(22) Date de dépôt/Filing Date: 2002/02/13
(41) Mise à la disp. pub./Open to Public Insp.: 2002/08/15
(45) Date de délivrance/Issue Date: 2005/07/26
(30) Priorité/Priority: 2001/02/15 (1017372) NL

(51) Cl.Int./Int.Cl.: A01J 25/12, A23C 19/06, A23P 1/00
(72) Inventeurs/Inventors:
 VAN DER MEULEN, WIEGER, NL;
 ACREMAN, STEVEN, GB
(73) Propriétaire/Owner:
 TETRA LAVAL HOLDINGS & FINANCE S.A., CH
(74) Agent: GOWLING LAFLER HENDERSON LLP

(54) Titre : ELEMENT STRUCTURAL EN ACIER INOXYDABLE POUR UN ENSEMBLE DE BLOCS-MOULES, METHODE DE FABRICATION DE CET ELEMENT STRUCTURAL ET ENSEMBLE DE BLOCS-MOULES FOURNI AVEC UN ELEMENT STRUCTURAL EN ACIER INOXYDABLE
(54) Title: STAINLESS STEEL STRUCTURAL MEMBER FOR A BLOCKFORMER INSTALLATION, METHOD FOR MANUFACTURING SUCH A STRUCTURAL MEMBER, AND BLOCKFORMER INSTALLATION PROVIDED WITH A STAINLESS STEEL STRUCTURAL MEMBER

(57) Abrégé/Abstract:
Stainless steel structural member for a blockformer installation, which structural member has at least one surface along which in operation curd slides, while at least the at least one surface coming into contact with curd is at least partly a substantially sloping undulating surface, viewed on a microscopic scale, which has been obtained through a micropeening treatment.
ABSTRACT

Stainless steel structural member for a blockformer installation, which structural member has at least one surface along which in operation curd slides, while at least the at least one surface coming into contact with curd is at least partly a substantially sloping undulating surface, viewed on a microscopic scale, which has been obtained through a micropneening treatment.
Title: Stainless steel structural member for a blockformer installation, method for manufacturing such a structural member, and blockformer installation provided with a stainless steel structural member

This invention relates to a stainless steel structural member for a blockformer installation, to a method for manufacturing such a structural member, and to a blockformer installation provided with such a structural member.

A blockformer installation has at least one blockformer tower comprising a drainage column having a substantially closed hollow tubular outer jacket which encloses at least one drainage tube placed at least partly within the outer jacket, which drainage tube is conventionally manufactured from stainless steel. In the part of the drainage tube enclosed by the outer jacket, perforations are provided via which whey originating from a curd column present in the drainage tube can be discharged. Present between the drainage tube and the outer jacket is a substantially annular intermediate space, in which a reduced pressure can be created and via which the whey can be further discharged. In operation, curd particles are supplied at the upper end of the blockformer tower. The curd particles form a curd column in the drainage tube. The curd column rests on a horizontal guillotine blade disposed at the underside of the drainage tube, which guillotine blade is pulled away at regular times. Before the guillotine blade is pulled away, in a lower chamber situated under the drainage column, an elevator platform is moved up to a point just under the guillotine blade. When the guillotine blade has been pulled away, the elevator platform supports the curd column in the drainage tube. The elevator platform is subsequently moved down over a predetermined distance, whereafter the guillotine blade is returned to its initial position again. The guillotine blade thereby cuts off the lower part of the curd column, so that a cheese block is obtained. The cheese block, optionally after being briefly pressed against
the guillotine blade with the aid of the elevator platform, is subsequently discharged for further handling, such as, for instance, pressing, weighing, packaging, cutting into portions, ripening, etc.

It is noted that the drainage tube and the outer jacket can both have, for instance, a rectangular cross section or can both have, for instance, a circular cross section, but that the drainage tube and the outer jacket can also have different cross-sectional shapes.

