagt agcaggacag ctcactgcag ccttagcctg ctgggctcaa gcgatcctcc 4500 tgccttagcc tcctgagtag ctgggaacac aggcatgtgc caccaccaca cccagccaat 4560 taaaaaaatt tttttttac tagagacatg gtcttgctac gttgcccagt ctggtctcca 4620 tetecagget caageagtee teccaceteg geeteccaaa gtgetgggat tacteteact 4680 ctcttaaaac caggcaggta gggagattta tctcaggctt aaagattgcc attgtctcat 4740 caaaqaqtqt ttqqtqtaa actttgaaat gaatatcaag attqtgtttt tatttttgaa 4800 taaggtttat agttttcata gttcttattt catggaagaa gattgaatgc atttaaaatg 4860 ttattttatt gtttgcattt ctgtatggct ccttttgtga gatctttact agcaatgttt 4920 tggctttata agtggtaggt aagagtttta atttacactg ttagaatctg gaatttttga 4980 aacgtttttc ctctttcaca tgaatggttc ctatgtattt aggaagttaa agttttactt 5040 ttttttaatt aattttttt tttaggetgg aatgeagtgg caeagteata geteaetgta 5100 gcctcaggtg tgtgccacca tacctgacta attttttaat atttatttt gtagagatga 5160 qaqtctcatq ttqcccaqqc tqqctttqaa ctcctggctt caagtggtcc tcccaccctg 5220 qcctcccaaa qtqctqqqqa ttataqqtqt qaqccatcat qcccqqccta qtttttattt 5280 tttaaaattt gagtgggttg ttcgtggtct ctgtcagaga ggaatcccat ttaacagaga 5340 atcttttat ggctctccag agaaaatgaa tggtaaactt atctttcaa caagctctca 5400 ctcagaaatg atacacaca acttctgata ggacttttag cttctttaac tttgttcctt 5460 tcactcatat cagtggttct tatttttgag atacacagta atgaagccat gggagaaagt 5520 atctaagtag ctttctggca gtcctaatct ttgcaggcgc aagattacag gcgcatgcca 5580 cagcactggg ccccttcttg ctctttattg tatagcatta tcctgcctca ttgtttcaac 5640 tctaggattg agaaagaagt taccttttct ctgttactgt cgcctggctg gtttggactc 5700 aaatttctgg ccccacaaaa tatttattaa ctgccaagaa taacacatct gtttgattgc 5820 taaatataac cattgatttg ctgtttcacc ttctctcagc tttacttctt cccaaattcc 5880 taaattteet teaetttte tgagataeat tagtggaetg tetetgeetg taagttaact 5940 gaaacactga ttcctagtat ttcagttgtt ttcctccagc actgtcattg tctgtgtttg 6000 ttggctttgt ccaataatgg tctattgagg ggtgaagata tacgtaatta gctttctgcc 6060 tattggcttg tacactccag ggtatacttg gcagatcagt cttaactctt ctcaccaaga 6120 tcagtccagt gctggattag gtaaggtatg aacacatcag atgtgctttt tatggagaaa 6180 tcatgttggt ttacacgtca gtgtgtgaga atgtggcaga agggagctaa aatagtatga 6240 taatactact ggataaattt tgtggtctaa cctaaacctt agccattaca tagaatactt 6300 ttgctgtgag caggtttgct cagttgtaaa actggaaagg aatcatttct cacccccgc 6360 ctccaagctt tttacctcca aacagtgaca gccacccaaa catcaagaga acagtgtttc 6420 agagaacatt tctactgggg cttcaggagg agcctgtcca agatttaggc tgttcaaatt 6480 ataaattata aaacagctgg ctcaagccca ttgtgtttaa gtcagagagt gctaagtatc 6540 ttttcttttg tcttgtctcc ctaaagtatt tatctcatac ttcaatcaat ttaaaaatatt 6600 