07/028248 A1 |0 00 00 O 0

—

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘,AUIA

International Bureau

(43) International Publication Date
15 March 2007 (15.03.2007)

) IO O T 0O O

(10) International Publication Number

WO 2007/028248 Al

(51) International Patent Classification:
GOG6F 17/00 (2006.01) GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/CA2006/001474

(22) International Filing Date:
8 September 2006 (08.09.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/221,752 9 September 2005 (09.09.2005) US

(71) Applicant (for all designated States except US): AVOKIA
INC. [CA/CA]; 36 Toronto Street, Suite 500, Toronto, On-
tario M5C 2C5 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WONG, Frankie
[CA/CA]; 1022 Mountcastle Crescent, Pickering, Ontario
L1V 5H9 (CA). YU, Xiong [CA/CA]; 2 Hollybrook Cres-
cent, North York, Ontario M2J 2H6 (CA). WANG, Elaine
[CA/CA]; 35 Marchview Avenue, Aurora, Ontario L4G
TW5 (CA).

Agents: TISDALL, Grant et al.; Gowling Lafleur Hen-
derson LLP, Suite 1600, 1 First Canadian Place, 100 King
Street West, Toronto, Ontario M5X 1G5 (CA).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR SEQUENCING TRANSACTIONS GLOBALLY IN A DISTRIBUTED DATA-

BASE CLUSTER

1

5
Application Server P - /_A
3 4
¥ ¥ -
Monitor
2 Aeplication Servér Database Server primary
Director { _—/
Controllers
Queue
Application Server YN
N]
plication Serv atabase Server
Queue second
Monitor i
vl N
Director /| Queues Queue
Backup
Controller -
Application Server
Replication Servgr Database Server
6 Monitor >
8 ~1 Director Queucs
9
AN

10

(57) Abstract: A system and method for receiving and tracking a plurality of transactions and distributing the transactions to at
least two replication queues over a network. The system and method comprise a global queue for storing a number of the received
transactions in a first predetermined order. The system and method also comprise a sequencer coupled to the global queue for creating
a copy of each of the transactions for each of said at least two replication queues and for distributing in a second predetermined
order each said copy to each of said at least two replication queues respectively, said copy containing one or more of the received
transactions.

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

METHOD AND APPARATUS FOR SEQUENCING TRANSACTIONS GLOBALLY
IN A DISTRIBUTED DATABASE CLUSTER
This application is a Continuation-In-Part of U.S. Patent Application 11/221,752, filed
September 9, 2005, the contents of which are herein incorporated by reference.
FIELD OF THE INVENTION
[0001] This invention relates generally to the sequencing and processing of

transactions within a cluster of replicated databases.

BACKGROUND OF THE INVENTION

[0002] A database has become the core component of most computer application
software nowadays. Typically application software makes use of a single or multiple
databases as repositories of data (content) required by the application to function properly.
The application’s operational efficiency and availability is greatly dependent on the
performance and availability of these database(s), which can be measured by two metrics: (1)

request response time; and (2) transaction throughput.

[0003] There are several techniques for improving application efficiency based on
these two metrics: (1) Vertical scale up of computer hardware supporting the application —
this is achieved by adding to or replacing existing hardware with faster central processing
units (CPUs), random access memory (RAM), disk adapters / controllers, and network; and
(2) Horizontal scale out (clustering) of computer hardware supporting the application — this
approach refers to connecting additional computing hardware to the existing configuration by
interconnecting them with a fast network. Although both approaches can address the need of
reducing request response time and increase transaction throughput, the scale out approach
can offer higher efficiency at lower costs, thus driving most new implementations into

clustering architecture.

[0004] The clustering of applications can be achieved readily by running the
application software on multiple, interconnected application servers that facilitate the
execution of the application software and provide hardware redundancy for high availability,
with the application software actively processing requests concurrently. However current
database clustering technologies cannot provide the level of availability and redundancy in a
similar active-active configuration. Consequently database servers are primarily configured

as active-standby, meaning that one of the computer systems in the cluster does not process

TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

application request until a failover occurs. Active-standby configuration wastes system

resources, extends the windows of unavailability and increases the chance of data loss.

[0005] To cluster multiple database servers in an active-active configuration, one
technical challenge is to resolve update conflict. An update conflict refers to two or more
database servers updating the same record in the databases that they manage. Since data in
these databases must be consistent among them in order to scale out for performance and
achieve high availability, the conflict must be resolved. Currently there are two different
schemes of conflict resolution: (1) time based resolution; and (2) location based resolution.
However, neither conflict resolution schemes can be enforced without some heuristic
decision to be made by human intervention. It is not possible to determine these heuristic
decision rules unless there is a thorough understanding of the application software business
rules and their implications. Consequently, most clustered database configurations adopt the
active-standby model, and fail to achieve high performance and availability at the same time.
There is a need for providing a database management system that uses an active-active
configuration and substantially reduces the possibility of update conflicts that may occur

when two or more databases attempt to update a record at the same time.

[0006] The systems and methods disclosed herein provide a system for globally
managing transaction requests to one or more database servers and to obviate or mitigate at

least some of the above presented disadvantages.

SUMMARY OF THE INVENTION

[0007] To cluster multiple database servers in an active-active configuration, one
technical challenge is to resolve update conflict. An update conflict refers to two or more
database servers updating the same record in the databases that they manage. Since data in
these databases must be consistent among them in order to scale out for performance and
achieve high availability, the conflict must be resolved. Currently there are two different
schemes of conflict resolution: (1) time based resolution; and (2) location based resolution.
However, neither conflict resolution schemes can be enforced without some heuristic
decision to be made by human intervention. Consequently, most clustered database
configurations adopt the active-standby model, and fail to achieve high performance and
availability at the same time. Contrary to current database configurations there is provided a
system and method for receiving and tracking a plurality of transactions and distributing the
transactions to at least two replication queues over a network. The system and method

2
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

comprise a global queue for storing a number of the received transactions in a first
predetermined order. The system and method also comprise a sequencer coupled to the
global queue for creating a copy of each of the transactions for each of said at least two
replication queues and for distributing in a second predetermined order each said copy to
each of said at least two replication queues respectively, said copy containing one or more of

the received transactions.

[0008] One aspect provided is a system for receiving and tracking a plurality of
transactions and distributing the transactions to at least two replication queues, the system
comprising: a global queue for storing a number of the received transactions in a first
predetermined order; and a sequencer coupled to the global queue for creating a copy of each
of the transactions for each of said at least two replication queues and for distributing in a
second predetermined order each said copy to each of said at least two replication queues

respectively, said copy containing one or more of the received transactions.

