

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2498951 C 2013/04/23

(11)(21) **2 498 951**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2003/08/08
(87) Date publication PCT/PCT Publication Date: 2004/04/22
(45) Date de délivrance/Issue Date: 2013/04/23
(85) Entrée phase nationale/National Entry: 2005/03/11
(86) N° demande PCT/PCT Application No.: EP 2003/008825
(87) N° publication PCT/PCT Publication No.: 2004/033683
(30) Priorité/Priority: 2002/09/18 (EP02020904.5)

(51) Cl.Int./Int.Cl. *C12N 15/10* (2006.01)

(72) Inventeurs/Inventors:
SCHMIDT, KARL-HERMANN, DE;
STRAUBE, EBERHARD, DE;
RUSSWURM, STEFAN, DE

(73) Propriétaire/Owner:
SIRS-LAB GMBH, DE

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : METHODE PERMETTANT D'ENRICHIR L'ADN PROCARYOTE

(54) Title: METHOD FOR ENRICHING PROCARYOTIC DNA

(57) Abrégé/Abstract:

A method is described for enriching procaryotic DNA, said method including the steps of contacting at least one procaryotic DNA with at least one protein or polypeptide which is capable of specifically binding to non-methylated CpG motifs, and separating the protein/polypeptide-DNA complex. Moreover, the application relates to a kit for carrying out said method.

5

Abstract

10 A method is described for enriching procaryotic DNA, said method including the steps of contacting at least one procaryotic DNA with at least one protein or polypeptide which is capable of specifically binding to non-methylated CpG motifs, and separating the protein/polypeptide-DNA complex. Moreover, the application relates to a kit for carrying out said method.

15

20

Method for enriching prokaryotic DNA

The invention relates to a method of enriching prokaryotic DNA as well as to a kit for carrying
5 out said method.

Infections caused by bacteria are one of the most frequent causes of inflammatory diseases. For the prognosis of the clinical course as well as, in particular, for timely selection of suitable therapeutic measures, early detection of the bacterial pathogens is of decisive
10 importance.

In the detection of bacterial pathogens, use is made, above all, of different methods of cultivating cells. However, methods of molecular biology which are based on the detection of pathogen-specific nucleic acids have also become more important recently. In addition to the high specificity of these methods, mention must be made of the little time required as an
15 essential advantage over conventional methods. However, the sensitivity of the detection of prokaryotic DNA directly from body fluids and from test material that has not been pre-treated has hitherto been much too low as compared to the culture of microorganisms. An amount of nucleic acids of bacteria sufficient to detect pathogens directly from the test
20 material that has not been pre-treated is achieved, if at all, in the region of the 16S-mRNA molecules. However, this requires that the bacteria to be detected be present in the metabolic phases and express sufficient 16S-mRNA.

This is usually not the case, in particular in patients who are subject to antibiotic therapy.
25 Moreover, certain pathogenicity factors of bacteria are not expressed every time, although the corresponding genes are present in the bacterial genome. Therefore, the detection of the pathogenicity factors and resistance of bacteria at the chromosomal level is indispensable for the diagnosis of septic disease states.

This applies even more because, at this level, a distinction can also be made between pathogenic and commensal bacteria.

5 Most frequently, the detection of pathogen-specific nucleic acids is effected by amplification of the prokaryotic DNA by means of the polymerase chain reaction (PCR) or the ligase chain reaction (LCR), respectively. The high specificity and fast availability of the results is contrasted by the susceptibility to interference or by strongly inhibiting factors of clinical samples.

10 In a conventional PCR detection method, successful detection of pathogens in the blood requires isolation of total DNA from at least 1 to 5 ml of blood. However, the total DNA concentration is then too high to be employed directly in a PCR reaction.

15 Things are different with regard to the blood culture for detection of sepsis pathogens. In this case, the lower detection limit is less than 10 bacteria per ml. This detection limit is presently achieved only by PCR protocols whose target sequence is in the 16S-RNA region and which are therefore dependent on the expression of said target sequence. Greater diagnostic reliability can be expected of PCR protocols which have their target sequences in the chromosome of the microorganisms. The expression behavior of different genes can be 20 considerably changed or limited, especially under the influence of an ongoing antibiotic therapy, even if the antibiotic used is ultimately not effective. This situation is often found particularly in intensive therapy wards, where most patients receive antibiotic treatment, thus not allowing to grow any relevant bacteria from blood cultures or other samples for this reason.

25 Due to insufficient sensitivity, the detection of pathogen-specific nucleic acids, without an amplification step by direct detection of prokaryotic DNA (probe technique, FISH technique), is of diagnostic importance only at a sufficiently high germ number in the test material.

30 The essential problems of the detection of prokaryotic DNA for identification of bacterial pathogens in body fluids consist, beside PCR-inhibiting ingredients in the test material, mainly in the excess of eucaryotic DNA versus prokaryotic DNA. In this connection, competitive processes in DNA analysis as well as the low quantity of prokaryotic DNA can be regarded as a hindrance to a qualitative and quantitative detection of pathogens.

35 The usual methods of DNA isolation enrich the total DNA of a body fluid so that the ratio of host DNA to microbial DNA may be between $1:10^{-6}$ and $1:10^{-8}$. This difference makes the difficulty in detecting microbial DNA in body fluids quite clear.

Therefore, it is an object of the present invention to provide a method of isolating and/or enriching microbial DNA, in test samples having a high content of eucaryotic DNA from patients with infections, for quick and easy detection of pathogens, said detection enabling
5 early diagnosis of infections caused by bacterial pathogens.

According to the invention, this object is achieved by a method of enriching procaryotic DNA, said method comprising the steps of:

- 10 (a) contacting at least one procaryotic DNA in solution with at least one polypeptide that specifically binds to procaryotic DNA, to form a polypeptide-DNA complex, and
(b) isolating said complex.
- 15 In this case, the term procaryotic DNA relates to both viral and bacterial DNA. Said DNA may be purified and dissolved again or may be present directly in the original source (e.g. body fluid, such as blood, serum, etc.).

20 Separation may be effected by means of different methods of isolating or enriching DNA protein complexes or DNA polypeptide complexes that are well-known to the person skilled in the art. In doing so, use will be made preferably of methods in which the DNA-binding protein is immobilized to a carrier matrix in order to enrich the DNA from the sample solution.

25 According to a preferred embodiment, the separation is followed by a step of separating the DNA and the protein/polypeptide. This may be effected, for example, by conventional methods of DNA purification which are known to the person skilled in the art. In the most simple case, the separation is based on the change in pH value or in the salt concentration (e.g. to 1 M NaCl) of the medium/buffer or on the addition of chaotropic reagents, etc.; i.e. suitable parameters which lead to the separation of the protein-DNA-complex. Such methods
30 are known to the person skilled in the art.

According to a further preferred embodiment, the protein or the polypeptide is coupled to a carrier. This embodiment represents a particularly simple way of enriching procaryotic DNA, because the separation from the solution is particularly easy, for example by means of
35 physical removal (e.g. by centrifugation) of the charged carrier(s) from the solution.

