(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
WO 2006/069412 A1

(51) Internationale Patentklassifikation:
E05F 1/10 (2006.01) E05F 5/00 (2006.01)

(21) Internationales Aktenzeichen: PCT/AT2005/000522

(22) Internationales Anmeldedatum:

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): DUBACH, Fredi [CH/CH]; Schützistrasse 11, CH-8344 Bäretwil (CH); OMANN, Christian [AT/AT]; Kotterstrasse 17, A-6971 Hard (AT).

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, [Fortsetzung auf der nächsten Seite]

(54) Title: CONTROL MECHANISM PROVIDED WITH AT LEAST ONE ADJUSTING ARM

(54) Bezeichnung: STELLANTRIEB MIT ZUMINDEST EINE STELLARM

(57) Abstract: The invention concerns a control mechanism (9) comprising at least one adjusting arm (12) in particular for driving a furniture shutter (23). Said mechanism comprises a base element (15) whereon is pivotally mounted the adjusting arm (12) and a spring device (19) for biasing the adjusting arm (12). The adjusting arm (12) has a braking device the action of which depends on the rotational speed of the adjusting arm (12) such that the adjusting arm (12) moves substantially freely below a given rotational speed and the braking device (1) brakes the adjusting arm (12) for a rotational speed not lower than the given rotational speed.

(57) Zusammenfassung: Steellantrieb (9) mit zumindest einem Stellarm (12), insbesondere zum Antrieb einer Klappe (23) eines Möbels, mit einem Grundkörper (15), an dem der Stellarm (12) schwenkbar gelagert ist und mit einer Federvorrichtung (19) zum Aufschieben des Stellarmes (12), wobei der Stellantrieb (9) eine Bremsvorrichtung (1) aufweist, deren Wirkung derart von der Schwenkgeschwindigkeit des Stellarmes (12) abhängig, dass der Stellarm (12) unterhalb einer vorgegebenen Schwenkgeschwindigkeit im Wesentlichen frei bewegbar ist und dass die Bremsvorrichtung (1) den Stellarm (12) bei einer Schwenkgeschwindigkeit größer gleich der vorgegebenen Schwenkgeschwindigkeit bremst.

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Stellantrieb mit zumindest einem Stellarm

Die vorliegende Erfindung bezieht sich auf einen Stellantrieb mit zumindest einem Stellarm, insbesondere zum Antrieb einer Klappe eines Möbels, mit einem Grundkörper, an dem der Stellarm schwenkbar gelagert ist und mit einer Federvorrichtung zum Beaufschlagen des Stellarmes.

Aufgabe der gegenständlichen Erfindung ist es daher, den Stellantrieb der eingangs erwähnten Gattung unter Reduzierung der oben genannten Gefahr zu verbessern bzw. um die Handhabung des Stellantriebs in Montagesituationen zu erleichtern.

Unter „Federvorrichtung“ sind im Rahmen der vorliegenden Erfindung nicht nur Federvorrichtungen mit mechanischen Federelementen umfasst, sondern auch alle gemäß dem Stand der Technik bekannten Kraftspeicher, wie z.B. Gasdruckspeicher oder ähnliche verstanden.

Eine bevorzugte Ausführungsform des erfindungsgemäßen Stellantriebes ist gekennzeichnet durch eine Montagesicherung für den leeren Stellarm, an dem noch keine Klappe montiert ist, wobei die Montagesicherung eine Bremsvorrichtung aufweist, welche die Öffnungsgeschwindigkeit des leeren Stellarmes begrenzt.

Bei einem vorteilhaften Ausführungsbeispiel der Erfindung kann vorgesehen sein, dass die Bremsvorrichtung eine Rastvorrichtung umfasst.

Vorteilhaft ist vorgesehen, dass durch die Brems- oder Rastvorrichtung die Schwenkgeschwindigkeit des Stellarmes reduzierbar und/oder der Stellarm zeitweilig in seiner Schwenkklage fixierbar ist. Die Schwenkgeschwindigkeit des Stellarmes kann dabei graduell reduziert oder abrupt bis auf Null hin abgebremst werden.

