wo 2013/012690 A 1[I I N0F V00000 0 00 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/012690 A1

24 January 2013 (24.01.2013) WIPO I PCT
(51) International Patent Classification: (74) Agent: MILES, Craig, R.; CR Miles P.C., 405 Mason
GO6F 9/44 (2006.01) Court, Suite 119, Fort Collins, CO 80524 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2012/046558 kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
12 July 2012 (12.07.2012) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
. KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MF,
(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
61/572,418 15 July 2011 (15.07.2011) Us SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application: (84) Designated States (uniess otherwise indicated, for every
us 61/572,418 (CIP) kind of regional protection available): ARIPO (BW, GH,
Filed on 15 July 2011 (15.07.2011) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, 8Z, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant (for all designated States except US): INTEG- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
WARE, INC. [US/US]; 1612 Specht Point Drive, Suite EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
101, Fort Collins, CO 80525 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventors; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(75) Inventors/Applicants (for US only): HUFF, Max, Ray ML, MR, NE, SN, TD, TG).

[US/US]; 3743 Stratford Court, Fort Collins, CO 80525 Declarations under Rule 4.17:

(US). POOLE, Gary, Lewis [US/US]; 13451 Riva Ridge
Place, E210, Fort Collins, CO 80526 (US). BORG,
Douglas, Robert [US/US]; 1800 W Mulberry Street, Fort
Collins, CO 80521 (US). BARTZ, Thomas, Guenter
[US/US]; 2014 Agate Court, Loveland, CO 80538 (US).

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: SOFTWARE AUTOMATED DATA AND DATA MODEL UPGRADE SYSTEM

B. CAPTURE FIRST
CUSTOMIZATION DATA MODEL DELTA
DELTAS iy %

DATA MODEL
(VERSION X
{VERSION X WITH
CUSTONTZATIONS))

DATA MODEL
(VERSION X}

FIRST
BUCKET
ELEMENT

C. ANALYZE &
BUCKET-IZE DELTAS

FIG. 1

o

E. UPGRADED
VERSION X+1 WITH
CUSTOMIZATIONS
REMAINING

&

THIRD BUCKET
ELEMENT

AND/OR MERGED

e
&

MERGE :

o

8 2

SECOND
A. CAPTURE
UPGRAGE DELTAS DATA MODEL DELTA

(5, x 1)

[E[E[E]L] —

TARGET
DATA NODEL
o VERSTON X+1"}

HODIFY/

]
D. APPLY
CHANGES

0

DELETE

12i
'|LI

SECOND
BUCKET
ELEMENT

(57) Abstract: A set of software upgrade tools that perform automated software data model and data upgrades to a first software data
model already having customizations to produce a target sottware data model which includes updates included in a second software
data model without loss of the customizations made to the first software data model.

WO 2013/012690 A1 |IIWAT 00TV VAT TR A AR

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
SOFTWARE AUTOMATED DATA AND DATA MODEL UPGRADE SYSTEM

This International Patent Cooperation Treaty Patent Application claims the benefit of
United States Provisional Patent Application No. 61/572,418 filed July 15, 2011, hereby

incorporated by reference herein.
L TECHNICAL FIELD

A computer system for upgrading a first software data model and data which may
include customizations to produce a target software data model which includes updates
included in a second software data model without loss of the customizations made to the first

software data model.
1L BACKGROUND

In general, support of automated (or programmed) upgrades from one version of a
software product to the next is a well-known and often-practiced activity. In performing

upgrades of a software product, both the software data model and associated data require

updating.

The data model of a product refers to the underlying structure and modeling of
customer data. The data model includes type (or class) definitions, allowed relationships
among types, policies for accessing, creating, modifying and deleting customer data, object
state definitions and allowed state transitions, and actions which can take place. In other words,
the data model defines the rules by which application data can be created, represented,

modified, and acted upon.

The ability to automate upgrades depends on the degree of stability of a product's data
model. Challenges in performing an upgrade are introduced if key elements of a product's data
model change between versions. If a product's data model changes with an upgrade, the
installer for the new version must apply those changes to the data model and data of the earlier
version of the product. A transformation is required--not only to the new data model, but also
of the customer's existing data so that it can be consistent with the new structure expected by

the new version of the software.

Conventionally, such data model and data transformation has often been handled
explicitly through a series of programmed steps, written manually by a developer in a script or
programming language, and may be incorporated into an upgrade installer. Manual

1

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
development of software to handle this has been used because it has been assumed that

automation is too difficult to justify the effort since the required changes are different for each
customer-specific release. However, manually writing such code is often a tedious and time-

consuming process.

In some aspects of the conventional arts, tools have been developed to analyze and
display the differences in two versions of a data model (corresponding to two different product
releases.) However, the majority of these tools are limited to identifying and presenting
information; no command or other executable output may be generated for migrating one
representation of the data model (and corresponding data) to another. An example is described
by United States Patent Publication No. 2009/0307650 Al which performs analysis and

presents the results, but does not act on those results.

Other aspects of conventional arts have taken the next step of execution in order to
carry out a data model migration as part of an upgrade. An example is described by United
States Publication No. 2009/0198727 A1l which utilizes a trace log of all changes that have
taken place in an initial migration of a data model from one state to another. These recorded
trace steps are then converted into a corresponding series of executable steps. These steps can
then be used to repeatedly perform the exact same data model upgrade (for example, in an

installation script) in repeated deployments.

Another example of an executable set of steps to perform a data model and data
migration is provided through a Dassault Systemes S.A. tool provided with its Enovia platform
referred to as ‘Spinner”. Spinner may be used to load or dump data models from an application
and can be used to view or modify its data model. It is typically used to install a data model
into a system database. Additionally, it has a utility to compare two different data models and
produce a list of differences (a “delta™) between them. This delta can then be converted to a

series of steps to migrate a data model from the original state to a desired target state.

Accordingly, conventional tools analyze (or record) the differences between data
models and can produce executable output that can be used to align the data models. However,
these conventional tools may be limited to working only from specific a priori states of the data
model. That is, the data model from which a given upgrade takes place must exactly match a
predefined state (for example, a specific previous version of a software product). This means
the tools can fail if any custom changes have been made to the data model between upgrades.

Custom changes to a data model put it (and its corresponding data) into a state that does not

2

10

15

20

WO 2013/012690 PCT/US2012/046558
match the expected state of such an installation tool. Without a matching initial state, an

upgrade can fail using these conventional tools.

Custom changes to the data model are not infrequent. Sometimes a vendor is involved
in these customizations. If that that case, the vendor may have sufficiently accurate records of
the custom changes to allow the vendor to perform an upgrade of data and the data model or
the customer may be trained to make data model changes (also known as "schema changes")
independent of the vendor. This significantly compounds the problem of performing upgrades
due to the analysis that must be done to assess and document the state of the current data
model, how the data model differs from the product's original data model, and how a path
forward can be established. Consequently, upgrades of customized products are typically very
costly in that an upgrade often requires a significant amount of manual software modification

to accommodate the customizations that have been made to the data model.

Significant cost savings can be realized if an automated means of analyzing
customizations to a data model can be performed. Still further cost savings can be realized if
the analysis can be used to automate the migration of custom features to an upgraded product

release by taking the custom data model into account.
III. DISCLOSURE OF INVENTION

Accordingly, a broad object of the invention can be to provide a set of tools that
performs automated software data model and data upgrades to a first software data model (also
referred to as the “original software data model”) to include the upgrades (also referred to as
“upgrade deltas”) of a second software data model (also referred to as the “upgrade software
data model”) even when customizations (also referred to as “customization deltas™) have been
made to the first software data model to produce a customized software data model (also
referred to as a “third software data model”) to produce a target software data model without

the loss of the customization deltas made to in producing the third software data model.