As appears from the foregoing, the curd column present in the drainage tube moves down through the drainage tube at regular times over a distance equal to the height of the cut-off blocks. During this downward movement of the curd column, the curd particles are progressively compressed and pressed to form a coherent whole under the influence of the curd column's own weight. In the process, whey is separated, which is discharged via the perforations in the wall of the drainage tube.

From the top down, the curd column therefore becomes increasingly denser, more solid and drier.

Blockformers have been designed for continuous cheese block production and normally, intermittently, a new amount of curd particles is each time supplied to keep the drainage tube filled to a sufficient extent.

A problem sometimes occurring is that the blocks obtained exhibit cracks. Investigations have shown that such cracks are the result of the static friction arising between the curd column and the inner surface of the wall of the drainage tube. As a result of the static friction, it is possible that a lower section of a curd column already moves down over some distance, while a superjacent section does not yet move down. What also plays a role here is the difference between the static friction coefficient and the dynamic friction coefficient. As a result of the difference in static and dynamic friction coefficient, the so-called stick-slip effect occurs, as a result of which the curd column moves jerkily relative to the wall. As a consequence, the curd column may crack. Depending on the moment at which such cracking
or fracture occurs in a curd column, the fracture surfaces can or cannot fuse in a later stage to form an integral entity again.

Comparable problems also occur at other points in a blockformer installation where curd parts, or curd blocks or cheese blocks, move relative to a surface of a part of the installation. For instance, when a cheese block is being cut off, the guillotine blade moves along curd surfaces both with its top surface and with its bottom surface. When a cheese block is being discharged from the lower chamber, it is moved along side guides and over the elevator platform, so that problems of friction can occur during those operations as well.

The object of the invention is to provide a solution to the problem outlined, or at least to reduce the problem. To that end, according to the invention, a stainless steel structural member for a blockformer installation, which structural member has at least one surface along which in operation curd slides, is characterized in that at least the at least one surface coming into contact with curd is at least partly a substantially sloping, undulating surface, viewed on a microscopic scale, which has been obtained by a micropeening treatment.

In the following, the invention will be further described with reference to the appended drawing.

Fig. 1 schematically shows an example of a blockformer installation, in which the invention can be applied;

Fig. 2 schematically shows, on an enlarged scale, an example of a ground surface; and

Fig. 3 schematically shows, on an enlarged scale, an example of a surface that has undergone a micropeening treatment.

Fig. 1 schematically shows an example of a blockformer tower structure 1, comprising a vertical column 2 having a closed outer jacket 3 and a drainage tube 4 which is perforated, that is, provided with whey discharge openings in the wall, which drainage tube is placed in the outer
jacket. Present between the drainage tube and the outer jacket is an
annular space 5, in which whey originating from the curd in the drainage
tube can collect in order to be removed via one or more discharge channels
such as indicated, for instance, at 6, or the like. Via an inlet section 7
situated at the top of the column, curd particles can be supplied from a stock
of curd schematically indicated at 8 via a supply line 9 to the column 2 and
more particularly to the drainage tube 4. The stock of curd can be provided,
for instance, by a cheddaring device.

Connected with the column is a vacuum device 10 which, via suitable
vacuum lines, as indicated, by way of example, at 11 and 12, can create a
subatmospheric pressure in the column, both in the interior of the drainage
tube 4 and in the annular space 5, and also in a chamber 13 under a
guillotine blade 14, which is situated at the lower end of the column. The
subatmospheric pressure is used to draw in the curd particles during the
filling of the tower, and also to discharge the whey from the curd particles
and to promote the curd column descending in the drainage tube. Some
known blockformer tower structures are so designed that it is possible to
cause a different pressure to prevail, for instance, in an upper portion of the
column than in a lower portion of the column. Such a blockformer structure
is described, for instance, in U.S. Patent 6,098,528. Also, some known
blockformer structures have a drainage tube which has a non-perforated
portion extending above the outer jacket.

