WEIGHTED GRIP ASSEMBLY FOR A GOLF CLUB

Inventor: Sean Solodovnick, Gainesville, FL (US)

Correspondence Address:
MALLOY & MALLOY, P.A.
2800 S.W. Third Avenue
Historic Coral Way
Miami, FL 33129 (US)

Appl. No.: 11/482,078
Filed: Jul. 6, 2006

Publication Classification

Int. Cl.
A63B 53/14 (2006.01)

U.S. Cl. 473/297

ABSTRACT
A grip assembly for a golf club comprising a body composed of a material which is structured to facilitate gripping, and a weighted assembly comprising any variety of dense and/or heavy substance(s), including, but not limited to, metal and/or metal alloy composite in various structural or physical forms. The body and the weighted assembly are at least partially integrated to form the grip assembly for a golf club. The body and the weighted assembly may be integrated using any of a variety of techniques, methods, and/or modes such as interweaving, melting, heating, bonding, and/or interfusing.
WEIGHTED GRIP ASSEMBLY FOR A GOLF CLUB

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to a grip assembly for a golf club structured to balance and counteract the weight typically produced by the head of an athletic instrument, such as a golf club. The grip assembly for a golf club comprises a body being composed of a material structured to facilitate gripping, and a weighted assembly at least partially integrated with at least a majority of the body. The body of the grip assembly and the weighted assembly may be integrated, incorporating any of a variety of techniques, including, but not limited to, interweaving, melting, heating, bonding, and/or interlining.

[0003] 2. Description of the Related Art

[0004] The utilization and/or swinging of an elongate instrument, such as a golf club, in an athletic or sporting event is rather common. Furthermore, a controlled, precise swing of such an elongate instrument is generally sought after and desired goal, especially in the sport of golf. More specifically, the precision and/or control of the user’s swing is highly dependent upon the actual speed of the instrument as the user moves the instrument through the swing. If the user fails to accurately and/or precisely control the instrument through the swing, even the slightest error in the swing may cause a drastic change in the overall success of the game. As such there have been numerous attempts to control and/or allow the user to control the precision of such a swing.

[0005] There have been numerous attempts to provide a balanced and/or weighted golf club such that the precision of the user’s swing is increased, however, many of the previous attempts present structure(s) which include one or more centralized weight(s). The centralized weight(s) present unnecessary bulk and/or complexity for both the user and the manufacturer of the golf clubs and/or grip assemblies.

[0006] As such, there is a present need in the field of golf equipment for a grip assembly for a golf club having a weighted assembly wherein the weighted assembly is at least partially integrated with the material of the body. The weighted assembly of the proposed grip assembly may either be substantially evenly distributed or substantially unevenly distributed throughout the body, however, the grip assembly is preferably sufficiently heavy to counteract the normally heavier weight of the club head thereby giving the entire golf club a more balanced “feel” overall. Further, it would be beneficial if the body of such a proposed grip assembly is composed of a material structured to facilitate gripping, including, but not limited to, a flexible and/or resilient material. Such a proposed grip assembly would eliminate or significantly reduce the disadvantages and problems relating to the bulk and/or complexity of known golf clubs and/or golf club grip assemblies comprising one or more centralized weights, of the type generally described above.

[0007] Further, it would be beneficial if such a proposed grip assembly would provide a simple, integrated grip that may be easily manufactured and adapted for use with various types and shapes of athletic instruments.

SUMMARY OF THE INVENTION

[0008] The present invention is directed to a grip assembly for a golf club which is structured and operative to overcome the various disadvantages and problems of the type prevalent with known or conventional grip and/or weighting structures typically associated with elongate athletic instruments, such as golf clubs. Further, the grip assembly of the present invention is specifically structured to be adaptable to various elongate athletic instruments, including, but not limited to, golf clubs.

[0009] More specifically, the various preferred embodiments of the present invention are directed to a grip assembly for a golf club having a body and a weighted assembly. The body of the present invention may be composed of any material structured to facilitate gripping including, but not limited to, a flexible and/or resilient material. Additionally, the body of the present invention includes a length extending from a proximal end to a distal end of the body, wherein the length of the body is preferably between five (5) to fifteen (15) inches, however, the length of the body of the present invention is in no manner confined to such dimensions.

