A folding container, and a blank for making the container, are disclosed in which the container includes a pair of side walls which overlie flaps attached to a pair of end walls, the walls being held in an erect position by tabs extending from edges of the side walls being received by slits in the flaps. The slits and tabs are located adjacent the open end of the container and, in one embodiment, the slits are larger than the tabs to permit variation in the size of the container open end.

22 Claims, 2 Drawing Figures
FOLDING CONTAINER AND BLANK FOR MAKING SAME

BACKGROUND

This invention relates to an improvement in folding cartons, boxes, trays and other like structures, hereinafter collectively referred to as “folding containers”, made by folding blanks of cardboard, paperboard, or other suitable folding sheet material. More particularly, this invention relates to folding containers having the strength and aesthetically attractive appearance of setup boxes and having an improved locking mechanism which locks the walls in the erected container forming position and which, in one embodiment thereof, enables a telescoping interrelationship between a base and a lid formed from a blank of identical dimensions.

Boxes for wrapping gifts, apparel and other similar items often are used by retail stores to build favorable store images, maintain and gain customers, create extra gift sales and obtain maximum advertising through box use, display and reuse. “Set-up” (or rigid) containers are three dimensional containers that are noncollapsible and delivered to the customer for product loading in a fully erect state. These containers have been set up by the container manufacturer by taping the corners of the containers and covering the containers with paper, cloth or other sheet material. “Folding containers” are supplied to the retail stores in knock-down form or as a blank and which are erected into a container by store personnel. These containers are printed, cut and creased, folded and often glued by the manufacturer and shipped collapsed to the user.

Many people believe that set-up containers are more attractive and stronger than folding containers and they associate set-up containers with quality. Conversely, because of many previous folding container designs and uses, many people associate folding containers with cheap or moderately priced merchandise. To overcome this preference for set-up containers there have been many prior art folding container designs directed at producing containers which have the appearance and strength of set-up containers and which can be erected easily and quickly. The objective of such folding container designs is to obtain the appearance and strength of set-up containers while maintaining the advantages of folding containers, namely space and labor conservation. Folding containers, being not erected until needed, take up less space in the warehouse and at the counter and therefore permit the purchase of a greater number of containers per purchase thereby reducing the number of shipments of containers and the attendant labor costs of moving the containers from the receiving dock to storage and from storage to the counter.

They also offer ease of disposal since they can be easily folded after use into flat form and can be stored or disposed of in other ways.

It is particularly advantageous to have folding containers with uninterrupted sides, that is sides without disfiguring slits or overlapping portions, as this will permit the container to have graphic matter printed thereon or affixed thereto on all sides of the container and will have the appearance of a smooth exterior setup container. It is also necessary that folding containers be strong and lock in an erect position so that there is no tendency for the containers to collapse when pressure is applied on the walls. It is also necessary for the containers to be able to be set up quickly by a clerk who has little time to spend assembling containers and, furthermore, is generally untrained in assembling procedures.

Many known designs of folding containers require gluing of side or end flaps to adjacent walls. One type of such box is well known “Beers” box. Such glued folding containers, however, are unable to be stored and shipped in an absolutely flat condition since in order for the adjacent walls to be glued together, the walls must have some overlap when folded. Such containers also require, in addition to stamping out the blanks, the additional steps of applying the glue, folding the blank and gluing the appropriate sections together. Furthermore, glued containers limit the extent to which the exterior of the containers can be printed upon unless such printing takes place prior to the gluing step. This limits mass manufacturing of such boxes with subsequent small run printing for different customers.

One additional disadvantage to all prior telescoping containers, which are containers in which the container lid or upper portion slips over and at least partially envelopes the container base or lower portion, is that the lid must be larger than the base in order to permit the telescoping relationship. This requires the manufacturer to have separate dies for stamping the lid and bases, and to keep the lids and bases separate during storage and shipping. The customer, such as a retail store, must also store the lids and bases separately and in such a manner that the clerk can have ready access to both the lids and bases in order to form a complete container. If a lid or a base is ruined, the counterpart is wasted since the lids and bases are sold in pairs.

OBJECTIVES

Accordingly, it is one objective of this invention to provide an aesthetically appealing folding container which is easily and quickly assembled and which has the strength of a set-up box.