Another substantial object of the invention can be to provide a method of upgrading a
customized software data model utilizing a three way comparison of the first software data
model, the first software data model having customizations, and the second software data
model to provide a target software data model having the upgrades of the second software data

model and the customizations made to the first software data model.

10

15

20

25

WO 2013/012690 PCT/US2012/046558
Another substantial object of the invention can be to provide a method of ensuring that

data migration aligns with the target software data model.

Another substantial object of the invention can be to provide a method of upgrading
customized software data model which can be applied to each one of a plurality of separate
layers of the customized software data model and in doing so involves comparisons across the
first software data model and the customized software data model at each of a plurality of

layers of the and further assessing changes to dependencies the analyzed layer has on other

separate layers.

Another substantial object of the invention can be to provide a method of uninstalling

previously installed upgrades, even if customizations subsequently made to the upgraded

version impact the upgraded data model.

Naturally, further objects of the invention are disclosed throughout other areas of the

specification, drawings, photographs, and claims.
IV. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an illustration of a particular method of upgrading customized software data

model to provide a target software data model.

Figure 2 is an illustration of computer hardware elements which operate to perform the

method illustrated in Figure 1.

Figure 3 is an illustration of computer software elements which operate to perform the

method illustrated in Figure 1.

Figure 4 is an illustration of a particular method of upgrading across a plurality of

versions of a customized software data model to provide a target software data model.

Figure 5 is an illustration of a particular method of upgrading across a plurality of

separate layers of a customized software data model.

Figure 6 is an illustration of a particular method of upgrading across a plurality of

separate layers of a customized data model including the analysis of changes that have already

been performed in dependent layers.

10

15

20

30

WO 2013/012690 PCT/US2012/046558
Figure 7 is an illustration of a non-limiting example of an upgrade to a layered

customized software data model.

Figure 8 is an illustration of a second non-limiting example of an upgrade to a layered

customized software data model.

Figure 9 is an illustration of a particular embodiment of method of Figure 1 to uninstall
an upgrade to a customized software data model using the computer hardware and software

illustrated in Figures 2 and 3.
V. MODE(S) FOR CARRYING OUT THE INVENTION

Now referring primarily to Figure 1, which provides an example of a method for
upgrading a first software data model (1)(Version X) with upgrades (2)(also referred to as an
“upgrade deltas”) included in a second software data model (3)(Version X+1). The first
software data model (1)(Version X) can include customizations (4)(also referred to as a
“customization deltas”) in the form of a third software data model (5) (Version X*). The term
“upgrade deltas” for the purposes of this invention means schema differences between versions
of a software data model released by the manufacturer. The term “customization deltas” for the
purposes of this invention means schema differences applied to a version of a software data
model which are not upgrade deltas. That is schema differences which are not included in a

version of the software released by the manufacturer.

Embodiments of the method allow the first software data model (1) (Version X) or the
third software data model (5)(Version X”) to incorporate the upgrade deltas (2) provided by the
second software data model (3)(Version X+1). The upgrade deltas (2) can be applied to the
third software data model (5) (Version X’) without loss of the customization deltas (4).
Accordingly, a target software data model (6)(Version X+1”) can be produced by the method
which includes both the upgrade deltas (2) and the customization deltas (4).

To apply upgrade deltas (2) to a third software data model (5)(Version X) already
including customization deltas (4), the first software data model (1)(Version X) can be
compared to the third software data model (5)(Version X’), to analyze and record the
customization deltas (4) made to the first software data model (1)(Version X). Similarly, the
first software data model (1) (Version X) can be compared to the second software data model
(3)(Version X+1) to analyze and record upgrade deltas (2). The comparisons result in a first

data model delta (7)(AX, X’) including all the customization deltas (4) made to the first

5

10

15

20

WO 2013/012690 PCT/US2012/046358
software data model (1)(Version X) and a second data model delta (8)(AX, X+1) including all

the upgrade deltas (2) to be made to the first software data model (1)(Version X).

A three-way comparison can then be made among the first software data model
(I)(Version X) and the first data model delta (7) and the second data model delta (8)(AX,
X+1). The comparison categorizes changes to the first software data model (1)(Version X) into
one of three bucket elements (9)(10)(11). A first bucket element (9) which includes
customization deltas (4) of the third software data model (5)(Version X’) which are to be
preserved and included in the target software data model (6) (Version X+1°). A second bucket
element (10) in which upgrade deltas (2) (additions, modifications, deletions, or the like)
included in the second software data model (3)(Version X+1) which are to be applied to the
third software data model (5) (Version X’) and included in the target software data model (6)
(Version X+17). A third bucket (11) which includes customization deltas (4) of the first data
model delta (1) or upgrade deltas (2) of the second data model delta (3) that must be merged
due to conflicts, overlaps, dependencies, or the like (also referred to as “merged deltas (12)”,

between the first data model delta (7) and the second data model delta (8).

Now referring primarily to Figures 1 and 3, while merging particular upgrade deltas (2)
and customization deltas (4) can largely be automated, cases often arise that require
intervention to resolve a conflict (14). These cases can be handled by configurable upgrade
commands rules (13)(see the example of Figure 2) that anticipate certain conflicts (14) or
classes of conflicts and arbitrate how to resolve the conflict (14). Another way to resolve the
conflict (14) can be by presentation of conflict(s) (14) to an administrator user (15) who can
choose between selectable command options (16) to generate administrator upgrade commands

(17) to resolve the conflict (14) (for example, which of two or more conflicting changes will be

adopted).

In the subsequent step of the method, the preserved customization deltas (4) of the first
bucket (9), the applicable upgrade deltas (2) of the second bucket (10), and the merge deltas
(12) of the third bucket (11) can be applied to the third software data model (5) (Version X°).
The result can be the target software data model (6) (Version X+1’). Understandably, the
stepwise order in which the deltas (2)(5)(12) can be applied in a different order. For example,
the first software data model (1) (Version X) can have the applicable upgrade deltas (2) applied
to produce a second software data model (3)(Version X+1) and then the preserved
customization deltas (4) can be applied to the upgraded second software data model (3), or

other stepwise permutations and combinations.
6

10

15

25

30

WO 2013/012690 PCT/US2012/046558
Now referring primarily to Figure 2, embodiments of the above described method can

be implemented through a software data model comparator-converter program (18) run on a
computer system (19). The computer system (19) can include certain network means, and
computer readable media which can be utilized to practice embodiments of the invention. It is
not intended that embodiments of the invention be practiced in only wide area computing
environments or only in local computing environments, but rather the invention can be
practiced in local computing environments or in distributed computing environments where
functions or tasks are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, program modules may be
located in both a local or in a remote memory storage device(s) or device elements. While a
preferred embodiment of the invention is described in the general context of computer-
executable instructions of the software data model comparator-converter program (18) program
and program modules which utilize routines, programs, objects, components, data structures,
or the like, to perform particular functions or tasks or implement particular abstract data types,
or the like, being executed by the computer means and network means, it is not intended that
any embodiments of the invention be limited to a particular set of computer-executable
instructions or protocols. As to particular embodiments, the computer system (19) can take the
form of a limited-capability computer designed specifically for producing the target software
model (6). The computer system (19) can include hardware such as set-top boxes, intelligent
televisions connected to receive data through an entertainment medium such as a cable
television network or a digital satellite broadcast, hand-held devices such as smart phones,
slate or pad computers, personal digital assistants or camera/cell phone, or multiprocessor
systems, microprocessor-based or programmable consumer electronics, network PCs,

minicomputers, mainframe computers, or the like.