[0010] Further, in at least one embodiment of the present invention, the body may include an open bore having a hollow interior and extending along at least a portion of the length of the body, whereby the open bore is structured and disposed to at least partially accept a portion of a golf club shaft. However, the grip assembly of the present invention may be attached to the golf club shaft by incorporating any of a variety of techniques, methods, devices, and/or manners, including, but not limited to, adhesion and/or friction.

[0011] In addition, the body of the present invention may further include a cap disposed at the proximal end of the body. The cap may be integrally or otherwise fixedly connected to the body, or removable connected thereto.

[0012] Further, the weighted assembly in at least one of the plurality of preferred embodiments of the present invention may be composed of any structurally dense and/or heavy material, including, but not limited to, metal and/or metal alloy composites. Additionally, in at least one of the plurality of preferred embodiments of the present invention, the weighted assembly may include at least one, or a plurality of weighted element(s), wherein the weighted element(s) include, but are not limited to, pellets, rods, plates, and/or any similar structure.

[0013] Moreover, the weighted assembly is at least partially integrated and substantially distributed throughout at least a predetermined portion, a majority or substantially the entire body to form the grip assembly for a golf club of the present invention. More specifically, the material of the body and the weighted assembly may be integrated by incorporating any of a variety of techniques, methods, and/or modes including, but not limited to, weaving, melting, heating, bonding, and/or fusing. More in particular, the grip assembly of the present invention provides a more balanced golf club such that the weight is not substantially concentrated in the club head, nor does the grip assembly of the present invention have a substantially centralized weight. Rather, the weighted assembly is at least partially integrated and substantially distributed throughout at least a predetermined portion or a majority of the body of the grip assembly.

[0014] In addition, in at least one of the preferred embodiments of the present invention, the grip assembly includes a
combined or total weight having the sum of a first weight, being the weight of the body, and a second weight, being the weight of the weighted assembly. In at least one preferred embodiment of the present invention, the combined weight of the grip assembly may range between 100 grams to 500 grams; however, the combined weight is in no manner confined to such weight parameters.

[0015] Additionally, the grip assembly for a golf club of the present invention may be structured to comprise any preferred shape, including, but not limited to, a rounded, elliptical, triangular, hexagonal, or a “D” cross-sectional configuration shape.

[0016] In at least one preferred embodiment of the present invention, the weighted assembly may either be distributed substantially evenly throughout the body, or substantially unevenly throughout the body, wherein a common structural and operative feature comprises the combined weight of the grip assembly being structured to substantially counteract the weight of the club head of the golf club and thereby provide an overall balanced “feel” or characteristic of the golf club as a whole. Moreover, when the weighted assembly is distributed and/or dispersed substantially evenly throughout the body, the combined weight of the grip assembly of the present invention may be substantially balanced over the length of the body. However, when the weighted assembly is distributed and/or dispersed substantially unevenly throughout the body, the combined weight of the grip assembly may be substantially unbalanced over the length of the body. Accordingly, whether the weighted assembly is substantially evenly or substantially unevenly distributed and/or dispersed throughout the body, the grip assembly of the present invention is structured to provide an overall balanced “feel” or characteristic of the golf club as a whole, by virtue of it substantially or at least partially counteracting the normally concentrated weight in the club head.

[0017] In at least one preferred embodiment of the present invention, the weighted element(s) of the weighted assembly may include one or a plurality of small structures resembling a pellet at least partially integrated with the gripping material of the body of the grip assembly. More specifically, the weighted assembly of this preferred embodiment may be integrated with the gripping material of the body by incorporating any of a variety of techniques, including, but not limited to, weaving, melting, heating, bonding, and/or fusing to form the grip assembly of the present invention. In addition, the weighted assembly may be substantially evenly dispersed throughout the body to form a substantially balanced grip assembly, or the weighted assembly may be substantially unevenly dispersed throughout the body to form a substantially unbalanced grip assembly.