ttttcttaca gatccaattt gatagaagag tcaagtttgc ctagagtgga gattaaatca 6660 tagttttatt tgaagtataa ttttggcttg ctcaaaatga acagtatctg gttatgacta 6720 agaatggcat gaaaaggcca gacgcagtgg ctcatgcctg caatcccagt actttgggag 6780 gccaaggcag gtggatcacc tgaggtcagg agttggagac cagcctggcc aacatggtga 6840 aaccccatct ctactaaaaa tataaaaatt agccgggccg tggtggtggg cacctgtaat 6900 cccagctact cgggagactg agacaggaga aatcacttga acccgggaag cggaggttgc 6960 agtgagccga gatcgcacca ctgcactcca gcctgggtga taaaagcaaa actccgtctc 7020 aaaacaaaca aacaaaagaa tggcataaac agacacagct cacagatgat ctagtctctt 7080

tagccactaa tttcattata ttctcactat aatttctttg aaaacaaagg atgggtttgt 7140 tttttgcccc tctttgcgct gcttgccttc agatgcggga taatcctgtt tcattggcca 7200 aagcatggat tcattttgga ggccaaggaa gatgcaaaca cagtgcacag ggtggaagag 7260 aagootatga atatgttggg gottattaaa tttocataac ttoattotga taactgatta 7320 ttatactttc caaaatagct gacaattaaa aagtactgat ttgtttgtat atttttgtct 7380 tttaaggcaa gcagagtgct ggtagcatcc cgtaattttg caaatgatgc tacatttgaa 7440 attaaggtaa gagtgtttta ctttgttaat aattttttca caggtacact ctgatataca 7500 gttttacctt tagaatagaa catcttgatg ttcatgatta gtcatcattt tcttctaaat 7560 gtccaggatc agaagttcag agaagcttat tcaaaagttt ggaatgtaat tcagtgaaat 7620 atttgaataa gaagagtett agttgtttet ttgaaggtte ttteaaceta taacteagtt 7680 ggcttctagg ggctttcagt gaaaatcatc ttagaaagat ttccttcccc caagccccat 7740 ctcattgcac agtgaggttt atggatttaa ggaacagagg cgatatgaag cattactgat 7800 gtgctccttt gcagtttttc aagttcaata ttatttgcaa tggagttaga tcttagagtg 7860 gtcaacagtg tttgcaatgt agtatgtgga ggataataac taccttattc catttcagaa 7920 atgtgacett caceggetgg aagaaggeee teetgteaca acagtgetea eeagggagga 7980 tgggctcaaa tactacagga tgatgcagac tgtacgccga atggagttga aagcagatca 8040 gctgtataaa cagaaaatta ttcgtggttt ctgtcacttg tgtgatggtc aggtgagtgg 8100 taggtttgtg gtggaactgt gttatttagg tactgaagta tggcttgtac ttattgggct 8160 ttaccctgcc atatgtatca gaagagtttg aggctggtaa tgtaattttc ttttatttat 8220 ttattttttt gagacagtct ctctctgtcg cccaggttag agtacagtgg tgatcttggc 8280 tcactgcagc ctctggttag agtacagtgt gatcttggct cactgcagcc tctgtccact 8340 gggctcaagc aatcctccca cctcagcctc ccgagtatgt gggaccacag gtgcacacca 8400 acacaccag ctaatttttg tattttttgg agatacgggg tttcactatg ttgcccaggc 8460 tagtctcaaa cttctgggct caagtggtcc gcccaccttg gcctcccaag gtgctaggat 8520 tacaggcgtg agccactgtg cctggctgaa gccagtattt tagaattaaa aagtagaatg 8580 ccaaaacctg ctatgaagct taggctaaag aattcattca cacataacat tgccagtttt 8640 ctgtacctgt tcttagagtt ttactatttt aaaactttct ggcactatga