The illustrative example of a computer system (19) shown in Figure 2 includes a first
computer (20) having a processing unit (21), one or more memory elements (22), and a bus
(23) (which operably couples certain components of the first computer (20), including without
limitation the memory elements (22) to the processing unit (21). The processing unit (21) can
comprise one central-processing unit (CPU), or a plurality of processing units which operate in
parallel to process digital information. The bus (23) may be any of several types of bus
configurations including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. The memory element (22) can without limitation be
a read only memory (ROM) (24) or a random access memory (RAM) (25), or both. A basic
input/output system (BIOS) (26), containing routines that assist transfer of data between the

7

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
components of the first computer (20), such as during start-up, can be stored in ROM (25). The

computer (20) can further include a hard disk drive (27) for reading from and writing to a hard
disk (not shown), a magnetic disk drive (28) for reading from or writing to a removable
magnetic disk (29), and an optical disk drive (30) for reading from or writing to a removable
optical disk (31) such as a CD ROM or other optical media. The hard disk drive (27), magnetic
disk drive (28), and optical disk drive (30) can be connected to the bus (23) by a hard disk
drive interface (32), a magnetic disk drive interface (33), and an optical disk drive interface
(34), respectively. The drives and their associated computer-readable media provide
nonvolatile storage of computer-readable instructions, data structures, program modules and
other data for the first computer (20). It can be appreciated by those skilled in the art that any
type of computer-readable media that can store data that is accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), read only memories (ROMs), and the like, may be used in a variety
of operating environments. A number of program modules may be stored on the hard disk
drive (27), magnetic disk (29), optical disk (31), ROM (24), or RAM (25), including an
operating system (35), one or a plurality of application programs such as the data model

comparator-converter program (18) which implement a graphic user interface (36) or other

program interfaces.

The first computer (20) may operate in a networked environment using one or more
logical connections (37)(38) to connect to one or more remote second computers (39). These
logical connections (37)(38) are achieved by one or more communication devices (40) coupled
to or a part of the first computer (20) and the second computer (39); the invention is not limited
to a particular type of communications device (40). The second computer (39) can be another
computer, a server, a router, a network PC, a client, a peer device or other common network
node, and can include a part or all of the elements above-described relative to the first
computer (20). The logical connections (37)(38) depicted in Figure 2 can include a local-area
network (LAN) (41) or a wide-area network (WAN) (42). Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets, wireless networks,

global satellite networks, cellular phone networks and the Internet (43).

When used in a LAN-networking environment (41), the first computer (20) can be
connected to the local network through a network interface or adapter (44), which is one type
of communications device (40). When used in a WAN-networking environment, the first

computer (20) typically includes a modem (45), a type of communications device (40), or any

8

10

15

25

30

WO 2013/012690 PCT/US2012/046558
other type of communications device for establishing communications over the wide area

network, such as the Internet (43)(shown in Figure 1). The modem (45), which may be internal
or external, is connected to the bus (23) via the serial port interface (46). In a networked
environment, program modules depicted relative to the first computer (20), or portions thereof,
may be as to certain embodiments of the invention stored in one or more second computers
(39)(shown in the example of Figure 2 stored in the memory (25) of the first computer (20)). It
is appreciated that the network connections shown are exemplary and other means of and
communications devices for establishing a communications link between the computers can be

used.

The administrator user (15) may enter commands and information through input
devices (46) such as a keyboard or a pointing device (47) such as a mouse; however, any
method or device that converts user action into commands and information can be utilized
including, but not limited to: a microphone, joystick, game pad, touch screen, or the like. A
display surface (48) such as a monitor screen or other type of display device can also be
connected to the bus (23) via an interface, such as a video adapter (49), or the like. The graphic
user interface (36) in part can be presented on the display surface (48). In addition to the
display surface (48), the first computer (20) can further include other peripheral output devices

(50) such as speakers and printers; although the peripheral output devices (50) are not so

limited.

Now referring primarily to Figure 3, a plurality of software data model representations
(51) for different versions of a software product can be exported, captured and stored in data
model repository (52). The plurality of software data model representations (51) for a software
product can in part include representations of the first software data model (1)(Version X), the
second software data model (3)(Version X+1), the third software data model (5) (Version X’),
and so forth) stored (53) in part of the memory (22) of the first computer (20) or the second
computer (39) allocated as a data model repository (52) and can be retrieved and read (54) for
analysis and upgrade to the target software data model (6). Typically, when an upgrade is
performed, the software data model representations (51) are instantiated in a consistent form
(for example, in-memory representations) for analysis and modification. The software data
models representations (51) are then analyzed and compared (65), as above described. The
comparison output can then be converted into upgrade commands (56) that can be executed to
apply the desired upgrade deltas (2) or customization deltas (4) to the third software data
model (5) (Version X’)(or other software data model) targeted for upgrade.

9

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
As one example, a transformation module (57) can capture data model input (58) upon

request from the administrator user (15) which can be in various formats (XML, SPINNER, or
the like) from various sources (files, databases, or the like) and convert them to a common
format and semantic data as a plurality of software data representations (51) (for example
extensible markup language “XML” format) and store (53) them in the data model repository
(52). As part of this step, the transformation module (57) (for example, extensible style sheet
language transformations “XSLT”) may be used to augment each software data model
representation (51) with metadata (59) that describes the content further. The metadata (59)
may come from various sources, such as reference tables or external data stores. Metadata (59)

can be useful in supporting data migration later in the process.

Once data model representations (51) are in common store and format comparisons can
be performed. As to one non-limiting embodiment, an analysis module (60) of the software
data model comparator-converter program (18) can retrieve (61) one or more of the plurality of
software data representations (51). The analysis module (61) can initiate a request to parsers
(62) that retrieves (54) and reads the data model representations (51) from the data model
repository (52). Depending on the data model representation format, one or more of a plurality
of alternate parsers (63) may be used. As a non-limiting example, if the data (73) is in XML,
an XML parser (62) can be used. If the data is in another format, one or more of a plurality of

alternate parsers (63) can be used.

The parsers (61) then creates (64) an internal representation of the first software data
model (1) (Version X). The parsers (61) can be directed by the analysis module (60) to retrieve
(54) the second software data model (3) (Version X+1) and to create an internal representation
of the second software data model (3). Yet another version could be similarly instantiated for
the third software data model (5). With the data models for the different versions instantiated,

the analysis module (60) can direct comparisons between them.

As to the example of Figure 3, a comparison request (65) can be issued by the analysis
module (60) to retrieve (61) the first software data model (1)(Version X)(or internal
representation). Then another comparison request (65) can be issued by the analysis module
(60) to retrieve the second software data model (3)(Version X+1). Then another comparison
request (65) can be issued to retrieve (61) the third data model (5)(Version X’)(or internal
representation), and so forth. The analysis module (60) can then invoke a delta module (66) to
perform a comparison of the first software data model (1)(Version X) and the third software

data model (5)(Version X’) and the first software data model (1)(Version X) with the second
10

10

15

25

30

WO 2013/012690 PCT/US2012/046558
software data model (3)(Version X+1), as above described. In another embodiment, the first

software data model (1)(Version X) or the third software data model (5)(Version X’) (or other
data model) can perform the comparison between itself and the other data model directly and
then return the result. In performing an upgrade on a third software data model (5)(Version X”)
including customized deltas (4), the multiple analysis steps above described can be performed
by the delta module (66) to determine upgrade deltas (2), customization deltas (4) and merge
deltas (12).

The analysis module (60) can forward the returned customization deltas (4) and
upgrade deltas (2) to a command generator (67). The analysis module (60) can further make a
command generation request (68) generation of upgrade commands (56) based on the
forwarded returned deltas (2)(4)(12) and upgrade commands rules (13) that have been loaded
(69) into the command generator (67). The upgrade commands rules (13) direct the command
generator (67) to produce specific upgrade commands (56) based on conditions or types of
changes represented by the returned deltas (2)(4)(12). This allows the administrator user (15)
to direct command generation according to preferences. As one non-limiting example, the
administrator user (15) can specify arbitration rules (70) for specific merge conditions (71) that
would otherwise require the administrator user (15) to intervene to resolve the conflicts. If no
upgrade commands rules (13) are provided, the command generator (67) can include a set of

built-in default rules (72) that can be applied.