[0019] Further, in yet another preferred embodiment, the weighted element(s) of the weighted assembly may include one or more thin fibers and/or strips, which may be similarly integrated in the manner described in detail herein with the gripping material of the body to form the grip assembly of the present invention.

[0020] In yet another preferred embodiment of the present invention, the weighted assembly may include at least one or a plurality of plates, or similar structures, dispersed throughout the gripping material of the body. The plate(s) may be structured in various dimensions, limited only by the confines of the body. Similar to the other preferred embodiments of the present invention, the weighted element(s), or plate(s), may be substantially evenly or substantially unevenly distributed and/or dispersed throughout the gripping material of the body. Whether the weighted assembly is substantially evenly or substantially unevenly distributed and/or dispersed throughout the body, the total weight of the grip assembly of the present invention is sufficient to at least partially or substantially counteract the weight of the club head of the golf club and thereby provide an overall balanced “feel” and/or characteristic of the golf club as a whole.

[0021] An additional structural feature of the weighted assembly of the present invention comprises one or more of the various weighted elements, as set forth in the above described embodiments, being associated with a cap disposed at the proximal end of the body. As such, the one or more weighted elements may be connected to, mounted on and/or dispersed or integrated within the cap. Therefore, the cap may comprise a portion of the combined weight of the grip assembly of the present invention.

[0022] These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:

[0024] FIG. 1 is a side exterior view in partial phantom of one preferred embodiment of the grip assembly for a golf club.

[0025] FIG. 2 is an exploded view of one preferred embodiment of the grip assembly for a golf club in an operative position with a golf club.

[0026] FIG. 3 is a perspective view of one preferred embodiment of the grip assembly for a golf club of the present invention.

[0027] FIG. 3a is a cross-sectional view of one of the preferred embodiments of the grip assembly for a golf club of the present invention.

[0028] FIG. 3b is a cross-sectional view of another preferred embodiment of the grip assembly for a golf club of the present invention.
FIG. 3c is a cross-sectional view of yet another preferred embodiment of the grip assembly for a golf club of the present invention.

Like reference numerals refer to like parts throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As shown in the accompanying drawings, the present invention is directed to a grip assembly for a golf club generally indicated as 10 and shown in detail in FIGS. 1 through 3. More specifically, the grip assembly 10 includes a body 20 and a weighted assembly 30. Depending at least on the style, design and overall structure of the grip assembly 10, the body 20 may also comprise an open bore 28, to facilitate attachment of the body 20 to a shaft of a club, and a cap 26.

Furthermore, the weighted assembly 30 may comprise at least one or a plurality of weighted element(s) at least partially integrated throughout the body 20. In the various preferred embodiments of the present invention, the body 20 of the grip assembly 10 may be composed of any substantially resilient, flexible, semi-rigid, and/or rigid material which facilitates gripping of the club, while meeting the specific preferences of the user. Additionally, the weighted assembly 30 may comprise any of a variety of dense and/or heavy substance(s), including, but not limited to, metal and/or metal alloy composite in various structural or physical forms. The cap 26 may either be integrally or otherwise fixedly secured or removably connected to the body 20 of the present invention.

Furthermore, in at least one of the various preferred embodiments of the present invention, the weighted assembly 30 is at least partially integrated throughout the body 20 to form the grip assembly 10 for a golf club 40 of the present invention. More specifically, the term “integrated” is meant to describe an intended combining of the material of the body 20 and the weighted assembly 30 by incorporating any of a variety of techniques, methods, and/or modes including, but not limited to, weaving, melting, heating, bonding, and/or fusing. More in particular, the grip assembly 10 of the present invention may provide a more balanced golf club 40 such that the weight is not substantially concentrated in the club head 44. Further, the grip assembly 10 of the present invention does not have a substantially centralized or concentrated location of the weight. Rather, the weighted assembly 30 is at least partially integrated and substantially distributed throughout at least a predetermined portion and/or a majority of the body 20 of the grip assembly 10.

