Office de la Propriete Canadian CA 2678186 A1 2008/09/25

Intellectuelle Intellectual Property
du Canada Office (21) 2 678 1 86
g,lnngL%?rri‘fg:na " mfgtfy”%ya‘r’]‘; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2008/02/12 (51) CLInt./Int.Cl. GO6F 77/30(2006.01)

(87) Date publication PCT/PCT Publication Date: 2008/09/25 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2009/08/10 STGINTERACTIVE, FR
86) N° demande PCT/PCT Application No.: FR 2008/000177 | (72) Inventeurs/inventors:

(86) ™ demande pplication Vo TAMAS. ALEXIS, FR:

(87) N° publication PCT/PCT Publication No.: 2008/113921 GRIMBERT, AMAURY, FR

(30) Priorité/Priority: 2007/02/13 (FR0753222) (74) Agent: SMART & BIGGAR

(54) Titre : PROCEDE DE GESTION DE FICHIERS
(54) Title: FILE MANAGEMENT METHOD

(57) Abréegée/Abstract:

The Invention relates to a file management method that comprises a first step of organising the data file base that comprises
creating a tree structure of directories with M levels of N directories each, M being an integer higher than 1, and the steps of storing
data files Including: applying a hash function on the identifier of a data file F, o be stored, determining the path of the directory R ;. at

several destination level in the tree structure based on the result of the preceding step, storing the data file Is said R ;; directory
determined by the hashing function at a location depending on the identifier of the data file; and data file reading steps comprising:
applying the same hashing function on the identifier of the data file Fj to be read, determining the path of the target directory ch IN
the tree structure based on the result of the preceding step, reading the data file in said directory RCJ. determined by the hashing
function at a location depending on the identifier of the data file.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

1 A2 ALV 0 O 0 R

e\

WO 2008/1

CA 02678186 2009-08-10

(12) DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION
EN MATIERE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale

25 septembre 2008 (25.09.2008)

(51) Classification internationale des brevets :
GO6F 17/30 (2006.01)

(21) Numéro de la demande internationale :
PCT/FR2008/000177

(22) Date de dépot international :
12 février 2008 (12.02.2008)

(25) Langue de dépot : francais

(26) Langue de publication : francais

(30) Données relatives a la priorité :
0753222 13 février 2007 (13.02.2007)

FR

(71) Déposant (pour tous les Etats désignés sauf US) : STG
INTERACTIVE [FR/FR]; 29, avenue Mozart, F-75016
Paris (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : TAMAS,
Alexis [FR/FR]; 3, rue Bosio, F-75016 Paris (FR).
GRIMBERT, Amaury [FR/FR]; 18, rue Notre-Dame de
Nazareth, F-75003 Paris (FR).

(54) Title: FILE MANAGEMENT METHOD

(54) Titre : PROCEDE DE GESTION DE FICHIERS

(10) Numéro de publication internationale

WO 2008/113921 A2

(74) Mandataire : BREDEMA; 38 avenue de 1'Opéra, F-75002
Paris (FR).

(81) Etats désignés (sauf indication contraire, pour tout titre de

protection nationale disponible) : AE, AG, AL, AM, AQO,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GGT, HN, HR, HU, ID, IL.,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, L.C, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
/M, ZW.

Etats désignés (sauf indication contraire, pour tout titre
de protection régionale disponible) : ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :
sans rapport de recherche internationale, sera republiée
des réception de ce rapport

(84)

(57) Abstract: The invention relates to a file management method that comprises a first step of organising the data file base that
comprises creating a tree structure of directories with M levels of N directories each, M being an integer higher than 1, and the steps
of storing data files including: applying a hash function on the identifier of a data file F; to be stored, determining the path of the
directory Ry; at several destination level in the tree structure based on the result of the preceding step, storing the data file is said
R4; directory determined by the hashing function at a location depending on the identifier of the data file; and data file reading steps
comprising: applying the same hashing function on the identifier of the data file F; to be read, determining the path of the target
directory R; in the tree structure based on the result of the preceding step, reading the data file in said directory R; determined by
the hashing function at a location depending on the identifier of the data file.