As the solution of the procaryotic DNA, any suitable solvent is basically suitable. However, the method is particularly useful for enriching procaryotic DNA from solutions which contain

different biomolecular species, in particular different types of DNA. The invention preferably relates to a method of separating and enriching prokaryotic or viral DNA and eukaryotic DNA from a mixture of prokaryotic or viral DNA. In doing so, for example, the prokaryotic DNA which is present in body fluids is separated from the eukaryotic DNA, by specific binding to the protein or to the polypeptide, and enriched. The prokaryotic DNA enriched in this way facilitates detection of prokaryotic pathogens with the help of molecular biology methods and can contribute to the diagnosis of diseases caused by pathogenic pathogens.

In particular, the embodiment according to which the DNA-binding protein or polypeptide is immobilized to the surface of a carrier is suitable for adsorption of prokaryotic DNA from body fluids, preferably from blood. Moreover, this approach allows removal of microbial DNA, which is present in blood or other body fluids, from said fluids. The body fluid (e.g. whole blood, serum or liquor) purified in this way from the microbial DNA, which is also capable in itself of initiating severe inflammatory reactions in patients, can then be fed back into the body.

Body fluids in the sense of the invention are understood to be all fluids originating from the body of a mammal, including humans, in which disease pathogens may occur, such as blood, urine, liquor, pleural, pericardial, peritoneal as well as synovial fluids. The description of the invention referring to human blood is not to be construed as limitative, but only as an exemplary application.

Proteins or polypeptides in the sense of the invention are understood to be all eukaryotic and prokaryotic proteins which are capable of specifically binding prokaryotic DNA. Proteins or polypeptides which are capable of specifically binding non-methylated CpG-motifs are particularly suitable for this purpose.

Bacterial pathogens are preferably understood to be pathogens of sepsis, but also any other bacterial pathogens of infections. They may differ from commensal pathogens, which are sometimes also found in test samples from patients, but do not have any pathogenic significance.

In isolating the total DNA from infected body liquids, the ratio of host-DNA to pathogen-DNA may be, in many cases, $1:10^{-6}$ to $1:10^{-8}$ and less. Through the specific binding of prokaryotic DNA to the protein or polypeptide having such selective properties, the method according to the invention enables enrichment by 3 exponential units and more.

The protein or the polypeptide may be coupled directly or indirectly to the carrier. The type of coupling depends on the carrier and the carrier material. Suitable carriers include, in particular, membranes, microparticles and resins, or similar materials for affinity matrices.

5 Suitable materials for binding of the protein or of the polypeptide, as well as – depending on the type of material – for carrying out such binding, are well-known to the person skilled in the art. For indirect coupling, such specific antibodies against the protein or polypeptide are suitable, for example, which are in turn bound to the carrier by known methods.

10 One application of the method according to the invention consists in enriching prokaryotic DNA. A further application consists in the separation of prokaryotic DNA from a mixture of eucaryotic and prokaryotic DNA by binding of the prokaryotic DNA to a specific protein or polypeptide which has been immobilized to a matrix. The mixture of the body's own DNA and prokaryotic DNA is contacted with the affinity matrix by means of suitable methods and, in

15 doing so, the prokaryotic DNA is bound to the immobilized protein; the eucaryotic DNA passes, for example, through a separating column and may be collected separately. Affinity matrices may be, for example, polymeric polysaccharides, such as agaroses, other biopolymers, synthetic polymers, or carriers having a silicate backbone, such as porous glasses or other solid or flexible carriers on which the DNA-binding protein or polypeptide is immobilized. After separation of prokaryotic DNA from eucaryotic DNA has been effected, 20 the affinity matrix is rinsed with a suitable reagent, so that either the binding protein with the coupled prokaryotic DNA is separated from the matrix and/or the prokaryotic DNA is separated from the binding protein and is available for further process steps in a sufficient amount.

25 A further application of the method according to the invention consists in the separation and enrichment of prokaryotic DNA from eucaryotic DNA by binding of the prokaryotic DNA to a specific protein which has been immobilized on microparticles. In this connection, all microparticles which allow the DNA-binding protein or polypeptide to be immobilized are suitable. Such microparticles may consist of latex, plastics (e.g. styrofoam, polymer), metal 30 or ferromagnetic substances. Furthermore, use may also be made of fluorescent microparticles, such as those available from the Luminex company, for example. After the prokaryotic DNA has been bound to the proteins immobilized on microparticles, said microparticles are separated from the mixture of substances by suitable methods, such as filtration, centrifugation, precipitation, sorting by measuring the intensity of fluorescence, or 35 by magnetic methods. After separation from the microparticles, the prokaryotic DNA is available for further processing.

30071-3

- 6 -

Another application of the method according to the invention consists in the separation and enrichment of prokaryotic DNA from eucaryotic DNA by binding of the prokaryotic DNA to a specific protein or polypeptide, which is subsequently separated from other ingredients of the mixture by electrophoresis.

5

A further application of the method according to the invention consists in the separation and enrichment of prokaryotic DNA from eucaryotic DNA by binding of the prokaryotic DNA to the protein or polypeptide. Said protein is subsequently bound to corresponding antibodies. The antibodies may be bound to solid or flexible substrates, such as glass, plastics, silicon, 10 microparticles, membranes, or may be present in solution. After binding of the prokaryotic DNA to the protein or the polypeptide and binding of the latter to the specific antibody, separation from the substance mixture is effected by methods known to the person skilled in the art.

15 As protein or polypeptide, any protein or polypeptide is particularly suitable which binds prokaryotic DNA with non-methylated CpG motifs, for example. For this purpose, specific antibodies or antisera against prokaryotic DNA are suitable, for example. Their preparation and isolation are known to the person skilled in the art.

20 Prokaryotic DNA differs from eucaryotic DNA, for example, by the presence of non-methylated CpG motifs. Thus, the protein/polypeptide is conveniently a protein which specifically recognizes and binds non-methylated CpG motifs. Conveniently, this also includes a specific antibody or a corresponding antiserum. According to a further preferred embodiment, the protein or polypeptide is a protein or polypeptide encoded by the TLR9 25 gene or by the hCGBP gene.

This embodiment of the invention is based on the finding that eucaryotic DNA and prokaryotic DNA differ in their content of CpG motifs. In the prokaryotic DNA, cytosine-guanosine-dinucleotides (CpG motifs) are present in an excess of 20 times that of eucaryotic 30 DNA. In prokaryotic DNA, these motifs are non-methylated, whereas they are methylated for the most part in eucaryotic DNA, which further enhances the difference. Non-methylated CpG motifs are non-methylated deoxycytidylate-deoxyguanylate-dinucleotides within the prokaryotic genome or within fragments thereof.