Im Zusammenhang mit der Fliehkraftkupplung kann günstigerweise vorgesehen sein, dass das erste Kupplungssteil durch zumindest eine Kraftspeichervorrichtung, vorzugsweise eine Feder, beaufschlagt ist, sodass dieser von dem zweiten Kupplungssteil außer Eingriff bringbar ist. Durch die Kraftspeichervorrichtung kann der erste Kupplungssteil der Fliehkraftkupplung wieder in eine Bereitschaftsposition gebracht werden. Andererseits bestimmt die Dimensionierung der Kraftspeichervorrichtung den Schwellwert der Schwenkgeschwindigkeit des Stellarmes, da nach Überwindung von deren Kraft die Fliehkraftkupplung aktivierbar ist. In diesem Zusammenhang kann es von Vorteil sein, wenn der Schwellwert der Schwenkgeschwindigkeit durch die Kraftspeichervorrichtung vorgebar oder einstellbar ist. Wird die Kraftspeichervorrichtung von zumindest einer Feder gebildet, so kann
durch die Vorspannung derselben der Schwellwert der Schwenkgeschwindigkeit eingestellt werden. In einem bevorzugten Ausführungsbeispiel der Erfindung kann vorgesehen sein, dass die Kraftspeichervorrichtung derart angeordnet ist, dass sie zwischen dem ersten Kupplungsteil und einem vorzugsweise koaxial zur Lagerachse des Stellarmes angeordneten Aufnahmeeil wirkt.

Gemäß einer vorteilhaften Weiterbildung der Erfindung kann vorgesehen sein, dass die Bremsvorrichtung zumindest einen Fluidämpfer, vorzugsweise einen Lineardämpfer, aufweist. Dabei kann die Ausgestaltung so getroffen sein, dass der Fluidämpfer mittelbar oder unmittelbar am Stellarm angreift. Selbstverständlich ist auch ein Rotationsdämpfer mit entsprechender konstruktiver Ausführung vorteilhaft einsetzbar.

Ein günstiges Ausführungsbeispiel der Erfindung sieht vor, dass der Stellantrieb eine Federvorrichtung mit einem federbelasteten Stellteil und einen Übersetzungsmechanismus aufweist, der die Bewegung des Stellteiles in eine Schwenkbewegung des Stellarmes umsetzt, wobei der Übersetzungsmechanismus zumindest einen schwenkbar gelagerten Zwischenhebel aufweist, der einerseits vom federbelasteten Stellteil und andererseits an einer am Stellarm ausgebildeten oder angeordneten Steuernocke – vorzugsweise über eine Druckrolle – anliegt, wobei die Bremsvorrichtung zumindest einen Fluidämpfer aufweist, der vorzugsweise gelenkig an der Steuernocke des Stellarmes angreift.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung kann vorgesehen sein, dass der Fluiddämpfer der Bremsvorrichtung am Übersetzungsmechanismus, vorzugsweise am Zwischenhebel, angreift.

Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der Figurenbeschreibung unter Bezugnahme auf die Zeichnungen im Folgenden näher erläutert. Darin zeigt bzw. zeigen:

Fig. 1a – 1e verschiedene Ansichten einer beispielhaften Brems- oder Rastvorrichtung,
Fig. 2a – 2c zeitliche Abfolgen einer Verrastung der Brems- oder Rastvorrichtung, die Teil des erfindungsgemäßen Stellantriebes ist,
Fig. 3 eine perspektivische Darstellung der Brems- oder Rastvorrichtung,
Fig. 4 ein weiteres Ausführungsbeispiel der Erfindung mit gedämpftem Aufnahmeteil,
Fig. 5 ein weiteres Ausführungsbeispiel mit einer Rast- und einer Bremsvorrichtung,
Fig. 6 den an einer Möbelseitenwand befestigten Stellantrieb, an dem noch keine Klappe montiert ist,
Fig. 7 den an der Seitenwand befestigten Stellantrieb mit montierter Klappe,
Fig. 8 ein weiteres Ausführungsbeispiel eines Stellantriebes mit dem Stellarm in der Schließstellung, wobei die Bremsvorrichtung einen Fluiddämpfer aufweist,
Fig. 9 das Ausführungsbeispiel des Stellantriebes aus Fig. 8 mit dem Stellarm in der Offenstellung,
Fig. 10 das Ausführungsbeispiel aus Fig. 8 und Fig. 9 in einer perspektivischen Darstellung,
Fig. 11a – 11c eine beispielhafte Ausführungsform eines Fluiddämpfers als Teil der erfindungsgemäßen Bremsvorrichtung in verschiedenen Ansichten, wobei der Fluiddämpfer eine freie Bewegung der Kolbenstange bzw. eines Stellarmes erlaubt,
Fig. 12a – 12c
die Ausgestaltung des Fluidämpfers aus Fig. 11a bis 11c, wobei der Fluidämpfer die Bewegung eines Stellarmes bremst bzw. stoppt.