[0009] A further aspect provided is a system for receiving a plurality of transactions
from at least one application server, distributing the transactions to at least two replication
queues and applying the transactions to a plurality of databases comprising: a director
coupled to each of said at least one application server for capturing a plurality of database
calls therefrom as the plurality of transactions; and a controller for receiving each of the
plurality of transactions, the controller configured for storing the transactions within a global
queue in a predetermined order, for generating a copy of each said transaction for each of
said at least two replication queues, and for transmitting in the predetermined order each said

copy to each of said at least two replication queues respectively.

[0010] A still further aspect provided is a method for receiving and tracking a
plurality of transactions and distributing the transactions to at least two replication queues,
the method comprising: storing a number of the received transactions in a first predetermined
order in a global queue; creating a copy of each of the transactions for each of said at least
two replication queues; and distributing in a second predetermined order each said copy to
each of said at least two replication queues respectively, said copy containing one or more of

the received transactions.

[0011] A still further aspect provided is a system for receiving and tracking a plurality

of transactions and distributing the transactions to at least two replication queues, the system

TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

comprising: means for storing a number of the received transactions in a first predetermined
order; and means for creating a copy of each of the transactions for each of said at least two
replication queues and for distributing in a second predetermined order each said copy to
each of said at least two replication queues respectively, said copy containing one or more of

the received transactions.

BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Exemplary embodiments of the invention will now be described in

conjunction with the following drawings, by way of example only, in which:

[0013] Figure 1A is a block diagram of a system for sequencing transactions;

[0014] Figure 1B is a block diagram of a transaction replicator of the system of
Figure 1A;

[0015] Figure 1C, 1D and 1E show an example operation of receiving and processing

transactions for the system of Figure 1A,

[0016] Figure 1F shows a further embodiment of the transaction replicator of the
system of Figure 1A,;

[0017] Figure 2 is a block diagram of a director of the system of Figure 1A;
[0018] Figure 3 is a block diagram of a monitor of the system of Figure 1A;
[0019] Figure 4 is an example operation of the transaction replicator of Figure 1B;
[0020] Figure 5 is an example operation of a global transaction queue and a

replication queue of Figure 1B;

[0021] Figure 6 is an example operation of the transaction replicator of Figure 1B for

resolving gating and indoubt transactions; and

[0022] Figure 7 is an example operation of a replication server of Figure 1B.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0023] A method and apparatus for sequencing transactions in a database cluster is
described for use with computer programs or software applications whose functions are
designed primarily to replicate update transactions to one or more databases such that data in
these databases are approximately synchronized for read and write access.

4
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

[0024] Referring to Figure 1A, shown is a system 10 comprising a plurality of
application servers 7 for interacting with one or more database servers 4 and one or more
databases 5 via a transaction replicator 1. It is understood that in two-tier applications, each
of the application 7 instances represents a client computer. For three-tiered applications, each
of the application 7 instances represents an application server that is coupled to one or more
users (not shown). Accordingly, it is recognized that the transaction replicator 1 can receive

transactions from applications 7, application servers 7, or a combination thereof.

[0025] Referring to Figures 1A and 1B, the transaction replicator 1 of the system 10,
receives transaction requests from the application servers 7 and provides sequenced and
replicated transactions using a controller 2 to one or more replication servers 3, which apply
the transactions to the databases 5. By providing sequencing of transactions in two or more
tiered application architectures, the transaction replicator 1 helps to prevent the transaction
requests from interfering with each other and facilitates the integrity of the databases 5. For
example, a transaction refers to a single logical operation from a user application 7 and

typically includes requests to read, insert, update and delete records within a predetermined
database 5.

[0026] Referring again to Figure 1A, the controller 2 can be the central command
center of the transaction replicator 1 that can run for example on the application servers 7, the
database servers 4 or dedicated hardware. The controller 2 may be coupled to a backup
controller 9 that is set up to take over the command when the primary controller 2 fails. The
backup controller 9 is approximately synchronized with the primary controller such that
transaction integrity is preserved. It is recognized that the controller 2 and associated
transaction replicator 1 can also be configured for use as a node in a peer-to-peer network, as
further described below.

[0027] Referring again to Figure 1A, when a backup and a primary controller are
utilized, a replica global transaction queue is utilized. The backup controller 9 takes over
control of transaction replicator 1 upon the failure of the primary controller 2. Preferably, the
primary and backup controllers are installed at different sites and a redundant WAN is

recommended between the two sites.

[0028] As is shown in Figure 1B, the controller 2 receives input transactions 11 from

a user application 7 and provides sequenced transactions 19 via the replication servers 3, the

TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

sequenced transactions 19 are then ready for commitment to the database servers 4. The
controller 2 comprises a resent transaction queue 18 (resent TX queue), an indoubt
transaction queue 17 (indoubt TX queue), a global transaction sequencer 12 (global TX
sequencer), a global TX queue 13 (global TX queue) and at least one global disk queue 14.
The global queue 13 (and other queues if desired) can be configured as searchable a first-in-
first out pipe (FIFO) or as a first-in-any-out (FIAO), as desired. For example, a FIFO queue
13 could be used when the contents of the replication queues 15 are intended for databases 5,
and a FIAO queue 13 could be used when the contents of the replication queues 15 are
intended for consumption by unstructured data processing environments (not shown).
Further, it is recognized that the global disk queue 14 can be configured for an indexed and

randomly accessible data set.

[0029] The transaction replicator 1 maintains the globally sequenced transactions in
two different types of queues: the global TX queue 13 and one or more replication queues 15
equal to that of the database server 4 instances. These queues are created using computer
memory with spill over area on disks such as the global disk queue 14 and one or more
replication disk queues 16. The disk queues serve a number of purposes including: persist
transactions to avoid transaction loss during failure of a component in the cluster; act as a
very large transaction storage (from gigabytes to terabytes) that computer memory cannot
reasonably provide (typically less than 64 gigabytes). Further, the indoubt TX queue 17 is
only used when indoubt transactions are detected after a certain system failures. Transactions
found in this queue have an unknown transaction state and require either human intervention

or pre-programmed resolution methods to resolve.

[0030] For example, in the event of a temporary communication failure resulting in
lost response from the global TX sequencer 12 to a transaction ID request, the application
resends the request which is then placed in the resent TX queue 18. Under this circumstance,
there can be two or more transactions with different Transaction ID in the global TX queue

13 and duplicated transactions are removed subsequently.

