OFFSHORE DRILLING AND PRODUCTION STRUCTURE

Preston E. Chamey, Dallas, Tex., assignor to Sun Oil Company, a corporation of New Jersey
Filed June 30, 1967, Ser. No. 650,528
Int. Cl. E02d 17/00; E21b 15/02
U.S. Cl. 61—46.5

16 Claims

ABSTRACT OF THE DISCLOSURE

For offshore drilling in deep water, a rigidly elongated structure having its lower end secured to the ocean floor is utilized. The upper end of this structure comprises a platform which is located 100–200 feet below the sea water surface. For drilling, the legs or columns of a "jack-up" drilling rig rest on and are supported by this platform. The same platform may later be used as a permanent production platform. It wells must be pumped through the casing by means of an electric generator on the platform for powering downhole electric pumps. Tubular members incorporated into the structure are used as underwater oil storage tanks, and the platform supports marine loading apparatus for transferring the oil stored in the tanks to a tanker.

This invention relates to an offshore structure, particularly suitable for use in deep water drilling and production operations (typically, in water depths of 300 feet to 600 feet), which combines the functions of a drilling platform, a permanent production platform, and underwater oil storage.

Production of oil and gas from offshore locations, in water depths up to 200 feet, is now commonplace in many parts of the world. For offshore oil wells in deeper water, underwater drilling methods have been proposed; however, at present they are very much in the dream stage. All offshore (i.e., underwater) wells completed to date have been drilled with surface drilling equipment, and there is no indication that underwater drilling equipment will be available in the near future. Ocean floor completions, though they have been used, are still generally not the preferred type of completions, even for deeper water.

Three general types of surface drilling equipment (rigs) have been used in the past for offshore drilling operations, to wit, "jack-up" rigs, floating rigs, and drilling platforms. Comparing these types, jack-up rigs are more stable than floating rigs and can be constructed for about one-half the cost. Rigs operating from platforms either with or without a tender ship are comparable in cost to "jack-up" rigs, but the platform cost increases rapidly with water depth.

Also, the use of floating rigs can present a serious problem. One floating rig has been lost, and another barely escaped sinking, because of gas breaking out around the casing at the ocean floor level; the fine gas bubbles rising through the water lowered the effective water density to a value at which the one vessel would no longer float. The other vessel escaped sinking only by cutting loose from the well and leaving the location as quickly as possible; obviously, it is not desirable to leave a well in this manner when it is about to blow out of control. This sinking-rig problem is avoided by the use of jack-up rigs or platforms.

A brief discussion of present practices and procedures in connection with jack-up rigs is now in order. The rotary drilling rig is floated to location, and legs or columns are then lowered to the ocean floor and the rig is jacked-up on these columns, such that all, or a considerable part, of the weight of the drilling equipment is supported on the ocean bottom, so as to stabilize the drilling rig against horizontal and vertical movement during the drilling operation.

Upon discovery of a field, it is common practice to build a permanent production platform, and subsequent directional wells are often drilled from the platform, in a radial pattern, to drain a relatively large reservoir area. These platforms usually comprise a rectangular-like structure composed of hollow tubular sections, which is known as a template. In deeper water, the template may be considerably wider at the bottom than at the top, in order to improve stability. The height of the template is sufficient to reach from the ocean floor to a level thirty or more feet above the surface, to prevent destruction of the floor of the platform in hurricanes. The template is towed to sea, set in position, and then anchored by driving pilings through the vertical hollow members of the truss (hence the name template). After driving the pilings to firm footing, they are cut off flush with the tops of the template tubes, and welded to them.

While structures of the type just described have proved satisfactory in shallow water (say, up to 200 feet), the design problems increase rapidly with water depth. In deep water, the overturning moment produced by hurricane wind and wave forces, acting upon the structure several hundred feet above its point of anchorage on the ocean floor, is tremendous. As an alternative, designs are being considered which involve well completion, oil storage, and perhaps even drilling operations, at the ocean floor level (as previously stated, however, underwater drilling operations are not yet possible). Experience to date indicates that underwater well completions are possible, but are extremely expensive in water depths below the range of free-swimming divers. The capabilities of robot diving machines are so limited that expensive and restrictive compromises must be made in the design of well-head fittings, in order to permit robot assembly and control.

