99342 A2 | IV VA0 00 A0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

27 October 2005 (27.10.2005)

(10) International Publication Number

WO 2005/099342 A2

(51) International Patent Classification:

(21) International Application Number:

Not classified

PCT/IB2005/002335

(22) International Filing Date:

18 April 2005 (18.04.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/562,982 19 April 2004 (19.04.2004) US
60/562,983 19 April 2004 (19.04.2004) US
60/564,579 23 April 2004 (23.04.2004) US
(71) Applicant (for all designated States except US): SE-

CUREWAVE S.A. [LU/LUJ; 26, Place de 1a Gare, L-1616

Luxembourg (LU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): USOV, Viacheslav
[RU/LLU]J; 18A, rue de la Chapelle, 1.-8017 Strassen (L.U).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(84)

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ,TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: A GENERIC FRAMEWORK FOR RUNTIME INTERCEPTION AND EXECUTION CONTROL OF INTERPRETED

LANGUAGES

& (57) Abstract: A system and method for controlling execution of an interpreted language. Statements of the interpreted language to
1) beexecuted by a script engine are intercepted by a protection module and control is passed to a script helper module that is associated
& with the script engine. The script helper module establishes a secure communications channel with an authorization component and
& passes the statements and an authorization request to the authorization component. The authorization component sends a reply to
the script helper module which either permits the script engine to execute the statement or cancels the attempted execution. When
the script engine is loaded, a list is updated identifying the script engine. If a script helper module is not present for the loaded script
engine, a boot-strap loader is called to load the script helper module. A special information block contains data as to the location of

=

the interception points.

10

15

20

25

30

WO 2005/099342 PCT/IB2005/002335

A GENERIC FRAMEWORK FOR RUNTIME INTERCEPTION AND
EXECUTION CONTROL OF INTERPRETED LANGUAGES

CROSS-REFERENCE TO RELATED APPLICA TIONS
This application is related to and claims priority to U.S. Provisional Application, SN
60/562,983, filed April 19, 2004, and titled “A GENERIC FRAMEWORK FOR RUNTIME

"INTERCEPTION AND EXECUTION CONTROL OF INTERPRETED LANGUAGES.”

This application is related to U.S. Provisional Application 60/562,982, filed April 19,
2004, and titled “ONLINE CENTRALIZED AND LOCAL AUTHORIZATION OF
EXECUTABLE FILES.”

This application is related to U.S. Provisional Applicatioﬁ 60/564,579, filed April 23,
2004, titled “TRANSPARENT ENCRYPTION AND ACCESS CONTROL FOR MASS
STORAGE DEVICES.”

FIELD OF THE INVENTION
The present invention relates generally to the execution of interpreted code and more
particularly to a security system that controls whether or not the interpreted code is allowed

to be executed.

DESCRIPTION OF THE RELATED ART

Cryptographic digests, public and symmetric key cryptography, and digital
certificates are used extensively in order to identify executables and secure communication
links between the configuration store and the protection module. A number of algorithms
(SHA-1 for digests and certificates, RSA public key cryptography for certificates and secure
communications, AES for secure communications) are in public domain and are employed by
the system.

A technique for intercepting system services on the MS Windows NT family of
operating systems involves overwriting ("patching') the system service table. The technique
is in public domain.

The prior art also includes ad hoc techniques that intercept a number of known
applications that use an interpreted language. They may not be able to handle interpreted
languages when their target applications undergo a version change, and they are not able to
handle the same interpreted language in all applications. Other systems may use less-secure

interception methods.

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

BRIEF SUMMARY OF THE INVENTION

There are multiple competing systems able to intercept ¢ ertain interpreted languages in
certain applications. None, however, intercepts interpreted languages generically. None is
known to identify code for a white-list procedure.

The present invention provides a generic way to interce-pt script engines, which is the
entity responsible for execution of an interpreted language. A particular script engine is
intercepted in all cases of its invocation, without employing ad hoc techniques based on the
users of the engine. Supported by a white-list system, this techriique ensures that all known
scrip engines are always intercepted, while no unknown script engines are allowed by the
white-list system.

The present invention provides for a system that is easily extensible; all language
specific code logic is contained in the script engine handler module and the IDD.