It is another objective of this invention to provide a telescoping container formed so as to minimize the number of individual pieces needed to form a complete container.

It is another objective of this invention to provide a folding container which can be shipped and stored flat and which is amenable to manufacturing in large quantities, storing such quantities and subsequently printing or otherwise decorating in small quantities for individual customers.

BRIEF DESCRIPTION OF THE INVENTION

This invention, in one form, comprises a folding container having a base and lid with a telescopic relationship so as to form a complete closed container of the type used for gift boxes. The base and lid are identical and include a bottom panel, a pair of side walls attached to opposite edges of the bottom panel and a pair of end walls attached to the remaining opposite edges of the bottom panel. Each of the end walls has a flap foldably attached to its side edges which flap folds at right angles to the end walls and is parallel to and contacts the interior surface of the side walls. A slit is provided near the upper end of each flap. The slit forms an angle, such as 45°, with its fold line and extends upwardly toward the exterior edge thereof.

The upper corners of the side walls are cut at the same angle as the slit and at the same distance from the bottom of the container base so that the diagonal edges
of the side wall are substantially aligned with the slits through the flaps. A lock tab extends outwardly from the diagonal portion of the side walls and is received by its corresponding slit. The length of the slit is slightly longer than the corresponding dimension of its respective tab in order to allow relative movement between the flap, and hence the end wall to which the flap is attached, and the side wall. The relative motion permitted by this arrangement allows the open portion of the container to be contracted or expanded slightly, for example one-eighth of an inch, when pressure is applied on the end walls toward or away from the center of the container.

When two of these members are set up one of them can be telescoped over the other by virtue of the slight dimensional variability of the members thereby permitting the formation of a telescopic container with two identical parts.

The invention also comprises the blank which, when erected, forms the container described above.

BRIEF DESCRIPTION OF THE DRAWING

The above and other objectives and attendant advantages of this invention will become apparent from the detailed description set forth below taken with the accompanying drawing in which:

FIG. 1 is an exploded perspective view of a telescoping container formed in accordance with this invention.

FIG. 2 is a top view of a blank from which each of the base and lid of the container of FIG. 1 is formed.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the drawing there is illustrated a telescoping type folding container 10 formed of a base 12 and lid 14. Both the base 12 and lid 14 are formed from the identical blank 16 illustrated in FIG. 2. The base 12 and lid 14 telescope in such a way that the sides 18, 20 and ends 22, 24 of the lid 14 slip over the upstanding walls of the base 12 to form an enclosed container. The lid 14 may slip over the base 12 either partially or for the full depth of the base.

The blank 16, cut from sheet material such as paperboard, cardboard or other suitable foldable sheet material, hereinafter referred to as boxboard, includes a bottom or base panel 26, opposed side wall panels 28, 30 and opposed end wall panels 32, 34. The terms “side walls” “end walls” and “bottom” are used to simplify the description of the invention and have no relevance with respect to location or size of those particular panels. Terms of orientation used throughout the specifications and claims, such as upwardly, downwardly, inner, outer, top and bottom, also are used to simplify description and understanding of the invention and are not intended as limiting restrictions.

The wall panels 28, 30, 32, 34 are hingedly joined to the edges of the base panel 26 defined by fold lines 36, 38, 40, 42 respectively, the fold lines providing for easy erection of the wall panels along a definite line thus simplifying the assembly procedure. The end wall panel 32 has a pair of flaps 44, 46 joined along fold lines 48, 50 respectively to the side edges thereof. Similarly, end wall panel 34 has a pair of flaps 52, 54 joined along fold lines 56, 58 to the side edges thereof. Each of the flaps 44, 46, 52, 54 are provided with a slit 60 which extends from or near the fold lines (48, 50, 56, 58) outwardly toward the exterior edge 61, 62, 63, 64 of the end wall panel flaps 44, 46, 52, 54 respectively, which exterior edges are colinear with the exterior edges of the end walls to which the flaps are joined. The slits 60 form an angle α with its respective fold lines. While any of several angles are suitable, it has been found that a 45° angle is preferred. It is also preferred that each slit be located near the exterior edge of the flaps in which it is cut for reasons described below.