(57) Abrégé : La présente invention concerne un procédé de gestion de fichiers, comportant une premiére étape d'organisation de la
base de fichiers de données consistant a créer une arborescence de répertoires a M niveaux de N répertoires chacun, avec M étant un
nombre entier supérieur a 1, et des étapes d'enregistrement de fichiers de données consistant a : appliquer une fonction de hachage
sur l'identifiant d'un fichier de données I; a enregistrer déterminer le chemin du répertoire R; a plusieurs niveaux de destination dans
'arborescence en fonction du résultat de 1'étape précédente enregistrer le fichier de données dans ledit répertoire Ry;déterminé par
ladite fonction de hachage, a un emplacement fonction de 1'identifiant du fichier de données et des étapes de lecture de fichiers de
&\ données consistant a : appliquer la méme fonction de hachage sur l'identifiant d'un fichier de données F; a lire déterminer le chemin
€73 du répertoire R; cible dans I'arborescence en fonction du résultat de I'étape précédente lire le fichier de données dans ledit répertoire
v R,; déterminé par ladite fonction de hachage, a un emplacement fonction de 1'identifiant du fichier de données.

10

15

20

CA 02678186 2009-08-10

FILE MANAGEMENT METHOD

The present 1invent

F

of digital files,

e
—

readlng and modai:

More precisely, 1t

g

ion concerns the field of the management

and more particularly the recording,

ication thereof on a recording medium.

concerns a method and system for managlng

data files 1interacting with a file system particular to the

P

operating system of the computer.

Normally, a new data file 1s recorded at a location 1in a

memory, for example on a hard disk, according to the

F

g

availlability of memory space. In the case of recording on a

hard disk, the lat

ter 1s organized 1n blocks initialized at

the time of formatting. These blocks are distributed at the

-

time of formatting

The management of

P

the file system of

The fi1le system o

partitlions on a recording medium. A partltion comprises a

F

on physical sectors of the memory.

data files on a computer is performed by

the computer operating system.

f an operating system uses one oOr more

10

15

20

25

30

CA 02678186 2009-08-10

storage space intended for recording any data files, and an

g

indexing space in which the characteristics of the storage

space are recorded, in particular the addresses of the files

in the storage space.

Some files constitute directories,

belonging to the same partition.

grouping together 1lists

of characteristics relating to data files and to directories

#

For recording media having a storage volume of a large size,

for example several glgabytes,

the performances of the

indexing system of the file system are degraded when the

number of date files to be recorded, read or modified

becomes great in one and the same directory. This 1s

F
p—

because the organization of the

files that are directories

comprises a list contailining a

P
-

very high number of

occurrences to be processed, which prohibitively 1increases

P

+he access time to a file when the number of data files

-

reaches several tens o0O:

F

thousands. This degradation 1s

increased by the phenomena of fragmentation of files that

or deleted.

are directories occurring when a data file must be renamed

Another organization mode known through the Linux EXT3 file

F

system proposes an organizatilon of files that are

directories comprising an 1nternal

indexing system of the B-

P
—

Tree type and, for each data file, the calculation of a

F F

digest of the name of the data

g
b

file from the result o:

P

a

i

hash function, 1in order to accelerate the search 1n the

directories containing a large number of data files. This

solution makes 1t possible to

P

-

use several hundreds otf

thousands of data files 1n the same directory. However,

beyond a certain threshold, the limits of the hash function

no longer make it possible to avoid collisions leading to

10

15

20

29

30

CA 02678186 2009-08-10

the allocation of the same digest to two data files with

distinct names. For the EXT3 file

appears as soon as the number of

approximately 500,000 in the same directory,

the Linux 2.0

kernel.

system, this limit

data

F
P

for versions of

files reaches

gr—

In the prior art the patent US 5742817 is known, describing

a file server, proposing a file consultation method the

F

purpose of

addressing.

automatically

F

of extracting

F

which i1is to simplify

T

files by a processing of the INODE identi:

the processing of

P
—

This document proposes to accelerate access to

"ijcation attributed

by the file system. This processing consists

items to which sub-directories correspond

system.

from this 1dentifier three hexadecimal data

in the file

The American patent application US 2004/0236761 describes a

system of recording

sub-directories. In the last level of

carrlied out c¢

—

F

a Lree,

~1iles 1n a series of directories and

processing 1s

onsisting of calculating a digest that depends

F

on the name of the file for determining a “HASH SLOT” sub-

directory in which the said

In other words, the memory space

conventional tree form and, at the last

processing determines the sub-directory

level.

