发明名称

载荷限制的座位安全带收缩器

摘要

一座位安全带收缩器具有一安装在收缩器内转动的绕带筒(1)，用来根据绕带筒的转动方向牵引或放出座位安全带的编织厚带。一锁定环(3)附连在绕带筒一端上。一在冲撞检测到时锁定锁定环不致转动的锁定棘爪(22)。一段钢丝(4)和一附连到绕带筒和锁定环中一个上的卷绕鼓轮(5)，以及一固定在绕带筒和锁定环中另一个上的凸(6)提供载荷限制作用。钢丝盘绕在紧上并布置成：当绕带筒和锁定环之间存在相对运动时，钢丝则围绕被曳拉，并卷绕到卷绕鼓轮上。
1. 一位安全带收缩器，它包括：一安在收缩器内转动的绕带筒（1）；一附
连在绕带筒一端上的锁定环（3）；一在冲撞时用来锁定锁定环不致转动的锁定棘爪
（22）；以及在锁定环（3）已锁定之后，在车辆乘坐者的前向冲量的影响下，用来
允许座位安全带的编织厚带进一步放出的载荷限制装置，其特征在于，载荷限制装置
包括一段长度的钢丝（4）和附连到绕带筒和锁定环中一个上的卷绕鼓轮（5），以及
一固定到绕带筒和锁定环中另一个上的销（6），其中，钢丝盘绕在销上并布置成
当绕带筒（1）和锁定环（3）之间存在相对运动时，钢丝（4）围绕销（6）被曳拉，
并卷绕到卷绕鼓轮（5）上，卷绕鼓轮（5）形成为螺旋形，以使钢丝（4）的盘卷角
度逐渐地变化。

2. 如权利要求1所述的收缩器，其特征在于，钢丝（4）围绕销（6）盘绕多匹。

3. 如权利要求2所述的座位安全带收缩器，其特征在于，选定钢丝（4）在螺旋
形上的接触点，以确定要求的载荷限制效果。

4. 如权利要求2所述的座位安全带收缩器，其特征在于，螺旋形形成为：转动的
钢丝跃上一较大的半径，由此，以合阶的方式下降扭矩，以形成二级载荷限制效果。

5. 如权利要求2所述的座位安全带收缩器，其特征在于，螺旋形与绕带筒（1）
的本体一体形成。

6. 如权利要求2所述的座位安全带收缩器，其特征在于，螺旋形与锁定环（3）
一体形成。

7. 如权利要求1所述的座位安全带收缩器，其特征在于，钢丝（4）锚固在绕带
筒上，而销（6）或诸销安装在锁定环（3）上。

8. 如权利要求1所述的座位安全带收缩器，其特征在于，钢丝（4）由钢做成一
第一直段或略显弯曲，后跟一个或多个盘圈，再后面跟一第二直段，销（6）插入通
过盘圈。

9. 如权利要求1所述的座位安全带收缩器，其特征在于，通过变化钢丝（4）的
直径、钢丝的材料、钢丝绕在销（6）上的匝数、销的直径、销的数量，或钢丝的数
量，即可变化载荷限制。
载荷限制的座位安全带收缩器

技术领域
本发明涉及具有载荷限制的座位安全带收缩器。

背景技术
一座位安全带收缩器一般地包括一具有圆形截面的圆柱形的绕带筒或卷轴。座位安全带的厚的编织带附连在和卷绕在绕带筒上，绕带筒安装在一绕带筒轴上，以便在收缩器内可转动，在收缩器弹簧的作用下卷进编织厚带，并在车辆乘坐者的相对缓和地朝向前的运动的影响下放出编织厚带，例如，与下述活动相关的正常的运动：向前移动来控制收音机或车窗，或移动到达汽车仪表板上的工具箱或车门布兜。在车辆冲撞的情形下，车辆乘坐者的更加剧烈的冲量致动一冲撞传感器，传感器则锁定绕带筒阻止其转动，并防止车辆乘坐者前向运动和与车辆内部结构相撞。然而，座位安全带绕带筒在冲撞中的这种突然的锁定，由于人身体与安全带的编织厚度突然冲击，有时可造成对车辆乘坐者的伤害。近年来，人们已认识到该问题，并已提出了一些解决方案。