Since both side wall panels 28, 30 are identical, only one will be described in detail. The side wall panel 28 extending outwardly from the fold line 36, is defined by opposed side edges 70, 72, an exterior end edge 74, and diagonal edges 76, 78 connecting the side edges 70, 72 with the end edge 74 respectively. The side edges 70, 72 are offset inwardly slightly (ex. one-eighth or one-sixteenth inch) from the end edges 40, 42 of the base panel 26. The diagonal edges 76, 78 form an angle with the side edges 70, 72 with which they intersect which is equal to the angle formed by the slits 60 with their respective fold lines. The distance x from the fold line 36 to the beginning of the diagonal edges 76, 78 is equal to the distance y from the fold line 40, 42 to the point of intersection of the slots 60 with their adjacent flap fold lines 46, 48, 56, 58. Preferably the distance x is at least two-thirds the length of the end wall panels 32, 34 measured from their fold lines 40, 42 outwardly away from the base panel 26.

Extending outwardly from each of the diagonal edges 76, 78 is a lock tab 80, 82 preferably in the general shape of a hook as can be seen in FIG. 2. In the preferred form of this invention the length of the slot 60 is slightly greater than the distance w between the ends of the lock tabs 80, 82.

In erecting either the container base 12 or lid 14 from the blank 16, the end wall panels 32, 34 are folded upwardly along their respective fold lines 40, 42 and their flaps 44, 46, 52, 54 are folded inwardly along their respective fold lines 48, 50, 56, 58. The side wall panel 28 is then folded upwardly so that it overlaps the flaps 44, 52 and the side wall panel 30 is folded upwardly along its fold line 38 so that it overlaps the flaps 46, 54. Each of the lock tabs 80, 82 are inserted into the slit 60 with which it is aligned thereby effecting completion of the erection of the container base or lid. In the preferred form of this invention the slots extend slightly beyond the base of the lock tabs 80, 82 on both sides of the lock tabs.

As can be seen in FIG. 1, the diagonal edges 76, 78 are aligned with the slits 60 so that the tabs 80, 82 become completely hidden from the exterior of the erected container. The end walls 22, 24 (FIG. 1) are totally uninterrupted with slots, flaps or the like while the side walls 18, 20 are uninterrupted except for a diagonal line adjacent the upper corners of the sides. Because the slots 60 are longer than the corresponding dimension w of their corresponding lock tabs 80, 82 the flaps are movable relative to their corresponding side walls 18, 20 which permits the end walls 22, 24 to which the flaps are joined to be moved toward or away from the center of the erected container 10. The slots are longer than the width w of the tabs 80, 82 by only a slight amount, for example one-eighth of an inch. This permits each end wall 22, 24 to be moved inwardly toward the center of the container 10 one-sixteenth inch and away from the center one-sixteenth inch thereby varying the effective width at the open end of the container by as much as one-quarter of an inch (each end wall being capable of 3/16 inch variation).
3,913,824

In one form of telescopic container 10, the base 12 and lid 14 are each erected from a blank 16 as described above. Because each is erected from identical blanks the dimensions of the lid 14 and base 12 will be the same; however, because of the permitted movement of the end walls by virtue of the tab/slot relationship the open end of the base 12 can be made slightly smaller or larger thereby permitting the lid 14 to be slipped over the base 12. The open end of the base 12 can be made smaller so that it can fit inside the lid 14 and, furthermore, so that it is smaller than the base panel or top wall of the lid. The open end of the lid 14 can be expanded to accomodate the sides of the base 12 and so that it is larger than the base panel or bottom wall of the base. Because of this dual dimensional variation a complete telescoping relationship can be achieved with a base and lid formed from identical blanks.

It is stated above that the side edges 70, 72 of the side wall panels 28, 30 are offset slightly inwardly from the end edges 40, 42 of the base panel 26. The offset is to avoid the side edges 70, 72 from extending beyond the end wall panels 32, 34 when the end walls are moved inwardly.

One common form of telescoping container 10 is a shape wherein the bottom or base panel 26 is a square as shown in FIGS. 1 and 2. In this form the lid 14 may be slipped over the base 12 with the lid and base side walls aligned and the lid and base end walls aligned or, alternatively, the lid and base may be rotated 90° with respect to one another so that the end walls of the lid are aligned with the side walls of the base. It has been found that a preferred arrangement is to have the 90° rotation as shown in FIG. 1. This arrangement provides a uniformly stronger container since each of the sides of the container will have three layers of box board, namely two layers from the end wall flaps and overlapping side wall panel for either the lid or base and one layer from the end wall panel for the other member (base or lid). It has been found that the lid 14 and base 12 are separated easier with this orientation because there is the ability for dimensional change in two directions since the lid can change in one direction the base is capable of changing in the direction 90° to the direction of change of the lid. This avoids a tight wedging action which might occur if the lid and base were oriented side wall to side wall and end wall to end wall.