The guillotine blade 14, in the closed position shown, supports the
curd column in the drainage tube. Situated under the guillotine blade, in
the chamber 13, is a platform 16. A cheese block can be formed by moving
the platform with the aid of an elevator device 17 to a point just below the
guillotine blade, and subsequently, with the aid of suitable operating
means, such as, for instance, a cylinder 18, pulling away the guillotine
blade. The curd column then descends onto the platform 16. Thereafter, the
platform is moved down until the desired cheese block height is reached,
and the guillotine blade is returned to the closed position again, as a result of which a cheese block 19 is cut off. Usually, the platform then moves down a bit further, whereafter the cheese block is pushed off the platform with the aid of an ejector 20, which can comprise, for instance, a pusher plate 21 and an operating cylinder 22. Guide plates may be provided to support and guide the block. The cheese block can be pushed, for instance, onto a discharge conveyor 23, and, if desired, can at the same time be packed in a bag of a suitable material, as shown schematically at 24.

The chamber 13, the elevator device 17 and the ejector 20 are situated in or on an underframe 25 of the blockformer tower structure. It is noted that the above description of the operation of a blockformer tower structure is only an outline which is given with a view to a proper understanding of the invention, but should not be construed in a limiting sense.

Of importance, in particular, is that in a blockformer tower structure of the above-described type, at regular intervals, a curd column moves downwards through the drainage tube. This may give rise to cracks in the curd column, for instance as a result of the so-called stick-slip effect. Such cracks may then be present in the eventually obtained cheese blocks as well, which is undesirable.

It has appeared that the cheese blocks produced exhibit relatively more cracks according as the blockformer installation used has a higher production capacity and/or according as the curd particles used are smaller. Reducing the production capacity or the use of exclusively coarser curd particles, however, is not a practical solution to the crack reduction problem.

In experiments, it has appeared that the frictional resistance experienced by the curd column along the inner wall of the drainage tube is an important factor in the formation of cracks in the curd column.

The extent of friction between a curd column and the inner surface of a drainage tube of a blockformer tower is to a large extent determined by
the nature of the inner surface of the drainage tube. Conventional is a
roughness of this surface which has a roughness value Ra of less than
0.8 μm. This is the maximum USDA-prescribed Ra value for the roughness
of a surface that contacts a dairy product. As indicated hereinabove, even at
such a low roughness value, cracking can arise in the curd column and, as a
consequence thereof, in the cheese blocks.

According to the invention, the crack formation described can be
prevented by having the inner surface of the drainage tube undergo a
micropeening treatment (also known as shot peening). Suitable materials
for the micropeening treatment are, for instance, round glass beads or steel
balls. Preferably, stainless steel balls are used. The dimensions of the beads
or balls can be, for instance, between 50 and 5000 μm or more, in particular
between 100 and 1500 μm. The treatment is preferably carried out on a
surface that already has a roughness meeting the relation Ra <0.8 μm.

Although the micropeening treatment leads to an increase of the surface
roughness value according to the current measuring methods, it appears
nonetheless that after a micropeening treatment of the inner surface of a
drainage tube of a blockformer tower, cracking remains largely or even
entirely absent.

Fig. 2 shows an example of a surface 29 of a piece of metal 28 such as
it looks on a microscopic scale after a traditional treatment by, for instance,
grinding, brushing, polishing and the like. Fig. 3 shows the same surface
29', again on a microscopic scale, after a micropeening treatment. Although
after the treatment the Ra value has increased, at the same time the
surface, on a microscopic scale, has become more sloping. The sharp peaks
and cracks present in Fig. 2, for instance at 30 to 33 and 34, 35,
respectively, are gone after the micropeening treatment, having been
replaced by a much more rounded shape with undulating hills 40, 41 and
valleys 42, 43.
In practical tests, good results have been obtained with stainless steel balls of a diameter (in the order) of 0.7 mm.