The underwater storage of oil also presents a serious problem, because of the considerable difference in densities of oil and sea water. For example, 500,000 barrels of 31° (API gravity) oil stored under sea water will exert a buoyant force of 2,680,000 pounds, or slightly over 50 pounds per barrel of oil. To overcome this buoyant force, an underwater storage tank must be quite heavy. If made of steel, the thickness of the material which is called for to provide the necessary weight is much greater than that needed to merely provide adequate strength. Hence, the steel is not used efficiently as a structural material, and the cost of tankage is excessive.

Assume that an oil field is to be drilled and produced in 600 feet of water. Present techniques would require that such wells be drilled with a floating drilling rig, since the legs of jack-up rigs of practical dimensions would buckle under the combined wave forces and weight of the rig at water depths much less than 600 feet. However, the relative instability, high cost, and possibility of sinking of floating rigs, and the unsolved problems of ocean floor well completion, render this approach impractical for such great water depths.

While it might not be impossible to construct a piling-template production platform for use in 600 feet of water, the problems involved in such a design increase exponentially with water depth. The structure must not only extend 600 feet into the water, but must also reach 30 feet to perhaps 100 feet above the surface, to protect the platform floor from hurricane waves. Since the area of the base of the structure must increase as the square of the height in order to maintain stability against overturning by wave action, it is apparent that the steel requirement...
and cost of platforms increases very rapidly with water depth. An object of this invention is to provide a stable, non-floating structure for use in drilling boreholes offshore in deep water, on the order of 300 feet to 600 feet or even more.

Another object is to provide a structure which will support and protect permanent production and storage equipment from the wave forces. A further object is to provide an underwater platform structure which makes double use of the steel by incorporating therein oil storage tanks as integral and structural members of the platform.

A still further object is to provide a single offshore structure which combines the functions of a drilling platform and a permanent production platform, and which embodies therein oil storage and tanker loading facilities.

An additional object is to provide a single underwater structure which can serve as a drilling platform and also as a permanent production platform, and which embodies therein oil storage and tanker loading facilities.

The objects of this invention are accomplished, briefly, in the following manner: A rigid upright structure of substantial vertical height rests at its lower end on the ocean floor, and has a platform at its upper end. This structure is so dimensioned that the said platform is located a considerable distance below the water surface, such that the structure is substantially unaffected by surface wave forces. The platform can support a jack-up drilling rig, and can also be used to support pumping equipment for one well or several wells. A plurality of hollow tubular members providing vertical support for the structure, serve as oil storage tanks, and the platform also carries tanker loading facilities.

As an alternative, an above water drilling and production platform may be erected upon this structure, relying upon the great strength of the cross-braced tubular tank members to provide the necessary resistance to horizontal wave forces, as well as to vertical loads.

A detailed description of the invention follows, taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a front elevation, somewhat diagrammatic, of a structure according to this invention, showing it being utilized in connection with drilling operations; and

FIG. 2 is a view similar to FIG. 1 of the upper portion of the structure of the invention, showing it being utilized for oil storage and as a permanent underwater production platform.

Referring first to FIG. 1. A plurality of relatively large diameter hollow tubular members 1, which have a substantial vertical length (e.g., about 450 feet) and which extend substantially parallel to each other, are joined together as by means of cross-bracing 2 to form a rigid upright structure denoted generally by numeral 3. There are a minimum of three, but possibly four or more, members 1: these members can be considered to be located around the periphery of structure 3. The members 1 serve as oil storage tanks during production (as will be described more in detail hereinafter), and are constructed to have sufficient strength to form the principal support for structure 3. The lower end of structure 3 (which is to say, the lower ends of members 1) rests on the floor 4 of the ocean or other body of water. It will be assumed here, by way of example, that operations are to be carried on at an offshore location wherein the water depth is about 600 feet.

The upper end of structure 3 comprises a platform 5 which is rigidly secured to the upper ends of members 1 and which has an area at least sufficient to accommodate (support) the legs or columns 6 of a jack-up drilling rig of conventional design, denoted generally by numeral 7. The members 1 have sufficient strength to support the drilling equipment 7, which rests on platform 5 during the drilling operation.

The structure 3 has a height such that platform 5 is located a considerable distance (say, approximately 100 feet to 200 feet) below the water surface 8; this distance is such that the structure 3 is protected from the force of hurricanes. Hence, large diameter columns suitable for oil storage may be used as legs for the structure. While wind and wave forces are tremendous at the surface 8 of the ocean, it is well-known that these forces decrease very rapidly below the surface. In fact, the wave forces produced by hurricanes are negligible at depths below 100 feet. The principal forces to be dealt with below this depth are the natural ocean currents, tidal currents, and occasional earthquake-induced tidal waves known as "Tsunamis." While these forces may be sizeable, they are of far less magnitude than the maximum surface wave forces.