After the target software data model (6)(Version X+1°) has been achieved, the resulting
analysis can be further applied to migration of data (73) to ensure alignment with the created
target software data model (6) (Version X+1°). The data (73) migration can be based first on
the changes made to the first software data model (1) (Version X) or to the third software data
model (5)(Version X’). Secondly, data (73) can be changed based on designated migration
rules (74) corresponding to the nature of the returned deltas (2)(4)(12). If rules cannot be
inferred, the administrator user (15) can be given an option to provide (or override) upgrade
commands (56). Changes that have been detected in the first software data model (1) (Version
X) or the third software data model (5) (Version X”) can then be applied to the data (73) to

ensure consistency with the target software data model (6) (Version X+1°).

Accordingly, the instant invention applies not only to returned deltas (2)(4)(12) relating
to the first software data model (1)(Version X) or the third software data model (5)(Version
X’) but also to any data (73) affected by those returned deltas (2)(4)(12). If the first software

data model (1)(Version X) has been customized, then most likely data (73) based on third
11

10

15

20

30

WO 2013/012690 PCT/US2012/046558
software data model (5)(Version X”) has been instantiated. Upgrade deltas (2) affecting the

third software data model (5)(Version X*) can also be applied to the data (73). This invention
covers this by generating upgrade commands (56) that not only update the third software data
model (5)(Version X’), but also peruse and update the actual data (73) for affected types,
relationships, and the like. Every affected aspect of the data (73) can be updated.

As a non-limiting example, a first software data model (1) (Version X) can be upgraded
to a second software data model (3) (Version X+1) resulting in the addition of an attribute Z to
a type Q. Consider also, that attribute Z is an enumerated type with predefined values, with
default value A. A third software data model (5) (version X’) has also been created with the
addition of a new value, H, to the set of enumerated set of attribute Z values. Furthermore, H
has also been assigned as the default for all new instances of attribute Z. The command
generator (67) would, as a result of these conditions, generate upgrade commands (56) to not
only upgrade type Q with the attribute Z, but to also upgrade corresponding instances of type Q
in the data. The upgrade commands (56) would be generated to find all instances of type Q in
the data model repository (52), add a new instance of attribute Z to each one, and set the
default value for that attribute Z to H (the custom default) not A (the default originally
established by the upgrade).

Now referring primarily to Figure 4, software data model comparator-converter
program (18) can be used to perform an upgrade on a third software data model (5) containing
customization deltas (4) using a second software data model (3) in the form of a series of
second software data models (Version X+1, X+2, X+3, X+4, X+5. . .) each having incremental

upgrade deltas (2).

Returned first data model deltas (7) and second data model deltas (8) can be generated
as the output of comparisons done among each pair of incremental versions of a first software
data model (1)(Version X, X+1, X+2. . .) and of incremental versions of a second software data
model (3) (Version X+1, X+2, X+3. . .) and the incrementally created versions of the third
software data model (5) including customization deltas (4)(Version X, X+1°, X+2°. . .). The
returned data model deltas (7)(8) can then be executed serially as upgrade commands (56) to
create sequential versions of the target software data model (6) and to allow data migration of
data (73) to the latest version of the target software data model (6) as shown in example of
Figure 4. This procedure can be applied from whichever software data model version an
administrator user’s (15) installation begins with. For example, for an administrator user (15)

with a deployed first software data model (1)(Version X+2) in the form of a third software data
12

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
model (5) (X+2’) only the upgrade commands (56) generated from the comparisons among the

version set {X+2’, X+2, X+3} and the comparisons among versions {X+3’, X+3, X+4} need
be applied, where X+3’ is the result of comparing {X+2’, X+2, X+3} and applying the
resulting first data model deltas (7) and second data model deltas (8).

Now referring primarily to Figures 5 and 6, the method can also be applied to discrete
layers of a first software data model (1). Often times, the first software data model (1) will
consist of a plurality of separate layers (75)(or portions) contributed and designed by separate
organizations or provided by separate application modules (76). Since they are managed
separately in their development, it can be expedient to likewise analyze and provide upgrade
commands (56) for these portions of the first software data model (1) separately, as above
described. This means that as the plurality of separate layers (75) of the data first software data
model (225) are tracked, the analysis and upgrade commands (56) of the method can be done
individually for each of the plurality of separate layers (75). Accordingly, upgrade commands
(56) that apply only to one or more of the plurality of separate layers (75) of the first software
data model (1) can be performed in an upgrade incrementally without affecting the other

portions of the first software data model (1).

The general approach taken in this method can further include a dependency detector
(77) shown in the example of Figure 3 to identify dependent elements (78) in upper layers
affected by changes made in lower layers of first software data model (1) (Version X) and the
corresponding second software data model (3) (Version X+1) and the third software data
model (5) (Version X”). At a minimum, these dependent elements (78) can be detected through
operation of the analysis module (60) in an incremental manner in comparison of the first,
second, and third software data models (1)(3)(5). The analysis module (60) can operation to
perform comparisons (65) and the command generator (67) can function to generate upgrade
commands (56) beginning at a first layer (79) (for example a platform layer (80) of the
plurality of separate layers (75) of the software data models). Typically, once that is
completed, comparison (65) by the analysis module (60) and generation of upgrade commands
(56) by the command generator (67) commence at the next higher second layer (81) (for

example the common layer (82)) of the plurality of layers (75) of the software data models).

As above described, comparisons (65) involve two different versions of the data model
(such as the first software data model (1)(Version X) and the second software data model
(3)(Version X+1) including upgrade deltas (2) and between the first software data model (1)

(Version X) and the third software data model (5) including customization deltas (4)) at a first
13

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
layer (79) of the plurality of separate layers (75) of the data model. However, in this layered

approach, analysis at each one of the plurality of separate layers (75) (for example, the
configuration layer (84) the application layer (83)) must also incorporate any dependencies
resulting from changes in the layer(s) below (for example, the common layer (82) and the

platform layer (80)).

Now referring to Figure 6, upgrade commands (56) (which include commands for data
migration) performed at any first layer (79) or portion of the first software data model (5)
hinges on analyzing changes that have already been performed in dependent layers. The Figure
shows the respective analysis result (85) at each one of the plurality of separate layers (75)
(80)(82)(83)(84). Furthermore, each discrete analysis result (85) for each one of the plurality of
separate layers (75) can be converted to corresponding discrete upgrade commands
(86)(87)(88)(89) by which an updated data model and migrated data can be realized for each

respective layer (80)(82)(83)(84). For example, the analysis result (85) at the common layer
(82) hinges on:

e the common layer (82) Version X data model (1),
e the common layer (82) Version X’ data model (5),
e the common layer (2) Version X+1 data model (2), and

e the analysis result (85) of the platform layer (79) of the X+1 (5) platform Layer
data model result (85) and its corresponding X+1° upgrade commands (86) for the

platform layer (79).

At the common layer (82), the analysis result (85) and its associated upgrade
commands (87) for the common layer (82) can be invoked to update the common layer (82) to
achieve a target model (6) (Version X+1°) having an upgraded common layer (82). The per-
layer analysis result (85) (and/or the resulting target model (6) having a Version X+1° layer)

can then be used in analyzing dependent elements (78) in the above layers.