This solution 1limits the number of

recorded. Th

’ aad
—

P

18

file 1s recorded.

level

in a s

files

organized 1n a

—

of the tree, a

et at a single

able to Dbe

e number of sub-directories 1s limited by the

addressing modes of the file system, for example 65,536 for

a fi1le system

In addition,

of the UNIX type.

the same 1limit also applies to the number of

10

15

20

25

30

fully,

CA 02678186 2009-08-10

files within each aforesaid sub-directory.

it 1s necessary to maximize the

number

sub-directories, which limits the performance of the

system

1in this “rake”-1like, s1

sub~-directories.

g

ngle

level

In summary, the capacity is limited and, to use the capacity

P
p—

OL

file

of

The aim of the present invention 1s to remedy this drawback

by proposing a robust and rapid file management method

making 1t possible to use a number of

gr—

data files 1limited

solely by the space available in the memory rather than by

the processing operations per:

‘ormed by the

file system on

the names of the data files. The solution according to the

invention 18 there:

mass

storage memories,

P

fore not limited by the capacity to use

the only limit being the physical

capacity of these memories rather than the operating modes

p—
—

offered by the operating system.

manage very large numbers of data files

such as

In 1ts most general sense,

file servers.

It makes 1t possible to

, for applications

the 1nvention c¢oncerns a

fi1le

management method, comprising a first step of organizing the

base

directories with M levels,

being an integer greater than 1,

r—

OI

data

files consisting of:

data files consisting of creating

F
—

-

each having N directories,

F

Fler O

— applying a hash function to the identai:

F. Lo be recorded,

P

a Lree

a data

£
OL

with M

and steps of recording the

F1le

— determining the path of the destination directory Rg 1n

the tree of several levels, according to the result of

P

the previous step,

10

12

20

25

30

CA 02678186 2009-08-10

— recording the data file 1i1n the said directory Rai

determined by the said hash function, at a location that

depends on the identifier of the data file,

H

and steps of reading data files consisting of:

R

— applying the same hash function to the 1dentifier of a

data file Fy to be read,

'}

— determining the path of the target directory Rey 1n the

tree according to the result of the previous step,

— reading the data file in the said directory R determined

by the said hash function, at a location that depends on

the identifier of the data file.

To use storage units 1n parallel and 1i1improve performance

' il

(speed of access and/or memory volume), the invention

concerns, according to a particular embodiment, a file

management method according to the preceding claim,

characterized in that the data files are distributed over Q

storage units, each storage unit corresponding to P

F

directory levels of N directories.

Contrary to the teaching of the patent application US
2004/0236701, this solution results 1n restricting the

~— —

number of directories at each level of the tree, which

improves performance and 1n particular the speed of access

to the data files 1n a tree with two dimensions and to make

F

almost unlimited the number of data files able to be

recorded. The limitation 1s no longer dependent on the

gr—

limitations of the file system but only on the physical

P

capaclities of the storage medium.

10

15

20

29

30

CA 02678186 2009-08-10

Contrary to the solution of the prior art, the invention, by

applying the hash function, attributes a path 1n a tree

F

having a plurality of levels and does not attribute a

location 1n a given dilrectory. The location 1n the sub-

directory of the last level 1s not attributed by the hash

P

function but by a name associated with the identifier of the

data file.

Advantageously, N 1s equal to 16, and the hash function 1is

the SHA-1 function.

A supplementary problem with file management concerns the

p— go—

protection of the 1integrity of the data 1in the case of

simultaneous access to the same data file by two

applications.

It 1s known, on the majority of operating systems, that it

-4

1s possible to proceed with locking data files at the level

P

of the file system, making 1t possible at a given moment to

prevent access to a data file 1n the process of being

written or read. These solutions are managed by the file

system, generally from a locking table residing 1in memory.

P

The drawback of these solutions 1s that, 1in the case of

access to a file over a network, 1interference or errors may

occur 1n the event of access to the same file by a plurality

P

of distant computers.

p—

The patent US 60850969 proposes a particular solution for

pr—

avolding the use of 1locking. This patent proposes an a

posteriori control of the possibility for an application to

record modifications 1n an open data file and guarantees

that, during this so-called atomic operation, no other

application has 1intervened on the same data file. Atomic

10

15

20

25

30

CA 02678186 2009-08-10

F

within the meaning of the present patent means a set of

indivisible tasks executed consecutively without

possibilities of interruption, nor interference by a third-

F

party operation, before completion of all the tasks of the

so-called atomic operation.