5
Fig. 1a – 1e zeigen verschiedenen Ansichten einer beispielhaften Brems- oder Rastvorrichtung 1. Fig. 1a – 1c zeigen zeitliche Abfolgen des Einrastvorganges, falls der Schwellwert der Schwenkgeschwindigkeit eines aus Gründen der Übersichtlichkeit nicht dargestellten Schwenkarmes überschritten wird. Fig. 1a zeigt den unverrasteten Zustand der Brems- oder Rastvorrichtung 1, Fig. 1b zeigt den Moment des Einrastvorganges und Fig. 1c zeigt den verrasteten Zustand. Wie insbesondere aus der Explosionsdarstellung der Fig. 1d ersichtlich, ist die Brems- oder Rastvorrichtung 1 als Klinkengesperrre mit einer Klinkenverzahnung ausgeführt. Koaxial zur Lagerachse 3 des Stellarmes ist ein Aufnahmteil 6 angeordnet. Der Aufnahmteil 6 ist so ausgebildet, dass der zweite Kupplungssteil 4 auf diesen aufgeschoben werden kann.

10 Im gezeigten Ausführungsbeispiel ist der zweite Kupplungssteil 4 als innen verzahnter Ring ausgebildet. Der erste Kupplungssteil 2 bildet das Gegenstück zum innen verzahnten Ring 4. Der erste Kupplungssteil 2 ist so konstruiert, dass er an der Lagerachse 3 mit radialem Bewegungsfreiraum gelagert ist, was durch das Langloch 8 ermöglicht wird. Im Weiteren weist der erste Kupplungssteil 2 zumindest eine Klinke oder zumindest einen Rastzahn 7 auf, der mit der Verzahnung des Ringes 4 in Eingriff bringbar ist. Eine Kraftspeichervorrichtung 5, deren Dimensionierung den Schwellwert der Schwenkgeschwindigkeit bestimmt, wirkt zwischen dem ersten Kupplungssteil 2 und dem Aufnahmteil 6. Der erste Kupplungssteil 2 ist entweder am Stellarm angeordnet oder ausgebildet oder mit diesem vorzugsweise koaxial gekoppelt. Wird nun der Stellarm über eine nicht dargestellte Federvorrichtung beaufschlagt, so kann diese Fliehkraftkupplung aktiv werden. Wird die Kraft der Feder 5 überwunden, so wird der erste Kupplungssteil 2 aufgrund der wirkenden Zentrifugalkraft oder Fliehkraft nach außen gedrückt, wodurch die Rastzähne 7 mit der Verzahnung des Ringes 4 in Eingriff kommen können. Fig. 1a – 1c zeigen den Ablauf des Einrastvorganges. Fig. 1e zeigt eine perspektivische Darstellung der Brems- oder Rastvorrichtung 1. Der gleiche Mechanismus kann nicht nur für eine Verrastung der beiden Kupplungssteile 2, 4 dienen. Es liegt auch im Rahmen der Erfindung, statt der Rastzähne 7 einen Reibbelag am ersten Kupplungssteil 2 anzuordnen, der durch die wirkende Zentrifugalkraft mit einem Reibbelag des zweiten Kupplungstelles zusammenwirken kann.
Fig. 2a – 2c zeigen zeitliche Abfolgen des Einrastvorganges der Brems- oder Rastvorrichtung 1 in Verbindung mit einem Stellantrieb 9, der zum Bewegen einer Möbelklappe von der Schließ- in die Offenstellung bzw. in die umgekehrte Richtung vorgesehen ist. Der Grundkörper 15 des Stellantriebes 9 wird üblicherweise an einer Seitenwand eines Möbelkorpus befestigt. Ein Stellarm 12 ist an der Lagerachse 3 gelagert. Zum Gewichtsausgleich der Möbelklappe ist eine Federvorrichtung 19 vorgesehen, die den Stellarm 12 über einen Zwischenhebel 11 mit einem Drehmoment beaufschlagt. Bei nicht angelenkter Möbelklappe können dabei kritische Momente auftreten, in denen sich der Stellarm 12 unbeabsichtigt öffnet und Verletzungen am Montagepersonal verursachen kann. Aus diesem Grund ist die Brems- oder Rastvorrichtung 1 vorgesehen, die vorzugsweise koaxial zur Lagerachse 3 des Stellarmes 12 angeordnet ist. Fig. 2a zeigt den unverrasteten Zustand der Brems- oder Rastvorrichtung 1, wobei sich der Stellarm 12 frei bewegen kann, d.h. eine Schwenkbewegung zulässt. Übersteigt die Schwenkgeschwindigkeit des Stellarmes 12 einen vorgegebenen oder vorgebaren Schwellwert, so beginnen sich die in Fig. 1a – 1e beschriebenen Kupplungssteile 2, 4 allmählich formschlüssig miteinander zu verbinden, so wie dies in Fig. 2b dargestellt ist. Fig. 2c zeigt die verrastete Stellung der Brems- oder Rastvorrichtung 1, bei der sich die beiden Kupplungssteile 2, 4 vollständig miteinander verrastet haben. Um beim schwungvollen Schließen der Möbelklappe Schlaggeräusche zu vermeiden oder zumindest zu reduzieren, ist ein Dämpfer 13 vorgesehen, der beim Schließen der Klappe durch die am Stellarm 12 ausgebildete Nase 14 betätigbar ist.