Now referring to Figure 7, which provides an illustrative example of an upgrade in a
customization layer (90) applied to a first layer (79) of first software data model (1) (Version
X) to generate a third software data model (5) having customization deltas (4). In the third
software data model (5) customization delta (4) (Attribute 4) has been added to the first
software data model (1). At the first layer (79), the first software data model (1) (Version X) is

14

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
upgraded to a second software data model (3)(Version X+1) in that Attribute 5 is added to

Type 1. Upon upgrade command (56) (see Figure 3), the impact on the customization layer
(90) including the customization delta (4) (Attribute 4 to Type 1) may be none and the
customization delta (4) (Attribute 4) is retained and continues to be included with Type 1.
However, it may be that the customization delta (4)(Attribute 4) is a semantically the same as
the upgrade delta (2)(Attribute 5) of the second software data model (3). While the method (or
data model comparator-converter program (18) implementing the method) retains the
customization delta (4)(Attribute 4), it can also flag this situation as a case to be reviewed by

the administrator user (15) to ensure no semantic duplication.

If Type 1 in the first software data model (1) (Version X) had not been altered in any
way, no assessment of the customized delta (4) in the third software data model (3) (Attribute
4) would have been necessary. However, since Type 1 is changed by the upgrade delta (2) in
the second software data model (3)(Version X+1) by adding the upgrade delta (2)(Attribute 5),
the dependency can be flagged and an analysis of the customization delta (4) to Type 1 by

addition of Attribute 4 can be made.

Now referring to the example shown in Figure 8, which provides an illustrative
example of an upgrade in a customization layer (90) applied to a first layer (79) of first
software data model (1) (Version X) to generate a third software data model (5) having
customization deltas (4). In the upgrade deltas (2) of a second software data model (3) Type 1
is now related to a new type, Type 2, via a new Relationship, A. Furthermore, Attribute 1 is
now associated with Relationship A (rather than Type 1) and Attribute 3 is now associated

with Type 2 (rather than Type 1).

In this case, in view of the returned deltas (7)(8) there are several possible outcomes
with respect to Attribute 4 within the customization layer (90) of the third software data model
(5), including: retain Attribute 4 with Type 1, move Attribute 4 to Type 2, move Attribute 4 to

Relationship A, or update Attribute 4 in accordance with administrator upgrade commands
(17).

To handle this situation the method (or data model comparator-converter program (18)
that embodies the method) can act on the basis of upgrade command rules (13) (or policies)
that have been defined to flag this situation and perform one of the possible functions. For
example, upgrade command rules (13) may dictate that any Types for which attributes were

changed to a Relationship should have all customized attribute additions also moved to that

15

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
relationship. If no upgrade command rules (13) were defined for this situation, then the

situation can be brought to the attention of the administrator (15) to resolve the conflict

according to one of the command options (16) which list the above options.

Now referring primarily to Figure 9, which illustrates a method for uninstalling upgrade
deltas (2) even after the addition of customization deltas (4) to a second data model (3) having
upgrade deltas (2). As an example, in which the administrator user (15) has upgraded a first
software data model (1) (Version X) to a second software data model (3)(Version X-+1) having
upgrade delta (2). Thereafter, customization deltas (4) added to the second software data model
(3) produce a third software data model (5)(Version X+1°) including customization deltas (4).
The customization deltas (4) made can impact upgrade deltas (2) introduced by the second
software data model (3)(Version X+1). At this stage, the administrator user (15) decides to

uninstall the upgrade deltas (2) of the second software data model (3)(Version X+1).

Typically, this circumstance is not addressed, or is ineffectively addressed by
conventional tools by way of two approaches. The first conventional approach can be to take a
snapshot of the first data model (1) and data (73) prior to adding upgrade deltas (2). To reverse
the upgrade deltas (2), revert to the snapshot of the first data model (1) and data (73). The
disadvantage of this approach can be that any customization deltas (4) or additional upgrade
deltas (2) made in the interim are lost. The second approach can be to make changes directly

manually. The disadvantage to this can be that it is typically a costly and time-consuming

endeavor.

In contrast, the data model comparator-converter program (18) and method can be
applied to this situation to uninstall upgrade deltas (2) despite customization deltas (4) that
have been made. In doing so, the time and cost to uninstall the upgrade deltas (2) can be

significantly reduced while retaining all customization deltas (4).

As shown in Figure 9, the following steps provide a non-limiting example of how the
data model comparator-converter program (18) and method similar to that above described
operates to uninstall upgrade deltas (2) even when customization deltas (4) have been made to
the second software data model (3) including upgrade deltas (2). A comparison can be made
between the first software data model (1) (Version X) and the second software data model (3)
(Version X+1) including upgrade deltas (2), and the third software data model (5) (Version
X+1’) including customization deltas (4). In a subsequent step, analysis and determination of

customization deltas (4) and upgrade deltas (2) (A x. x+1 and A x+1, x+17 can be achieved to

16

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
determine which customizations deltas (4), if any, are dependent on the second software data

model (3)(Version X+1) upgrade deltas (2), if any. These customization deltas (4) will no
longer apply once A x x+1 has been removed. These dependent changes, along with A x x+1
comprise the customization deltas (4) that must be removed from the target software data
model (6) to uninstall the second software data model (3) (Version X+1) correctly. With this
analysis complete, the command generator (67) produces the upgrade commands (56)
necessary to not only remove the A x x+ changes of the second software data model (3)
(Version X+1), but also those customization deltas (4) dependent on it. As with other analysis
noted above, if an ambiguous situation arises with no corresponding command rules (56) (or
policies) to disambiguate them, the administrator user (15) is notified of the situation so it can
be resolved. With the selective removal applied, the third software data model (5) acted on can
be brought back to the first software data model (1)(Version X), with applicable
customizations deltas (4) remaining to provide the corresponding third software data model (5)

of Version X (or Version X).

As can be easily understood from the foregoing, the basic concepts of the present
invention may be embodied in a variety of ways. The invention involves numerous and varied

embodiments of an automated system for upgrading a data model and data including the best

mode.

As such, the particular embodiments or elements of the invention disclosed by the
description or shown in the figures or tables accompanying this application are not intended to
be limiting, but rather exemplary of the numerous and varied embodiments generically
encompassed by the invention or equivalents encompassed with respect to any particular
element thereof. In addition, the specific description of a single embodiment or element of the
invention may not explicitly describe all embodiments or elements possible; many alternatives

are implicitly disclosed by the description and figures.

It should be understood that each element of an apparatus or each step of a method may
be described by an apparatus term or method term. Such terms can be substituted where
desired to make explicit the implicitly broad coverage to which this invention is entitled. As
but one example, it should be understood that all steps of a method may be disclosed as an
action, a means for taking that action, or as an element which causes that action. Similarly,
each element of an apparatus may be disclosed as the physical element or the action which that
physical element facilitates. As but one example, the disclosure of “an upgrade” should be

understood to encompass disclosure of the act of “upgrading” -- whether explicitly discussed
17

10

15

20

30

WO 2013/012690 PCT/US2012/046558
or not -- and, conversely, were there effectively disclosure of the act of “upgrading”, such a

disclosure should be understood to encompass disclosure of “an upgrade” and even a “means
for upgrading.” Such alternative terms for each element or step are to be understood to be

explicitly included in the description.

In addition, as to each term used it should be understood that unless its utilization in
this application is inconsistent with such interpretation, common dictionary definitions should
be understood to be included in the description for each term as contained in the Random
House Webster’s Unabridged Dictionary, second edition, each definition hereby incorporated

by reference.

Moreover, for the purposes of the present invention, the term “a” or “an” entity refers
to one or more of that entity; for example, “a software data model” refers to one or more of
those software data models. As such, the terms “a” or “an”, “one or more” and “at least one”

>

can be used interchangeably herein.

All numeric values herein are assumed to be modified by the term “about”, whether or
not explicitly indicated. For the purposes of the present invention, ranges may be expressed as
from "about" one particular value to "about" another particular value. When such a range is
expressed, another embodiment includes from the one particular value to the other particular
value. The recitation of numerical ranges by endpoints includes all the numeric values
subsumed within that range. A numerical range of one to five includes for example the
numeric values 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, and so forth. It will be further understood that the
endpoints of each of the ranges are significant both in relation to the other endpoint, and
independently of the other endpoint. When a value is expressed as an approximation by use of

the antecedent "about," it will be understood that the particular value forms another

embodiment.