美国专利US5914641公开了一种多功能的负载限制收缩器，该收缩器具有一框架；一个卷轴，安全带卷绕在卷轴上，该卷轴相对框架可旋转地支承；一第一锁定装置，该第一锁定装置起初使卷轴沿安全带伸长方向的旋转停止；一偏压或再卷绕弹簧，该弹簧使安全带收缩；以及一与第一锁定机构相关联的第一能量吸收或消耗件，在第一锁定机构为产生一收缩力以控制卷轴旋转方式而致动后，该能量吸收件用于使卷轴沿安全带伸长的方向旋转；其中第一锁定机构包括一个机械惯性传感器，用于启动第一锁定机构的锁定，并且其中收缩器还包括一个第一非惯性传感器，它用于防止由于惯性传感器引起的启动作用。这种收缩器具有一种或多种负载限制级。

一已知的方案是实施载荷限制，其中，在力的路径中插入一塑性地或弹性地变形的部件。例如，一扭转杆可插入在绕带筒内。扭转杆由钢制成，当施加高扭矩时该杆扭转，并在断裂之前可转动高达七至八次。它连接到一开裂的绕带筒的两端。在冲撞中，通过一被载荷承载棘爪接合的锁定环，绕带筒的一端被固定而不转动。
绕带筒的另一端通过扭转杆连接到锁定环上而被阻止转动。但当冲撞力超过一预定的水平时，扭转杆将扭转并允许有限制地和控制地继续编织厚带的放卷。安全带的编织厚带的附加的放卷通常正比于检测到冲撞的时刻的车辆乘坐者的冲量。该放出的编织厚带缓和在车辆高速时会作用在车辆乘坐者身上的严重的抑制力，尤其是，在冲撞初始的瞬间过程中。

然而，扭转杆结构复杂且制造成本高，且不容易适于不同的情况，例如，不同的车辆特性，或车辆乘坐者的不同身材和重量。因此，需要有一较便宜和较不复杂的载荷限制系统。

发明内容

根据本发明的一个方面提供一座位安全带收缩器，它包括：一安装成收缩器内转动的绕带筒；一附连在绕带筒一端上的锁定环；一在冲撞时用来锁定锁定环不致转动的锁定棘爪；以及在锁定环已锁定之后，在车辆乘坐者的前向冲量的影响下，用来允许座位安全带的编织厚带进一步付出的载荷限制装置，其中，载荷限制装置包括一段长度的钢丝和附连到绕带筒和锁定环中一个上的卷绕鼓轮，以及一固定到绕带筒和锁定环中另一个上的轮，其中，钢丝盘绕在轴上并布置成：当绕带筒和锁定环之间存在相对运动时，钢丝围绕被曳拉，并卷绕到卷绕鼓轮上，卷绕鼓轮形成为螺旋形，以使钢丝的盘卷角度逐渐地变化。

附图说明

图 1 是根据本发明的一座位安全带收缩器的立体图，包括一如下面附图中所示类型的绕带筒。

图 2 是图 1 的座位安全带收缩器在载荷限制前的绕带筒的截面图。

图 3 是图 2 的绕带筒的端视图。

图 4 是图 2 和 3 的绕带筒的立体图。

图 5 是图 2 至 4 的绕带筒的分解的立体图。

图 6 是图 2 至 5 的绕带筒在载荷限制之后的截面图。

图 7 是图 6 的绕带筒的端视图。

图 8 是图 6 和 7 的绕带筒的立体图。

图 9 和 11 是曲线图，对于根据本发明的一座位安全带收缩器，示出施加于座位安全带的编织厚带上的载荷如何随车辆乘坐者的位移而变化。
图 10 是一曲线图，对于一已知的座位安全带收缩器，示出施加在座位安全带的编织厚带上的载荷如何随车辆乘坐者的位移而变化。