This solution 1s not satisfactory since 1t prevents the

completion of some operations when several applications

P
-

perform processing operations at the same time on a set of

files 1n common. It certainly makes 1t possible to avoid

F
p—

files Dbut the detriment of

_t

alteration to existing data

concurrent secure access. This 1s because this solution

makes 1t necessary for each processing to occur after the

previous one 1s completed. It 1s therefore not really

P

adapted to processing operations on files containing, for

example, data in the XML format and which may be used at any

F
p—

time by different competing applications.

To this end, the 1nventlion also concerns a file management

method characterized i1n that each data file has a header and

P

a body. The header comprises A state parameters of the data

file 1n the file management system. The body comprises the

modifiable content of the file. The method comprises a step

— —
p— —

of access to a target data file causing the modification of

one of the said state parameters to a state preventing new

dCCESS.

Management of these data files 1s 1independent of the file

P

system of the computer operating system.

F

The 1nvention will be better understood from a reading of

the following description, corresponding to non-limitative

example embodiments, referring to the accompanying drawings,

where:

10

15

20

25

30

CA 02678186 2009-08-10

— figure 1 shows a schematic

view o0f the tree used by the

fl1le management method according to the invention,

—

— figures 2 to 8 show the functional diagrams of the file

management,

— figure 9 shows the diagram

=

for use of the file management

system over a network, corresponding to a client/server

mode.

’ and

Figure 1 shows a schematic view of the tree used by the file

management method according to the invention.

The data files are organized in a structure sub-divided, in

the example described, 1into M

five levels (1 to 5). Fach

directory of each level (1 to 4), apart from the last level

(5), contailns N = 16 directories (10 to 12), (20 to 25), (30

to 35), (40 to 45). The name of each of the 16 directories

corresponds to a hexadecimal

P

figure between 0 and f. The

total number of directories contalined in the structure 1is

16+16°+16°..+16M.

In the example described, the

F

— 09,904 directories of levels 1 to 4,

- 1,048,576 directories (50

directory contalining files

Fach directory (50 to 55) of

ﬁ

a limited number L of data f]

tree comprises:

files, but only sub-directories;

not contalning data

to 55) of level 5; each

"1]les.

for storing data :

the last level

(o) can contailn

les, L being chosen small, for

example around 1,000 to allow rapid access time, whatever

10

15

20

29

30

CA 02678186 2009-08-10

the file system of the computer operating system.

Attribution of a memory location to a data file

When a new date file 1is created, designated by a single use

F
e

name formed by a character string, the method consists of

applying a hash function H; to this character string

i~

representing the use name, the result of which will consist

of a value represented 1n a hexadecimal form. For a hash

function SHA-1, the result 1n hexadecimal form will comprise

40 hexadecimal figures between 0 and f.

The method consists of determining, 1in the context of the

directory tree defined above and from this result of the

hash function, a dilrectory path 1n the said tree.

"

P
v

The rank of each of the first M figures of the result of the

F

hash function will correspond to a level of the directory

TLree.

B

\\

If an example of a wuse name myfile” 1s taken, the

application of the SHA-1 function returns the wvalue

“"pb3580abdbcbhb088bad7££070aaBlc2daelbeb6caz”.

F

The directory of level 1 will be that bearing the name “b”,

corresponding to the first character of the SHA-1 wvalue, the

directory of level 2 will be “3”, corresponding to the

second character, and so on for the five levels (1 to 5).

The location in the last directory (5) will consist of the

P

two-figure hexadecimal representation of the bytes of each

F

of the characters constituting the use name. For the name

W

myfile”, the location and name of the file will be

od/9006690bcod”, “od” corresponding to the two—-figure

hexadecimal representation of the character “m” “79”

4

corresponding the two-figure hexadecimal representation of

5

10

15

20

25

30

CA 02678186 2009-08-10

10
the character “y”, Y“66” corresponding to the two-figure
hexadecimal representation of the character “f”, and so on.