Thus, the applicant(s) should be understood to claim at least: i) each automated
software upgrade device herein disclosed and described, ii) the related methods disclosed and
described, iii) similar, equivalent, and even implicit variations of each of these devices and
methods, iv) those alternative embodiments which accomplish each of the functions shown,
disclosed, or described, v) those alternative designs and methods which accomplish each of the
functions shown as are implicit to accomplish that which is disclosed and described, vi) each
feature, component, and step shown as separate and independent inventions, vii) the

applications enhanced by the various systems or components disclosed, viii) the resulting

18

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
products produced by such systems or components, ix) methods and apparatuses substantially

as described hereinbefore and with reference to any of the accompanying examples, x) the

various combinations and permutations of each of the previous elements disclosed.

The background section of this patent application provides a statement of the field of
endeavor to which the invention pertains. This section may also incorporate or contain
paraphrasing of certain United States patents, patent applications, publications, or subject
matter of the claimed invention useful in relating information, problems, or concerns about the
state of technology to which the invention is drawn toward. It is not intended that any United
States patent, patent application, publication, statement or other information cited or

incorporated herein be interpreted, construed or deemed to be admitted as prior art with respect

to the invention.

The claims set forth in this specification, if any, are hereby incorporated by reference as
part of this description of the invention, and the applicant expressly reserves the right to use all
of or a portion of such incorporated content of such claims as additional description to support
any of or all of the claims or any element or component thereof, and the applicant further
expressly reserves the right to move any portion of or all of the incorporated content of such
claims or any element or component thereof from the description into the claims or vice-versa
as necessary to define the matter for which protection is sought by this application or by any
subsequent application or continuation, division, or continuation-in-part application thereof, or
to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules,
or regulations of any country or treaty, and such content incorporated by reference shall
survive during the entire pendency of this application including any subsequent continuation,

division, or continuation-in-part application thereof or any reissue or extension thereon.

The claims set forth in this specification, if any, are further intended to describe the
metes and bounds of a limited number of the preferred embodiments of the invention and are
not to be construed as the broadest embodiment of the invention or a complete listing of
embodiments of the invention that may be claimed. The applicant does not waive any right to
develop further claims based upon the description set forth above as a part of any continuation,

division, or continuation-in-part, or similar application.

19

10

15

20

25

WO 2013/012690 PCT/US2012/046558
VI. CLAIMS

We claim:

1. A computer system for producing a target software data model, comprising:

a memory;

a processor in communication with said memory, said memory including a computer
code executable to:

store a plurality of software data models in a common format in a data model
repository;

retrieve from said plurality of software data models stored in said data model repository
a first software data model;

retrieve from said plurality of software data models stored in said data model repository
a second software data model, said second data model including an upgrade delta applied to
said first data model; t

retrieve from said plurality of software data models stored in said data model repository
a third software data model, said third software data model having at least one customization
delta applied to said first software data model, said second software data model applied to said
third data software model upon installation results in loss of said customization delta;

compare said second software data model to said first software data model;

return upgrade deltas based on comparison of said second software data model to said
first software data model;

compare said third software data model to said first software data model;

return customization deltas based on comparison of said third software data model to
said first software data model; and

produce a target data model including said upgrade deltas and said customization

deltas.

2. The computer system of claim 1, wherein said computer code is further executable to

return merged deltas relating to conflicts between said upgrade deltas and said customization
deltas.

3. The computer system of claim 2, wherein said computer code is further executable to
generate command rules applied to said merged deltas to resolve conflicts between said

upgrade deltas and said customization deltas.

20

10

15

25

WO 2013/012690 PCT/US2012/046558
4. The computer system of claim 3, wherein said computer code is further executable to

generate command options one or more selectable to apply administrator command rules to

said merged deltas to resolve conflicts between said upgrade deltas and said customization
deltas.

5. The computer system of claim 2, wherein said computer code is further executable to

generate mapping rules based on returned said upgrade deltas, said customization deltas, and

said merged deltas.

6. The computer system of claim 5, wherein said computer code is further executable to

generate upgrade commands based on said mapping rules and returned said upgrade deltas,

said customization deltas, and said merged deltas.

7. The computer system of claim 1, wherein said computer code is further executable to
generate migration rules to allow data to migrate from said first software data model to said

target software data model.

8. The computer system of claim 1, wherein said computer code is further executable to
compare each incremental pair of said first software data model and said second software data
model across a series of data models and compare each incremental pair of said first software

data model and said third software data model across said series of data models.

9. The computer system of claim 8, wherein said computer code is further executable to
serially return said upgrade deltas, said customization deltas, and said merged deltas for each

incremental pair across said series of data models.

10. The computer system of claim 9, wherein said computer code is further executable to
serially apply upgrade commands based on said returned upgrade deltas, said customization
deltas, and said merged deltas for each incremental pair across said series of data models to

serially generate said target software data model.

11. The computer system of claim 1, wherein said computer code is further executable to
discretely compare a first layer of a plurality of separate layers between each of said first
software data model, said second software data model and said third software data model to

return said upgrade deltas, said customization deltas, and said merged deltas for said first layer

of said plurality of separate layers.

21

10

15

20

25

30

WO 2013/012690 PCT/US2012/046358
12. The computer system of claim 11, wherein said computer code is further executable to

generate upgrade commands based on mapping rules said upgrade deltas, said customization

deltas, and said merged deltas of said first layer of said plurality of separate layers.

13, The computer system of claim 12, wherein said computer code is further executable to
produce a target data model including said upgrade deltas and said customization deltas for
said first layer of said plurality of separate layers without affecting a second layer of said

plurality of separate layers.

14. The computer system of claim 13, wherein said computer code is further executable to
detect one or more dependent elements of a second layer of said plurality of separate layers

based on changes made in said first on of said plurality of separate layers.

15. The computer system of claim 1, wherein said computer code is further executable to

uninstall said upgrade delta from said target software data model including said customization

deltas.

16. The computer system of claim 1, wherein said computer code is further executable to

uninstall said upgrade delta from said target software data model while retaining said

customization deltas.

17. A computer system for upgrading a software data model and data, comprising:
a software data model repository which stores a plurality of software data models;
a software data model comparator which compares:

a first software data model;

a second software data model, said second data model comprising an upgrade
delta applied to said first data model;

a third software data model, said third software data model comprising a
customization delta applied to said first software data model, said second software data model
applied to said third software data model upon installation results in loss of said customization
delta;

a delta module which returns:
upgrade deltas based on comparison of said second software data model to said

first software data model;

customization deltas based on comparison of said third software data model to

said first software data model; and

22

10

15

20

25

30

WO 2013/012690 PCT/US2012/046558
a command generator which generates upgrade commands applied to said first

software data model to produce a target data model which includes said upgrade deltas and

said customization deltas.

18. The computer system of claim 17, wherein said delta module further returns merged

deltas relating to conflicts between said upgrade deltas and said customization deltas.

19. The computer system of claim 18, wherein said command generator further generates

command rules applied to said merged deltas to resolve conflicts between said upgrade deltas

and said customization deltas.

20. The computer system of claim 19, wherein said command generator further generates
command options selectable to apply one or more administrator command rules to said merged

deltas to resolve conflicts between said upgrade deltas and said customization deltas.

21. The computer system of claim 20, wherein said command generator further generates

migration rules to allow data to migrate from said first software data model to said target

software data model.

22, The computer system of claim 1, wherein said software data model comparator
compares:

each incremental pair of said first software data model and said second software data
model across a series of data models; and

each incremental pair of said first software data model and said third software data

model across said series of data models.

23. The computer system of claim 6, wherein said delta module serially returns said
upgrade deltas, said customization deltas, and said merged deltas for each incremental pair

across said series of data models.