As previously stated, the range of depths at which the subsurface platform 5 is located is such that this platform is relatively undisturbed by severe surface storms. However, this range is shallow enough to permit installation and servicing of well control equipment by skin divers, when required for the below water completion procedure.

This capability of manipulation by free-swimming divers is an important advantage of the invention.

The structure 3 may be braced by several guy lines 9 to increase its vertical stability. The upper ends of guy lines 9 are secured to the platform 5, while the lower ends of these lines are anchored in the ocean floor 4. Guy lines 9 are provided with anchors designed like a ship's anchor, to dig into the bottom 4 upon being dragged horizontally. They are dropped and set by tug boats, with the cable running through loosened clamps on the platform 5. Once the anchor is set and the proper tension is applied to the guy lines, the platform clamp is set and the cable to the ship is removed.

Formed into the structure 3 are a number of hollow tubular well templates 10, through which can be drilled one vertical well and a pattern of radially spaced directional wells, so as to drain a large reservoir area from the one platform. The templates 10 extend substantially vertically from platform 5 down to the bottom end of structure 3. Although the templates 10 are schematically illustrated in FIG. 1 as extending between the members (oil storage tanks) 1, as a practical matter they may run down through the several tanks 1, near the periphery thereof, in order to contribute maximum resistance to overturning forces on structure 3. In this case, all or part of the weight of the well casing could be applied to the floor of the tanks, to assist in overcoming the buoyancy of the oil stored therein. With the wells drilled through the tanks, the centers of moments for the upward and downward forces would be closer together horizontally, so there would be less bending moment in the structure. The angle of the well templates (with respect to the vertical) is not critical, except that it must be kept small enough to permit the casing and drill pipe to follow the bend without being overstressed, or (in the case of the drill pipe) subjected to fatigue failure during rotation.

Also formed into the structure 3 (but not shown) are a plurality of piling templates, through which piling may be driven to anchor the structure in place. These piling templates are simply hollow tubular members slightly larger in inside diameter than the O.D. of the piling, and are welded into and made a structural part of the structure 3; they may be located within the tanks 1, or around their periphery.

It is common practice, on present offshore structures, to provide a rubber seal at the bottom of the piling templates, and to attach a small pipe to the template just above this seal. Once the piling has been set, cement is pumped through the small pipe into the annulus between template and piling. Being prevented from moving downward by the rubber seal, the cement rises in the annulus; sufficient cement is pumped to completely fill the annulus. A similar scheme is used on both the piling templates and well templates (for the well casings) of the present structure.
The procedure for drilling a well and making an under
water completion, using the subsurface platform 5 of the
instant invention, will now be described. After the struc-
ture 3 has been established in place, and guyed at 9, and
anchored by means of the piling templates as previously
mentioned, the jack-up drilling rig 7 is floated to
location. Then, the legs 6 are lowered to land on the
subsurface platform 5, and the rig 7 is jacked up to oper-
ating level, wherein its principal operating parts are
located above water surface 8, as depicted in Fig. 1. The
drill pipe and bit for drilling the surface hole are then
lowered to the level of platform 5, and guided into the
proper template 10 with the aid of a diver. After drilling
to surface casing depth, the casing is set and cemented
as above described, but the casing is terminated just above
platform 5. Blowout preventers of conventional type are
set at the platform 5 level and mounted to the surface
casing, and are connected by hydraulic actuating lines to
the drilling rig 7 at the surface 8. A flexible hose or pipe,
having an inside diameter large enough to permit passage
of the drill bit, is attached to the top of the blowout pre-
venter; this hose or pipe extends upwardly to the drilling
rig 7 to conduct drilling fluid returns from the annulus
to the mud circulation system of rig 7. This hose also
serves to mud the drill pipe into the hole after each trip
to change bits.

Upon the approach of a severe storm, the drill pipe
could be removed from the hole, the blowout preventers
closed, and the drilling rig 7 removed to a safe location.
After the storm, this procedure would be reversed, and
drilling resumed.

Drilling and completion of the well employ essentially
the same techniques and equipment used in land-based
operations, with the exception that skin divers (free-swim-
ning divers) are required to install well-head fittings on
the platform 5. A hydraulic-powered crane would be in-
stalled on the surface platform, to assist the divers in the
handling of this equipment.