For characters requiring coding in several bytes, all the

bytes will be successively represented in this form.

o — -

Because of the uniqueness of the use name of the data file,

the designation of the file will necessarily be unique since

it results from the combination of a location calculated

from the hash function and a data file name calculated

unigquely from the use name.

This solution makes it possible to distribute, 1n an

equiprobable fashion and with maximum dispersion, the data

ity
p—

files in the directory of level M of the directory tree.

Only the level M contains data files, the intermediate

levels not containing data files and serving only for the

F

distribution of the files in the directories of level M.

F

Within each directory of level M, the number of data files

is reasonably limited, for example to around 1,000, which

leads to fast access tlimes. The maximum number of data

F

files that can be created in a tree of level M 1s equal toO

1,000 x 16". For example, for M = 5, it 1is possible to

create, read or write approximately 1 billion data files 1n

a tree of directories of level M.

Creation, writing, reading and deletion of a data file

o d
—

The first step consists of determining, from the use name oI

the file, 1its access path in the tree and 1ts associlated

file name, by applying the previously mentioned hash

F

function and by calculating the name of the file from the

use name. This step makes it possible to determine 1n which

F

directory of level M the file 1s recorded and 1ts location

10

15

20

2D

30

CA 02678186 2009-08-10

11

in this directory.

Competing access to the same data file

To allow secure management of access to the data files, the

latter each comprise a header and a body. The body

comprises the modifiable content of the fille, 1in a directly

accessible form or in a compressed or enciphered form. This

P
p—

body is preceded by a header containing state parameters of

the file in the file management system.

Systematically, access to a file by processing, for a series

pr——

of any operations (writing, reading, modification or

deletion), consists of a first acquisition step consisting

:. pi—

of modifying one of the said state parameters of the header

to a state preventing further access by another processing

operation.

Naturally, when the file 1s being accessed or used Dby a

processing operation, another processing operation will,

during this initial acquisition step, encounter notification

pr—

of prohibition or waiting.

The other ©processing operation reiterates this 1nitial

acquisition step until the target file 1s once again 1n a

state allowling access, or until a predetermlined time delay

causes the interruption of the attempts at access.

Once the series of operations has been completed by the

processing operation, a last release step restores the initial

state of the modified parameter 1n the header, thus allowing

another processing operation to access the data file.

b

Figures 2 to 8 show the structures of functions used by the

invention.

10

15

20

29

30

CA 02678186 2009-08-10

12

Function of acquiring an existing data file

Figure 2 shows

P

the succession of tasks

acquiring an existing data file.

The function takes as an input (150) the name of

P

calculated from the use name as disclosed previously.

The first task (100)

necessary ror

a file

consists of attempting the simultaneous

opening and locking of the file at the level of the file

P

system of the operating system,

P

and locking of the file, thus preventing,

and unlocking, the opening and locking o:

subsequent processing operation.

L1

The

‘unction then proceeds with a test

F

the opening and locking of the file: 1f the

P

(101)

by requesting the openiling
until i1ts closure

- this file by a

for verifying

file 1s not open

and locked, the result of the test (10l1l) 1s negative and the

function proceeds with a second test (102)

whether the file existed during the attempt (100).

that

checks

In the

case of a negative response, the function returns an error

(103) 1ndicating that the

P

In the case of

a positive response, a test

file does not exist.

(104)

checks

whether the number of attempts (100) exceeds a threshold

value, or whether the timeout period has

undertakes a new

P

the case of a negative response;

attempt (100) after a time delay

returns a system error (105).

P— o r—

f the result of

reads the availlability state of the £

-

parameter of the

otherwise the

the test (101) is positive, the

1le 1n

file header during a task

(100) .

explred, and

(149) 1n

- N

function

function

a SsState

10

15

20

22

30

CA 02678186 2009-08-10

13

The function then proceeds with a test (107) on the

availability of the file according to the state parameter.

If the result of the test (107) 1is negative, correspondlng

to an unavailability state, the function proceeds with a

task (108) of the simultaneous closure and unlocking of the

file at the level of the file system of the operating

system.

The function then performs a test (109) that checks whether

P

the number otf

attempts (100) exceeds a threshold wvalue, or

whether the timeout period has expired, and undertakes a new

attempt (100) after a time delay (149) 1n the case of a

negative response; otherwise the function returns an error

(110) indicating that the file remains acqulred by a current

processing operation.