[0031] In normal operation, the controller 2 uses the global TX queue 13 to track the
status of each of the input transactions and to send the committed transaction for replication
in sequence. It is recognized that monitoring of the status of the transactions can be done by

the director 8, the controller 2, or combination thereof.

TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

[0032] Referring to Figures 1C, 1D, and 1E, shown is an example operation of the
system 10 for receiving and processing a new transaction. In one embodiment, the new
transaction is placed in the global queue 13 at commit time, e.g. when the transaction ID
(represented by references K, L) is issued, thus denoting to the director 8 (or other database 5
status monitoring entity) that the transaction transmit request is recordable to signify the
application 7 is allowed to commit its transmit request (associated with the new transaction)
to the database 5. Commit time can be defined to include the step of: 1) the transmit request
(associated with the application 7 and the new transaction) are recorded at the director 8; 2)
thus providing for passing of the new transaction (e.g. a SQL statement) to the controller 2 by
the director 8; 3) the controller 2 then issues the transaction ID (e.g. a commit token K,
L)coupled to the new transaction; and 4) the new transaction along with the issued transaction

ID (e.g. K, L) are added to the transaction sequence held in the global queue 13.

[0033] For example, upon receiving a new transaction, the sequencer 12 assigns a
new transaction ID to the received transaction. The transaction ID is a globally unique
sequence number for each transaction within a replication group. In Figure 1C, the sequence
ID for the newly received transaction is “K”. Once the controller 2 receives the transaction,
the transaction and its ID are transferred to the global TX queue 13 if there is space available.
Otherwise, if the global TX queue 13 is above a predetermined threshold and is full, for
example, as shown in Figure 1C, the transaction K and its ID are stored in the global disk
queue 14 (Figure 1D).

[0034] Before accepting any new transactions in the global TX queue, the sequencer
distributes the committed transactions from the global TX queue 13 to a first replication
server 20 and a second (or more) replication server 23 for execution against the databases.

As will be discussed, the transfer of the transactions to the replication servers can be triggered
when at least one of the following two criteria occurs: 1) a predetermined transfer time
interval and 2) a predetermined threshold for the total number of transactions within the
global TX queue 13 is met. However, each replication server 20, 23 has a respective
replication queue 21, 24 and applies the sequenced transactions, obtained from the global

queue 13, at its own rate to the respective database servers 4 over the network.

[0035] For example, when a slower database server 4 is unable to process the
transactions at the rate the transactions are distributed by the controller 2, the transactions in
the corresponding replication queue are spilled over to the replication disk queues. As shown

7
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

in Figures 1C and 1D, transaction F is transferred from the global TX queue 13 to the first
and second replication servers 20, 23. The first replication server 20 has a first replication
queue 21 and a first replication disk queue 22 and the second replication server 23 has a
second replication queue 24 and a second replication disk queue 25. The replication queues
are an ordered repository of update transactions stored in computer memory for executing
transactions on a predetermined database. In this case, since the second replication queue 24
is above a predetermined threshold (full, for example) transaction F is transferred to the
second replication disk queue 25. Referring to Figure 1D and Figure 1E, once space opens
up in the second replication queue 24 as transaction J is applied to its database server, the
unprocessed transaction F in the second replication disk queue 25 is moved to the second
replication queue 24 for execution of the transaction request against the data within its
respective database. In the case where both the replication disk queue and the replication
queues are above a preselected threshold (for example, full), an alert is sent by the sequencer

12 and the database 5 is marked unusable until the queues become empty.

[0036] Referring to Figure 1F, shown is the replication server 20 further configured
for transmission of the transaction contents 300 of the replication queue 21 (and replication
disk queue 22 when used) to two or more database servers 4 that are coupled to respective
databases 5. Accordingly, the replicated transactions 300 queued in the replication queue 21
may also be executed concurrently (i.e. in parallel) through multiple concurrent database
connections 304 to the second or additional databases 5, for facilitating performance
increases in throughput of the replicated transactions 300 against the secondary and/or
tertiary databases 5. It is recognised that the replication server 20 coordinates the emptying
of the replication queue 21 and disk queue 22 using sequential and/or parallel transmission of
the replicated transactions 300 contained therein. The working principle is that when selected
ones of the replicated transactions 300 are updating mutually exclusive records Ri, the
selected replicated transactions 300 have no sequential dependency and can be executed
concurrently using the multiple concurrent database connections 304. The system allows
concurrent execution of transactions on the primary database, as described above. So
naturally these transactions executed concurrently on the primary database can be assured
exclusivity by the respective database engine/servers 4 through locking, and can be executed

concurrently as the replicated transactions 300 on the secondary databases 5 accordingly.

TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

[0037] Further, it is recognised that each of the replicated transactions 300 include
one or more individual statements 302(e.g. SQL statement or database record access requests)
for execution against the respective database 5. For example, each of the statements 302 in a
respective replicated transaction 300 can be used to access different records Ri (e.g. R1 and
R2) for the databases 5. The replication server 20 can be further configured for concurrent
transmission of individual statements 302, from the same or different ones of the replicated
transactions 300, for execution against the same or different databases 5 using the one or
more concurrent database connections 304. For example, the SQL statements 302 in one of
the replicated transactions 300 may be executed concurrently with the SQL statements 302
from another of the replicated transactions 300 in the replication queue 21. The replication
server 20 has knowledge of the contents (one or more individual statements 302)of the
replicated transactions 300 to assist in selection (e.g. accounting for execution order and/or
which record Ri affected) of which transactions 300 to apply in parallel using the multiple
concurrent database connections 304, i.e. have no sequential dependency . This knowledge
can be represented in the transaction IDs associated with the replicated transactions 300

and/or the individual statements 302, for example.

[0038] In view of the above, it is also recognised that the replication server 20 can
coordinate the transmission of the replicated transactions 300 and/or the individual statements

302 from multiple replication queues 21 to two or more databases 5, as desired.

[0039] The core functions of the controller 2 can be summarized as registering one or
more directors 8 and associating them with their respective replication groups; controlling the
replication servers' 3 activities; maintaining the global TX queue 13 that holds all the update
transactions sent from the directors 8; synchronizing the global TX queue 13 with the backup
controller 9(where applicable); managing all replication groups defined; distributing
committed transactions to the replication servers 3; tracking the operational status of each
database server 4 within a replication group; providing system status to a monitor 6; and

recovering from various system failures.

[0040] The registry function of the controller 2 occurs when applications are enabled
on a new application server 7 to access databases 5 in a replication group. Here, the director
8 on the new application server contacts the controller 2 and registers itself to the replication
group. Advantageously, this provides dynamic provisioning of application servers to scale up
system capacity on demand. The registration is performed on the first database call made by

9
TOR_LAW\ 6387113\

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

an application. Subsequently the director 8 communicates with the controller 2 for

transaction and server status tracking.