tcgcctgtac 8700 tgtatataat ttggagagaa aggattagtt tgttttttgt tttgtgggct taggtcaagg 8760 gttagagtca aatacctaca agggccagcc aggtagaata aatgagtgaa gaaggctagg 8820 tatacaaaac agaaaatggt gacagggact catgctgaac tggcaccagc atgccctacc 8880 cagaggaatg ccatgacttg gttccagcca gttggtgcca tgtggaaatc aggggtaatg 8940 tttcctgttt tccatgtcta agagaaggcg gaagtctgga ttttcatgtg aaattcccag 9000 tgttttaatg ttgacatctg atgtaggctt ttattttagg tcatcataca ggagaaagga 9060 aggaagtggc acatgtgtgg gttgccagtt tattgcttct ggtttgggcc ttccactctg 9120 tattttgggg gaaaatagct actttctctg gttattaatg acagggtcta ctagcccaca 9180 tatttcactg tggtctagga aacgttttta tttagaaaca tgtatcatat tgcctcatag 9240 tttctccttc ctctaacaca ggaagcttgc tgtgtgggcc tggaggccgg catcaacccc 9300 acagaccate teateacage etaceggget caeggettta ettteaceeg gggeetttee 9360 gtccgagaaa ttctcgcaga gcttacaggt ttgctgttga tttacagaaa ggggaaatga 9420 gtggattaag tttttaaata tctgtgcatt aagatgctat tatgagttaa tatttgttaa 9480 aaattttaag tttcttttt taaccctctc tcctttggtg ctctggtact tctgttgtgc 9540 tcttgaqtta actgaccatt tgtgaagttc tctggcccct caggtaaaag tttaaaacag 9600 gttggtgcta taaaatcaca gtaggtttgg ttatcattca agcatgccag aagaagtcta 9660 gcagtcatag aaagtaagtt cggttgaagc actccatggt atgcaatgta aattctagaa 9720 atottettaa tatteeeett ttetttgtee eeegtgaeta tttgtttgtt ttggtggttt 9780 tttttttttt tttttttga gactgtgtct cactccgttg tccaggtggt gtgcagtggt 9840 gtgatcaggg ctcactgcaa cctccacctc ccgggttcaa gtgattctca tgcctccacc 9900 tectgagtag etgggaetae aggeatgeae caccacacet ggetaatttt tgtattttta 9960 gtagagatgg ggtttcaaca tgttggccag gctggtctcc aactcctgac ctcaggtgat 10020 ccacctgcct tggcctccca aagtgtgctg gggttacagg cgtgagccac cgcacctggc 10080 ctgttttgtt tttttgagac agagtctcgc tttgttgccc aggctggagt gcagtggcct 10140 queteageet eccaaaatge taggattaca ggegtgagee aetgtgeeeg gteeteetee 10200 tcctcctttt ttttttttt ttttgagaca gagtttcact ctttcaccca ggctggagtg 10260 gctggagtga agtggtatga ttttggctca ctgcagcctc cgcccccgg gttcaagcaa 10320 ttctcctgcc tcagcctcct gagtagctag gattataggt gcccaaccac cacacctggc 10380 taatttctgt atttttagta gagaccaggt ttcaccatgt tggccaggct ggtcttgaac 10440 tettgacete aggtgateca ecetettegg eeteceaaaa tgttaggatt acaggegtga 10500 gccgccgtgc ccggccctcc ttgactcttg aactatggtt gtccctctat atatccaggg 10560 gattggttct aggaccctcg agtatacaaa aatcctcaaa tactcaagtc ccaaagtcag 10620 ccttccatat cttcgggttt gcatcctgag aatattctat tttcaataca tgtgtggctg 10680 aaaaaaaatc tgtgtataag tgtacctgtg cagttcaaac cctgttcaag gattgaatat 10740