35 Secondly, this preferred embodiment of the invention is based on the finding that there are proteins or polypeptides which bind specifically to non-methylated CpG motifs of the DNA. The binding property of these proteins/polypeptides is used, according to the invention, in

30071-3

- 7 -

order to bind prokaryotic DNA, on the one hand, and thus to enrich it, on the other hand, from a sample mostly containing eucaryotic DNA.

An application for isolating cDNA, which uses the presence of methylated CpG motifs in 5 eucaryotic DNA was described by Cross et al. *Nature Genetics* 6 (1994) 236-244. The immunostimulatory application of single-stranded oligodeoxyribonucleotides (ODN) with the corresponding CpG motifs has been shown several times (Häcker et al., *Immunology* 105 (2002) 245-251, US 6,239,116). As recognition molecules of the prokaryotic CpG motifs, two receptor proteins have been identified so far. Toll-like-receptor 9 is known from WO 10 02/06482 as a molecule recognizing non-methylated CpG motifs. Voo et al. *Molecular and Cellular Biology* (2000) 2108-2121 describe a further receptor protein, i.e. the human CpG-binding protein (hCGBP), which is used in an analytic approach as a recognition molecule for detecting non-methylated CpG motifs in prokaryotic DNA. In both publications, the CpG-binding proteins are not used for isolating or enriching prokaryotic DNA.

15

A protein or polypeptide which is encoded by cDNA having a sequence with a homology of at least 80%, preferably at least 90%, and particularly preferably at least 95%, to the sequence according to gene bank access no.: NM-014593 (version NM-014593 1, GI: 7656974; NCBI database) is particularly suitable. These are proteins or polypeptides which 20 correspond to hCGBP or are derived therefrom and which specifically recognize and bind CpG motifs.

According to a further preferred embodiment, the protein or polypeptide is encoded by cDNA having a sequence with a homology of at least 80%, preferably at least 90%, to the 25 sequence according to gene bank access no. AB045180 (coding sequence of the TLR9 gene; NCBI database, version AB045180.1; GI: 11761320) or a fragment thereof, preferably cDNA having a homology of at least 80%, particularly preferably 90%, to transcript variant A (gene bank access no. NM-138688; version NM-017442.1; GI: 20302169; NCBI database) or transcript variant B (gene bank access no. NM-017442; version NM-138688.1; GI: 30 20302170; NCBI database).

Moreover, the invention relates to a method of purifying body fluids to remove prokaryotic DNA. In this connection, it is convenient for the separation to be effected extracorporeally, under sterile conditions, to allow the body fluids to be fed back into the body again, so that 35 the body's own immune system is assisted in eliminating infections by removing the prokaryotic DNA contained in said body fluids.

30071-3

- 8 -

Any suitable chemical, mechanical or electrochemical processes may be considered for the extracorporeal removal of prokaryotic DNA from body fluids. Further, the combination with other extracorporeal therapeutic methods, such as hemoperfusion, heart-lung machine or endotoxin absorbers, represents a further convenient application. This enumeration does not 5 represent a limitation of the methods.

According to a particularly preferred embodiment, the invention relates to a method of detecting prokaryotic DNA. In this case, the enrichment of the prokaryotic DNA is followed by a step of amplifying said prokaryotic DNA, for which all common methods of amplification are 10 suitable (PCR, LCR; LM-PCR, etc.).

Moreover, the invention relates to a kit for enriching prokaryotic DNA by means of one of the above-described methods, said kit containing at least the protein/polypeptide, preferably further reagents suitable to carry out said method.

15

According to a preferred embodiment, said kit contains, in addition to the protein/polypeptide, at least one set of primers, which are suitable to amplify genomic DNA of certain prokaryotes under standard conditions.

20 The invention has the advantage that, by specific binding of non-methylated prokaryotic DNA rich in CpG motifs to proteins with specific affinity for such structures, prokaryotic DNA from the total DNA of an infected host is successfully concentrated and thus the sensitivity of detection of pathogen DNA in body fluids is strongly enhanced.

25 The possibilities of separating prokaryotic DNA from eucaryotic DNA using a specifically binding protein are no more time-consuming than known methods of isolating total DNA. However, the following detection can then be effected only via a PCR reaction. A nested PCR will not be required in most cases, which makes it possible to save a considerable amount of time in diagnostics.

30071-3

- 8a -

In a particular embodiment, the invention relates to a method of enriching procaryotic DNA in vitro, said method comprising the steps of:

(a) contacting at least one procaryotic DNA in solution containing a mixture of procaryotic and eucaryotic DNA, with at least one polypeptide that specifically binds 5 to procaryotic DNA, wherein the polypeptide is selected from the group consisting of TLR9 and hCGBP, to form a polypeptide-DNA complex, and (b) isolating said complex.

The invention will be explained in more detail below by means of examples, without limiting it thereto.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the PCR of streptococci-DNA in human blood, and

Fig. 2 shows the nested PCR with the PCR products according to Fig. 1.

21078-116

- 9 -

EXAMPLES

Example 1: Prior art method of detection

Fresh, heparinized human blood, which contains streptococcus pyogenes with 103/ml colony-forming units as pathogens, is used for detection of pathogens. The DNA is isolated

5 by means of absorption to DNA-binding matrix using commercial kits for isolation of total DNA from body fluids according to modified instructions from the manufacturer. For this purpose, 200 μ l of the total lysis buffer, which contains proteinase K and SDS, is added to 100 μ l of infected blood in Eppendorf tubes. The mixture is incubated at 37°C for 30 min. and then heated to 95°C for 20 min. After cooling, 20 μ g of mutanolysine are added and 10 incubated at 37°C for another 60 min. After centrifugation, the supernatant is applied to the centrifugal columns using DNA-binding matrix and the DNA is purified according to the manufacturer's instructions. The purified DNA is placed in a final volume of 100 μ l of 0.01 mol tris buffer, pH 7.5, or in an equal amount of elution buffer from the manufacturer. For detection of pathogens, primers are selected to identify the streptolysin O gene (slo).

15

1. PCR. Amplification of a 465 bp fragment

Forward primer 1: 5'-AGCATACAAGCAAATTTTTACACCG

Reverse primer 2: 5'-GTTCTGTTATTGACACCCGCAATT

Primer concentration 1mg/ml

20

Starting material: 5 μ l isolated DNA

0.5 μ l primer fw 1

0.5 μ l primer rv 2

14 μ l aqua dest

25

total 25 μ l in Ready to go Kit (Amersham-Biosciences)

Reaction:

1 x 5 min 95 °C

40 cycles each at 30 sec. 95°C

30

30 sec. 51°C

3 min 72°C

1 x 7 min 72°C

The results of the PCR of streptococci-DNA in human blood are shown in Fig. 1. 10 μ l of the

35 25 μ l of starting material were separated. 1) PCR starting material containing 5 μ l template DNA; 2) starting material containing 5 μ l template, at a dilution of 1:10. 3) positive control: 0.2 μ l of streptococci-DNA as template in the absence of eucaryotic DNA from blood. ST) molecular weight standard

Result: The primary PCR does not result in a visible PCR product. Therefore, a 2. PCR (nested PCR) was carried out as below.