[0041] The replication server control function allows the controller 2 to start the
replication servers 3 and monitors their state. For example, when an administrator requests to
pause replication to a specific database 5, the controller then instructs the replication server to

stop applying transactions until an administrator or an automated process requests it.

[0042] The replication group management function allows the controller 2 to manage
one or more groups of databases S that require transaction synchronization and data
consistency among them. The number of replication groups that can be managed and
controlled by the controller 2 is dependent upon the processing power of the computer that

the controller is operating on and the sum of the transaction rates of all the replication groups.

Director
[0043] Referring to Figure 2, shown is a block diagram of the director 8 of the system
10 of Figure 1A. The director can be installed on the application server 7 or the client
computer. The director 8 is for initiating a sequence of operations to track the progress of a
transaction. The director 8 comprises a first 27, a second 28, a third 29 and a fourth 30
functional module. According to an embodiment of the system 10, the director 8 wraps
around a vendor supplied JDBC driver. As discussed earlier, the director 8 is typically
installed on the application server 7 in a 3-tier architecture, and on the client computer in a 2-
tier architecture. As a wrapper, the director 8 can act like an ordinary JDBC driver to the
applications 7, for example. Further, the system 10 can also support any of the following
associated with the transaction requests, such as but not limited to:

1. a database access driver/protocol based on SQL for a relational database 5 (ODBC,
OLE/DB, ADO.NET, RDBMS native clients, etc...);

2. messages sent over message queues of the network ;

3. XML (and other structured definition languages) based transactions; and

4. other data access drivers as desired.

[0044] As an example, the first module 27 captures all JDBC calls 26, determines
transaction type and boundary, and analyzes the SQLs in the transaction. Once determined to

be an update transaction, the director 8 initiates a sequence of operations to track the progress

10
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

of the transaction until it ends with a commit or rollback. Both DDL and DML are captured

for replication to other databases in the same replication group.

[0045] The second module 28 collects a plurality of different statistical elements on
transactions and SQL statements for analyzing application execution and performance
characteristics. The statistics can be exported as comma delimited text file for importing into

a spreadsheet.

[0046] In addition to intercepting and analyzing transactions and SQL statements, the
director's third module 29, manages database connections for the applications 7. In the event
that one of the databases 5 should fail, the director 8 reroutes transactions to one or more of
the remaining databases. Whenever feasible, the director 8 also attempts to re-execute the
transactions to minimize in flight transaction loss. Accordingly, the director 8 has the ability
to instruct the controller 2 as to which database 5 is the primary database for satisfying the

request of the respective application 7.

[0047] Depending on a database's workload and the relative power settings of the
database servers 4 in a replication group, the director 8 routes read transactions to the least
busy database server 4 for processing. This also applies when a database server 4 failure has

resulted in transaction redirection.

[0048] Similarly, if the replication of transactions to a database server 4 becomes too
slow for any reason such that the transactions start to build up and spill over to the replication
disk queue 16, the director 8 redirects all the read transactions to the least busy database
server 4. Once the disk queue becomes empty, the director 8 subsequently allows read access
to that database. Accordingly, the fill/usage status of the replication disk queues in the
replication group can be obtained or otherwise received by the director 8 for use in

management of through-put rate of transactions applied to the respective databases 5.

[0049] For example, when the director 8 or replication servers 3 fails to communicate
with the database servers 4, they report the failure to the controller 2 which then may
redistribute transactions or take other appropriate actions to allow continuous operation of the
transaction replicator 1. When one of the database servers 4 cannot be accessed, the
controller 2 instructs the replication server 3 to stop applying transactions to it and relays the
database lock down status to a monitor 6. The transactions start to accumulate within the

queues until the database server 3 is repaired and the administrator or an automated process

11
TOR_LAW\ 6387113\

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

instructs to resume replication via the monitor 6. The monitor 6 may also provide other
predetermined administrative commands (for example: create database alias, update

parameters, changing workload balancing setting).

Monitor

[0050] Referring again to Figure 1A, the monitor 6 allows a user to view and monitor
the status of the controllers 2, the replication servers 3, and the databases 5. Preferably, the
monitor 6 is a web application that is installed on an application or application server 7 and

on the same network as the controllers 2.

[0051] Referring to Figure 3, shown is a diagrammatic view of the system monitor 6
for use with the transaction replicator 1. The system monitor 6 receives input data 32 from
both primary and backup controllers 2, 9 (where applicable), replication servers 3, the
database servers 4 and relevant databases 5 within a replication group. This information is

used to display an overall system status on a display screen 31.

[0052] For example, depending on whether the controller is functioning or a failure
has occurred, the relevant status of the controller 2 is shown. Second, the status of each of
the replication servers 3 within a desired replication group is shown. A detailed description
of the transaction rate, the number of transactions within each replication queue 15, the
number transactions within each replication disk queue 16 is further shown. The monitor 6
further receives data regarding the databases 5 and displays the status of each database 5 and

the number of committed transactions.

[0053] The administrator can analyze the above information and choose to manually
reroute the transactions. For example, when it is seen that there exists many transactions

within the replication disk queue 16 of a particular replication server 3 or that the transaction
rate of a replication server 3 is slow, the administrator may send output data in the form of a
request 33 to distribute the transactions for a specified amount of time to a different database

server within the replication group.

[0054] Referring to Figure 4, shown is a flow diagram overview of the method 100
for initializing and processing transactions according to the invention. The global TX
sequencer 12 also referred to as the sequencer hereafter and as shown in Figure 1B, is the

control logic of the transaction replicator 1.

12

TOR_LAW\ 6387113\

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

[0055] When the controller 2 is started, it initializes itself by reading from
configuration and property files the parameters to be used in the current session 101. The
global TX Queue 13, indoubt TX queue 17 and resent TX queue 18 shown in Figure 1B, are
created and emptied in preparation for use. Before accepting any new transactions, the
sequencer 12 examines the global disk queue 14 to determine if any transactions are left
behind from previous session. For example, if a transaction is found on the global disk queue
14, it implies at least one database in the cluster is out of synchronization with the others and
the database must be applied with these transactions before it can be accessed by
applications. Transactions on the global disk queue 14 are read into the global TX queue 13
in preparation for applying to the database(s) 5. The sequencer 12 then starts additional
servers called replication servers 3 that create and manage the replication queues 15. After
initialization is complete, the sequencer 12 is ready to accept transactions from the

application servers 7.