The cryptographic digests (or other identity algorithms) used by the present invention
let the users (or administrators) configure the system so that kmown-safe interpreted language
code is authorized without interrupting a user's activities, while known-unsafe (and frequently
encountered) code is silently denied. Identity algorithms include text metrics which are a
numerical measure of the similarity between two texts. For example, texts that differ only in
the number of blanks may be defined to be identical, with a distance metric of zero. Texts
that differ in the number of blanks and letter case may be defined to have a distance metric of
1. Other distance definitions are possible, such as the distance being the sum of all dissimilar
words and the number of permutations of all of the similar words. Text metric algorithms are
important for interpreted languages (scripts) because scripts are generated by persons, not
machines, and such differences as the number of blanks and letter case may be insignificant.

An embodiment of the present invention is a method fox controlling execution of an
interpreted language. The method includes the steps of (i) detexmining that statements of the
interpreted language are attempting execution or there is an invocation request to execute said
statements, (ii) intercepting the statements or invocation request and passing control to a
script helper module associated with a script engine that interprets statements of the language,
if the script helper module is present, (iii) establishing a secure communications channel with
an authorization component, (iv) sending the interpreted language code over the channel with
information regarding the origin of the code, (v) receiving a reply from the authorization
component, (vi) passing the original code or invocation request to the script engine, if

execution of the code is permitted, and (vii) canceling the attempting execution of invocation

2

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

request, if execution is not permitted.

Another embodiment of the present invention is a system for controlling execution of
an interpreted language. The system includes an authorizatiom component, one or more script
engine helper modules, a configuration provider, an administrative console, and a protection
module. The authorization component is configured to manage a database list of permanently
authorized or denied identities of language code to be executed and to receive an
authorization request and derive a unique identity value for language code having said
authorization request. The authorization component is furthex configured to compare the
unique identity value with the list and to generate a reply to the authorization request. The
script engine helper modules are configured to establish a cormmunication channel to the
authorization component, to transmit the language code to be executed to the authorization
component, and to make an authorization request. The configuration provider is configured to
store authorization modes in the authorization component. The administrative console is
operative for use in viewing an modifying configuration settings of the authorization
component and the protection module is configured to intercept services provided by an
operating system for executing executable files based on information in an information block.

An object of the invention is to control execution of interpreted code. The protection
system may be configured by system administrators to allow or disallow an interpreted
language, or to function in a "pass-through" mode (see below), for all interpreted languages
(known to the system) or on a per language basis. The invention extends the security
framework of contemporary computer operating systems and. relies on the operating system
to provide system services to load and/or execute standalone executable modules. The
invention interacts with the operating system's vendor-supplied or third-party modules that
enable applications to use interpreted languages.

When in the "pass-through" mode, the decision to execute a particular interpreted
program (script or macro) is delegated to user, and, optionally, is recorded and then
automatically applied to the same program in subsequent invocations.

The privileged protection module ensures that a script engine is always handled by a
script engine helper module. |

The use of cryptographic digests and text metric algorithms enables the users and
administrators to identify safe and unsafe interpreted language code and handle it
accordingly, without disturbing the user. This also allows a purely white-list list procedure,

where only known-safe code is allowed and everything else is denied.

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will become
better understood with regard to the following description, appended claims, arad
accompanying drawings where:

FIG. 1A is a system diagram of the present invention;

FIG. 1B is a diagram of a typical computer system; and

FIGs. 2A-2E are flow charts showing a method in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION OF THE INVENTION

. Referring to the system diagram of FIG. 1A, five standalone software c omponents are
included in the system 10: a configuration provider 20, an administrative console 22, a
protection module 24, one or more script engine helper modules 26, and an authorization
module 28. A white-list system 30 may optionally be present. The software cormponents
execute on an exemplary computer system, shown in FIG. 1B, that includes a processor 12, a
memory 14, a mass storage subsystem 16, 19, a network subsystem 15, and user-oriented I/O
18, interconnected by a bus 17. The memory 14 and/or mass storage system 16, 19 store the
instructions of the software components used for execution by the processor 12.

The configuration provider 20 is a means for storing the mode of the authorization
module for users and security groups. The configuration provider may be provided by an
operating system or by a standalone system.