In a most preferred embodiment of the present invention, the weighted assembly 30 may either be distributed substantially evenly throughout the body 20, or substantially unevenly throughout the body 20, wherein the total weight of the grip assembly 10 of each of these complimentary structures of the present invention serves to at least partially and/or substantially counteract the weight of the club head 44 of a golf club 40 and thereby provide an overall balanced “feel” or characteristic of the golf club 40 as a whole. Moreover, in the preferred embodiment wherein the weighted assembly 30 is distributed and/or dispersed substantially evenly throughout the body, the total weight of the grip assembly 10 may be substantially balanced throughout the length of the body 20. Additionally, in the preferred embodiment, wherein the weighted assembly 30 is distributed substantially unevenly throughout the body 20, the total weight of the grip assembly 10 may be substantially unbalanced throughout the body 20.

Referring to FIG. 2, in at least one preferred embodiment of the present invention, the open bore 28 is structured and disposed to at least partially accept a shaft 42 of a golf club 40. As such, the grip assembly 10 may be attached to the golf club shaft 42 by incorporating any of a variety of techniques, including, but not limited to, the use of adhesives and/or friction. Furthermore, the open bore 28 may extend along a length of the body 20 beginning at the distal end 24 of the body 20.

The grip assembly 10 for a golf club 40 of the present invention may be structured in any preferred shape, including, but not limited to, a rounded, elliptical, triangular, hexagonal, or a “D” cross-sectional shape as shown in FIG. 3. Accordingly, while the “D” shape is primarily represented in the various Figures, any of appropriate shape may be incorporated in the various embodiments of the present invention.

In one preferred embodiment of the present invention, shown in FIG. 3a, the weighted assembly 30 includes at least one or a plurality of weighted element(s) 31 structured to resemble a pellet or like structure, wherein the weighted assembly 30 is at least partially integrated with the body 20 in the manner described in detail herein. Furthermore, in the preferred embodiment shown in FIG. 3a, the weighted assembly 30 may either be substantially evenly distributed and/or dispersed throughout the body 20, or form a substantially balanced grip assembly 10, or the weighted assembly 30 may be substantially unevenly distributed and/or dispersed throughout the body 20, to form a substantially unbalanced grip assembly 10. Additionally, the weighted assembly 30 may be at least partially dispersed within, connected to, mounted on or otherwise associated with a cap 26 disposed at the proximal end 22 of the body 20 such that the cap 26 includes a portion of the total weight of the grip assembly 10 of the present invention.

Another preferred embodiment of the present invention is shown in detail in FIG. 3b. Specifically, the weighted element(s) 32 of the weighted assembly 30 includes at least one or a plurality of thin rods, and/or like structures which may be integrated throughout the body 20 to provide the grip assembly 10 of the present invention, being of sufficiently increased weight to at least partially or substantially counteract the normally concentrated weight of the club head. Furthermore, the one or more weighted element(s) 32 as shown in FIG. 3b may be of any length, wherein any one rod or like structure does not exceed the overall length of the body 20 of the grip assembly 10.

Similar to the preferred embodiment of FIG. 3a, in the preferred embodiment of FIG. 3b the body 20 and the weighted assembly 30 may be integrated to form the grip assembly 10 of the present invention. Additionally, the weighted assembly 30 shown in FIG. 3b may be substantially evenly distributed and/or dispersed throughout the body 20 of the grip assembly 10 and thereby form a substantially balanced grip assembly 10. On the other hand, the weighted assembly 30 may be substantially unevenly dispersed throughout the body 20 of the grip assembly 10 to
form a substantially unbalanced grip assembly 10. Additionally, the weighted assembly 30 may be dispersed throughout a cap 26 disposed at the proximal end of the body 20 of the present invention such that the cap 26 comprises a portion of the total weight of the grip assembly 10 of the present invention.

[0040] Further, the weighted element(s) 32 of the weighted assembly 30 may include one or more fibers and/or strips which may be similarly integrated in the manner described in detail herein with the gripping material of the body 20 to form the grip assembly 10 of the present invention.