While the description above allows for variation in box dimension at the open end of the container, the same design can be used for providing an improved folding container which does not permit dimensional change provided that the slits 60 are substantially the same dimension as the corresponding portion w of the tabs which are fitted within the slits.

A container made in this fashion has all the advantages of the aforesaid embodiment with the exception that it will not change dimension. Furthermore, while the above embodiment is shown in FIGS. 1 and 2 as a container having a square base panel 26, other shape boxes such as elongated rectangles can also be formed of this construction.

SUMMARY

The container 10 is very neat and attractive since the locks are located out of the way in a corner of two sides of the container while the other two sides (or ends) are uninterrupted. Furthermore, the locks are almost undetectable because of the diagonal-slit alignment which hides the tabs. In addition, even if a conventional shallow lid is placed on top of the larger base (such as a 6" x 6" x 6" lid placed on a 6" x 6" x 6" base) the locks become hidden and the resulting container has all the appearances of a rigid set up box. Another advantage to a container of this design is that the container is cut flat in the form indicated in FIG. 2 and no further work need be done on it. As a flat blank it is stored and shipped and maintained in that position until it is ready to be set up for use. If customers want to have the container printed with a pattern or with their name such as can be easily accomplished because the blank is flat in contrast with a pasted container, such as the conventional Beers style, where once the blank is cut and glued, the various thicknesses resulting from the gluing prevent the ability to subsequently print upon the blank. The ability to store the blanks in flat condition also conserves space in contrast with the glued containers which have overlapping surfaces and thereby require greater height per blank.

The further advantage of being able to form both the lid and base of a telescoping container from identical blanks is substantial not only to the manufacturers but also to the user (retail store).

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A blank for forming a folding container comprising:
 a. a base panel having opposed first and second side edges and opposed first and second end edges,
 b. first and second side panels joined along a first end edge thereof to said first and second side edges of said base panel respectively, each of said side panels including first and second side edges extending from said base substantially perpendicular to said base panel side edges for a predetermined distance x, first and second diagonal edges forming an obtuse angle α with said first and second side edges respectively of said side panels and a first exterior edge joining the ends of said first and second diagonal edges, first and second locking tabs extending outwardly from said first and second diagonal edges and adjacent to said first exterior edge,
 c. first and second end panels joined along a fold line to said first and second end edges of said base panel respectively,
 d. a first flap joined along one side edge of said first end panel and a second flap joined along the opposite side edge of said first end panel, a third end panel, a third flap joined along one side edge of said second end panel and fourth flap joined along a second side edge of said second end panel, each of said flaps having a second exterior edge remote from said base panel and having a slit therethrough adjacent to said second exterior edge, a line drawn along each of said slits forms an angle α with the fold line of the respective flap and intersects the fold line at a distance x spaced from the nearest end edge of said base panel, each of said slits being adapted to receive one of said tabs, whereby folding said first and second end panels upwardly along their respective fold lines and said first, second, third and fourth flaps along their respective fold lines and said first and second side panels along their respective fold lines places said first side panel contiguous to said first and third

2.

3.

4.

5.

6.
3,913,824

flaps and said second side panel contiguous to said second and fourth flaps and places the tabs on said first and second side panels in alignment with said slits in said flaps, whereby said tabs are adapted to be received by said slits in a locking relationship, and whereby said diagonal edges are in substantial alignment with said slits and the side edges of said first and second side panels are substantially aligned with the adjacent end panels producing a container simulating a set-up box.

2. A blank as defined in claim 1 wherein each of said flaps have an exterior edge colinear with an exterior edge of the end panel to which each of said flaps is joined.

3. A blank as defined in claim 1 wherein said slit is longer than the corresponding dimension of the tab which each of said slits is adapted to receive in order to permit limited relative motion between the first exterior edge of said side panels and the second exterior edge of the adjacent flaps when said blank is set up to form a container.