[0056] The sequencer 12 examines the incoming transaction to determine whether it
is a new transaction or one that has already been recorded in the global TX queue 102. For a
new transaction, the sequencer 12 assigns a Transaction ID 103 and records the transaction
together with this ID in the global TX queue 13. If the new transactions ID is generated as a
result of lost ID 104, the transaction and the ID are stored in the resent TX queue 109 for use
in identifying duplicated transactions. The sequencer 12 checks the usage of the global TX
queue 105 to determine if the maximum number of transactions in memory has already been
exceeded. The sequencer 12 stores the transaction ID in the global TX queue 13 if the
memory is not full 106. Otherwise, the sequencer 12 stores the transaction ID in the global
disk queue 107. The sequencer 12 then returns the ID to the application 108 and the

sequencer 12 is ready to process another request from the application.

[0057] When a request from the application or application server 7, comes in with a
transaction that has already obtained a transaction ID previously and recorded in the global
TX queue 13, the sequencer 12 searches and retrieves the entry from either the global TX
queue 13 or the disk queue 110. If this transaction has been committed to the database 111,
the entry’s transaction status is set to “committed” 112 by the sequencer 12, indicating that
this transaction is ready for applying to the other databases 200. If the transaction has been
rolled back 113, the entry’s transaction status is marked “for deletion” 114 and as will be
described, subsequent processing 200 deletes the entry from the global TX queue. If the

13
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

transaction failed with an indoubt status, the entry’s transaction status is set to “indoubt” 115.
An alert message is sent to indicate that database recovery may be required 116. Database
access is suspended immediately 117 until the indoubt transaction is resolved manually 300

or automatically 400.

[0058] Referring to Figure 5, shown is a flow diagram of the method 200 for
distributing transactions from the global TX queue 13 according to the invention. The global
TX queue 13 is used to maintain the proper sequencing and states of all update transactions at
commit time. To apply the committed transactions to the other databases, the replication
queue 5 is created by the sequencer 12 for each destination database. The sequencer 12
moves committed transactions from the global TX queue to the replication queue based on
the following two criteria: (1) a predetermined transaction queue threshold (Q threshold) and
(2) a predetermined sleep time (transfer interval).

[0059] For a system with sustained workload, the Q Threshold is the sole determining
criteria to move committed transactions to the replication queue 201. For a system with
sporadic activities, both the Q Threshold and transfer interval are used to make the transfer
decision 201, 213. Transactions are transferred in batches to reduce communication overhead.
When one or both criteria are met, the sequencer 12 prepares a batch of transactions to be
moved from the global TX queue 13 to the replication queue 202. If the batch contains
transactions, the sequencer 12 removes all the rolled back transactions from it because they
are not to be applied to the other databases 204. The remaining transactions in the batch are
sent to the replication queue for processing 205. If the batch does not contain any transaction
203, the sequencer 12 searches the global TX queue for any unprocessed transactions (status
is committing) 206. Since transactions are executed in a same order of occurrence,
unprocessed transactions typically occur when a previous transaction has not completed,
therefore delaying the processing of subsequent transactions. A transaction that is being
committed and has not yet returned its completion status is called gating transaction. A
transaction that is being committed and returns a status of unknown is called indoubt
transaction. Both types of transactions will remain in the state of “committing” and block
processing of subsequent committed transactions, resulting in the transaction batch being
empty. The difference between a gating transaction and an indoubt transaction is that gating
transaction is transient, meaning that it will eventually become committed, unless there is a

system failure that causes it to remain in the “gating state” indefinitely. Therefore when the

14
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

sequencer 12 finds unprocessed transactions 207 it must differentiate the two types of
“committing” transactions 208. For a gating transaction, the sequencer 12 sends out an alert
209 and enters the transaction recovery process 300. Otherwise, the sequencer 12 determines
if the transaction is resent from the application 210, 211, and removes the resent transaction
from the global TX queue 211. A resent transaction is a duplicated transaction in the global
TX queue 13 and has not been moved to the replication queue 15. The sequencer 12 then
enters into a sleep because there is no transaction to be processed at the time 214. The sleep
process is executed in its own thread such that it does not stop 200 from being executed at
any time. It is a second entry point into the global queue size check at 201. When the sleep
time is up, the sequencer 12 creates the transaction batch 202 for transfer to the replication
queue 203, 204, 205.

[0060] Referring to Figure 6, shown is a flow diagram illustrating the method 300 for
providing manual recovery of transactions 116 as shown in Figure 100. There are two
scenarios under which the sequencer 12 is unable to resolve gating transactions and indoubt
transactions caused by certain types of failure and manual recovery may be needed. First, a
gating transaction remains in the global TX queue 13 for an extended period of time, stopping
all subsequent committed transactions from being applied to the other databases. Second, a
transaction status is unknown after some system component failure. The sequencer 12 first
identifies the transactions causing need resolution 301 and send out an alert 302. Then the
transaction can be manually analyzed to determine whether the transaction has been
committed or rolled back in the database 304 and whether any manual action needs to be
taken. If the transaction is found to have been rolled back in the database, the transaction
entry is deleted manually from the global TX queue 305. If the transaction has been
committed to the database, it is manually marked “committed” 306. In both cases the
replication process can resume without having to recover the database 500. If the transaction
is flagged as indoubt in the database, it must be forced to commit or roll back at the database
before performing 304, 305 and 306.

[0061] Referring again to Figure 6, the process 400 is entered when an indoubt
transaction is detected 115 and automatic failover and recovery of a failed database is
performed. Unlike gating transactions that may get resolved in the next moment, an indoubt
transaction is permanent until the transaction is rolled back or committed by hand or by some

heuristic rules supported by the database. If the resolution is done with heuristic rules, the

15
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

indoubt transaction will have been resolved as “committed” or “rolled back” and will not
require database failover or recovery. Consequently the process 400 is only entered when an
indoubt transaction cannot be heuristically resolved and an immediate database failover is
desirable. Under the automatic recovery process, the database is marked as “needing
recovery” 401, with an alert sent out 402 by the sequencer 12. To help prevent further
transaction loss, the sequencer 12 stops the generation of new transaction ID 403 and moves
the indoubt transactions to the indoubt TX queue 404. While the database is marked “needing
recovery” the sequencer 12 replaces it with one of the available databases in the group 405
and enables the transaction ID generation 406 such that normal global TX queue processing
can continue 200. The sequencer 12 then executes a user defined recovery procedure to
recover the failed database 407. For example, if the database recovery fails, the recovery

process is reentered 408, 407.