Fig. 3 zeigt eine perspektivische Teilansicht eines erfindungsgemäßen Stellantriebes 9.

Fig. 4 zeigt ein alternatives Ausführungsbeispiel der Erfindung. Der Stellantrieb 9 weist einen Grundkörper 15 auf, an dem eine Federvorrichtung 19 am Schwenkpunkt 17 gelagert ist. Diese Federvorrichtung 19 beaufschlagt einen Schwenkhebel 10, der am Drehpunkt 18 gelagert ist. Die Kraft auf den Stellarm 12 wird über eine Zwischenhebel 11 übertragen, der einerseits am Schwenkhebel 10 und andererseits am Stellarm 12 angelenkt ist. Im Gegensatz zu den Ausführungsbeispielen gemäß Fig. 1 – 3 ist der Aufnahmeeinheit nicht drehfest an der Lagerachse 3 angeordnet, sondern erlaubt eine Rotationsbewegung. Diese Rotationsbewegung wird durch eine mit dem Aufnahmeeinheit 6 zusammenwirkende Dämpfervorrichtung 16 gedämpft. Im gezeigten Ausführungsbeispiel ist die Dämpfervorrichtung 16 als Rotationsdämpfer ausgeführt, der mit der Außenseite des Aufnahmeeinheit 6 in Verbindung steht. Dies hat den Vorteil, dass das System bei einer Verrastung der Brems- oder Rastvorrichtung 1 nicht schlagartig zum Stehen kommt, sondern sanft und gleichmäßig abgebremst wird.

Fig. 5 zeigt schematisch ein weiteres alternatives Ausführungsbeispiel der gegenständlichen Erfindung. Das Funktionsprinzip der dargestellten Brems- oder Rastvorrichtung 1 ist dem in Fig. 4 ähnlich, bei dem bei Verrastung der Rastzähne 7 mit dem innen verzahnten Ring 4 kein sofortiges Stillstehen des nicht dargestellten Stellarmes 12 erfolgt. Anstelle des in Fig. 4 gezeigten Rotationsdämpfers 16 ist der innen verzahnte Ring 4 an seiner Außenseite mit einem Reibbelag 21 eines äußeren Reibrings 20 in Eingriff bringbar, wobei der Reibring 20 vorzugsweise feststehend angeordnet ist. Der Reibbelag 21 ist derart ausgebildet, dass der innen verzahnte Ring 4 gegenüber dem Reibring 20 schwegängig verdrehbar ist, sodass eine Relativbewegung der beiden Teile 4, 20 möglich ist. Der Reibbelag 21 kann dabei wenigstens eine gummiartige Schicht (z.B. mit Lamellen) oder auch ein Fluid mit hoher Viskosität umfassen. Wird der vorgegebene Schwellwert der Schwenkgeschwindigkeit überschritten, so erfolgt in einem ersten Schritt eine Verrastung der Rastzähne 7 mit dem innen verzahnten Ring 4. Die durch die zugeführte Energie bewirkte Drehbewegung des innen verzahnten Ringes 4 im Gegenurzeigersinn wird mit Hilfe des Reibbelages 21 abgebremst. Somit erfolgt bei einer Überschreitung der vorgegebenen Schwenk- bzw. Winkelgeschwindigkeit des Stellarmes 12 neben einer Verrastung auch eine Bremswirkung, die eine gedämpfte Drehbewegung des Stellarmes 12 bis hin zum Stillstand desselben zur Folge hat.
Fig. 6 zeigt einen erfindungsgemäßen Stellantrieb 9, der an einer Möbelseitenwand 26 befestigt ist. Der Stellantrieb 9 entspricht der bereits beschriebenen Anordnung aus Fig. 4, wobei der Stellarm 12 von der Federvorrichtung 19 beaufschlagt ist und daher bei nicht angelenkter Klappe die Gefahr eines abrupten Ausschlagsens mit sich bringt. Zu diesem Zweck ist eine Montagesicherung 22 für den leeren Stellarm, an dem noch keine Klappe montiert ist, vorgesehen. Die Montagesicherung 22 weist eine Bremsvorrichtung 1 auf, welche die Öffnungsgeschwindigkeit des leeren Stellarmes 12 begrenzt. In der gezeigten Figur ist am Stellarm 12 eine Stellarmverlängerung 24 montiert, die aus den zueinander teleskopierbaren Teilen 24a und 24b besteht. Die relative Lage der beiden Teile 24a und 24b zueinander kann durch den Klemmhebel 24c angetrieben werden. Die Stellarmverlängerung 24 ist an ihrem freien Ende mittels dem Lagerteil 25 an einer Klappe befestigbar. Der Stellarm 12 mit seiner Stellarmverlängerung 24 ist unterhalb einer vorgegebenen Schwenkgeschwindigkeit im Wesentlichen frei bewegbar, ab einer Schwenkgeschwindigkeit größer gleich der vorgegebenen Schwenkgeschwindigkeit erfolgt eine Bremsung und/oder eine Verrastung des Stellarmes 12 mit seiner Stellarmverlängerung 24.