4. A blank as defined in claim 2 wherein said slit extends away from the fold line of its respective flap toward the exterior edge of its respective flap.

5. A blank as defined in claim 3 wherein the dimensions of said first and second side edges and said first and second end edges of said base panel are equal.

6. A blank as defined in claim 4 wherein said distance x is at least two-thirds the distance between the exterior edge of said end panel and said base panel.

7. A blank as defined in claim 1 wherein the first and second side edges of the side panels are offset inwardly from the first and second end edges of said base panel respectively.

8. A blank as defined in claim 3 wherein the first and second side edges of the side panels are offset inwardly from the first and second end edges of said base panel respectively.

9. A blank as defined in claim 1 wherein each of said tabs have an edge facing the center of the side panel from which it extends and forming an acute angle with the diagonal edge from which it extends.

10. A folding container comprising a base and a lid fitted over said base to effect closure of said base.

a. said base comprising a bottom wall, a pair of end walls attached to opposed first and second edges of said bottom wall, a pair of flaps attached to opposite side of each of said end walls, each of said flaps having a first exterior edge remote from said bottom wall and a slit adjacent to the first exterior edge, a pair of side walls attached to opposed third and fourth edges of said bottom wall, each of said side walls overlying one flap of each end wall, each side wall being defined by a bottom edge joined to one of said third and fourth edges, two side edges, and an elongated top edge spaced from said bottom edge, at least two lock tabs extending outwardly from said top edge, one of said lid tabs being received by each of said slits in the flaps of the lid effecting interlocking the lid end walls and the side lid walls in an erect position, said end walls and side walls of said lid extending downwardly beyond the slit and top edge of the side walls of said base, and c. wherein each of said slits is longer than the corresponding dimension of the lock tab received thereby to enable said end walls to move relative to said side walls effecting a variation in cross sectional area of the open end of said base and said lid.

11. A folding container as defined in claim 10 wherein the dimensions of the bottom wall of said base and the top wall of said lid are equal.

12. A box board blank for forming a folding container comprising a base panel having opposed side edges and opposed end edges, a first side panel joined along a fold line to one side edge, a second side panel joined along a fold line to a second side edge each of said side panels having a first exterior edge remote from said base panel, a first end panel joined along a fold line to one end edge, a second end panel joined along a fold line to a second end edge, said first and second end panels each having a second exterior edge and a flap joined along a fold line to opposite sides thereof, said flaps each having a third exterior edge colinear with the second exterior edge of its respective end panel and a slit therethrough adjacent to said third exterior edge, a line drawn parallel to and through said slit intersects the fold line joining the flap in which said slit is formed with its respective end panel, with the length of each slit greater than the corresponding dimension of the tab adapted to be received therein, each of said side panels having a locking tab extending from said first exterior edge, each tab being adapted to be received in one of said slits to interlock said end walls and side walls when said blank is erected into a container.

13. A folding container comprising a bottom wall, a pair of end walls attached to opposed first and second edges of said bottom wall, a pair of flaps attached to opposite sides of each of said end walls, each of said flaps having a first exterior edge remote from said bottom wall and a slit adjacent to the first exterior edge, a pair of side walls attached to opposed third and fourth edges of said bottom wall, each of said side walls overlying one flap of each end wall, each side wall being defined by a base edge joined to one of said third and fourth edges, two side edges, and an elongated top edge spaced from said bottom edge, at least two lock tabs extending outwardly from said top edge, one of said side walls including an elongated first portion and first and second diagonal portions, said first diagonal portion connecting one end of said first portion with one of said side edges and said second diagonal portion connecting the other end of said first portion with the other of said side edges, each of said slits being parallel to and aligned with an adjacent diagonal portion, each of said side edges of said side walls being perpendicular to said bottom wall, and at least two lock tabs extending outwardly from said exterior edge, one of said tabs
being received by each of said slits effecting interlocking of said end walls and said side walls in an erect position.

14. A folding container as defined in claim 13 wherein each of said slits is longer than the corresponding dimension of the lock tab received thereby to enable said end walls to move relative to said side walls effecting a variation in cross sectional area of the open end of said container.

15. A folding container as defined in claim 13 wherein each of said slits is longer than the corresponding dimension of the lock tab received thereby to enable said end walls to move relative to said side walls effecting a variation in cross sectional area of the open end of said container.