[0062] Referring to Figure 7, shown is a flow diagram illustrating the processing of
committed transactions by the replication servers 3 and the management of transactions in the
replication queue 15 according to the present invention. Replication queues 15 are managed
by the replication servers 3 started by the sequencer 12. One of the replication servers 3
receives batches of transactions from the sequencer 12. The process 500 is entered if a new
batch of committed transactions arrives or at any time when queued transactions are to be

applied to the databases.

[0063] If the process is entered because of new transactions 501, the batch of
transactions are stored in the replication queue in memory 508, 509, or in replication disk
queue 511 if the memory queue is full. Replication disk queue capacity is determined by the
amount of disk space available. If the disk is above a predetermined threshold or is full for
example 510, an alert is sent 512 by the sequencer 12 and the database is marked unusable

513 because committed transactions cannot be queued up anymore.

[0064] If the process is entered in an attempt to apply transactions in the replication
queue to the databases, the replication server first determines whether there is any
unprocessed transaction in the replication queue in memory 502. If the memory queue is
empty but unprocessed transactions are found in the replication disk queue 503, they are
moved from the disk queue to the memory queue in batches for execution 504, 505. Upon
successful execution of all the transactions in the batch they are removed from the replication
queue by the replication server and another batch of transactions are processed 501. If there

16
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

are transactions in the replication disk queue 16, the processing continues until the disk queue
is empty, at which time the replication server 3 waits for more transactions from the global
TX queue 501. During execution of the transactions in the replication queue 15, error may
occur and the execution must be retried until the maximum number of retries is exceeded
507, then an alert is sent 512 with the database marked unusable 513. However, even though
a database is marked unusable, the system continues to serve the application requests. The
marked database is inaccessible until the error condition is resolved. The replication server 3
stops when it is instructed by the sequencer during the apparatus shutdown process 118, 119

and 120 shown in Figure 4.

[0065] It will be evident to those skilled in the art that the system 10 and its
corresponding components can take many forms, and that such forms are within the scope of
the invention as claimed. For example, the transaction replicators 1 can be configured as a
plurality of transaction replicators 1 in a replicator peer-to-peer (P2P) network, in which each
database server 4 is assigned or otherwise coupled to at least one principal transaction
replicator 1. The distributed nature of the replicator P2P network can increase robustness in
case of failure by replicating data over multiple peers (i.e. transaction replicators 1), and by
enabling peers to find/store the data of the transactions without relying on a centralized index
server. In the latter case, there may be no single point of failure in the system 10 when using
the replicator P2P network. For example, the application or application servers 7 can
communicate with a selected one of the database servers 7, such that the replicator P2P
network of transaction replicators 1 would communicate with one another for load balancing
and/or failure mode purposes. One example would be one application server 7 sending the
transaction request to one of the transaction replicators 1, which would then send the
transaction request to another of the transaction replicators 1 of the replicator P2P network,
which in turn would replicate and then communicate the replicated copies of the transactions

to the respective database servers 4.

[0066] Further, it is recognized that the applications/ application servers 7 could be
configured in an application P2P network such that two or more application computers could
share their resources such as storage hard drives, CD-ROM drives, and printers. Resources
would then accessible from every computer on the application P2P network. Because P2P
computers have their own hard drives that are accessible by all computers, each computer can

act as both a client and a server in the application P2P networks (e.g. both as an application 7

17
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

and as a database 4). P2P networks are typically used for connecting nodes via largely ad hoc
connections. Such P2P networks are useful for many purposes, such as but not limited to
sharing content files, containing audio, video, data or anything in digital format is very
common, and realtime data, such as Telephony traffic, is also passed using P2P technology.
The term "P2P network" can also mean grid computing. A pure P2P file transfer network
does not have the notion of clients or servers, but only equal peer nodes that simultaneously
function as both "clients" and "servers" to the other nodes on the network. This model of
network arrangement differs from the client-server model where communication is usually to
and from a central server or controller. It is recognized that there are three major types of
P2P network, by way of example only, namely:

1) Pure P2P in which peers act as clients and server, there is no central server, and
there is no central router;

2) Hybrid P2P which has a central server that keeps information on peers and
responds to requests for that information, peers are responsible for hosting the information as
the central server does not store files and for letting the central server know what files they
want to share and for downloading its shareable resources to peers that request it, and route
terminals are used as addresses which are referenced by a set of indices to obtain an absolute
address; and

3) Mixed P2P which has both pure and hybrid characteristics.

Accordingly, it is recognized that in the application and replicator P2P networks the
applications/ application servers 7 and the transaction replicators 1 can operate as both clients
and servers, depending upon whether they are the originator or receiver of the transaction
request respectively. Further, it is recognized that both the application and replicator P2P

networks can be used in the system 10 alone or in combination, as desired.

[0067] In view of the above, the spirit and scope of the appended claims should not be

limited to the examples or the description of the preferred versions contained herein.

18
TOR_LAW\ 6387113\l

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

WE CLAIM:
1. A system for receiving and tracking a plurality of transactions and distributing the
transactions to at least two replication queues over a network, the system comprising:

a global queue for storing a number of the received transactions in a first
predetermined order; and

a sequencer coupled to the global queue for creating a copy of each of the transactions
for each of said at least two replication queues and for distributing in a second predetermined
order each said copy to each of said at least two replication queues respectively, said copy

containing one or more of the received transactions.

2. The system according to claim 1, wherein the predetermined orders are selected from the
group comprising: the first predetermined order is the same as the second predetermined

order; and the first predetermined order is different from the second predetermined order.

3. The system according to claim 2 in which the sequencer distributes each said copy at a

predetermined time interval.

4. The system according to claim 2 in which the sequencer distributes each said copy when

the number of the transactions within the global queue exceeds a predetermined value.

5. The system according to claim 2 in which the sequencer distributes each said copy upon
the earlier of:

a predetermined time interval; and

the number of the transactions within the global queue exceeds a

predetermined value.

6. The system according to claim 5 in which each of the transactions comprises an update

transaction and a unique transaction id assigned by the sequencer.

7. The system according to claim 6 further comprising a global disk queue in communication

with the global queue for receiving and storing the transactions when the global queue is
above a global threshold.

19
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

8. The system according to claim 7 wherein each of said at least two replication queues have
a corresponding replication disk queue for receiving and storing the transactions from the

global queue when the corresponding replication queue is above a replication threshold.

9. The system according to claim 8 in which the global queue receives the transactions from
the global disk queue and other than receives the transactions from said at least one

application server when the global disk queue is other than empty.

10. The system according to claim 5 further comprising an indoubt transaction queue in
communication with the sequencer for storing the transactions identified as having unknown

status by a database server during system failures.