24, The computer system of claim 7, wherein said command generator applies said upgrade
commands based on said returned upgrade deltas, said customization deltas, and said merged
deltas for each incremental pair across said series of data models to generate serially said target

software data model to serially produce said target data model.

25. The computer system of claim 1, wherein said a software data model comparator
discretely compares a first layer of a plurality of separate layers between each of said first
software data model, said second software data model and said third software data model to

23

10

15

20

30

WO 2013/012690 PCT/US2012/046558
return said upgrade deltas, said customization deltas, and said merged deltas for said first layer

of said plurality of separate layers.

26. The computer system of claim 9, wherein said command generator generates upgrade
commands based on mapping rules said upgrade deltas, said customization deltas, and said

merged deltas of said first layer of said plurality of separate layers.

27. The computer system of claim 10, wherein said command generator generates upgrade
commands to produce a target data model including said upgrade deltas and said customization

deltas for said first layer of said plurality of separate layers without affecting a second layer of

said plurality of separate layers.

28. The computer system of claim 11, further comprising a dependency detector to detect
one or more dependent elements of a second layer of said plurality of separate layers based on

changes made in said first one of said plurality of separate layers.

29. The computer system of claim 1, wherein said software data model comparator

uninstalls said upgrade delta from said target software data model including said customization

deltas.

30. The computer system of claim 1, wherein said software data model comparator

uninstalls said upgrade delta from said target software data model while retainging said

customization deltas.

31. A method in a computer system for upgrading a software data model and data,
comprising:

storing a plurality of software data models in a common format in a data model
repository;

retrieving from said plurality of software data models stored in said data model
repository a first software data model;

retrieving from said plurality of software data models stored in said data model
repository a second software data model, said second data model including an upgrade delta
applied to said first data model;

retrieving from said plurality of software data models stored in said data model
repository a third software data model, said third software data model having at least one

customization delta applied to said first software data model, said second software data model

24

10

15

20

25

WO 2013/012690 PCT/US2012/046558
applied to said third data software model upon installation results in loss of said customization

delta;

comparing said second software data model to said first software data model;

returning upgrade deltas based on comparison of said second software data model to
said first software data model;

comparing said third software data model to said first software data model;

returning customization deltas based on comparison of said third software data model
to said first software data model; and

producing a target data model including said upgrade deltas and said customization
deltas.

32. The method in a computer system for upgrading a software data model and data of
claim 31, further comprising returning merged deltas relating to conflicts between said upgrade

deltas and said customization deltas.

33. The method in a computer system for upgrading a software data model and data of
claim 32, further comprising generating command rules applied to said merged deltas to

resolve conflicts between said upgrade deltas and said customization deltas.

~

34. The method in a computer system for upgrading a software data model and data of
claim 33, further comprising generating command options one or more selectable to apply
administrator command rules to said merged deltas to resolve conflicts between said upgrade

deltas and said customization deltas.

35. The method in a computer system for upgrading a software data model and data of
claim 31, further comprising generating mapping rules based returned upgrade deltas,

customization deltas, and merged deltas.

36. The method in a computer system for upgrading a software data model and data of
claim 35, further comprising generating upgrade commands based on mapping rules and

returned one or more of said upgrade deltas, said customization deltas, and said merged deltas.

37. The method in a computer system for upgrading a software data model and data of
claim 31, further comprising generating migration rules to allow data to migrate from said first

software data model to said target software data model.

25

10

15

20

30

WO 2013/012690 PCT/US2012/046558
38. The method in a computer system for upgrading a software data model and data of

claim 31, further comprising comparing each incremental pair of said first software data model
and said second software data model across a series of data models and compare each
incremental pair of said first software data model and said third software data model across

said series of data models.

39. The method in a computer system for upgrading a software data model and data of
claim 38, further comprising serially returning said upgrade deltas, said customization deltas,

and said merged deltas for each incremental pair across said series of data models.

40. The method in a computer system for upgrading a software data model and data of
claim 39, further comprising serially applying upgrade commands based on said returned
upgrade deltas, said customization deltas, and said merged deltas for each incremental pair

across said series of data models to generate serially said target software data model.

41. The method in a computer system for upgrading a software data model and data of
claim 31, further comprising:

discretely comparing a first layer of a plurality of separate layers between each of said
first software data model, said second software data model and said third software data model;
and

returning said upgrade deltas, said customization deltas, and said merged deltas for said

first layer of said plurality of separate layers.

42. The method in a computer system for upgrading a software data model and data of
claim 41, further comprising generating upgrade commands based on mapping rules said
upgrade deltas, said customization deltas, and said merged deltas of said first layer of said

plurality of separate layers.

43. The method in a computer system for upgrading a software data model and data of
claim 42, further comprising producing a target data model including said upgrade deltas and
said customization deltas for said first layer of said plurality of separate layers without

affecting a second layer of said plurality of separate layers.

44. The method in a computer system for upgrading a software data model and data of
claim 43, further comprising detecting one or more dependent elements of a second layer of

said plurality of separate layers based on changes made in said first on of said plurality of

separate layers.

26

WO 2013/012690 PCT/US2012/046558
45. The method in a computer system for upgrading a software data model and data of

claim 31, further comprising uninstalling said upgrade delta from said target software data

model including said customization deltas.

46. The method in a computer system for upgrading a software data model and data of
claim 31, further comprising uninstalling said upgrade delta from said target software data

model while retaining said customization deltas.

27

PCT/US2012/046558

WO 2013/012690

(14X g)

SY1730 30vHdn
<h4moo@wmmm v1va Sy
| <
N33 5 g -,
134008 NEEe T ——
(N0J3S
N
7 L
3131 S (T+X NOISHIN L _ _E[F7
jharaon THO0H VIVO ¢ 5 L
SIINYH) faay 2|
(.T+X NOISHIN) . ¢
Y
- nlglahl [o L
i ECTETI YA e T
INFHT3 (X_NOISHIA)
134909 QHIHL ((SNOTLYZIWOLSN) 13004 YLYQ

(394N HO/ONV

ININIVWIY
SNOTLYZIHOLSNI
HLIM 7+X NOISHIA

3

P

(30vH3dn 4

SVL130 371-1300N8

8 AZAWNY 3

NI 14
13X9n4
INE

I "9Id

HLIK X NOISHIN [T T
X NOISHIA) 0 B

TI00H ViV
G) 7 i
- P aN
[.X"Xg) STRE
Y1730 1300 Y1VO NOTLYZIHOISN)
1SHIA ML) g

PCT/US2012/046558

2/3

WO 2013/012690

66—

11188 —

AN

\

PCT/US2012/046558

WO 2013/012690

3/9

... 02 SO HLIM MH H3LNdH0
S)
\\\ z/ _\
% Gojledl 79 | [€] 7T
SONVRHODL HOLYHN3 5 _ o SNOISHIA
0740 g D T n o NOLLYIT 1ddV
m = 1 = Sf L vivo o P]
| 0v] = b
| & SONVHNO 1y | P
“ JLVHN39 1 X NOTSH3A i i
Itk ‘ = K| 13008 YLvO L = :
" ST~ | (] — A Ay
| SISATVNY HHL0> | L] 7 A O
_ ONYHO) — - 31V3H) o
“ I TRETE g L =
m e S T e e ¢
9 I (5 <103 HHL0> e L
“ T 3004
m S | N T ¥ S i gy 1) 7L
| 0L TI0OH e T 1| BOOWYIVO | ! 140dx3
| 03 STSATWNY — L “
__ I I | 7T syIsHYd | N — :

B7 1001 H3LYIANOD ONY NOSTHYHOD T300H Y1vO)

SN ——elqr][] 3LVENB

....................... o
T2 S0 HLIK M4 H3LNdH0

PCT/US2012/046558

WO 2013/012690

413

I oo = +
¥1vQ TYNI4 SOW) V1730
300 Y1v0
- 4+ NOTSHIA,

1001 HILHIANOD te
3 NOSTHYdHO)
T300W Y1Y0

g JLVHINTD

¥ JZATNY

+

SOWJ V1140
1300W V1vQ
E+X NOISHIA.