Fig. 7 zeigt einen Stellantrieb 9, wobei das Lagerteil 25 der Stellarmverlängerung 24 über ein klappenseitiges Beschlagteil 28 mit einer Klappe 27 verbunden ist.

Fig. 8 zeigt ein weiteres Ausführungsbeispiel eines Stellantriebes 9 mit einem Fluiddämpfer 30 als Teil der erfindungsgemäßen Bremsvorrichtung 1. Der Stellantrieb 9 weist einen Grundkörper 15 auf, an dem eine Federvorrichtung 19 am Schwenkpunkt 17 gelagert ist. Der federbelastete Stellteil 34 ist an einem Übersetzungsmechanismus 33, im vorliegenden Fall an einem Zwischenhebel 11, einstellbar gelagert, sodass das Übersetzungsverhältnis zwischen der Bewegung des federbelasteten Stellteiles 34 und der Schwenkbewegung des Stellarmes 12 veränderbar ist. Der Zwischenhebel 11 lagert schwenkbar an der Drehachse 11a und liegt über eine Druckrolle 32 an der Stellkontur 31a einer Steuernocke 31 an, sodass die Druckrolle 32 bei der Schwenkbewegung des Stellarmes 12 bzw. der nicht dargestellten Stellarmverlängerung 24 an der Stellkontur 31a abläuft. Die Steuernocke 31 ist drehbar an der Lagerachse 3 angeordnet und ist Teil des Stellarmes 12. Durch die einstellbare Lagerung der Federvorrichtung 19 am Zwischenhebel 11 kann die Kraft auf die Steuernocke 31 so eingestellt werden, dass eine nicht dargestellte Klappe 27 entsprechend ihrem Gewicht in jeder beliebigen Stellung gehalten ist. Um ein
unkontrolliertes Ausschlagen des Stellarmes 12 bzw. der Stellarmverlängerung 24 bei
nicht angelenker Klappe 27 zu verhindern, ist eine erfindungsgemäße
Bremsvorrichtung 1 bzw. eine Montagesicherung 22 vorgesehen, die einen
Fluiddämpfer 30 umfasst. Der Fluiddämpfer 30 lagert einerseits gelenkig an der
Schwenkachse 30a, sowie andererseits an der Schwenkachse 30b der Steuernocke 31
des Stellarmes 12. Der Stellarm 12 bzw. die Stellarmverlängerung 24 ist unterhalb
einer vorgegebenen Schwenkgeschwindigkeit im Wesentlichen frei beweglich. Bei
einer Schwenkgeschwindigkeit größer gleich der vorgegebenen Schwenk-
geschwindigkeit blockiert der Fluiddämpfer 30 und verhindert auf diese Weise eine zu
rasche und unkontrollierte Bewegung des Stellarmes 12.

Fig. 9 zeigt das Ausführungsbeispiel aus Fig. 8 mit dem Fluiddämpfer 30 als Teil der
Bremsvorrichtung 1, durch die die Schwenkgeschwindigkeit des Stellarmes 12
drosselbar ist. Der Stellarm 12 befindet sich im Gegensatz zur Fig. 8 in einer
Offenstellung, die Kolbenstange des Fluiddämpfers 30 befindet sich dabei in einer
weiter ausgefahrenen relativ zum Zylinder.

Fig. 10 zeigt das Ausführungsbeispiel des Stellantriebes 9 aus Fig. 8 und Fig. 9 in einer
perspektivischen Darstellung. Die Federvorrichtung 19 lagert beweglich an ihrem
Schwenkpunkt 17, der federbelastete Stellteil 34 lagert einstellbar am Zwischenhebel
11, sodass die Kraft der Druckrolle 32 auf die Steuernocke 31 veränderbar ist. Eine
über einen Schwellwert gelegene Schwenkgeschwindigkeit des Stellarmes 12 wird
durch den Fluiddämpfer 30, der Teil der Bremsvorrichtung 1 ist, abgebremst bzw.
abgestoppt. Der Fluiddämpfer 30 lagert auf einer Seite an der Federvorrichtung 19,
kann aber auch am Grundkörper 15 beweglich und ortsfest angeordnet sein. Auf der
anderen Seite kann das freie Ende der Kolbenstange an der Steuernocke 31 angreifen,
oder gemäß einem weiteren Ausführungsbeispiel der Erfindung auch am
Zwischenhebel 11, der Teil des Übersetzungsmechanismus 33 ist. Entscheidend ist,
dass der Fluiddämpfer 30 derart angeordnet ist, dass er mittelbar oder unmittelbar auf
die Schwenkgeschwindigkeit des Stellarmes 12 Einfluss nimmt.