2. PCR (nested): Amplification of a 348 bp fragment contained in the above slo-fragment.

5 Forward primer 3: 5'- CCTTCCTAATAATCCTGCAGATGT-3'

Reverse primer 4: 5'- CTGAAGGTAGCATTAG TCTTGATAACG-3'

Primer concentration: 1mg/ml

Starting material: 5 µl from PCR1, sample 1, Fig. 1

0.5 µl primer fw 1

10 0.5 µl primer rv 2

14 µl aqua dest

total 25 µl in Ready to go Kit (Amersham-Biosciences)

Reaction:

15 1 x 5 min 95°C

50 cycles each at 30 sec. 95°C

30 sec. 54°C

3 min 72°C

1 x 7 min 72°C

20

Fig. 2 shows the nested PCR with the PCR products according to Fig. 1 as template. The samples correspond to those of Fig. 1.

Result: In the nested PCR, the desired slo-DNA fragment is amplified at a pathogen number 25 of 100 streptococci cells per 100 µl blood (sample 1). At 5 µl template DNA in the 1st PCR (Fig. 1), this corresponds to about 5 to 10 template molecules. At a dilution of 1:10 (sample 2), sensitivity is exhausted (0.5 to 1 template molecules).

Example 2: Carrying out the method according to the invention

30

The DNA is dissolved from a cell lysate as described above for the previous PCR methods. The difference is that between 1 ml and 5 ml of test material are employed.

35 Three milliliters of fresh, heparinized or citrate-added human blood, which contains streptococcus pyogenes with 102/ml colony-forming units as pathogens, is used for detection of pathogens. The DNA is isolated by means of lysis buffers which contain SDS and proteinase K, using commercial kits to isolate total DNA from body fluids according to modified instructions from the manufacturer. For this purpose, 6 ml of the total lysis buffer,

30071-3

- 11 -

which contains proteinase K and SDS, is added to 6 ml of infected blood. The mixture is incubated at 37°C for 30 min. and then heated to 95°C for 20 min. After cooling, 200 µg of mutanolysine are added and incubated at 37 °C for another 60 min. After centrifugation, the mixture is precipitated with ethanol at a final concentration of 70 %, and upon centrifugation, 5 the pellet is washed with 2 ml of 70 % ethanol. The ethanol residue is removed in a vacuum centrifuge and the precipitated DNA is collected in 500 µl TE buffer. The DNA is then applied to a column which contains 0.5 ml of Sepharose* and is immobilized on the 1 mg of TLR9. The column is washed with 5 volumes of TE buffer. Elution is carried out with chaotropic ions at a high concentration, e.g. with 0.7 ml of a 6 mole NaJ or KSCN solution. This eluate can 10 then be applied directly to a commercial DNA-isolating centrifugal column, and the CpG-enriched DNA may be isolated according to instructions, as in the initial example, to a small volume of between 20 µl and 100 µl and employed for further analysis, such as pathogen PCR.

*Trade-mark

SEQUENCE LISTING

<110> SIRS-Lab GmbH

<120> Method of Enriching Prokaryotic DNA

<130> 3081.109-US-01

<160> 9

<170> PatentIn version 3.3

<210> 1

<211> 2444

<212> DNA

<213> Homo sapiens

<400> 1

agatggcggc	gcctgagggg	tcttggggc	tctaggccgg	ccacctactg	gtttgcagcg	60
gagacgacgc	atggggcctg	cgcaatagga	gtacgctgcc	tgggaggcgt	gactagaagc	120
ggaagtagtt	gtgggcgcct	ttgcaaccgc	ctgggacgccc	gccgagtggt	ctgtgcaggt	180
tcgcgggtcg	ctggcggggg	tcgtgagggg	gtgcgcgggg	agcggagata	tggagggaga	240
tggttcagac	ccagagcctc	cagatgccgg	ggaggacagc	aagtccgaga	atggggagaa	300
tgcgcccatc	tactgcatct	gccgcaaacc	ggacatcaac	tgcttcatga	tcgggtgtga	360
caactgcaat	gagtggttcc	atggggactg	catccggatc	actgagaaga	tggccaaggc	420
catccggag	tggtaactgtc	gggagtgcag	agagaaagac	cccaagctag	agattcgcta	480
tcggcacaag	aagtcacggg	agcgggatgg	caatgagcgg	gacagcagtg	agccccggga	540
tgaggggtgga	ggcgcaaga	ggcctgtccc	tgatccaaac	ctgcagcgcc	gggcagggtc	600
agggacaggg	gttggggcca	tgcttgctcg	gggctctgct	tcgccccaca	aatcctctcc	660
gcagcccttg	gtggccacac	ccagccagca	tcaccagcag	cagcagcagc	agatcaaacg	720
gtcagccgc	atgtgtggtg	agtgtgaggc	atgtcggcgc	actgaggact	gtggtcactg	780
tgatttctgt	cgggacatga	agaagttcgg	gggcccccaac	aagatccggc	agaagtgcgg	840
gctgcccag	tgccagctgc	gggcccggga	atcgtacaag	tactccctt	cctcgctctc	900
accagtgacg	ccctcagagt	ccctgccaaag	gccccgcccgg	ccactgccc	cccaacagca	960
gccacagcca	tcacagaagt	tagggcgcat	ccgtgaagat	gagggggcag	tggcgtcatc	1020
aacagtcaag	gagcctcctg	aggctacagc	cacacctgag	ccactctcag	atgaggacct	1080
acctctggat	cctgacactgt	atcaggactt	ctgtgcaggg	gcctttgatg	acaatggcct	1140
gccctggatg	agcgacacag	aagagtcccc	attcctggac	cccgcgctgc	ggaagaggc	1200

agtcaaagtg aagcatgtga agcgtcggga gaagaagtct gagaagaaga aggaggagcg 1260
 atacaagcgg catcgccaga agcagaagca caaggataaa tggaaacacc cagagagggc 1320
 ttagtgcggcag gaccctgcgt cactgccccca gtgcctgggg cccggctgtg tgccgcggc 1380
 ccagccccagc tccaaatgtt gctcagatga ctgtggcatg aagctggcag ccaaccgcatt 1440
 ctacgagatc ctccccccagc gcatccagca gtggcagcag agcccttgca ttgctgaaga 1500
 gcacggcaag aagctgctcg aacgcattcg ccgagagcag cagagtgcgc gcacccgcct 1560
 tcaggaaatg gaacgcccatt tccatgagct tgaggccatc attctacgtg ccaaggcagca 1620
 ggctgtgcgc gaggatgagg agagcaacga gggtgacagt gatgacacag acctgcagat 1680
 cttctgtgtt tcctgtggc accccatcaa cccacgtgtt gccttgcgc acatggagcg 1740
 ctgctacgcc aagtatgaga gccagacgtc cttgggtcc atgtacccca cacgcattga 1800
 aggggccaca cgactcttct gtgatgtgtta taatcctcag agcaaaacat actgttaagcg 1860
 gctccaggtg ctgtgcggc agcaactcactg ggacccaaa gtgccagctg acgaggtatg 1920
 cgggtgcggc cttgtacgtg atgtcttta gctcacgggt gacttctgcc gcctgcggcaa 1980
 gcgccagtgc aatcgccatt actgctggga gaagctgcgg cgtgcggaaag tggacttgaa 2040
 gcgcggtgcgt gtgtggtaca agctggacga gctgttttag caggagcgca atgtgcgcac 2100
 agccatgaca aaccgcgcgg gattgctggc cctgatgctg caccagacga tccagcacga 2160
 tcccctcact accgacctgc gctccagtcg cggccgtga gcctcctggc ccggacccct 2220
 taaaccctgc attccagatg ggggagccgc ccgggtgcggc tgtgtccgtt cctccactca 2280
 tctgtttctc cggttctccc tgtgcccattc caccgggttga ccggccatct gcctttatca 2340
 gagggactgt ccccggtcgac atgttcagtg cctgggtgggg ctgcggagtc cactcatcct 2400
 tgccctcctct ccctgggttt tgttaataaa attttaaaga aacc 2444