The tubular members 1 are sealed except for an open-
ing 11 to the sea near the bottom of each member, and
are provided with valves such as 12 (described herein-
after) for withdrawing oil from the top of each member.
As previously mentioned, these members 1 are adapted
to serve as oil storage tanks. Pipes 35 are connected to
openings 11 to supply sea water to the bottoms of tanks
1; these pipes may be of goose-neck shape, as illustrated,
to forestall clogging of the pipes by mud or sediment.
Since sea water is freely admitted to the bottoms of the
tanks, the oil therein is at all times stored over sea water,
and when oil is withdrawn from the tanks, sea water
replaces it.

After the offshore well or wells have been completed
(by using the structure 3, as above described), the same
structure can be used as a permanent production plat-
form, as well as to provide oil storage. This is illustrated
in Fig. 2, to which reference will now be made.

After drilling is completed, the jack-up rig 7 is re-
moved from platform 5. Assuming that the well has
been completed and is either flowing or is being pumped
through well pipe 13, the crude oil produced is fed to a
gas-oil separator 14 of conventional type which is
mounted on the subsurface platform 5. The mixed stream
(containing oil, gas, and perhaps water) is fed through
a pipe 15 from well pipe 13 to separator 14. Pipe 15
takes the side of separator 14 approximately one-third
of its length. The gas space above the oil is withdrawn
from the bottom of separator 14, and is fed into the
top of storage tanks 1 by means such as pipes 16,
one of which is shown. The separated gas is removed
from the top of separator 14 through a back-pressure
valve 17 which maintains sufficient pressure on the sepa-
rate to prevent the vaporization of the liquid hydrocarbons.
The gas flowing through valve 17 is vented to the surface
8 through a pipe 18 which is supported at the surface by
a float 19, and is generally flared or burned at the sur-
face, since ordinarily the volume of gas available from
oil wells would not justify a pipeline to shore. However,
if the gas is available in sufficient volume, it could be
transported to shore by an underwater pipeline.

Chemical emulsion treating of the oil, if called for,
would be straightforward, and conventional.

The oil stored in tanks 1 will be under pressure,
because of the low density of oil relative to sea water. This
hydrostatic pressure difference can be used advantageously
to transfer the oil to a tanker, without pumping, for
transportation to market. Fig. 2 illustrates one means
whereby this can be accomplished.

Each one of the storage tanks 1 is equipped with an
hydraulically-operated valve 12 (previously referred to)
for withdrawing or discharging oil from the top of the
respective tank. The hydraulic control lines 20 for each
valve 12 extend upwardly to a respective marker buoy
21 at the surface 8. A tanker 22 to be loaded is pulled
up alongside buoy 21, and guides 23 on the filler hose 24
are slidably engaged with the hydraulic lines 20 in such
a way that the lower end of the hose is guided into posi-
tion so as to engage and seal to discharge valve 12 when
the hose is lowered to the proper depth. In this connec-
tion, it will be recalled that valve 12 is located adjacent
the surface platform 5. The filler hose 24 is then locked
into position by a hydraulically-operated locking means
(not shown), after which valve 12 is opened; oil then
flows from tank 1 to ship 22 under the urging of
the natural buoyant force of the oil.

Assume first that the wells are flowing. Well tests such
as bottom hole pressure measurements can be run by
skin divers using conventional wire line equipment, with
hydraulic drive furnished from a tender ship.

Now assume that the wells must be pumped through
well pipe 13. In this case, a gas-turbine-driven generator
25 may be installed at the platform 5 level. Generator 25,
and the gas turbine 26 driving the same, are installed in
a water-tight compartment or chamber 27. The exhaust
from turbine 26 is discharged through a snorkel tube 28
supported by a buoy 29 on the surface 8, while the intake
air is furnished to compartment 27 through a snorkel tube
30 supported by a buoy 31 on the surface. A part of the
gas separated from the produced oil can be used to oper-
ate the turbine 26; a pipe 32 carries this gas from separ-
ator 14 to the turbine. If there is not sufficient gas for
this purpose available at separator 14, the turbine 26
may be adapted to a different type, and can be operated
on crude oil.

The electricity generated by the turbine is used to
power a standard downhole electric pump, such as a
so-called Reda downhole pump; pumps of this type are
in common use in the industry. Thus, an electrical power
cable 33 is connected from generator 25 to a downhole
electric pump 34, which for convenient illustration only
is shown horizontally related to tanks 1; actually, of
course, the pump 34 would be located adjacent the pro-
ducing formation penetrated by well pipe 13.