Fig. 11a bis 11c zeigen eine beispielhafte Ausführungsform eines Fluiddämpfers 30, der für den Aspekt der vorliegenden Erfindung vorteilhaft einsetzbar ist. Der
Fluiddämpfer 30 weist einen Zylinder 37 auf, in dem zumindest ein Kolben 35 mit einer
Kolbenstange 36 verschieblich geführt ist. Fig. 11a zeigt einen Querschnitt A-A, Fig.
11b eine Seitenansicht sowie Fig. 11c die vergrößerte Detaildarstellung B aus Fig. 11a. Wie insbesondere aus Fig. 11c ersichtlich, ist der Kolben 35 mit seiner Dichtung 38 innerhalb des Zylinders 37 linear verschiebbar, wobei die Kolbenstange 36 fest mit dem Kolben 35 verbunden ist. Der Fluiddämpfer 30 weist einen in Bezug zum Zylinder 37 feststehenden Abschnitt 39 auf, die wenigstens eine Durchströmöffnung 40 für ein Fluid, vorzugsweise ein Öl, aufweist. Neben der Durchströmöffnung 40 sind noch kleinere Durchströmkanäle 41a bis 41d vorgesehen. Im Weiteren ist ein Verschlusselement 42 angeordnet, das durch den Druck des verdrängten Fluides bei Überschreitung eines bestimmten Schwellwertes, ausgelöst durch eine abruper Zugbewegung in Richtung des dargestellten Pfeiles Z, die Durchströmöffnung 40 entgegen der Kraft der Feder 43a verschließt. In der gezeigten Fig. 11c ist der Fluiddämpfer 30 in einer Offenstellung, in der er eine im Wesentlichen freie Bewegung der Kolbenstange 36 und damit eine im Wesentlichen freie Bewegung des an die Kolbenstange 36 angenelenkten Stellarmes 12 erlaubt. Zum verbesserten Schaltverhalten des Fluiddämpfers 30 ist eine zusätzliche Feder 43b vorgesehen, deren Kraft der Feder 43a entgegengerichtet ist. Diese Feder 43b verhindert ein schlagartiges Öffnen des Verschlusselementes 42 nach dem Schließvorgang. Das Verschlusselement 42 ist in der gezeigten Figur als Schwimmkolben ausgebildet. Die hydraulische Flüssigkeit innerhalb des Zylinders 37 kann bei normalem Betrieb ungehindert durch die realisierte Drosseleinheit fließen. Übersteigt die Durchströmgeschwindigkeit des hydraulischen Öls einen bestimmten Wert, so wird der Schwimmkolben 42 nach rechts bewegt und verschließt dabei die Durchströmöffnung 40.

Fig. 12a bis 12c zeigen die analoge Darstellung des Fluiddämpfers 30 aus den Fig. 11a bis 11c, mit dem Unterschied, dass das Verschlusselement 42 (Schwimmkolben) die Durchströmöffnung 40 verschließt. Im Vergleich zur Fig. 11c wurde das Verschlusselement 42 durch den Druck der verdrängten Flüssigkeit im Zylinder 37, verursacht durch abruper Zug auf die Kolbenstange in Richtung Z, gegen entsprechende Dichtflächen der Durchströmöffnung 40 gepresst, sodass das Fluid durch den feststehenden Abschnitt 39 nicht mehr passieren kann. Die Bewegung der Kolbenstange 36 bzw. des Stellarmes 12 wird somit abgestoppt. Wird die Kolbenstange 36 im Anschluss daran unterhalb einer vorgegebenen Geschwindigkeit bewegt, so drückt die Schaltfeder 43a das Verschlusselement 42 gegen die Kraft der schwächer ausgebildeten Rückstellfeder 43b wieder in seine Ausgangslage zurück.
wobei das Fluid wieder ungehindert durch den feststehenden Abschnitt 39 fließen kann.