[0041] Another preferred embodiment of the present invention is shown in detail in FIG. 3c. Specifically, the weighted assembly 30 includes one or more weighted elements(s) 33 comprising a plate, or like structure dispersed throughout the material of the body 20. Similar to the preferred embodiments of FIGS. 3a and 3b, in the preferred embodiment of FIG. 3c the body 20 and the weighted assembly 30 are at least partially integrated to form the grip assembly 10 of the present invention. Additionally, the weighted assembly 30 shown in FIG. 3c may be substantially evenly distributed and/or dispersed throughout the body 20 of the grip assembly 10 to form a substantially balanced grip assembly 10, or the weighted assembly 30 may be substantially unevenly distributed and/or dispersed throughout the body 20 of the grip assembly 10 to form a substantially unbalanced grip assembly 10. Additionally, the weighted assembly 30 may be dispersed throughout a cap 26 disposed at the proximal end of the body 20 of the present invention such that the cap 26 comprises a portion of the total weight of the grip assembly 10 of the present invention.

[0042] Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.

[0043] Now that the invention has been described,

What is claimed is:

1. A grip assembly for a golf club having a club shaft and a club head, said grip assembly comprising:
 a body having a proximal end, a distal end, and a length extending from said proximal end to said distal end,
 said body connected to said club shaft and comprising a weighted assembly,
 said weighted assembly comprising at least one weighted element integrated throughout a majority of said body,
 said weighted assembly structured and disposed to at least partially define a grip of sufficient weight, relative to said club head, to accomplish a substantially balanced characteristic of the golf club.

2. A grip assembly as recited in claim 1 wherein said weighted assembly comprises a plurality of weighted elements disposed substantially evenly throughout said body.

3. A grip assembly as recited in claim 2 wherein said body is substantially balanced.

4. A grip assembly as recited in claim 1 wherein said weighted assembly comprises a plurality of weighted elements disposed substantially unevenly throughout said body.

5. A grip assembly as recited in claim 4 wherein said body is substantially un-balanced.

6. A grip assembly as recited in claim 1 wherein said at least one weighted element comprises a pellet structure.

7. A grip assembly as recited in claim 1 wherein said at least one weighted element comprises a rod structure.

8. A grip assembly as recited in claim 1 wherein said at least one weighted element comprises a plate structure.

9. A grip assembly as recited in claim 1 wherein said at least one weighted element comprises a fiber structure.

10. A grip assembly as recited in claim 1 wherein said body further comprises an open bore having a hollow interior extending along at least a portion of said length of said body.

11. A grip assembly as recited in claim 1 wherein said body comprises a flexible material.

12. A grip assembly as recited in claim 1 wherein said body comprises a resilient material.

13. A grip assembly for a golf club having a club shaft and a club head, said grip assembly comprising:
 a body having a proximal end, a distal end, and a length extending from said proximal end to said distal end,
 said body connected to said club shaft and comprising a weighted assembly.

14. A grip assembly as recited in claim 13 wherein said plurality of weighted elements is integrated throughout at least a predetermined portion of said body.

15. A grip assembly as recited in claim 14 wherein said body is substantially balanced.

16. A grip assembly as recited in claim 13 wherein said plurality of weighted elements is disposed substantially unevenly throughout said body.

17. A grip assembly as recited in claim 16 wherein said body is substantially unbalanced.

18. A grip assembly as recited in claim 13 wherein said plurality of weighted elements comprises pellet structures.

19. A grip assembly as recited in claim 13 wherein said plurality of weighted elements comprises rod structures.

20. A grip assembly as recited in claim 13 wherein said plurality of weighted elements comprises plate structures.

21. A grip assembly as recited in claim 13 wherein said plurality of weighted elements comprises fiber structures.

22. A grip assembly as recited in claim 13 wherein said body further comprises an open bore having a hollow interior extending along at least a portion of said length of said body.

23. A grip assembly as recited in claim 13 wherein said body comprises a flexible material.

24. A grip assembly as recited in claim 13 wherein said body comprises a resilient material.