16. A folding container comprising a base and a lid fitted over said base to effect closure of said base, a said base comprising a bottom wall, a pair of end walls attached to opposed first and second edges of said bottom wall, a pair of flaps attached to opposite sides of each of said end walls, each of said flaps having a first exterior edge remote from said bottom wall and a slit adjacent to the first exterior edge, a pair of side walls attached to opposed third and fourth edges of said bottom wall, each of said side walls overlying one flap of each end wall, each side wall being defined by a bottom edge joined to one of said third and fourth edges, two side edges, and an elongated top edge spaced from said bottom edge including a first portion and first and second diagonal portions, said first diagonal portion connecting one end of said first portion with one of said side edges and said second diagonal portion connecting the other end of said first portion with the other of said side edges, at least two lock tabs extending outwardly from said top edge, at least one of said lock tabs extending outwardly from each of said first and second diagonal portions with said tabs received by each of said slits effecting interlocking of said end walls and said side walls in an erect portion having each of said slits aligned with an adjacent diagonal portion, and

b. said lid comprising a top wall, a pair of end walls attached to opposed first and second edges of said top wall, a pair of side walls attached to opposed third and fourth edges of said top wall, said side walls of the lid extending downwardly beyond said slits and said top edge of the side walls of said base.

17. A folding container as defined in claim 16 wherein each of said slits is longer than the corresponding dimension of the lock tab received thereby to permit said base end walls to move relative to said base side walls effecting a variation in cross sectional area of the open end of said base.

18. A folding container as defined in claim 16 wherein each of said slits is longer than the corresponding dimension of the lock tab received thereby to permit said base end walls to move relative to said base side walls effecting a variation in cross sectional area of the open end of said base.

19. A folding container comprising a base and a lid fitted over said base to effect closure of said base, where said base is comprised of a bottom wall, a pair of end walls attached to opposed first and second edges of said bottom wall, a pair of flaps attached to opposite sides of each of said end walls, each of said flaps having a first exterior edge remote from said bottom wall and a slit adjacent to the first exterior edge, a pair of side walls attached to opposed third and fourth edges of said bottom wall, each of said side walls overlying one flap of each end wall, each side wall being defined by a bottom edge joined to one of said third and fourth edges, two side edges, and an elongated top edge spaced from said bottom edge, at least two lock tabs extending outwardly from said top edge, one of said lid tabs being received by each of said slits in the flaps of the lid effecting interlocking the lid end walls and the lid side walls in an erect position, said end walls and side walls of said lid extending downwardly beyond the slit and top edge of the side walls of said base, the combination including the further limitation where:

a. said top edge of the side walls of said base and said bottom edge of the side walls of said lid each include a first portion and first and second diagonal portions, said first diagonal portion connecting one end of said first portion with one of said side edges and said second diagonal portion connecting the other end of said first portion with the other of said side edges, at least two lock tabs extending outwardly from said top edge, at least one of said lock tabs extending outwardly from each of said first and second diagonal portions with said tabs received by each of said slits effecting interlocking of said end walls and said side walls in an erect portion having each of said slits aligned with an adjacent diagonal portion, and

b. said lid comprising a top wall, a pair of end walls attached to opposed first and second edges of said top wall, a pair of side walls attached to opposed third and fourth edges of said top wall, said side walls of the lid extending downwardly beyond said slits and said top edge of the side walls of said base.

20. A folding container as defined in claim 19 wherein each of said lock tabs has an edge facing the center of the side wall from which it extends and forming an acute angle with the diagonal portion from which it extends.

21. A folding container as defined in claim 19 wherein said lid is fitted over said base so that the side walls of said lid overlie the end walls of said base and wherein the end walls of said lid overlie the side walls of said base.

22. A folding container as defined in claim 19 wherein the bottom wall of said base is a square and wherein the top wall of said lid is a square having the same dimensions as the bottom wall of said base.
UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,913,824 Dated October 21, 1975

Inventor(s) RICHARD E. PAIGE

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Claim 1, column 6, lines 50-51, delete "a third end panel,"

Signed and Sealed this Nineteenth Day of October 1976

[SEAL]

Attest:

RUTH C. MASON
Attesting Officer

C. MARSHALL DANN
Commissioner of Patents and Trademarks