<210> 2
 <211> 2444
 <212> DNA
 <213> Homo sapiens

<400> 2
 agatggcgcc gcctgagggg tcttggggc tctaggccgg ccacctactg gtttgcagcg 60
 gagacgacgc atggggcctg cgcaatagga gtacgctgcc tgggaggcgt gactagaagc 120
 ggaagtagtt gtggcgccct ttgcaaccgc ctggacgcc gcccgtggc ctgtgcaggt 180
 tcgcgggtcg ctggcggggg tcgtgaggga gtgcgcggg agcggagata tggagggaga 240
 tggttcagac ccagagcctc cagatgccgg ggaggacagc aagtccgaga atggggagaa 300
 tgcccccattc tactgcattt gcccggaaacc ggacatcaac tgcttcatttga tcgggtgtga 360

caactgcaat gagtggttcc atggggactg catccggatc actgagaaga tggccaaggc 420
 catccggag tggtaactgtc gggagtgcag agagaaagac cccaagctag agattcgcta 480
 tcggcacaag aagtcacggg agcgggatgg caatgagcgg gacagcagtg agccccggga 540
 tgagggtgga gggcgcaaga ggcctgtccc tgatccagac ctgcagcgcc gggcagggtc 600
 agggacaggg gttggggcca tgcttgctcg gggctctgct tcgccccaca aatcctctcc 660
 gcagcccttg gtggccacac ccagccagca tcaccagcag cagcagcagc agatcaaacg 720
 gtcagcccgc atgtgtggt agtgtgaggc atgtcggcgc actgaggact gtggtcactg 780
 tgatttctgt cgggacatga agaagttcgg gggccccaac aagatccggc agaagtgcgg 840
 gctgcgccag tgccagctgc gggcccgga atcgtacaag tacttccctt cctcgctctc 900
 accagtgacg ccctcagagt ccctgccaag gccccgcccgg ccactgcccc cccaaacagca 960
 gccacagcca tcacagaagt tagggcgcat ccgtgaagat gagggggcag tggcgtcata 1020
 aacagtcaag gagcctcctg aggctacagc cacacctgag ccactctcag atgaggac 1080
 acctctggat cctgacctgt atcaggactt ctgtgcaggg gcctttgatg accatggcct 1140
 gccctggatg agcgacacag aagagtcccc attcctggac cccgcgctgc ggaagaggc 1200
 agtgaaagtg aagcatgtga agcgtcggga gaagaagtct gagaagaaga aggaggagcg 1260
 atacaagcgg catcgccaga agcagaagca caaggataaa tggaaacacc cagagaggc 1320
 tgatgccaag gaccctgcgt cactgcccc gtgcctgggg cccggctgtg tgcgccccgc 1380
 ccagcccagc tccaaagtatt gctcagatga ctgtggcatg aagctggcag ccaaccgcat 1440
 ctacgagatc ctcccccagc gcatccagca gtggcagcag agcccttgca ttgctgaaga 1500
 gcacggcaag aagctgctcg aacgcattcg ccgagagcag cagagtcccc gcactcgcc 1560
 tcagggaaatg gaacgcccatt tccatgagct tgaggccatc attctacgtg ccaagcagca 1620
 ggctgtgcgc gaggatgagg agagcaacga gggtgacagt gatgacacag acctgcagat 1680
 cttctgtgtt tcctgtggc accccatcaa cccacgttt gccttgcgcc acatggagcg 1740
 ctgctacgcc aagtatgaga gccagacgtc cttgggtcc atgtacccca cacgcattga 1800
 aggggccaca cgactcttct gtgatgtgta taatcctcag agcaaaacat actgtaaacg 1860
 gctccaggtg ctgtgcccc agcaactcactg ggacccaaa gtgccagctg acgaggtatg 1920
 cgggtgcccc cttgtacgtg atgtcttga gctcacgggt gacttctgcc gcctgccccaa 1980
 gcgccagtgc aatcgccatt actgctggga gaagctgcgg cgtgcggaaag tggacttgg 2040
 gcgcggtgcgt gtgtggtaca agctggacga gctgtttgag caggagcgca atgtgcgcac 2100
 agccatgaca aaccgcgcgg gattgctggc cctgatgctg caccagacga tccagcacga 2160

tcccctcact accgacctgc gctccagtgc cgaccgctga gcctcctggc ccggaccacct	2220
tacaccctgc attccagatg ggggagccgc ccgggtgcccgtgtgtccgtt cctccactca	2280
tctgtttctc cggttctccc tgtgcccattc caccgggtga cccggccatct gcctttatca	2340
gagggactgt ccccggtcgac atgttcagtg cctgggtggg ctgcggagtc cactcatcct	2400
tgccctcctct ccctgggttt tgttaataaa attttgaaga aacc	2444