atttagtgta ctagtatagg agaggtccta agatgtttgt aactggccag aaaacccaga 10800 aaagtccagg gtatcatctg gatggaacat ctgaaggaaa ctaagtgact agagagtagg 10860 aaaagctgga aaggttgaag cacatggaac tagtgaaagg acaaggagaa acatgtgttt 10920 gcctggaggg acaggtactt agacgactga actggcctct gtgttctaat ggttgagcct 10980 cagagtacat atttggggtg cggtttggtt tgctttgtag agttggtttg ttctgcacat 11040 gtgtatgttc tgccatttcc aggacgaaaa ggaggttgtg ctaaagggaa aggaggatcg 11100 atgcacatgt atgccaagaa cttctacggg ggcaatggca tcgtgggagc gcaggtagtc 11160 aaggacqagg attqtqtqct qctttagatt tqqccctqqa ctttqtcttq aaaaaccttt 11220 cacageeeca gacaactttt eetgaageta gtacageeat gtgetgeaca gtgaegettt 11280 ggtcaatgtc gcatatatga tgttggaccc ataagattat aatggagctg aaaaattcct 11340 gtcgcctagt gatgttgtag tggcacaaca cattaccttt tctacgttta ggtacacaaa 11400 tattttgcct acaggattca gtagagtcac atgctgtgca gggttgtagc ctaggagcag 11460 taggetetae tatacageet aggtgtgeag tgggetgtae catctaggtt egtgeattae 11520 agtatggtgt tcacatgaca aaatcgccta gtgatgcaat tctgagaata tatccctgtt 11580 gttaagtgac gegtgactat tttggggget tggtttgett ttaaagacet agtgetteat 11640 atcctaccgt ttgagagatg agtagatttg gatggtgatt tataatgttt ccttttaggt 11700 gtctgctgtt ttataagtaa gcaggaacct ctagcagtgg agccatacct tccccttcct 11760 atttatattt cagtacatta attgctttat cttgtcaact tcattttggg gtccttgttc 11820 tcatcagtta gtgaatgatg aagaattaac agcacaaaat tatatccgga ctgtttcttt 11880 tcctttctaa tatattaaga ttctattatg tgttgttttt ttttaaacct aggttttatt 11940 tttccttttg aaatggagte ttgctcagce geecaggetg gagcagtggt gtaateteag 12000 ctcactgcaa cctccaccc cgggttcaag caattctcct gcctcagcct cccgagtagc 12060 tgggaatata gttacgtgcc accatgccca accatttttt gtatttttag tagagacggg 12120 gtttcaccat cttgtccagg atggtctcga tctgtggacc tcgtgatctg cccaaagtgc 12180 tgggattaca ggcgtgagcc accacgcccg gccaggtttt atttttaac tcttgaatgc 12240 agaaatgtta gtgcttactg gttaaaatag aacatagtat ttatatatta ctttagtgct 12300 ttattgaaaa tatcggaggt gggataaaca gagagatagg gttggaagga gagtttgtag 12360 cagcagtgta atttctgtgt cagattctgg ccaggagtga aaatgcaggg cattaattag 12420 tatctcccct catggatttc tgtqqttcct ttctcqqttq tccttaatgt taggtgcccc 12480 tgggcgctgg gattgctcta gcctgtaagt ataatggaaa agatgaggtc tgcctgactt 12540 tatatggcga tggtgctgct aaccaggtaa ttatgtctct taacttccca aaaacagtct 12600 tattttcaaa gtctttaata tttacagttg aatttctaaa gaagtagcat attgcttatt 12660 aggtgaaata gcaagtccta tggctagctc aaatttggtt gacttatggc cagattagag 12720 attgacctct tagcgttgtt tcacaagaga cttacggggg cacattcctg tgaaggagct 12780 cacctttgct ctacatcagt gcttggcaaa ggccctgtgg