The administrative console 22 is a set of instruments that the system ad-ministrators
use to view and modify the configuration settings of the authorization module 2.8. If an IDD
is allowed to be modified online, the administrative console 22 provides certainn means for
carrying that out.

The protection module 30 is a highly privileged module installed at the computers
being protected. This module 30 intercepts the services that the operating system provides to
load and execute executable files. When a service is intercepted, the module 30 matches the
module against a set of IDDs, and if a match is found, intercepts it. The protection module
may be, in fact, a task within the white-list system's protection module 30. The protection
module interacts with a memory block, the IDDs 42, and a list 44 of loaded script engines. The
memory block includes a information block 46 and a bootstrap loader 48.

Each script engine helper module 26 possesses intimate knowledge of the script
engine it handles and interacts with the authorization module to determine whether code is

authorized to be executed.

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

The authorization module 28 interacts with a database list of permanently authhorized
or denied identities 32 of language code to be executed. It receives an authorization request
34 and derives a unique identity value for language code associated with the authorization
request. The authorization component compares the unique identity value with the list and
generates a reply 36 to the authorization request.

There are four major tasks to be performed in a process in accordance with an.
embodiment of the present invention. The first major task, performed by the protection
module, is the identification of a script engine and the injection of interception code and data
into the process loading the script engine. This is illustrated in FIGs. 2A and 2B. For the
Windows NT family of operating system, this involves intercepting two different system
services, create section and map section.

The second major task, which is performed by the injected trampolines and the
bootstrap loader, is the interception of the script engine interface and the loading of thae script
helper during the first intercepted call. This is illustrated in FIG. 2C. In this task, a bo otstrap
sequence is commenced, a script helper is loaded and then called.

In the third major task, shown in FIG. 2D, the language specific (or script engine-
specific) interception occurs.

The fourth major task, illustrated in FIGs. 2D and 2E and performed by the
authorization module, is the checking and authorization of intercepted scripts.

Referring to FIG. 2A, the intercept of script engines is described in more detail. To
intercept a script engine, it must be identifiable and known to the protection system. Script
engines may be identified by their file names, filesystem or network location, or their
cryptographic digests, via the script engine registration information (if supported by the
operating system). There are also certain descriptive data associated with each script engine.
Thus, each script engine is associated with certain Identification and Description Data (IDD).
In step 100, the IDD for a script engine is obtained and the list of IDDs is loaded, in step 102.
The IDD may be hardcoded or changeable. For each script engine, the IDD contains a
location or image of a script engine helper module and a list of export routines that must be
intercepted. When an attempt to load'a module (create a section object for the Windo~wvs NT
family of operation systems) takes place in step 104, the relevant system services are
intercepted in step 106, by the privileged protection module, which then calls, in step 108, the
original service and matches, in step 110, the module being loaded against the IDD.Ifa
match is found, as determined in step 112, a pointer to the module and a pointer to its IDD

are added, in step 114, to a list of loaded script engines. If there is no match found in step

5

10

15

20

30

WO 2005/099342 PCT/1B2005/002335

112, the module being loaded is not a known script engine. In this case, the protection
module simply returns control.

Referring to FIG. 2B, when an attempt to execute a previously loaded module (map a
section object for the Windows NT family of operating systems) takes place as determined in
step 120, the relevant system service is intercepted, in step 122, by the privileged protection
module, which then calls, in step 124, the original service, and matches, in step 126, the
module being executed against the list of loaded script engines. If a match is found as
determined in step 128, a block of memor;f is allocated, in step 130, in the process executing
the script engine, a boot-strap loader and information block is generated., in step 132, in the
allocated block, the in-memory runnable (mapped) image of the script engine is traversed and
the export routines described in the IDD are located, in step 134. The emtry point addresses of
the export routines are then stored, in step 136, in the trampolines as addresses of the
intercepted routines and the original export entry point addresses are then overwritten, in step
138, to point to the entry points of the trampolines. This ensures that, whenever an
intercepted export routine is called, control is diverted to an associated trampoline. The
information block that was generated contains an array of trampoline structures, one for each
export routine in the IDD of the script engine, and an array of the names of these export
routines. Each trampoline structure includes five fields, (i) a “thunk” code, which calls a
“hook” routine, passing itself as an additional parameter, (ii) an address field for pointing to
the “original” (intercepted) routine, (iii) an address field for pointing to the “hook”
(intercepting routine), (iv) an integer “tag” field, and (v) an address field for pointing to the
boot-strap information block. The pointer to the “hook™ initially points €o the bootstrap code
and then to the corresponding routine in the script helper. Each trampoline also contains a
short sequence of executable code (see below).