11. The system according to claim 6 wherein the update transaction comprises at least one of
a read, insert, update or delete request for at least one database in communication with at least

one of said at least two replication queues.

12. The system according to claim 6 further comprising a resent transaction queue for storing

the transactions when the transactions repeated the request for the transaction id.

13. The system according to claim 2, wherein the global queue is configured for receipt of the
received transactions from a network entity selected from the group comprising: an

application; and an application server.

14. The system according to claim 2, wherein the global queue is a searchable first-in first-

out pipe.

15. The system according to claim 14 further comprising the sequencer configured for
assuring the order of transactions in the global queue remain consistent with their execution

order at a database server coupled to at least one of the replication queues.

16. The system according to claim 14, wherein the global disk queue is configured for storing

an indexed and randomly accessible data set.

20
TOR_LAW\ 6387113\l

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

17. The system according to claim 2, wherein the global queue and sequencer are hosted on a
network entity selected from the group comprising: a central control server and a peer-to-peer

node.

18. A system for receiving a plurality of transactions from at least one application server,
distributing the transactions to at least two replication queues and applying the transactions to
a plurality of databases comprising:

a director coupled to each of said at least one application server for capturing a
plurality of database calls therefrom as the plurality of transactions; and

a controller for receiving each of the plurality of transactions, the controller
configured for storing the transactions within a global queue in a predetermined order, for
generating a copy of each said transaction for each of said at least two replication queues, and
for transmitting in the predetermined order each said copy to each of said at least two

replication queues respectively.

19. The system according to claim 18 further comprising at least two replication servers
including said at least two replication queues wherein each of said at least two replication
servers is coupled to each of the databases; wherein the director routes each of the

transactions to one or more of the databases relative to the workload and transaction
throughput.

20. The system according to claim 19 further comprising a backup controller for receiving the
transactions from said at least one application server upon failure of the controller, the
backup controller including a backup global queue wherein the backup global queue is
substantially synchronized with the controller and the backup global queue is a copy of the
global queue.

21. A method for receiving and tracking a plurality of transactions and distributing the
transactions to at least two replication queues over a network, the method comprising:

storing a number of the received transactions in a first predetermined order in a global
queue;

creating a copy of each of the transactions for each of said at least two replication

queues; and

21
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

distributing in a second predetermined order each said copy to each of said at least
two replication queues respectively, said copy containing one or more of the received

transactions.

22. The method according to claim 21 wherein the step of distributing each said copy occurs

at a predetermined time interval.

23. The method according to claim 21 wherein the step of distributing each said copy occurs
when the number of the transactions within the global queue exceeds a predetermined

number.

24. The method according to claim 21 wherein the step of distributing each said copy occurs
upon the earlier of: a predetermined time interval; and the number of the transactions within

the global queue exceeds a predetermined number.

25. The method according to claim 24, wherein each of the transactions comprises an update

transaction and a unique transaction id assigned by the sequencer.

26. The method according to claim 24 further comprising the step of receiving and storing the
transactions within a global disk queue when the global queue storage capacity reaches a
global threshold.

27. The method according to claim 21 further comprising the steps of:

determining whether the global disk queue is other than empty; and

receiving the transaction from the global disk queue rather than receiving the
transactions from said at least one application server when the global disk queue is other than

empty.

28. The method according to claim 21 further comprising the step of storing the transactions

within an indoubt transaction queue during system failures.

29. The method according to claim 25 wherein the update transaction comprises at least one
of a read, insert, update or delete request for at least one database in communication with at

least one of said at least two replication queues.

22
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

30. The method according to claim 24 further comprising the steps of:

determining when at least one of said at least two replication queues are above a
replication threshold, each of said at least two replication queues having a corresponding
replication disk queue;

storing a number of the transactions within said corresponding replication disk queue
based upon the determination; and

sending an alert to notify when said at least two replication queues and said

corresponding replication disk queue capacity reach a preselected threshold.

31. The method according to claim 30 further comprising the step of : redirecting the
transactions to at least one of said at least two replication queues being below said

preselected threshold, based on receiving the alert.

32. A system for receiving and tracking a plurality of transactions and distributing the
transactions to at least two replication queues over a network, the system comprising:

means for storing a number of the received transactions in a first predetermined order;
and

means for creating a copy of each of the transactions for each of said at least two
replication queues and for distributing in a second predetermined order each said copy to
each of said at least two replication queues respectively, said copy containing one or more of

the received transactions.

33. The system of claim 1 further comprising a replication server configured for using at least
two respective concurrent database connections between the first of said at least two
replication queues and a secondary database for transmission of the copied transaction

contents to the secondary database.

34. The system of claim 1 further comprising a replication server configured for using at least
a first concurrent database connection between the first of said at least two replication queues
and a secondary database and a second concurrent database connection between the first of
said at least two replication queues and a tertiary database for transmission of the respective

copied transaction contents to the secondary and tertiary databases.

23
TOR_LAW\ 6387113\1

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

35. The system of claim 33, wherein the replication server is further configured for selecting
individual statements from at least one of the copied transactions in the first of said at least
two replication queues and configured for using the at least two respective concurrent
database connections between the first of said at least two replication queues and the

secondary database for transmission of the individual statements to the secondary database.

36. The system of claim 34, wherein the replication server is further configured for selecting
individual statements from at least one of the copied transactions in the first of said at least
two replication queues and configured for using the first and second concurrent database
connections for transmission of the respective individual statements to the secondary and

tertiary databases.

24
TOR_LAW\ 6387113\1

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

m

V1 2m31g

01

ATepU009S

10AIOG dseqere(] PpAIg uonesrds

19A10S aseqele(d

—IpAToS uonesrdo

g

JOAIDS aseqeled

< A

IpAIOG uoneonds

4

Iojjonuo)
dnyoeg

J0Y2RI(]

JOJUOIN

19A19G noneorddy

sananQ)

SIo[[ONU0))

\

4

101090

JOJUOIN

JoA0g uoneosyddy

Ioyangg

IOJUOIN

IoA108 nonestddy

1/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

g1 a3y

2/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

af an3yy

(s8]
(=

o) EELHIL |

/| &

[] <

SIOAIAS
aseqejep 03 parjdde
3q 0] suondesuRIL]

A
v alo|d —| 1
¢l
pl—
v a|dlo «— |
o~ 1OAI0S
) uonedrdde
woI]
¢ I9[[01U0))

3/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

A1 3Ly
tC
Sa
[je H 1
d a
I je H
SIOAIOS [1z </
aseqejep 0 parjdde al

0¢
2Q 0] suonoesueld |

I[[01u0))