It would probably be possible to pump the oil from
well pipe 13 by utilizing a conventional rod pump, operat-
ating exposed on substructure platform 5, such as a rod pump
being actuated pneumatically or hydraulically.

For minor maintenance of the well, a floating coring
vessel may be used. However, for major workovers, a full
scale jack-up rig would probably be the most practical.

Recapitulating, the present invention greatly reduces
the cost and hazards of drilling in deep water, and makes
it possible to drill and complete such wells with essentially
the same drilling techniques already proved practical by
extensive use.

One of the main ideas behind the present invention is
to make multiple use of the steel, and to reduce the max-
imum loading on the structure 3 by keeping its upper face
below the low water mark. By proceeding further, if the
structure 3 is heavy enough and strong enough to provide
the required oil storage, it can be de-

8
igned (with little or no additional steel) to serve also as
an underwater producing platform and as a base for jack-up rig drilling operations, or to support an underwater oil storage structure including a plurality of structural hollow tubular elongated upright members adapted to serve as fluid storage tanks, and each of said tanks having, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water.

The invention claimed is:

1. In offshore well apparatus, a rigid upright structure of substantial vertical length having its lower end resting upon the floor of the body of water and having its upper end located a distance below the water surface such that the structure is substantially unaffected by surface wave forces, the upper end of said structure comprising a subsurface platform adapted to support well equipment, said structure including a plurality of spatially interconnected hollow tubular members adapted to serve as fluid storage tanks, each of said tanks having, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water, and well pipe connected to said upright members.

2. In offshore well apparatus, a rigid upright structure of substantial vertical length having its lower end resting upon the floor of the body of water and having its upper end located a distance below the water surface such that the structure is substantially unaffected by surface wave forces, the upper end of said structure comprising a subsurface platform adapted to support well equipment, said structure including a plurality of spatially interconnected hollow tubular members adapted to serve as fluid storage tanks, each of said tanks having, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water, and well pipe connected to said upright members.

3. Apparatus for drilling boreholes in the earth at offshore locations comprising a rigid substantially prismatical structure of substantial vertical length having its base resting upon the floor of the body of water and having its upper face located a distance below the water surface such that the structure is substantially unaffected by surface wave forces, said prismatical structure including at least three large diameter vertical tubular members for supporting said upper face, the upper face of said structure comprising a subsurface supporting platform; a jack-up drilling rig having relatively small diameter legs which are supported by said platform and extend upwardly therefrom with the principal operating parts of said rig located above the water surface; and means for introducing well fluids into said large diameter tubular members.

4. Apparatus for drilling boreholes in the earth at offshore locations comprising a rigid substantially prismatical structure of substantial vertical length having its base resting upon the floor of the body of water and having its upper face located a distance below the water surface such that the structure is substantially unaffected by surface wave forces, said prismatical structure including at least three large diameter vertical tubular members for supporting said upper face, the upper face of said structure comprising a subsurface supporting platform; a jack-up drilling rig having relatively small diameter legs which are supported by said platform and extend upwardly therefrom with the principal operating parts of said rig located above the water surface, said structure including a plurality of structural hollow tubular elongated upright members adapted to serve as fluid storage tanks, and each of said tanks having, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water, and also having a valved connection at the top thereof.

5. In combination, a plurality of substantially vertical hollow tubular elongated members spatially coupled together to form a rigid substantially prismatical structure of substantial vertical length, the base of said structure resting upon the floor of a body of water and the upper face of said structure being located a distance below the water surface such that the structure is substantially unaffected by wave forces, said hollow members being adapted to serve as fluid storage tanks; well pipe connected to said hollow members; means for introducing well fluids into said tanks; means providing a platform at the upper face of said structure; and marine loading apparatus, for transferring fluid stored in said tanks to a tanker, associated with said platform and coupled to said tanks.

6. Combination set forth in claim 5 wherein each of said tanks has, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water.

7. In combination, a plurality of substantially parallel hollow tubular elongated members coupled together to form a rigid substantially prismatical structure of substantial vertical length, the base of said structure resting upon the floor of a body of water and the upper face of said structure being located a distance below the water surface such that the structure is substantially unaffected by wave forces, said hollow members being adapted to serve as fluid storage tanks; well pipe connected to said storage tanks; and means providing communication between the interior of the respective tank and the surrounding water.