P

If the result of the test (107) 1s positive, the function

proceeds with a task (111) of writing the wunavailability

P P

state of the file 1n a state parameter of the file header,

and then a task (112) of calculating a file acquisition

identifier, a task (113) of writing this identifier 1n a

state parameter of the file header, and a task (114) ot

reading the file body. The task (115) corresponds to a

processing of the file body 1n order to extract the

F

modifiable content of the file. This processing 1s carried

out according to state parameters of the file header. It

corresponds, for example, to a decompression or deciphering

of the modifiable content of the file. The last task (116)

P

consists of the simultaneous closing and unlocking of the

fi1le at the 1level of the file system of the operating

system.

The function returns as an output at 1ts completion (151)

10

15

20

29

30

CA 02678186 2009-08-10

14

F

the confirmation of the acquisition of the data file, the

file acquisition identifier and the modifiable content of

the file.

Function of acquiring a new data file

T

Figure 3 shows the succession of tasks necessary 1I0r

acquiring a new data file.

F

The function takes as an input (250) the name of a file

calculated from the use name as disclosed previously.

The first task (200) consists of attempting the simultaneous

P P
el

creation, opening and locking of a new file at the level of

the file system of the operating system, by requesting a

creation, an opening and a locking of the file, thus

preventing, until its closure and unlocking, the opening and

_

locking of this file by a subsequent processing operation.

The function then proceeds with a test (201) for verifying

the creation, opening and locking of the file: 1f the file

p—

is not created, opened or locked, the result of the test

(201) 1s negative and the function proceeds with a second

test (202) which checks whether the file existed during the
attempt (200).

In the case of a positive response, the function returns an

error (204) 1indicating that the file already exists.

In the case of a negative response, the function returns an

error (203) indicating a system error.

— po—

If the result of the test (201) 1s positive, the function

proceeds with a task (205) of creating and writing the file

header with an empty body of the file, then a task (206) of

CA 02678186 2009-08-10

15

writing the wunavailability state of the file 1in a state

P
—

parameter of the file header, and then a task (207) of

b

calculating a file acquisition identifier, a task (208) of

writing this identifier in a state parameter of the file

p—

5 header. The last task (209) consists of the simultaneous

F

closing and unlocking of the file at the level of the file

system of the operating system.

The function returns as an output on its completion (251)

10 the confirmation of the acguisition of the data file and the

g)

file acquisition i1dentifier.

)
LA

Function of acquiring an existing data file with creation o

"

the file 1f it does not exist

15 Figure 4 shows the succession of tasks necessary for

acquiring an existing data file with creation of the file 1f

1t does not exist.

_

function takes as an input (350) the name of the file

1.

The

20 calculated from the use name as disclosed previously.

The first task (300) consists of attempting the simultaneous

opening and locking of the file at the level of the file

o |

system of the operating system, and creating the file 1f 1t

-

29 does not exist, by requesting the opening and locking of the

file, thus preventing, until its closure and unlockiling, the

opening and locking of this file by a subsequent processing

operation.

30 The function then proceeds with a test (301) for verifying

o
—

the opening and locking of the file: 1f the fille 1s not open

F

and locked, the result of the test (301) 1s negative and the

function proceeds with a second test (302) that checks

whether the file existed at the time of the attempt (300).

5

10

15

20

23

30

CA 02678186 2009-08-10

16

In the case of a negative response, the function returns a

system error (303).

In the case of a positive response, a test (304) checks

—

whether the number of attempts (300) exceeds a threshold

F

value, or if the timeout period has expired, and undertakes

-

a new attempt (300) after a time delay (349) 1n the case oI

a negative response; otherwise the function returns a system

error (305H).

If the result of the test (301) is positive, the function

then proceeds with a test (306) for checking whether the

file was created at the time of the attempt (300): 1f the

F

file was not created, the result of the test (306) 1s

F
p—

negative and the function reads the availabillity state of

P

the file 1n a state parameter of the file header during a

task (307).

The function then proceeds with a test (308) on the

P

availability of the file according to the state parameter.

pr— porre.

f the result of the test (308) 1s negative, corresponding

to an unavailability state, the function proceeds with a

—

task (309) of the simultaneous closure and unlocking of the

P

file at the level of the file system of the operating

system.