Referring to FIG. 2C, when the script engine is invoked, in step 150, through an
intercepted export routine, the trampoline receives control, in step 152. "The trampoline code
retrieves the address of the trampoline and then transfers control at the address of the
intercepting routine, passing the address of the trampoline as a parameter (the parameters that
may have been specified by the caller of the export routine are preserved as well). Initially,
all the trampolines have the address of the boot-strap loader as the address of the intercepting
routine, thus the boot-strap loader receives control, in step 156. The boot-strap loader
retrieves the address of the information block, in step 158, and performs an atomic compare-
exchange on a semaphore variable stored in the block. If the semaphore signals that the boot-

strap loader has executed successfully, as determined in step 158, the loader simply transfers

6

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

control, in step 162, to the intercepting routine of the trampoline (the address of which is
passed as a parameter). If the semaphore signals that the boot-strap loader is executing (in
another thread), as determined in step 158, it performs a (busy) wait on the semaphore, in
step 160, until the semaphore signals a successful load, as determined in step 158, and
transfers control to the intercepting routine of the trampoline, in step 162. Otherwise, if the
semaphore signals that a load has not been attempted yet, as determined in step 160, it starts
the load sequence.

Continuing with FIG. 2C, the load sequence proceeds as follows. The script engine
helper module, whose location or image is contained in the bootstrap information block, is
loaded in step 164. For each intercepted export routine, an intercepting routinie in the script
engine helper module is found, in step 166, and its address is stored, in step 168, as the
address of the intercepting routine in the trampoline. The semaphore is set to a “load
successful” state, in step 170, and execution is transferred, in step 162, to the intercepting

routine of the trampoline that was passed as a parameter to the boot-strap loader.

Script engine helper execution

Each script engine helper module possesses intimate knowledge of thie script engine it
handles. Both execute within the same process; thus, the helper module may easily use a host
of well-known "hooking" and "patching" techniques. Typically, the number of the export
routines in the IDD (intercepted before the helper module loads) is small. Thiey are normally
the routines that are executed by the script engine user to initialize the script engine and/or
retrieve a programming interface relating to the functionality of the script en gine. The other
routines that must be intercepted are intercepted by the helper module when the IDD-
intercepted routines execute. This keeps the IDD small and the script engine interception
logic localized in the helper module.

Referring now to FIG. 2D, eventually, a script engine helper module intercepts, in
step 200, an interpreted language code (script or macro) load or invocation request. At this
stage, the helper module has access to the interpreted language code. The helper module
establishes a communication channel, in step 202, with an authorization comyponent, sends
the interpreted language code over the channel, in step 204, together with information on the
origin of the code (the application that has loaded the code, the filesystem or network location
the code has been loaded from, etc.) and awaits a reply, in step 206, from the authorization
component. The reply either allows or denies the execution of the code. If thae code is

allowed, as determined in step 208, the script engine helper module passes the original load

7

10

15

20

WO 2005/099342 PCT/1B2005/002335

or invocation request, in step210, to the script engine, or otherwise cancels the request, in

step 212, in an appropriate way.

Authorization module

Referring to FIG.2E, the authorization module may be a system of interacting
modules. In the simplest case, it is a user-mode application execuating in the context of the
same user. If the authorization module is in the allow-all or deny-all mode for the user, the
request is responded to accordingly. When interpreted code is received as a part of an
authorization request in step 250, the code may be used to derive , in step 252, a cryptographic
digest, or some other identity value (e.g., by algorithms that measure textual proximity). This
identity value is compared, in step 254, with the list of permanently authorized or denied
identities, which is stored persistently by the authorization module. If a match is found (or the
code is evaluated as similar by text-metric algorithms), as determuined in step 256, and if a
preset reply is found, as determined in step 258, the preset reply is retrieved from the
persistent data, in step 260. If no preset reply is found, as determined in step 258, and the
authorization module is not in the ask-user mode, a negative reply is sent, in step 262.
Otherwise, the code and the information on the code are shown to the user, in step 264, which
is the pass-through mode. The user determines whether the code s do be allowed or denied,
in step 266. The user may also specify that the reply be associated persistently with the
identity of the code (whereupon the identity and the reply are stoxed permanently).