taaaggacct ccccacaacc 12840 tattgcaaaa caatacagac ccattctctt ggatgtccgg gctggcagtg tcaaattcgg 12900 ataatagcgt ctgagtccta actcagtttc tatgcttctc ttgttaccga gtaatcccca 12960 gtctgtggcc agcactctgt gaagccctgt tctagaggct gattcttagg tgctggttca 13020 ctctggctat ccagtgggcc tgatagattt catattgatc ttttttccag tgtgttcctt 13080 actgctagca tggccccaaa gaaacaagta gtagttggtt tgtcaccttc cttagttgca 13140 agagtatgat geetgetact teteeteeac caccaccee gettteeete accacceaaa 13200 gctcggtttt agaagaggag gctttctgtg ctttatgaaa gctttctgtg ccaggcagag 13260 cagcagctgt tagagatgat gaagcctgga gaaagaagcc aaatgaaacc ccttttcgta 13320 actacttcca gggccagata ttcgaagctt acaacatggc agctttgtgg aaattacctt 13380 gtattttcat ctgtgagaat aatcgctatg gaatgggaac gtctgttgag agagcggcag 13440 ccagcactga ttactacaag agaggcgatt tcattcctgg gctgagagta aggacacctg 13500 tggtggggcc ggggccaagg ccaaggccaa gggtatgtac cttgtgcaga cccttgacga 13560 tcttaqaaac attggaqagt ttcattctca tacaggaqca ggtcatgtga aagtaaaatg 13620 gtttggggca gttggattca tgcttcgccc ctcccctgtt tattaccagg tggatggaat 13680 ggatatectg tgcgtecgag aggeaacaag gtttgetgee geetatngta gatetgnnnn 13740 πηπηπηπηπη πηπηπηπηπη ηπηπηπηπηπη πηπηπηπηπη πηπηπηπηπη 14400

nnnnnnnnn nnnnncctt ttagtgttac ttcagatgat ataggcataa gatacattgg 15780 ctgcttggcg ctctgatgtc tcaaagtcta attatcacca cacaccat ctctgctgtc 15900 cccacccatg tagtatacag gagcccaaat gggtgggaca agtgacactt ctttagaacc 15960 ttacatctaa atcaaagcag caagcaaaaa cttggcccct gttgtcggta atgccaggga 16020 agccatgtga ctcaccagtg tacggttttc tagaaaagac agaagcagtt attacagaat 16080 qttaqqctqc qttctqqtat tttqaaaqta taacaacaac tctqccacqc ctataqtqac 16140 ataaqcattq qtatqccct ttqtttcaga aacacattc tqtatttcac ctcattggga 16200 caatccaacc ccatatcatg tttcatcacg ccgtccttgc tctactggaa ctgctcttac 16260 tqatcqatta ctacttttcc ctccccatag ttaccgtaca cgagaagaaa ttcaggaagt 16320 aagaagtaag agtgacccta ttatgcttct caaggacagg atggtgaaca gcaatcttgc 16380 cagtgtggaa gaactaaagg tacagtcact tgttcatggt ggtttgaagg ttggctttaa 16440 aagttgccac ccctgggtgg ccacagagtt tgtgtgggtt cctccaagcc cagaaagtga 16500 tagtttcctc tattcaaaat tgtattactc ttcagatttc agattttggt ggactgtgaa 16620 ccaccatcac agtggcaaag cccccacagt agtatggttc ttttttccta aaagtatact 16680 gtggattttt aattcataaa atagatacac cctagaaatc tgtnnnnnnn nnnnnnnnn 16740