It is supposed that the favorable effect of a micropeening treatment can be explained in that as a result of the acquired sloping, undulating surface, adhesion between the curd molecules and the stainless steel molecules is reduced.

It is noted that when glass beads are used, the treatment should be done exclusively with new, or at least substantially undamaged, glass beads. Used glass beads are often damaged and then have angular surfaces and sharp edges. With such reused glass beads, the flowing surface contemplated is not obtained or is obtained to an insufficient extent.

An additional advantage of the micropeening treatment described is that as a result of the disappearance of pits, crevices, cracks, and the like, in fact a more hygienic surface is obtained, with fewer possibilities for bacteria to lodge between unevennesses, or for contaminating substances to adhere.

The micropeening treatment is preferably carried out as the last or one of the last operations on a drainage tube, that is, after the tube has been formed and the perforations have been provided.

To determine whether the treatment has been intensive enough, the so-called Almen test or the so-called Cotton test can be used. For the application described, the cotton test seems the most suitable. In this test, a swab of cotton wool is brushed along the treated surface to see if any fluff remains behind. If any fluff remains behind, the surface still has sharp points and/or edges and treatment has been inadequate. The test can be performed on the surface of the drainage tube itself, but typically a test strip of the same material is used. When with the aid of a test strip and the cotton test or any other suitable test the proper parameters for the treatment have been determined (for instance, bead size, bead material, air pressure in the micropeening equipment, duration, etc.), the object itself can then be treated next.
As already noted, the micropeening treatment is also applicable for other parts of a blockformer where curd parts move relative to a machine surface, such as, for instance, the guillotine blade, the elevator platform, guides for the cut-off block, etc. The guillotine blade has two surfaces that slide along curd during cutting. Both surfaces or parts thereof can be subjected to a micropeening treatment to reduce problems of friction. The curd engaging surfaces (or part(s) thereof) of the elevator platform, the guides for the cut-off block and any other parts of the blockformer installation can also have undergone a micropeening treatment.
CLAIMS

1. A stainless steel structural member for a blockformer installation, which structural member has at least one surface along which in operation curd slides, characterized in that at least the at least one surface coming into contact with curd is at least partly a substantially sloping undulating surface, viewed on a microscopic scale, which has been obtained through a micropeening treatment.

2. A stainless steel structural member according to claim 1, characterized in that the micropeening treatment has been carried out with stainless steel balls.

3. A stainless steel structural member according to claim 1, characterized in that the micropeening treatment has been carried out with substantially undamaged round glass beads.

4. A blockformer installation provided with at least one structural member according to any one of claims 1 to 3.

5. A blockformer installation according to claim 4, characterized in that the at least one structural member is a stainless steel drainage tube, in which in operation a curd column is present and of which at least the inner surface or a part thereof has undergone a micropeening treatment.

6. A blockformer installation according to claim 4 or 5, characterized by a guillotine blade of which at least one of the surfaces or a part thereof has undergone a micropeening treatment.

7. A blockformer installation according to any one of claims 4 to 6, characterized by at least one of an elevator platform and one or more guide means, of which at least one surface or a part thereof has undergone a micropeening treatment.

8. A method for manufacturing a stainless steel structural member for use in a blockformer installation, which structural member has at least one
surface along which, in operation, curd moves, characterized in that the at least one surface of the structural member at least partly is finished in a conventional manner to obtain a conventional surface roughness and that said surface at least partly is subsequently subjected to a micropeening treatment.

9. A method according to claim 8, characterized in that for the micropeening treatment, stainless steel balls are used.

10. A method according to claim 8, characterized in that for the micropeening treatment, substantially undamaged round glass beads are used.

11. A method according to claim 9 or 10, characterized in that the balls or beads have substantially a diameter in the range between 50 and 5000 μm.

12. A method according to claim 11, characterized in that the diameter of the balls or beads is substantially between 100 and 1500 μm.

13. A method according to claim 11, characterized in that the balls or beads have a diameter in the order of 700 μm.