Although the present invention has been described in considerable detail with
reference to certain preferred versions thereof, other versions are possible. Therefore, the
spirit and scope of the appended claims should not be limited to the description of the

preferred versions contained herein.

10

15

20

25

30

WO 2005/099342 PCT/IB2005/002335

CLAIMS

‘What is claimed is:

1. A method for controlling execution of an interpreted language, the method comprising:

determining that statements of the interpreted language are attempting execution or
there is an invocation request to execute said statements;

intercepting the statements or invocation request and passing control to a script helper
module associated with a script engine that interprets statements of” the language, if the script
helper module is present;

establishing a secure communications channel with an authorization component;

sending the interpreted language code over the channel with information regarding the
origin of the code;

receiving a reply from the authorization component;

passing the original code or invocation request to the script engine, if execution of the
code is permitted; and |

canceling the attempting execution of invocation request, if” execution is not

permitted.

2. A method for controlling execution as recited in claim 1, further comprising:
passing control to a boot-strap loader, if the script helper module is not present;
retrieving the address of an information block (IDD) associated with the script engine,
wherein the information block identifies the script helper module associated with the script
engine; and

loading the script helper module identified in the information block.

3. A method for controlling execution as recited in claim 2, wherein the information block

(IDD) identifies a list of routines that must be intercepted.

4. A method for controlling execution as recited in claim 2, further comprising, prior to
passing control to the boot-strap loader, passing control to a trampoline structure that invokes
the boot-strap loader, wherein the trampoline structure includes the address of a boot-strap
block and a short sequence of code, wherein paséing control to the trampoline structure

includes executing the short sequence of code in the trampoline structure.

10

15

20

25

30

WO 2005/099342 PCT/1B2005/002335

5. A method for controlling execution as recited in claim 1, furthex comprising, prior to step
of determining that statements of the interpreted language are attexmpting execution or there is
an invocation request to execute said statements, loading a script engine that interprets

statements of the interpreted language.

6. A method for controlling execution as recited in claim 5, wherein the step of loading a
script engine includes:

obtaining an IDD for the script engine that interprets statexrment of the interpreted
language; and

obtaining a list of export routines that must be intercepted and the location of the
script helper module from the IDD; and

adding a pointer to the script engine and its IDD to a list of loaded script engines.

7. A method for controlling execution as recited in claim 1, further comprising, prior to the

step of intercepting statements or invocation request, setting up anx intercept structure.

8. A method for controlling execution as recited in claim 7, whererin the step of setting up an
intercept structure includes:

traversing an in-memory runnable image of the script engime to locate the routines
described in the IDD that must be intercepted,

. storing the entry point addresses of the routines that must be intercepted in a

trampoline structure; and

overwriting the original entry point addresses in the script engine to be the entry
points of the trampoline structure, wherein the trampoline structure includes the address of
the intercepted routine, the address of the intercepting routine, the address of a boot-strap

block, an integer tag and a short sequence of code.

9. A method for controlling execution as recited in claim 1, wherein the reply from the
authorization component is either a preset reply if there is match between a set of stored
identities and the intercepted language statements and said preset xeply exists or is a user

reply in response to a query sent to the user.

10. A method for controlling execution as recited in claim 9, wherein the reply is a denial if

there is match, but no preset reply.

10

10

15

WO 2005/099342 PCT/IB2005/002335

11. A system for controlling execution of an interpreted language, the system comprising:

an authorization component for managing a database of permanently authorized or
denied identities of language code to be executed, for receivimg an authorization request and
for deriving a unique identity value for language code having said authorization request, the
authorization component configured to compare the unique identity value with the list and to
generate a reply to the authorization request, and further configured to obtain an authorization
reply from a user;

one or more script engine helper modules for establishing a communication channel to
the authorization component, for transmitting the language code to be executed to the
authorization component and making an authorization request;

a configuration provider for storing authorization mo des in the authorization
component;

an administrative console for use in viewing an modi fying configuration settings of
the authorization component; and

a protection module for intercepting services provide d by an operating system for

executing executable files based on information in an information block.