<210> 4 <211> 414 <212> PRT <213> Homo sapiens <400> 4 Glu Thr Trp Gly His Pro Arg Arg Ala Ser Trp Val Val Arg Ser Arg Arg Cys Arg His Cys Leu Cys Phe Met Arg Lys Met Leu Ala Ala Val 25 Ser Arg Val Leu Ser Gly Ala Ser Gln Lys Pro Ala Ser Arg Val Leu 40 Val Ala Ser Arg Asn Phe Ala Asn Asp Ala Thr Phe Glu Ile Lys Lys 55 Cys Asp Leu His Arg Leu Glu Glu Gly Pro Pro Val Thr Thr Val Leu 70 7.5 Thr Arg Glu Asp Gly Leu Lys Tyr Tyr Arg Met Met Gln Thr Val Arg 90 85 Arg Met Glu Leu Lys Ala Asp Gln Leu Tyr Lys Gln Lys Ile Ile Arg 105 Gly Phe Cys His Leu Cys Asp Gly Gln Glu Ala Cys Cys Val Gly Leu 120 125 Glu Ala Gly Ile Asn Pro Thr Asp His Leu Ile Thr Ala Tyr Arg Ala 140 135 His Gly Phe Thr Phe Thr Arg Gly Leu Ser Val Arg Glu Ile Leu Ala 150 155 Glu Leu Thr Gly Arg Lys Gly Gly Cys Ala Lys Gly Lys Gly Gly Ser 165 170 Met His Met Tyr Ala Lys Asn Phe Tyr Gly Gly Asn Gly Ile Val Gly 185 Ala Gln Val Pro Leu Gly Ala Gly Ile Ala Leu Ala Cys Lys Tyr Asn 200 Gly Lys Asp Glu Val Cys Leu Thr Leu Tyr Gly Asp Gly Ala Ala Asn 215 Gln Gly Gln Ile Phe Glu Ala Tyr Asn Met Ala Ala Leu Trp Lys Leu Pro Cys Ile Phe Ile Cys Glu Asn Asn Arg Tyr Gly Met Gly Thr Ser 250 Val Glu Arg Ala Ala Ser Thr Asp Tyr Tyr Lys Arg Gly Asp Phe 265 Ile Pro Gly Leu Arg Val Asp Gly Met Asp Ile Leu Cys Val Arg Glu 280 Ala Thr Arg Phe Ala Ala Tyr Cys Arg Ser Gly Lys Gly Pro Ile 300 295 Leu Met Glu Leu Gln Thr Tyr Arg Tyr His Gly His Ser Met Ser Asp 315 Pro Gly Val Ser Tyr Arg Thr Arg Glu Glu Ile Gln Glu Val Arg Ser 325 330 Lys Ser Asp Pro Ile Met Leu Leu Lys Asp Arg Met Val Asn Ser Asn 340 345 Leu Ala Ser Val Glu Glu Leu Lys Glu Ile Asp Val Glu Val Arg Lys 355 360

<210> 5 <211> 390 <212> PRT <213> Homo sapiens

<400> 5 Met Arg Lys Met Leu Ala Ala Val Ser Arg Val Leu Ser Gly Ala Ser 10 Gln Lys Pro Ala Ser Arg Val Leu Val Ala Ser Arg Asn Phe Ala Asn 25 Asp Ala Thr Phe Glu Ile Lys Lys Cys Asp Leu His Arg Leu Glu Glu 40 Gly Pro Pro Val Thr Thr Val Leu Thr Arg Glu Asp Gly Leu Lys Tyr 55 Tyr Arg Met Met Gln Thr Val Arg Arg Met Glu Leu Lys Ala Asp Gln 70 75 80 Leu Tyr Lys Gln Lys Ile Ile Arg Gly Phe Cys His Leu Cys Asp Gly 90 95 85 Gln Glu Ala Cys Cys Val Gly Leu Glu Ala Gly Ile Asn Pro Thr Asp 100 105 110 His Leu Ile Thr Ala Tyr Arg Ala His Gly Phe Thr Phe Thr Arg Gly 115 120 Leu Ser Val Arg Glu Ile Leu Ala Glu Leu Thr Gly Arg Lys Gly Gly 135 140 Cys Ala Lys Gly Lys Gly Gly Ser Met His Met Tyr Ala Lys Asn Phe 150 155 160 Tyr Gly Gly Asn Gly Ile Val Gly Ala Gln Val Pro Leu Gly Ala Gly 165 170 Ile Ala Leu Ala Cys Lys Tyr Asn Gly Lys Asp Glu Val Cys Leu Thr 185 Leu Tyr Gly Asp Gly Ala Ala Asn Gln Gly Gln Ile Phe Glu Ala Tyr 200 Asn Met Ala Ala Leu Trp Lys Leu Pro Cys Ile Phe Ile Cys Glu Asn 215 Asn Arg Tyr Gly