发明名称
配合止血钳使用的血管支承结构

摘要
本发明公开了一种配合止血钳(endoclip)使用的血管支承结构。该血管支承结构具有可相对止血钳的夹头弹性作动的一弹性支承部,当弹性支承部位于第一位置时,该弹性支承部未阻挡住夹头的缺口,此时止血钳夹头的缺口呈开放状,当弹性支承部位于第二位置时,该弹性支承部将血管导引至夹头的缺口内,并且同时封闭住缺口,以含住脉动的血管,使血管不致于因微幅脉动感而导致无法达到应有的止血效果。如此便能方便操作止血钳对血管进行止血,以增加手术过程的安全性。
1. 一种配合止血钳使用的血管支承结构，该止血钳包含有一夹头，该夹头具有一缺口，该血管支承结构包含有：

该本体，具有可弯曲变形的至少一支承部，该支承部可相对该止血钳的夹头而在一第一位置与一第二位置之间移动，当该本体的支承部位于该第一位置时，该缺口呈开放状，当该本体的支承部位于该第二位置时将遮挡该夹头的缺口。

2. 如权利要求1所述的配合止血钳使用的血管支承结构，其中该本体具有两个基部，所述两个基部位于该止血钳的两侧，并且分别于其末端形成一个所述支承部，当所述两个支承部位于该第一位置时，所述两个支承部相互分开，当所述两个支承部位于该第二位置时，所述两个支承部相互交错。

3. 如权利要求2所述的配合止血钳使用的血管支承结构，其中该本体的基部及支承部的材质为形状记忆金属。

4. 如权利要求1所述的配合止血钳使用的血管支承结构，其中该本体具有一基部及一拉绳，该基部位于该止血钳的一侧，并且开设出一镂空槽而形成该支承部，该拉绳设于该基部内且以其一端连接该支承部，当该支承部位于该第二位置时，受该拉绳施力而产生弯折。
配合止血钳使用的血管支承结构

技术领域
[0001] 本发明与止血钳 (endoclip) 有关，特别是指一种配合止血钳使用的血管支承结构。

背景技术
[0002] 微创手术是目前在外科手术发展上相当纯熟的技术，主要是在人体切开数个小伤口，再将各种精巧的器械分别经由这些小伤口放入人体内进行手术，进而减少因手术所导致的创伤及出血量，使完成手术的病人能够较快地康复，并且减少在术后恢复期间的疼痛及术后感染的机会。
[0003] 背景技术中，止血钳扮演了相当重要的角色，其使用原理是利用前端的夹头将欲止血的血管夹住，以便进行血管的结扎及止血，但使用时因其为血液的流动而产生扩张及收缩的情况，故使用止血钳时，必须要等待血管稳定以及止血后再将血管位置定准后，才会将止血钳经由穿刺器 (trocar) 伸入人体内进行血管的止血，由此可知，传统的止血钳在使用时很容易受到血管脉动的影响而增加其使用的风险。

发明内容
[0004] （一）要解决的技术问题
[0005] 本发明的主要目的在于提供一种配合止血钳 (endoclip) 使用的血管支承结构，以利帮助血管稳定，以便使用止血钳进行后续血管的止血动作时增加手术过程的安全性。
[0006] （二）技术方案
[0007] 为了达成上述目的，本发明的血管支承结构包含有可弯曲变形的至少一支承部，该支承部可与一第一位置与一第二位置之间相对该止血钳的一夹头动作，当该本体的支承部位于该第一位置时，夹头的一缺口被该缺口所遮挡，当该本体的支承部位于该第二位置时，该缺口可将血管导引至该夹头的缺口内，使血管可稳定定位在该缺口内，如此即可方便使用该止血钳对血管进行下次血管的止血动作，以达到增加手术安全性的目的。
[0008] （三）有益效果
[0009] 通过配合止血钳使用该血管支承结构，可减少使用止血钳时受到血管脉动的影响，从而增加手术过程的安全性。

附图说明
[0010] 图 1 为本发明第一优选实施例的止血钳的平面图。
[0011] 图 2 为图 1 的局部放大图。
[0012] 图 3～5 为本发明第一优选实施例配合止血钳的操作示意图。
[0013] 图 6 为本发明第二优选实施例的局部立体图。
[0014] 图 7 为本发明第二优选实施例配合止血钳的操作示意图。
具体实施方式

[0027] 为使本发明的目的、技术方案和优点更加清楚明白，以下结合具体实施例，并参附图，对本发明进一步详细说明。

[0028] 图 1 为使用本发明第一优选实施例的血管支承结构 20 的止血钳 10。图中所示的止血钳 10 包含有一握把 12、一连接握把 12 的杆身 14，以及一设于杆身 14 末端的夹头 16，其中的夹头 16 具有一缺口 162，用以容置一钛钉 18 及一血管 30，当使用者握住握把 12 进行击发动作时，夹头 16 便会受到驱动而压紧钛钉 18，让钛钉 18 夹住血管 30。

[0029] 图 2 为本发明第一优选实施例的血管支承结构 20，其具有由形状记忆金属所制成的两个基部 22，所述两个基部 22 位于止血钳 10 的杆身 14 的顶、底两侧，并分别以其末端形成一可弯曲变形的两个支承部 24，基部 22 可相对止血钳 10 的杆身 14 产生滑动位移，进而驱动支承部 24 于一第二位置 P2 之间相对止血钳 10 的夹头 16 动作，当所述两个支承部 24 位于第一位置 P1 时，所述两个支承部 24 相互分开而未遮挡住夹头 16 的缺口 162，使夹头 16 的缺口 162 呈现开放状态，当所述两个支承部 24 受基部 22 驱动而位于第二位置 P2 时将会依形状记忆金属的特性恢复原本弯曲的形状而相互交错，进而部分或全部遮挡夹头 16 的缺口 162。如图 3 所示，本实施例为全部遮挡，并且同时将血管 30 导引至夹头 16 的缺口 162 内，进而封闭住缺口 162，使血管 30 被稳定地定位在缺口 162 之内，此时便能操作握把 12 进行击发动作，让夹头 16 透过压紧钛钉 18 而夹住血管 30，如图 4 和图 5 所示。

[0030] 当然，本发明也可只采用单一个支承部，或者是两个以上的支承部，可以视需求而变更设计。

[0031] 图 6 为本发明第二优选实施例的血管支承结构 40，其具有基部 42 及一拉绳 44，基部 42 位于止血钳 10 的杆身 14 的一侧，并且开设出一镂空槽 422 而弯折形成一可弯曲变形的支承部 46，拉绳 44 设于基部 42 内且以其一端连接支承部 46，这样，支承部 46 在第二位置 P2 时会受到拉绳 44 施力而产生弯折，并且在弯折的过程中将血管 30 导引至夹头 16 的缺口 162 内，如图 7 所示，接着即可进行后续血管的止血动作。

[0032] 补充说明的是，前述可弯曲变形的支承部仅为所列举说明的实施例，其它形式的
弹性变形结构，或是由多段连接套管所构成的可弯曲变形结构，均可以应用于本发明。

[0033] 综上所述，本发明的血管支撑结构确实能够有效地帮助血管稳定，可方便医生使用止血钳进行后续的血管止血动作，以增加手术过程的安全性。

[0034] 以上所述的具体实施例，对本发明的目的、技术方案和有益效果进行了进一步详细说明，所应理解的是，以上所述仅为本发明的具体实施例而已，并不用于限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。