The function then performs a test (310) that checks whether

F

the number of attempts (300) exceeds a threshold wvalue, or

whether the timeout period has expired, and undertakes a new

o
—

attempt (300) after a time delay (349) 1n the case of a

negative response; otherwlse the function returns an error

(311) indicating that the file remains acquired by a current

processing operation.

10

15

20

29

30

CA 02678186 2009-08-10

17

-

If the result of the test (308) is positive, the function

proceeds with a task (312) of writing the wunavailabllity

state of the file in a state parameter of the file header,

and then a task (313) of calculating a file acquisition

identifier, a task (314) of writing this 1dentifier 1in a

-y -

state parameter of the file header and a task (315) of

reading the body of the file. The task (316) corresponds to

F

a processing of the file body 1in order to extract the

F

modifiable content of the file. This processing takes place

according to state parameters of the file header. It

gh—
—

corresponds for example to a decompression or declphering of

the modifiable content of the file. The task (317) consists

P

of the simultaneous closing and unlocking of the file at the

level of the file system of the operating system.

The function returns as an output at 1ts completion (351)

F ﬂ

the confirmation of the acqguisition of the data file, a

notification indicating that the file has not been created,

the file acquisition identifier and the modifiable content

of the file.

F

If the result of the test (306) 1s positive, the function

proceeds with a task (318) of creating and writing the file

header with an empty body of the file, then a task (319) of

g

writing the unavailability state of the file 1n a state

g
p—

parameter of the file Theader, then a task (320) of

calculating a file acquisition 1i1identifier, a task (321) of

writing this 1dentifier 1n a state parameter of the fille

header. The last task (322) consists of the simultaneous

P

closing and unlocking of the file at the level of the file

P

system of the operating system.

The function returns as an output at 1ts completion (352)

o

10

15

20

23

30

confirmation

CA 02678186 2009-08-10

18

of the acquisition of the data file, a

notification indicating that the file has been created and

the file acquisition ldentifier.

Function of

releasing a data fille acquired without data

modification

H

Figure 5 shows the succession o0f tasks necessary for

releasing a data

‘1le acquired without data modification.

The function takes as an 1nput (450) the name of the file

calculated from the use name as disclosed previously and an

acgulsition

identifier

returned during a pPrevious

acqgulsition of the data file.

P

The filrst task (400) consists of attempting the simultaneous

opening and locking of

Jr—

the fi1ile at the level of the file

system of the operating system, reqgquesting an opening and

locking of the file, thus preventing, until i1ts closure and

unlocking,

the opening

F

and locking of this file by a

subsequent processing operation.

The function then proceeds with a test (401) for checking

the opening and lockling of

and locked,

whether the

P

F

L p—

the file: 1f the file is not open

the result of the test (401) 1s negative and the

functlion proceeds with

a

second test (402) that checks

file existed during the attempt (400). In the

case of a negative response, the function returns an error

(403) 1indicating that the

pr—

F

file does not exist.

In the case o0of a positive response, a test (404) checks

whether the number of attempts (400) exceeds a threshold

value, or

whether the

undertakes a new attempt

P
—

the case o0

a negative

timeout period has expired, and

(400) after a time delay (449) in

response; otherwise the function

10

15

20

25

30

CA 02678186 2009-08-10

19

returns a system error (409).

If the result

reads tThe av

p—

of the test (401) 1is positive, the function

ailability state of the fi1le 1n a state

parameter of the file header during a task (400).

The function

avallability o

If the result

proceeds with

then proceeds with a test (407) on the

gt

f the file according to the state parameter.

-

of the test (407) 1s positive, the function

L

a task (408) of the simultaneous closing and

- o

unlocking of the file at the level of the file system of the

operating syst

em and returns an error (409) 1indicating that

the file i1s not acquired.

Y

an unavailabil

P

If the result of the test (407) 1s negative, corresponding to

ity state, the function reads the acquisition

identifier in the file header during a task (410).

The function then performs a test (411) that checks whether

this 1dentifier 1s different from the i1dentifier submitted as

an 1input. In

proceeds with

P

the case of a positive response, the function

a task (412) of the simultaneous closing and

g

unlocking of the file at the level of the file system of the

operating system and returns an error (413) 1indicating that

the acquisition identifier submitted as an input 1s not valid.