<210> 3
 <211> 3257
 <212> DNA
 <213> Homo sapiens

<400> 3	
ccgctgctgc ccctgtggga agggacctcg agtgtgaagc atccttcct gtagctgctg	60
tccagtctgc cgcgcagacc ctctggagaa gcccctgccc cccagcatgg gtttctgccc	120
cagcgccctg caccgcgtgt ctctcctggt gcaggccatc atgctggcca tgaccctggc	180
cctgggtacc ttgcctgcct tcctaccctg tgagctccag ccccacggcc tggtgaactg	240
caactggctg ttccctgaagt ctgtgccccca cttctccatg gcagcaccccc gtggcaatgt	300
caccagcctt tccttgcctt ccaaccgcatt ccaccacccatc catgattctg actttgccc	360
cctgcccagc ctgcggcatc tcaacctcaa gtggaactgc ccggccgttg gcctcagccc	420
catgcacttc ccctgccaca tgaccatcga gcccagcacc ttcttgctg tgcccaccct	480
ggaagagcta aacctgagct acaacaacat catgactgtg cctgcgtgc ccaaattccct	540
catatccctg tccctcagcc ataccaacat cctgatgcta gactctgcca gcctcgccgg	600
cctgcatgcc ctgcgtttcc tattcatgga cggcaactgt tattacaaga acccctgcag	660
gcaggcactg gaggtggccc cgggtgcctt cttggcctg ggcaacctca cccacctgtc	720
actcaagtac aacaacctca ctgtggtgcc ccgcaacctg cttccagcc tggagtatct	780
gctgttgtcc tacaaccgca tcgtcaaact ggccgttgag gacctggcca atctgaccgc	840
cctgcgtgtg ctcgatgtgg gcggaaatttgc cccggctgc gaccacgctc ccaaccctgt	900
catggagtgc cctcgtcact tccccagct acatcccgtt accttcagcc acctgagccg	960
tcttgaaggc ctggtgttga aggacagttc tcttcctgg ctgaatgcca gttgggttccg	1020
tgggctggga aacctccgag tgctggacct gagtgagaac ttcccttaca aatgcac	1080
taaaaccaag gccttccagg gcctaacaaca gctgcgcaag cttaacctgt cttcaatta	1140
ccaaaagagg gtgtccttttgc cccacctgtc tctggccctt tccttcggga gcctgggtcg	1200
cctgaaggag ctggacatgc acggcatctt cttccgtca ctcgatgaga ccacgctccg	1260
gccactggccc cgccctgccccca tgctccagac tctgcgtctg cagatgaact tcatcaacca	1320

ggcccagctc	ggcatcttca	gggccttccc	tggcctgcgc	tacgtggacc	tgtcggacaa	1380
ccgcattcagc	ggagcttcgg	agctgacagc	caccatgggg	gaggcagatg	gaggggagaa	1440
ggtctggctg	cagcctgggg	accttgcctcc	ggcccccagtg	gacactccca	gctctgaaga	1500
cttcaggccc	aactgcagca	ccctcaactt	caccttggat	ctgtcacgga	acaacctgg	1560
gaccgtgcag	ccggagatgt	ttgcccagct	ctcgcacctg	cagtgcctgc	gcctgagcca	1620
caactgcac	tcgcaggcag	tcaatggctc	ccagttcctg	ccgctgaccg	gtctgcaggt	1680
gctagacctg	tcccacaata	agctggacct	ctaccacgag	cactcattca	cgagactacc	1740
acgactggag	gccctggacc	tcaagctacaa	cagccagccc	tttggcatgc	agggcgtgg	1800
ccacaacttc	agttcgtgg	ctcacctgcg	caccctgcgc	cacccatgc	tggcccacaa	1860
caacatccac	agccaagtgt	cccagcagct	ctgcagtacg	tcgctgcggg	ccctggactt	1920
cagcggcaat	gcactgggcc	atatgtggc	cgagggagac	ctctatctgc	acttcttcca	1980
aggcctgagc	ggtttgcgt	ggctggactt	gtcccagaac	cgccctgcaca	ccctcctgccc	2040
ccaaaccctg	cgcaacacctc	ccaagagcct	acaggtgctg	cgtctccgtg	acaattacct	2100
ggccttcttt	aagtggtgga	gcctccactt	cctgcccaaa	ctggaagtcc	tcgacctggc	2160
aggaaaccag	ctgaaggccc	tgaccaatgg	cagcctgcct	gctggcaccc	ggctccggag	2220
gctggatgtc	agctgcaaca	gcatcagctt	cgtggccccc	ggcttctttt	ccaaggccaa	2280
ggagctgcga	gagctcaacc	ttagcgccaa	cgccctcaag	acagtggacc	actcctgggt	2340
tggccccctg	gcgagtgccc	tgcaaatact	agatgtaagc	gccaaaccctc	tgcactgcgc	2400
ctgtggggcg	gcctttatgg	acttcctgct	ggaggtgcag	gctgccgtgc	ccggctcgcc	2460
cagccgggtg	aagtgtggca	gtccgggcca	gctccagggc	ctcagcatct	ttgcacagga	2520
cctgcgcctc	tgcctggatg	aggccctctc	ctgggactgt	tgcctccct	cgctgctggc	2580
tgtggctctg	ggcctgggtg	tgcccatgct	gcatcaccc	tgtggctggg	acctctggta	2640
ctgcttccac	ctgtgcctgg	cctggcttcc	ctggcgggggg	cggcaaagtg	ggcgagatga	2700
ggatgccctg	ccctacgtg	cttcgtgg	cttcgacaaa	acgcagagcg	cagtggcaga	2760
ctgggtgtac	aacgagcttc	ggggcagct	ggaggagtgc	cgtggcgct	ggcactccg	2820
cctgtgcctg	gaggaacgcg	actggctgcc	tggcaaaacc	ctctttgaga	acctgtggc	2880
ctcggtctat	ggcagccgca	agacgctgtt	tgtgctggcc	cacacggacc	gggtcagtgg	2940
tctcttgcgc	gccagcttcc	tgctggccca	gcagcgcctg	ctggaggacc	gcaaggacgt	3000
cgtggtgctg	gtgatcctga	gccctgacgg	ccgcccgtcc	cgctacgtgc	ggctgcgcca	3060
gcgcctctgc	cgcctcgatg	tcctcctctg	gcggccaccag	cccagtggtc	agcgagctt	3120

ctggcccaag	ctggcatgg	ccctgaccag	ggacaaccac	cacttctata	accggaactt	3180
ctgccaggga	cccacggccg	aatagccgtg	agccggaatc	ctgcacggtg	ccacctccac	3240
actcacctca	cctctgc					3257

<210> 4
 <211> 3110
 <212> DNA
 <213> Homo sapiens

<400> 4						
tggtaactg	caactggctg	ttcctgaagt	ctgtgccccca	cttctccatg	gcagcacc	60
gtggcaatgt	caccagcctt	tccttgcct	ccaaccgc	ccaccac	ctgattctg	120
actttgccc	cctgccc	ctgcggcatc	tcaac	ctcaa	gtggactgc	180
gcctcagccc	catgcacttc	ccctgccaca	tgaccatcga	gcc	ccgcccgtt	240
tgcccacc	ggaagagcta	aac	ctgag	act	catgactgt	300
ccaaatcc	cata	ccctg	tcc	cag	atcca	360
gcctcgcc	cctgc	atgc	ctgc	gttcc	actgt	420
acc	ctgc	actgc	ctgc	ttcc	ctg	480
cccac	actca	act	aca	acc	act	540
tggag	tat	ct	gtt	gttcc	gtt	600
atctgacc	gc	cctgc	gtgt	gttcc	gtt	660
ccaac	cc	ctgc	gttcc	gttcc	gtt	720
ac	ctgc	act	aca	acc	act	780
gttgg	ttcc	tg	ggctgg	gg	actgt	840
aat	gc	ttcc	agg	gg	ggcc	900
ccttca	at	ttcc	gg	gg	cttcc	960
gcctgg	tc	gc	gg	gg	cc	1020
ccac	cg	cc	gg	gg	cc	1080
tcatca	ac	cc	gg	gg	cc	1140
tgtcgg	aa	cc	gg	gg	cc	1200
gaggg	cc	gg	gg	gg	cc	1260
gctct	gg	gg	gg	gg	cc	1320
acaac	ct	gg	gg	gg	cc	1380
gcctg	gg	gg	gg	gg	cc	1440
gcca	ca	actgc	atc	tcg	aggc	