Met Gly Thr Ser Val Glu Arg Ala Ala Ala Ser Thr 230 235 Asp Tyr Tyr Lys Arg Gly Asp Phe Ile Pro Gly Leu Arg Val Asp Gly 250 Met Asp Ile Leu Cys Val Arg Glu Ala Thr Arg Phe Ala Ala Ala Tyr Cys Arg Ser Gly Lys Gly Pro Ile Leu Met Glu Leu Gln Thr Tyr Arg 275 280 Tyr His Gly His Ser Met Ser Asp Pro Gly Val Ser Tyr Arg Thr Arg 295 Glu Glu Ile Gln Glu Val Arg Ser Lys Ser Asp Pro Ile Met Leu Leu 310 315 Lys Asp Arg Met Val Asn Ser Asn Leu Ala Ser Val Glu Glu Leu Lys 325 330 Glu Ile Asp Val Glu Val Arg Lys Glu Ile Glu Asp Ala Ala Gln Phe 340 345 Ala Thr Ala Asp Pro Glu Pro Pro Leu Glu Glu Leu Gly Tyr His Ile 360 365 Tyr Ser Ser Asp Pro Pro Phe Glu Val Arg Gly Ala Asn Gln Trp Ile

370 380 Lys Phe Lys Ser Val Ser <210> 6 <211> 390 <212> PRT <213> Mus musculus Met Arg Lys Met Leu Ala Ala Val Ser Arg Val Leu Ala Gly Ser Ala Gln Lys Pro Ala Ser Arg Val Leu Val Ala Ser Arg Asn Phe Ala Asn 25 Asp Ala Thr Phe Glu Ile Lys Lys Cys Asp Leu His Arg Leu Glu Glu Gly Pro Pro Val Thr Thr Val Leu Thr Arg Glu Asp Gly Leu Lys Tyr 55 Tyr Arg Met Met Gln Thr Val Arg Arg Met Glu Leu Lys Ala Asp Gln 70 75 Leu Tyr Lys Gln Lys Ile Ile Arg Gly Phe Cys His Leu Cys Asp Gly 90 Gln Glu Ala Cys Cys Val Gly Leu Glu Ala Gly Ile Asn Pro Thr Asp 105 110 His Leu Ile Thr Ala Tyr Arg Ala His Gly Phe Thr Phe Thr Arg Gly 115 120 125 Leu Pro Val Arg Ala Ile Leu Ala Glu Leu Thr Gly Arg Arg Gly Gly 135 140 Cys Ala Lys Gly Lys Gly Gly Ser Met His Met Tyr Ala Lys Asn Phe 150 155 160 Tyr Gly Gly Asn Gly Ile Val Gly Ala Gln Val Pro Leu Gly Ala Gly 165 170 175 Ile Ala Leu Ala Cys Lys Tyr Asn Gly Lys Asp Glu Val Cys Leu Thr 185 190 Leu Tyr Gly Asp Gly Ala Ala Asn Gln Gly Gln Ile Phe Glu Ala Tyr 200 Asn Met Ala Ala Leu Trp Lys Leu Pro Cys Ile Phe Ile Cys Glu Asn 215 220 Asn Arg Tyr Gly Met Gly Thr Ser Val Glu Arg Ala Ala Ser Thr 230 235 Asp Tyr Tyr Lys Arg Gly Asp Phe Ile Pro Gly Leu Arg Val Asp Gly 245 250 Met Asp Ile Leu Cys Val Arg Glu Ala Thr Lys Phe Ala Ala Ala Tyr 265 Cys Arg Ser Gly Lys Gly Pro Ile Leu Met Glu Leu Gln Thr Tyr Arg ' 280 Tyr His Gly His Ser Met Ser Asp Pro Gly Val Ser Tyr Arg Thr Arg 295 Glu Glu Ile Gln Glu Val Arg Ser Lys Ser Asp Pro Ile Met Leu Leu 315 Lys Asp Arg Met Val Asn Ser Asn Leu Ala Ser Val Glu Glu Leu Lys 330 Glu Ile Asp Val Glu Val Arg Lys Glu Ile Glu Asp Ala Ala Gln Phe 345 Ala Thr Ala Asp Pro Glu Pro Pro Leu Glu Glu Leu Gly Tyr His Ile 360 365 Tyr Ser Ser Asp Pro Pro Phe Glu Val Arg Gly Ala Asn Gln Trp Ile 375 380 Lys Phe Lys Ser Val Ser 385 390