4/11

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

-B) @
/1

i \
S
o
«—
.
|
@
Ty
.ED
=
=
~ \
ST (?l
& \‘DDI?DI:IDDDD | T
| \
. &

302__

5/11

PCT/CA2006/001474

WO 2007/028248 PCT/CA2006/001474

Figure 2

130

8
- 28
/'/

Y

Module 2
Module 4

26

11

Module 1

29 —+—1T1T— Module3

27

6/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

€ 2an31y
(e H
[y
[Fomy] Canig)

e ¥18 IO G
BETLTET © woawany pewirrs @Y ¥ V0RUSH el

B) o0y (0w e . iUy} REYLIT: Sey) :
W) RIS B YNUE ARG B eyday
(o) s
ETTHT s samars payuun @y 2 RS m anang;

a0 DpaoR (EEcin - L1aRuy) DBSfNY 7T iRy AL ;

WIS ANy W) SIS RIS BTy :
w‘&}; m%iu:ﬁﬁ#/m“:ﬁvﬁﬁ“gﬂﬂ

Taeim (debwr LT AR ¢
HLILT LA IPSUEM FAZALMI 0 v e
AT iy gD QUG ARUBi
IR N NG v O e NP Ul uopr- ke
“
N
.‘ BT Y LS RITRR 4
U2210g

»

J0SS330.1{ S[NPOIN

10JIUOIN

9

7/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

p 2anB14

gnopul
se XL e
Sk

Q1 X1 wmsy
804
r
m::ahw Wo.__..nuw_ o Pepwwio) ol enend »sIg eneny
. snyeys X 1 ayepdn [eqoro W X1 81015 1eqolo U X1 8l01s
J0) X1 ren 901
1413

dn uesn
611

umop
nus
8Ll

enen
pussey w x| 8101S
601

ansng [eqon
u X1 epeso
]33

10 X1 MON

X1 uesay
oL

Qi X1 sjelsusy
€0l

8/11

PCT/CA2006/001474

PCT/CA2006/001474

WO 2007/028248

S 21n31yg

ananp eqo
woy X1 aroway
r4%4

enend |doy
O} yojeq X1 pueg
S02

deeis
vig

A

X1 ed
PojIoy aaowey

02

uesal)|
Le

smes
wasal x4 AIaa
oie

¢Buned x1 s)

X1 pessedsoidun
1S 9100
02

&
0 < ez yoeg
€02

@)

< QU YBM

yoreg X1 ayes.0
e02

9/11

PCT/CA2006/001474

WO 2007/028248

9 3an31y

Alenooa) eseqereq
parewoiny
Loy

uoneseueh
al X1 siqeus

Janoafe |
aseqeieq Srenu)
SOt

pepIWIOD
X1New

ki

anend
X1 ignopuj 0
Bumoroy X L pue
X1ignopu| sAon

Asancos)
Bupesu gayieN
ob

©

LPERIUIWO] X,
+0e

enenp uogeoydey
woy X1 81918q
506

smess X | ezAjeuy
€08

Uefe pues
20e

i

uonniosas Buipsau
X1 8a%en
10e

©

10/11

L 3am31g

PCT/CA2006/001474 ©06/001474

¢ Paposoxa
Ang) xen
20§

X1 eyoex3
S0S

A

L

eneny) uogeodey
0} anand
¥aQ vonemdoy
Woyj yoreq X L
Papuruo)) eroW

enany) uoneddey
WOy} X | 8A0WeY
¥18

WO 2007/028248

eigesnun
oseqeiep yew
€18
uefe pueg
cis
r
snenp
%510 uoeadey
u ogeq X | 8018
1S
anenp) voiewdey

wpIeq x| 21018

=
W
|

11/11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2006/001474

A. CLASSIFICATION OF SUBJECT MATTER

IPC: GOG6F 17/00 (2006.01) , GO6F 17/30 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GOGF 17/00 (2006.01) , GOGF 17/30 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the f{ields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
USPTO, Delphion, Canadian Patent Database, Abstracts of Japan, Esp@cenet using keywords: receiving, tracking, distributing, transactions,

replication, quene

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 20030212738 (Wookey et al.) 13 November 2003 (13-11-2003) 1-36

{abstract, paragraph{0043]-[0331])

A US 20020133491 (Sim et al.) 19 September 2002 (19-09-2002)

(see whole document)

A US 20010032282 (Marietta et al.} 18 October 2001 (18-10-2001)

(abstract, paragraph[0011]-[0028])

1-36

1-36

[1 Further documents are listed in the continuation of Box C.

[X] See patent fami1y> annex.

* Special categories of cited documents :

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“r” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other means

“p? document published prior to the international filing date but later than
the priority date claimed

wn

wyn

wy»

“gn

later document published after the international filing date or priority
date and not in conflict with the athqatlon but cited to understand
the principle or theary underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

19 December 2006 (19-12-2006)

Date of mailing of the international search report

22 December 2006 (22-12-2006)

Name and mailing address of the [SA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001(819)953-2476

Authorized officer

Saadia Saifuddin 819-934-2671

Form PCT/ISA/210 (second sheet) (April 2005)

Page 2 of 3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CA2006/001474

Patent Document Publication Patent Family Publication

Cited in Search Report ~ Date Member(s) Date

US2003212738 13-11-2003 NONE

US2002133491 19-09-2002 AT296514T T 15-06-2005
AU1465902 A 06-05-2002
AU2444802 A 06-05-2002
AU3643502 A 21-05-2002
CN1481635 A 10-03-2004
CN1481636 A 10-03-2004
DE60111072D D1 30-06-2005
DE60111072T T2 26-01-2006
EP1330907 A2 30-07-2003
EP1364510 A2 26-11-2003
EP1368948 A2 10-12-2003
HK1054826 Al 06-01-2006
US6857012 B2 15-02-2005
US6970939 B2 29-11-2005
US7047287 B2 16-05-2006
US7058014 B2 06-06-2006
US7076553 B2 11-07-2006
US2002083118 A1 27-06-2002
US2002083187 A1 27-06-2002
US2003031176 A1 13-02-2003
US2005198238 A1 08-09-2005
WO0235359 A2 02-05-2002
WO00235799 A2 02-05-2002
WO00239323 A2 16-05-2002

US2001032282 US6678773 B2 13-01-2004
US6754752 B2 22-06-2004
US6862283 B2 01-03-2005
US7031258 Bl 18-04-2006
US7106742 B1 12-09-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

Page 3 of 3

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