gtctgcaggt gctagacctg tcccacaata agctggacct ctaccacgag cactcattca	1500
cgagactacc acgactggag gccctggacc tcagctacaa cagccagccc tttggcatgc	1560
agggcgtggg ccacaacttc agttcgtgg ctcacctgcg caccctgcgc cacctcagcc	1620
tggcccacaa caacatccac agccaagtgt cccagcagct ctgcagtacg tcgctgcggg	1680
ccctggactt cagcggcaat gcactgggcc atatgtggc cgagggagac ctctatctgc	1740
acttcttcca aggctgagc ggtttgcgtt ggctggactt gtcccagaac cgccctgcaca	1800
ccctcctgcc ccaaaccctg cgcaacacctc ccaagagcct acaggtgctg cgtctccgtg	1860
acaattacct ggcttcttt aagtggtgga gcctccactt cctgcccaaa ctggaagtcc	1920
tcgacctggc aggaaaccag ctgaaggccc tgaccaatgg cagcctgcct gctggcaccc	1980
ggctccggag gctggatgtc agctgcaaca gcatcagctt cgtggccccc ggcttcttt	2040
ccaaggccaa ggagctgcga gagctcaacc ttagcgccaa cgccctcaag acagtggacc	2100
actcctggtt tggcccttg gcgagtgccc tgcaaatact agatgtaagc gccaaccctc	2160
tgcaactgcgc ctgtggggcg gccttatgg acttcctgct ggaggtgcag gctgccgtgc	2220
ccggcttgcc cagccgggtg aagtgtggca gtccgggcca gctccagggc ctcagcatct	2280
ttgcacagga cctgcgcctc tgccctggatg aggccctctc ctggactgt ttgcctct	2340
cgctgctggc tgtggctctg ggcctgggtg tgcccatgct gcatcacctc tgtggctggg	2400
acctctggta ctgcttccac ctgtgcctgg cctggcttcc ctggcggggg cggcaaagtg	2460
ggcgagatga ggtgcccctg ccctacgatg cttcgtggc ttgcacaaa acgcagagcg	2520
cagtggcaga ctgggtgtac aacgagcttc gggggcagct ggaggagtgc cgtggcgct	2580
gggcactccg cctgtgcctg gaggaacgcg actggctgcc tggcaaaacc ctcttgaga	2640
acctgtggc ctcggctat ggcagccgca agacgctgtt tgtgctggcc cacacggacc	2700
gggtcagtgg tctcttgcgc gccagcttcc tgctggccca gcagcgcctg ctggaggacc	2760
gcaaggacgt cgtggtgctg gtgatcctga ggcctgacgg cgcgcgtcc cgctatgtgc	2820
ggctgcgcca ggcgcctctgc cggcagagtg tcctcctctg gccccaccag cccagtggtc	2880
agcgcagctt ctggcccccag ctgggcatgg ccctgaccag ggacaaccac cacttctata	2940
accggaactt ctgccagggc cccacggccg aatagccgtg agccggaatc ctgcacgggt	3000
ccacccctccac actcacctca cctctgcctg cctggctctga ccctccctg ctcgcctccc	3060
tcacccca cctgacacacag agcaggact caataaatgc taccgaaggc	3110

<210> 5
 <211> 3868

<212> DNA

<213> Homo sapiens

<400> 5

ggaggtcttg	tttccggaag	atgttgcaag	gctgtggtga	aggcaggtgc	agcctagcct	60
cctgctcaag	ctacaccctg	gccctccacg	catgaggccc	tgcagaactc	tggagatggt	120
gcctacaagg	gcagaaaagg	acaagtccgc	agccgctgtc	ctgagggcac	cagctgtggt	180
gcaggagcca	agacctgagg	gtggaagtgt	cctcttagaa	tggggagtgc	ccagcaaggt	240
gtacccgcta	ctggtgctat	ccagaattcc	catctctccc	tgctctctgc	ctgagctctg	300
ggccttagct	cctccctggg	cttggtagag	gacaggtgtg	aggccctcat	gggatgtagg	360
ctgtctgaga	ggggagtgga	aagaggaagg	ggtgaaggag	ctgtctgcca	tttgactatg	420
caaatggcct	ttgactcatg	ggaccctgtc	ctcctcactg	ggggcagggt	ggagtggagg	480
gggagctact	aggctggtat	aaaaatctta	cttcctctat	tctctgagcc	gctgctgccc	540
ctgtgggaag	ggacctcgag	tgtgaagcat	cttccctgt	agctgctgtc	cagtctgccc	600
gccagaccct	ctggagaagc	ccctgcccc	cagcatgggt	ttctgccgca	gcgccttgca	660
cccgctgtct	ctcctgggtgc	aggccatcat	gctggccatg	accctggccc	tgggtacctt	720
gcctgccttc	ctaccctgtg	agctccagcc	ccacggcctg	gtgaactgca	actggctgtt	780
cctgaagtct	gtgccccact	tctccatggc	agcacccgt	ggcaatgtca	ccagcctttc	840
cttgcctcc	aaccgcatcc	accacctcca	tgattctgac	tttgcacc	tgcccagcct	900
gcggcatctc	aacctcaagt	ggaactgccc	gccgggtggc	ctcagcccca	tgcacttccc	960
ctgccacatg	accatcgagc	ccagcacctt	cttggctgtg	cccaccctgg	aagagctaaa	1020
cctgagctac	aacaacatca	tgactgtgcc	tgcgctgccc	aaatccctca	tatccctgtc	1080
cctcagccat	accaacatcc	tgatgctaga	ctctgccagc	ctgcggggcc	tgcatgccct	1140
gcgcttccta	ttcatggacg	gcaactgtta	ttacaagaac	ccctgcagggc	aggcactgga	1200
ggtgcccccg	ggtgccctcc	ttggcctggg	caacctcacc	cacctgtcac	tcaagtacaa	1260
caacctcaact	gtggtgcccc	gcaacctgcc	ttccagcctg	gagtatctgc	tgttgcctca	1320
caaccgcatac	gtcaaactgg	cgcctgagga	cctggccaat	ctgaccgccc	tgcgtgtgct	1380
cgtatgtgggc	ggaaattgcc	gccgctgcga	ccacgctccc	aaccctgca	tggagtgccc	1440
tcgtcacttc	ccccagctac	atcccgatac	cttcagccac	ctgagccgtc	ttgaaggcct	1500
ggtgttgaag	gacagttctc	tctcctggct	gaatgccagt	tggttccgtg	ggctggaaaa	1560
cctccgagtg	ctggacctga	gtgagaactt	cctctacaaa	tgcataacta	aaaccaaggc	1620
cttccagggc	ctaacacagc	tgcgcaagct	taacctgtcc	ttcaattacc	aaaagagggt	1680