11

PCT/IB2005/002335

WO 2005/099342

1/7

8|osuU09 . Jepinoid
< —\ : w _ H_ —~ .| eNjessiuwpe < uojeinbiuod sqal
L
@ \ —Ajdau _ Za
= jpuueyo A
uonEdUNWWOD s|npou
Geonbar——> uonezuoymne ™ 3T
<
e | sennuspi o sy
i b
ojnpow ._mm_mr_) . ’
—> v/ ouIBuo 1dLios peo| Japeo)] deljsjooq
Qu@\.\ Y
loauoo ssed _QEOH ssed
ﬁ\!_ob:oo mmﬁal|||x||F v »ﬁ
[2=
seubus aujjodwel) yum
soinies [eulbluo v suibus yduos 1duos aail —0lq UONELLIOLI
pepeoj o sy | | 300]|q uoiy Jul
/ k k
b &\
A ¥oo|q Aloweuw op’
ok
[1eo a|npouw uoposjoid

Wd)SAS ISI-a)UM

A Ggp

1S9

PCT/IB2005/002335

WO 2005/099342

2/7

dl Ol

SI

O/ YIoMmieN

bl

o/nsid

waysAsqns O/l
> poads

MO| pue 4] Josf)

w.\

P

Aows

NdO

WO 2005/099342

3/7

(start)

N

obtain IDD for

script engine

A

PCT/IB2005/002335

—/00

Load the list of IDD (from the configuration provider)

O

yes
v

intercept relevant system services

/OL

call origin

al service

(_./6?

compare module loaded against IDD

/7O

o

No———Mm—————————

Yes

!

add a pair (pointer to module, pointer to matching
IDD) to a list of loaded script engines

/9

SR
FIG. 2A o

WO 2005/099342

PCT/IB2005/002335

4/7

tart

gxecute

previously
loaded

odule?

//210

Yes

[Q2

intercept relevant system service -

v

call original system service @ / 28

v

compare module being executed against the list of /_/Q A

loaded script engine s

“ 2%
Yes)30 information block
v Z contains
allocate a block of mermory » an array of
| e
generate a bootstrap loader and information block in .
the allocated memory block routine in the IDP
of the script engine
] - 1249 “and
traverse the in-memory runnable innage of the script * anarray of names
engine to locate the export routines described in the of these export
IDD routines
A ,/’ 34 trampoline has:
store entry point addresses of export routines in e ‘“thunk” code for
trampolines as addresses of the intercepted routines calling the hook
l P 3 g routine
« pointer to intercepted
original entry point addresses are overwritten to point routine
to the entry points of the trampolines ' |* pointer to
intercepting routine
(the “hook”)

e integer tag

pointer to information
\\9 : block

FIG.

ZB end —

WO 2005/099342

5/7°

(start)A

A

PCT/IB2005/002335

invoke script engine

/50

\ 4

pass control to trampoline code

/53—

execution

Yes
Y

A

pass control td boot-strap loader code

A
retrieve address of information block

Yes

60

No

« P

load script helper module

A

find the intercepting routine in the helper module

store address of routine in trampoline

_[¢%

L

change semaphore to “load successful”

L

e

A

pass control to intercepting routine of the trampoline

A

FIG. 2C

WO 2005/099342 PCT/IB2005/002335
6/7
(start)
N
pass control to the script helper module when 200
interpreted code is executed -
or there is an invocation request
establish a communications channel with an KO
authorization component
v
send the interpreted language code over the channel 20¢
with information regard ing the origin of the code 1
No
206
reply from
authorization
omponent?
Yes
208
code
| llowed?
No
210
Yes
v -
pass the original code or invocation request to the
script engine
=
'/a’

cancel request

end

FIG. 2D

WO 2005/099342 PCT/IB2005/002335
LI

(start)

A T e men e \
receive authorization request * —=50
\ 4 5
derive an identity value 252,
compare id entity value with stored identities —~25Y
as¢
Yes match? - NOW

A
present user with choice ey
to accept or deny |
No Yes ¥
reply with userreply and |_~ 2 & &
reply with preset | —~2¢ store reply persistently
value
\ 2 6 A
reply with denial
A
ord e

FIG. 2E

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