Die vorliegende Erfindung beschränkt sich nicht auf die gezeigten Ausführungsbeispiele, sondern umfasst bzw. erstreckt sich auf alle Varianten und technischen Äquivalente, die in die Reichweite der nachfolgenden Ansprüche fallen können. Auch sind die in der Beschreibung gewählten Lageangaben auf die übliche Einbaulage des Stellantriebes 9 bzw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Es liegt auch im Rahmen der Erfindung, gleichzeitig eine mechanische Rastvorrichtung als auch einen Fluiddämpfer 30 als Teil der erfindungsgemäßen Bremsvorrichtung 1 bzw. Montagesicherung 22 vorzusehen.
Patentansprüche

2. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet, dass die Bremsvorrichtung (1) eine Rastvorrichtung umfasst.

3. Stellantrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bremsvorrichtung (1) bei Überschreitung einer vorgegebenen oder vorgebaren Schwenkgeschwindigkeit des Stellarmes (12) aktivierbar ist.

4. Stellantrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bremsvorrichtung (1) eine mechanische Kupplungseinrichtung aufweist.

5. Stellantrieb nach Anspruch 4, dadurch gekennzeichnet, dass die mechanische Kupplungseinrichtung eine Fliehkraftkupplung aufweist.

6. Stellantrieb nach Anspruch 5, dadurch gekennzeichnet, dass am Stellarm (12) ein erster, vorzugsweise federbelasteter, Kupplungssteil (2) angeordnet oder ausgebildet ist, welcher an der Lagerachse (3) des Stellarmes (12) mit radialem Bewegungsfreiraum angeordnet ist und Teil der Fliehkraftkupplung ist.

7. Stellantrieb nach Anspruch 6, dadurch gekennzeichnet, dass der erste Kupplungssteil (2) zumindest einen Rastzahn (7) aufweist, der in einer Stellung
mit einem zweiten Kupplungsteil (4), vorzugsweise einem innen verzahnten Ring, in Eingriff bringbar ist.

8. Stellantrieb nach Anspruch 6, dadurch gekennzeichnet, dass der erste Kupplungsteil (2) zumindest einen Reibbelag aufweist, der in einer Stellung mit einem zweiten Kupplungsteil (4), der vorzugsweise ebenfalls mit einem Reibbelag versehen ist, in Eingriff bringbar ist.

9. Stellantrieb nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der zweite Kupplungsteil (4) koaxial zur Lagerachse (3) des Stellarmes (12) angeordnet ist.

10. Stellantrieb nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das erste Kupplungsteil (2) durch zumindest eine Kraftspeichervorrichtung (5), vorzugsweise eine Feder, beaufschlagt ist, sodass dieser von dem zweiten Kupplungsteil (4) außer Eingriff bringbar ist.

11. Stellantrieb nach Anspruch 8, dadurch gekennzeichnet, dass der Schwellwert der Schwenkgeschwindigkeit durch die Kraftspeichervorrichtung (5) vorgebbar oder einstellbar ist.

12. Stellantrieb nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Kraftspeichervorrichtung (5) derart angeordnet ist, dass sie zwischen dem ersten Kupplungsteil (2) und einem vorzugsweise koaxial zur Lagerachse (3) des Stellarmes (12) angeordneten Aufnahmeteil (6) wirkt.

13. Stellantrieb nach Anspruch 12, dadurch gekennzeichnet, dass der Aufnahmeteil (6) drehfest an der Lagerachse (3) des Stellarmes (12) angeordnet ist.

14. Stellantrieb nach Anspruch 12, dadurch gekennzeichnet, dass der Aufnahmeteil (6) drehbar an der Lagerachse (3) des Stellarmes (12) angeordnet ist.

15. Stellantrieb nach Anspruch 14, dadurch gekennzeichnet, dass die Drehbewegung des Aufnahmeteiles (6) durch eine Dämpfvorrichtung (16) gedämpft ist.

17. Stellantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Bremsvorrichtung (1) zumindest einen Fluiddämpfer (30), vorzugsweise einen Lineardämpfer, aufweist.

18. Stellantrieb nach Anspruch 17, dadurch gekennzeichnet, dass der Fluiddämpfer (30) mittelbar oder unmittelbar am Stellarm (12) angreift.

20. Stellantrieb nach Anspruch 19, dadurch gekennzeichnet, dass der Fluiddämpfer (30) der Bremsvorrichtung (1) am Übersetzungsmechanismus (33), vorzugsweise am Zwischenhebel (11), angreift.

22. Stellantrieb nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass der Fluiddämpfer (30) einen in einem Zylinder (37) verschiebbaren Kolben (35) aufweist, wobei im Zylinder (37) zumindest eine Durchströmöffnung (40)
furchsthroughendes Fluid, vorgussweise Öl, vorgesehen ist, dadurch gekennzeichnet, dass oberhalb eines Schwellwertes einer Zug- und/oder Druckbeaufschlagung auf den Fluiddämpfer (30) die zumindest eine Durchströmöffnung (40) durch zumindest ein Verschusselement (42), vorgussweise einen zusätzlichen Kolben, verschließbar ist.