具体实施方式

如图 1 所示的座位安全带收缩器包括一圆柱形的收缩器绕带筒 1，其安装在框架 21 内围绕与绕带简轴线同轴的心轴 9 可转动，以卷进和放出座位安全带的编织厚带。

在一冲撞中，一定位在标号 23 表示的部位处的传感器致动一锁定棘爪 22，以啮合固定在绕带筒一端上的带齿的锁定环 3，阻止其转动并开始绕带简的锁定过程。绕带筒的另一端连接到一倒卷弹簧，它包括一钟型的盘簧，其将绕带简偏置到编织厚带倒卷的状态。

当检测到一冲撞时，锁定环 3 被锁定棘爪 22 咬合，并被阻止转动。经受因载荷限制结构的进一步的运动，绕带简 1 则被锁定而阻止进一步转动。

在图 2 至 5 中，绕带简 1 较详细地显示为在载荷限制前的状态。在图 2 中，绕带简 1 具有一转动轴线 11 和在绕带简一端处的呈螺旋结构 5 的形式的卷绕鼓轮。较佳地，卷绕鼓轮形成为一螺旋形，以使钢丝盘卷的角度逐渐地变化。这具有形成一相对平的载荷-位移曲线的优点，即，在冲撞情形下，具有以最大效率吸收施加到编织厚带上的载荷的优点。通过修改在螺旋形上的钢丝的接触点，可实现几乎任何要求的载荷限制曲线：例如，可产生一线性的、渐进的、枝节的、台阶的或变化形状的载荷限制曲线来适应车辆制造商的需要。尤其是，螺旋形可形成为使转动的钢丝跃上一较大的半径，因此，以台阶的方式降低扭矩，来形成一两级的载荷限制的效果。该螺旋形可一体地形成为在绕带简体（或锁定环）上，或可变化地形成为一分离的部件，它可适应顾客的要求，每次不需重新加工绕带简。

卷绕鼓轮/螺旋结构 5 附连到心轴 9 上，该心轴通过锁定环 3 内的一孔 12 并进入到螺旋形结构 5 内的一孔 13 内。一钢丝 4 固定到绕带简 1，并盘绕在螺旋形结构 5 上。钢丝 4 的一端盘卷在固定到锁定环 3 上的一销 6 上。较佳地，钢丝以多匝数地卷绕在该销上。能量需要来自变形钢丝（这称之为绞盘效应），并且这产生载荷限制的效果。该结构显示在图 3 的端视图中，图 4 的立体图中，以及图 5 的分解的立体图中，相同的零件用相同的标号表示。

较佳地，钢丝锚固在绕带筒上，而销或多销安装在锁定环上。

钢丝由钢做成一第一直段或略显弯曲，后跟一个或多个盘圈，再后面跟一第二
直段。然后，可插入通过盘圈。

图 6 至 8 示出载荷限制过程中的绕带筒，相同的零件用相同的标号表示。从图中可见钢丝 4 现已在螺旋形结构 5 上卷绕了多匝，从销 6 至自由端 14 的距离已有大为缩短，因为钢丝 4 已经绕在销 6 上。

图 9 和 11 是对于带有各种改型的图 1 至 8 的结构的载荷对于位移的曲线。

图 9 的曲线清楚地示出两级载荷限制，其中，状态 A 是在相对恒定的载荷下钢丝从销 6 缠开的时间段，因为钢丝盘绕在结构的螺旋形形状上已到达其固定端。在状态 B 的开始点，钢丝跃上螺旋形上的一个较大的半径，由此，减小扭矩。

这可在图 10 中对比一标准的扭转杆收缩器的载荷对位移的曲线，该曲线示出随着编织厚带角度的减小和扭矩的减小，曲线传统地上升。

图 11 的曲线示出一较为平稳的力的曲线，其由螺旋形结构 5 的半径的更为逐渐地变化而造成。该结构的优点在于，它制造相当便宜，通过变化钢丝的直径、钢丝的材料、钢丝绕在销上的匝数、销的直径、销的数量，或钢丝的数量，即可容易地变化载荷限制的效果。
图 9

图 10
现有技术

图 11