8. In combination, a plurality of substantially parallel hollow tubular elongated members coupled together to form a rigid substantially prismatical structure of substantial vertical length, the base of said structure resting upon the floor of a body of water and the upper face of said structure being located a distance below the water surface such that the structure is substantially unaffected by wave forces, said hollow members being adapted to serve as fluid storage tanks; well pipe connected to said storage tanks; and means providing communication between the interior of the respective tank and the surrounding water.

9. Combination set forth in claim 8, wherein each of said tanks has, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water.

10. Combination set forth in claim 8, wherein each of said tanks has, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water, and also has a valved connection at the top thereof.

11. In combination a plurality of substantially parallel hollow tubular elongated members coupled together to form a rigid substantially prismatical structure of substantial vertical length, the base of said structure resting upon the floor of a body of water and the upper face of said structure being located a distance below the water surface such that the structure is substantially unaffected by wave forces, said hollow members being adapted to serve as fluid storage tanks; means for transferring well fluids to and from said tanks; and drilling apparatus supported by said platform comprising a subsurface supporting platform; a rig having relatively small diameter legs which are supported by said platform and extend upwardly therefrom with the principal operating parts of said rig located above the water surface, said structure including a plurality of structural hollow tubular elongated upright members adapted to serve as fluid storage tanks, and each of said tanks having, near the lower end thereof, an opening providing communication between the interior of the respective tank and the surrounding water, and also having a valved connection at the top thereof.

12. In combination, a plurality of substantially parallel hollow tubular elongated members coupled together to form a rigid substantially prismatical structure of substantial vertical length, the base of said structure resting...
upon the floor of a body of water and the upper face of said structure being located a distance below the water surface such that the structure is substantially unaffected by wave forces, said hollow members being adapted to serve as fluid storage tanks; means for transferring well fluids to and from said tanks; drilling apparatus supported by said upper face of said structure, the principal operating parts of said apparatus being located above the water surface; and a plurality of hollow tubular templates fixed to said structure and extending in a substantially vertical direction downwardly from said platform, to serve as well templates for said drilling apparatus.

13. In an offshore well structure, a first underwater portion of said structure adapted for being supported by the ocean floor and having at least one large diameter hollow member arranged to extend upwardly from the ocean floor and forming a fluid petroleum storage tank, well pipe extending downwardly into producing formations from said hollow member and connected to said hollow member and having at least a portion of its weight supported by said hollow member, a second portion of said structure including means for communicating fluids within said tank to a fluid receiving means on the water surface, and at least one opening in said tank for providing communication between the interior of the lower end of said tank and the surrounding water to permit the entry of water into the lower end of said tank.

14. In an offshore well structure, a first underwater portion of said structure adapted for being supported by the ocean floor and having at least one large diameter hollow member arranged to extend upwardly from the ocean floor and forming a fluid petroleum storage tank, a second portion of said structure including means for communicating fluids within said tank to a fluid receiving means on the water surface, at least one opening in said tank for providing communication between the interior of the lower end of said tank and the surrounding water to permit the entry of water into the lower end of said tank, and including connection means for introducing petroleum fluids under pressure into the upper end of said tank, said opening in the lower end of said tank permitting the expulsion of water therefrom as said well fluids displace such water.

15. The apparatus of claim 14 wherein said means for communicating fluids from said tank to the surface has a substantially smaller cross-sectional area than said fluid storage tank.

16. Offshore well apparatus comprising, a first upright structure having its lower end adapted for resting on the floor of a body of water and arranged to have its upper end located a distance below the water surface such that the structure is substantially unaffected by surface wave forces, said first structure having at least one large diameter hollow member sealed at its upper end to form a fluid storage tank; a second structure supported by said first structure and arranged to extend above the water surface, said second structure being considerably smaller in cross-section than said first structure, means for admitting sea water into said tank in the absence of petroleum fluids therein, means for introducing petroleum fluids under pressure into said tank to displace the sea water therefrom, and well pipe extending downwardly into producing formations from said hollow member wherein said well pipe is at least partially supported by said hollow member.

References Cited

UNITED STATES PATENTS

3,145,539 8/1964 Estes et al. 61—46.5
3,381,481 5/1968 Chamberlin et al. 61—46.5
3,396,544 8/1968 Manning 61—46
3,004,612 10/1961 Kofahl 61—46.5 X
3,093,972 6/1963 Ward 61—46.5

JACOB SHAPIRO, Primary Examiner

U.S. Cl. X.R.

175—7