23. Stellantrieb nach Anspruch 22, dadurch gekennzeichnet, dass das Verschusselement (42) von zumindest einer Feder (43a) beaufschlagbar ist.

24. Stellantrieb nach Anspruch 23, dadurch gekennzeichnet, dass das Verschusselement (42) von vorgussweise zwei in entgegen gesetzter Richtung wirkenden Federn (43a, 43b) beauschlagbar ist.

25. Stellantrieb mit zumindest einem Stellarm, insbesondere zum Antrieb einer Klappe eines Möbels, mit einem Grundkörper, an dem der Stellarm schwenkbar gelagert ist und mit einer Federvorrichtung zum Beaufschlagen des Stellarmes, insbesondere nach einem der Ansprüche 1 bis 24, gekennzeichnet durch eine Montagesicherung (22) für den leeren Stellarm (12), an dem noch keine Klappe (23) montiert ist, wobei die Montagesicherung (22) eine Bremsvorrichtung (1) aufweist, welche die Öffnungsgeschwindigkeit des leeren Stellarmes (12) begrenzt.
A. CLASSIFICATION OF SUBJECT MATTER

INV. E05F1/10 E05F5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E05F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 298 514 A (KABUSHIKI KAISHA SANKYO SEIKI SEISAKUSHO) 11 January 1989 (1989-01-11) column 4, line 36 - line 50 column 7, line 21 - line 35 column 8, line 18 - line 50 figures 1-5</td>
<td>1, 3-5, 25</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 252 790 A (* SUGATSUNE INDUSTRIAL CO LTD) 19 August 1992 (1992-08-19) abstract page 17, line 10 - line 23 figures 1-4</td>
<td>1, 17, 18, 25</td>
</tr>
<tr>
<td>Y</td>
<td>DE 77 05 285 U1 (ROBERT KRAUSE KG, 4992 ESPELKAMP) 2 June 1977 (1977-06-02) page 7, last paragraph figures</td>
<td>21</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on prior claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search

4 May 2006

Date of mailing of the international search report

15/05/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5816 Patentlaan 2 NL–2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl

Fax (+31-70) 340-2016

Authorized officer

Van Kessel, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 1 576 292 A (WAERTSILAE AB OY) 8 October 1980 (1980-10-08) column 3, line 48 - line 118 figures</td>
<td>1, 17, 18, 22, 23, 25</td>
</tr>
<tr>
<td>A</td>
<td>paragraph [0005] paragraph [0012] paragraph [0017] figures</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4261986 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9310635 B1</td>
</tr>
<tr>
<td>DE 7705285</td>
<td>02-06-1977</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 1576292</td>
<td>08-10-1980</td>
<td>DE 2721974 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 53024 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 425118 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7705925 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000337015 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 438934 B</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGS/EGESENSTANCES

| INV. | E05F1/10 | E05F1/00 |

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCIERTE GEBIETE

Recherchierte Mindestpräparate (Klassifikationssystem und Klassifikationssymbol):

E05F

Recherchierte, aber nicht zum Mindestpräparate gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe):

EPD - Internal

C. ALS WESENTLICH ANGESEHENEN UTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Spalte 4, Zeile 36 - Zeile 50 Spalte 7, Zeile 21 - Zeile 35 Spalte 8, Zeile 18 - Zeile 50 Abbildung 1-5</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 252 790 A (* SUGATSUNE INDUSTRIAL CO LTD) 19. August 1992 (1992-08-19)</td>
<td>1,17,18,25</td>
</tr>
<tr>
<td>Y</td>
<td>Zusammenfassung Seite 17, Zeile 10 - Zeile 23 Abbildung 1-4</td>
<td>21</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

| * | Siehe Anhang Patentfamilie |

Datum des Abschlusses der internationalen Recherche:

4. Mai 2006

Absendetermin des internationalen Recherchenberichts:

15/05/2006

Name und Postanschrift der Internationalen Recherchenbehörde:

Verwaltungsbehörde, P.B. 5818 Patentamt 2 NL - 2290 HV Bilthoven
Tel. (+31-70) 340-2040, Fax. 31 651 epo nl

Bevollmächtigter Beisitztender:

Van Kessel, J

Formblatt PCT/SA/210 (Balt II) (April 2009)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Zeilen</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4261986 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9310635 B1</td>
</tr>
<tr>
<td>DE 7705285 U1</td>
<td>02-06-1977</td>
<td>KEINE</td>
</tr>
<tr>
<td>GB 1576292 A</td>
<td>08-10-1980</td>
<td>DE 2721974 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 53024 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 425118 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7705925 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000337015 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 438934 B</td>
</tr>
</tbody>
</table>