gtcctttgcc cacctgtctc tggcccccattc cttcgggagc ctggtcgccc tgaaggagct	1740
ggacatgcac ggcacatcttct tccgctcaact cgatgagacc acgctccggc cactggcccg	1800
cctgccccatg ctccagactc tgcgtctgca gatgaacttc atcaaccagg cccagctcg	1860
catcttcagg gccttccctg gcctgcgcta cgtggacctg tcggacaacc gcatcagcgg	1920
agcttcggag ctgacagcca ccatggggga ggcagatgga ggggagaagg tctggctgca	1980
gcctggggac cttgctccgg ccccagtgga cactcccagc tctgaagact tcaggccaa	2040
ctgcagcacc ctcaacttca ccttggatct gtcacggAAC aacctggta ccgtgcagcc	2100
ggagatgttt gcccaagctct cgcacactgca gtgcctgcgc ctgagccaca actgcacatctc	2160
gcaggcagtc aatggctccc agttcctgca gctgaccggc ctgcaggtgc tagacctgtc	2220
ccacaataag ctggacacct accacgagca ctcattcactc gagctaccac gactggaggc	2280
cctggacctc agtacaaca gccagccctt tggcatgcag ggcgtgggcc acaacttcag	2340
cttcgtggct cacctgcgca ccctgcgcca cctcagcctg gcccacaaca acatccacag	2400
ccaagtgtcc cagcagctct gcagtaagtc gctgcgggcc ctggacttca gcggcaatgc	2460
actggccat atgtggcccg agggagacct ctatctgcac ttcttccaag gcctgagcgg	2520
ttttagtctgg ctggacttgtt cccagaaccg cctgcacacc ctcctgcccc aaaccctgca	2580
caacccccc aagagcctac aggtgctgcg tctccgtgac aattacctgg cttctttaa	2640
gtgggtggagc ctccacttcc tgcccaaact ggaagtcttc gacctggcag gaaaccagct	2700
gaaggccctg accaatggca gcctgcctgc tggcacccgg ctccggaggc tggatgtcag	2760
ctgcaacagc atcagcttcg tggcccccgg cttctttcc aaggccaagg agctgcgaga	2820
gctcaacctt agcgccaaacg ccctcaagac agtggaccac tcctggtttggccctggc	2880
gagtgccttg caaatactag atgtaagcgc caaccctctg cactgcgcct gtggggcggc	2940
cttatggac ttccctgctgg aggtgcaggc tgccgtgccc ggtctgccc gccgggtgaa	3000
gtgtggcagt ccggggccagc tccagggcct cagcatctt gcacaggacc tgccctctg	3060
cctggatgag gccctctcct gggactgttt cgcctctcg ctgctggctg tggctctgg	3120
cctgggtgtg cccatgctgc atcacctctg tggctggac ctctggtaact gttccaccc	3180
gtgcctggcc tggcttcctt ggcggggcg gcaaagtggg cgagatgagg atgcctgc	3240
ctacgatgcc ttctgtgtct tcgacaaaac gcagagcgcg gtggcagact ggggtgtacaa	3300
cgagcttcgg gggcagctgg aggagtgcgg tggcgctgg gcactccgccc tgcgtggca	3360
ggaaacgcgac tggctgcctg gcaaaaccct ctttggaaac ctgtggccct cggtctatgg	3420
cagccgcaag acgctgtttg tgctggccca cacggaccgg gtcagtggtc tcttgcgcgc	3480

cagcttcctg ctggcccagc agcgccctgct ggaggaccgc aaggacgtcg tggtgctggt	3540
gatcctgagc cctgacggcc gccgctcccg ctatgtgcgg ctgcgccagc gcctctgccg	3600
ccagagtgtc ctcctctggc cccaccagcc cagtggtcag cgtagttct gggcccgact	3660
gggcattggcc ctgaccaggg acaaccacca cttctataac cgaaacttct gccagggacc	3720
cacggccgaa tagccgtgag ccgaaatcct gcacggtgcc acctccacac tcacctcacc	3780
tctgcctgcc tggtctgacc ctcccctgct cgccctccctc accccacacc tgacacagag	3840
caggcactca ataaatgcta ccgaaggc	3868

<210> 6
<211> 26
<212> DNA
<213> Homo sapiens

<400> 6 agcataacaag caaattttt acacgg	26
---	----

<210> 7
<211> 24
<212> DNA
<213> Homo sapiens

<400> 7 gttctgttat tgacacccgc aatt	24
---------------------------------------	----

<210> 8
<211> 24
<212> DNA
<213> Homo sapiens

<400> 8 ccttcctaatt aatcctgcgg atgt	24
--	----

<210> 9
<211> 28
<212> DNA
<213> Homo sapiens

<400> 9 ctgaaggtag cattagtctt tgataacg	28
---	----

30071-3

- 12 -

CLAIMS:

1. A method of enriching procaryotic DNA in vitro, said method comprising the steps of:
 - (a) contacting at least one procaryotic DNA in solution containing a mixture of procaryotic and eucaryotic DNA, with at least one polypeptide that specifically binds to procaryotic DNA, wherein the polypeptide is selected from the group consisting of TLR9 and hCGBP, to form a polypeptide-DNA complex, and
 - (b) isolating said complex.
2. The method according to claim 1, wherein the isolation step (b) is followed by a step of dissociating the DNA from the polypeptide.
3. The method according to claim 1 or 2, wherein the polypeptide is coupled to a carrier.
4. The method according to claim 3, wherein the polypeptide is coupled directly to said carrier.
- 15 5. The method according to claim 3, wherein the polypeptide is coupled to the carrier via an antibody that binds said polypeptide.
6. The method according to any one of claims 3 to 5, wherein the carrier is provided as a matrix, as microparticles or as a membrane.
7. The method according to claim 1 or 2, wherein the isolation step (b) is effected by means of an antibody or antiserum directed against the polypeptide.
- 20 8. The method according to claim 1, wherein the isolation step (b) is effected by means of electrophoresis.
9. The method according to claim 1, wherein the solution is a body fluid.

30071-3

- 13 -

10. The method according to claim 9 which is effected extracorporeally under sterile conditions for purifying a body fluid.
11. The method according to claim 1, further comprising the steps of:
 - (c) amplifying the procaryotic DNA isolated in step (b); and
 - 5 (d) detecting the amplified procaryotic DNA from step (c).

Application number/numéro de demande: EP03/08825

Figures: _____

Pages: 1,2

DKW-IP

Unscannable items
received with this application
(Request original documents in File Prep. Section on the 10th Floor)

Documents reçus avec cette demande ne pouvant être balayés
(Commander les documents originaux dans la section de préparation des dossiers au
10ième étage)