]

e

JLVHINTD

3 JZATNY

.._...

SOWI V17130
1300W V1Va
«¢+X NOISH3A.

LYHINID
JZATVNY

+

SOWJ V1140
1300W V1Vd
J+X NOISHIA.

g JLVHINID
8 JZATINY

¥+X NOISH3A

E+X NOISH3A

)
U

N
ELlE

AN VA

2+ NOISHIA 7+X NOISH3A
N N
ELIE ELIE

7 00N
y1¥0

X H3A

y "9Id

L
' ZOHmmm»/ WIJI440
ELIT
G X NOISHIA NOISHIA

(y) WZIH0LSNI

PCT/US2012/046558

WO 2013/012690

a/3

3L/5L

A

N\

H08/6/ HIAVT WHOALY'1d ;ar------d ﬂ------.-ﬁ 08/6L HAAYT WHO4LVId H
128/18 HAAYT NOWWOJ — m w a1 08/10 HIAYT NOWWOD s
| E8 H3AV] NOTLYOTddY | {o| peet B8 IV NOLIVOTTAAY |
| 75 431 NoLLvnoLaNod || i | Pl || B s NorvenaTae |
7 Pl Pl S
/g Pl .]

117)

JHVALH0S HYINAOW 40 13A1
HOV3 LV (3IddvV 34 SNOSIHYAWOD

§ 914

3L/5L

PCT/US2012/046558

WO 2013/012690

6/3

i g e 67 HIAV] WHOLY
E LIk NOTSH3H zm_%%: N ::mzm%omﬁ% e B[HIAV] HHO4LYd
HIAVT WHOALYd HO SONVWHOD 30vHIdN .T+X - 98
5 g] 28 HIAVT NOWHOI
£ P NOTSEN m_%%u N ::mzmo%@ ™ e 28 HIAVT NOWWO)
HIAVT NOKWOD HOJ SONVWHOI 3avHadn .T+X - /8
T Tg e £0 HIAV] NOTLVOI1dd¥
b P NOISEN zsmw%&,‘ N :n%_ﬁwwu_«z,& =1 £§ HIAVT NOILYOITddV
HIAYT NOILYIT1ddY HOJ SONVAWO) JavHIdn .T+X - 88
78 tg | 78 HIAVT NOILYHNITINOD
E VRN | Sitann | | NOTOIA) -] 8 $5AV1 HOTLNSTO)

HIAYT NOILYHNIIINOD HOJ SONVWWOD JQvHIAN .T+X - 6B

g 914

X NOISHIA
X NOISH3A

X NOISH3A
X NOISHIA

X NOISH3A
X NOISH3A

X NOISH3A
X NOISHIA

(Zel}

<] L

[Tl

<~

[Wpr]]

1

PCT/US2012/046558

WO 2013/012690

113

1 3dAL 01 Q300v SI G JINBIHLLY
~34v T+X NOISHIA 0L X NOISHIA WOH4 LINAOHd
JHL H04 T300W Y1¥Q JHL NI SFINVHD

(¢) G Ly -
¢ Hlly e
T 4Ly

T 3dAL

6 H3AV1 1IN00d

L4

(b) ¥ ULy ===

T 3dAL

-(3INIVIH
SI T 3dAL 0L NOLLIQQV S. 1T -
"¢y HLLY OL SNIddvH LYHM

(06) HIAVT NOILVZIWOLSND

M0138
(S)HIAVT NI SJINVHD
INJONAJI0 INTWVXS

JE T+X NOISH3A

[914

Y

J

€ tlly
¢ ULy
T Hlly

T 3dAL

6l H3AVT LIN00Hd

(v) ¥ L1V 0oV
T 3dAL

(06) H3AVT NOILYZIWOLSNI

(G) X NOISHIA

PCT/US2012/046558

WO 2013/012690

8/9

G HLLY
€ HLLV
¢ 3dAL
T HLLY
¥ dIHSNOILY13H
¢ HLLY
T 3dAL

6/ HIAVT LIncoHd

¢Y dIHSNOILY13d 0L JAOK - ==+
i¢ 3dAL 01 JAON -
¢V 3dAL HLIM LT 439X -
"¢y HLLY 01 SNIddVH LVHM

(06) HIAVT NOILVZIWOLSNI

4

G ILNGIHLLY "JLNATHLLY MIN V NI SINIHE OSTV ¢ IdAL
S$133r80 ¢ 3dAL ONV T 3dAL SILVIJOSSY V JIHSNOILYIIY
V dIHSNOILY134 MIN V 0L QJAOW SI T JLNAIHLLY

*34Y T+X NOISHIA OL X NOISHIA WOH4 LINAOHd JHL HO4 300K VLVO 3HL NI SJINVHO

¢ 3dAL MIN OL (30Qv SI € JLNATHLLY

Y

JE T+X NOISHIA

M0138
(SYHIAVT NI SJINVHD
INON3d30 INTWYXT

8 914

J

€ HLLY
¢ HLLY
T dLly

T 3dAL

] 43A¥T 19n00td

() ¥ HLLV Qv
T 3dAL

(06) H3AVT NOILVZIWOLSNI

(G) X NOISHIA

PCT/US2012/046558

WO 2013/012690

SNOTLYZIWOLSND
INVON3d30 40 NOILVIIJIINAGI

||
: W O
y 952/047
(V NISNTd-34d NO m _
$ITINIONIAIC IAVH ¥ - C St
LYHL SV NI9Md-1S0d) i B 1300 ¥1Y0
+7 NI9NTd-3Hd
Tx.Tx< Tx.x<
NIVHH T+X NOISHIA
= | oL QYN SINVHD WAOHTH @ A
1300 YLVO WOLSN) WLTB \ 0 ~ _
1 - . .
g r_\m -~ 5 7 TI00H Y10
=1 i - i i
M_ 14 W —7 =
b ¥ p| ¢ @ ¢
X "CITIVISNINA T+X NOTSHIA E—— Ly \
NOTSHIA NOISH3A

6 9Id

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2012/046558

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/44; GO6F 15/16; GO6F 17/00; GO6F 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: data, model, difference, upgrade, customization

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2009-0119319 A1 (LI PENG et al.) 07 May 2009 1-46
See abstract; paragraphs [0022]-[0042]; claims 1,5 and figures 1,7.

A US 2005-0071359 Al (DEEPAK, S. ELANDASSERY et al.) 31 March 2005 1-46
See abstract; paragraphs [0041]-[0056]; claims 1,14 and figure 1.

A US 2007-0192290 A1 (ANDREY ZAYTSEV et al.) 16 August 2007 1-46
See abstract; paragraphs [0020]-[0021]; claim 1 and figures 2-3.

A US 20110167418 A1l (GOPAL NIRAJ et al.) 07 July 2011 1-46
See abstract; paragraphs [0035]-[0067]; claim 1 and figure 3.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
28 DECEMBER 2012 (28.12.2012) 02 JANUARY 2013 (02.01.20 13)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan CHOIL, Jeong Kwon
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8507

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2012/046558

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2009-0119319 A1 07.05.2009 CN 1889076 A 03.01.2007
US 2006-0294120 A1 28.12.2006
US 749659 B2 24.02.2009
US 7991742 B2 02.08.2011

US 2005-0071359 A1 31.03.2005 None

US 2007-0192290 A1 16.08.2007 US 7610298 B2 27.10.2009

US 2011-0167418 A1 07.07.2011 US 2006-0271914 A1 30. 11,2006
US 7926033 B2 12.04.2011

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