In the case of

a negative response, the function proceeds with

P

a task (414) of deleting the acguisition identifier in the

state parameter of the file header and then a task (415) of

writing the availability state 1n the file header. The last

task (416) consists of the simultaneous closing and unlocking

F

of the file at

systemn.

the level of the file system of the operating

5

10

15

20

29

30

The

CA 02678186 2009-08-10

20

function returns as an output on 1its completion (451)

gr—

confirmation of the release of the data file.

Function of releasing a data file acquired with data

modification

Figure ©6 shows the succession of tasks necessary for

releasing a data file acquired with data modification.

The

P
p—

function takes as an 1nput (550) the name of a file

calculated from the wuse name as disclosed previously, an

acquisition identifier returned during a previous acqulisition

F

of the data file and the modifiable content of the file.

The first task (500) consists of attempting the simultaneous

P

opening and locking of the file at the level of the file

|

system of the operating system, requesting an openling and

locking of the file, thus preventing, until 1ts closure and

unlocking, the opening and locking of this file by a

subseguent processing operation.

The

function then proceeds with a test (501) for checking

g

the opening and locking of the file: 1f the file 1s not open

and locked, the result of the test (501) 1s negative and the

function proceeds with a second test (502) that checks

whether the file existed during the attempt (500). In the

case

(903)

F

of a negative response, the function returns an error

indicating that the file does not exist.

In the case of a positive response, a test (504) checks

whether the number of attempts (500) exceeds a threshold

value, or whether the timeout period has expired, and

undertakes a new attempt (500) after a time delay (549) 1n

the

case of a negative response; otherwise the function

10

19

20

29

30

CA 02678186 2009-08-10

21

returns a system error (2509).

— i
——

the result of the test (501) is positive, the function

reads the availability state of the file 1n a state

F

parameter of the file header during a task (500).

The

function then proceeds with a test (507) on the

P

availability of the file according to the state parameter.

F

the result of the test (507) 1s positive, the function

proceeds with a task (508) of the simultaneous closing and

Sl -

unlocking of the file at the level of the file system of the

operating system and returns an error (509) 1ndicating that

the

dll

file 1s not acquired.

If the result of the test (507) 1s negative, corresponding to

unavallability state, the function reads the acquisition

identifier 1in the file header during a task (510).

The

function then performs a test (511l) that checks whether

this identifier i1s different from the identifier submitted as

iy
—

an 1nput. In the case of a positive response, the function

proceeds with a task (512) of the simultaneous closing and

unlocking of the file at the level of the file system of the

operating system and returns an error (513) 1ndicating that

the

In

acqguisition ildentifiler submitted as an input 1s not valid.

the case of a negative response, the function proceeds

with a task (514) of deleting the acquisition identifilier 1n

the

F

state parameter of the file header, then a task (515) of

wrlting the availabilility state 1n the file header, and then

a task (516) corresponding to a processing of the file body

1in

F

order to 1nsert therein the modifiable content of the

file. This processing takes place according to state

10

15

2.0

2

30

P

CA 02678186 2009-08-10

22

parameters of the file header and corresponds, for

to a compression or enciphering of the modifiable content of

the file. The

writing the file body and the last task (518) consists of

F

function then proceeds with a task

H

example,

"

)

(517) of

"

the simultaneous closing and unlocking of the file at the

—

F

level of the file system of the operating system.

The function returns as an output on 1ts completion (551)

confirmation O

modification of

g

F

f the release of the data

the file content.

Function of releasing a data file acqulred with de

file and

letion of

the file

P

Figure / shows the succession of tasks neces

F

releasing a data file acquired with deletion of the

The function takes as an input (650) the name of

sary oOr
file.
the file

calculated from the use name as disclosed previously and an

acqulsition identifier returned during a

acquisition of the data file.

The first task

opening and locking of the file at the level of

system of the operating system,

locking of the

unlocking, the

F

pPrevious

(600) consists of attempting the simultaneous

F

file, thus preventing, until 1ts cl

F

the file

requesting an opening and

osure and

opening and locking of this file by a

subsequent processing operation.

i

The function then proceeds with a test (601) for

the opening and

and locked, the

(p—

locking of the file: if the file is

F

result of the test (601) 1s negativ

whether the file existed during the attempt (600).

F

case of a negative response, the function returns

checking
not open

e and the

function proceeds with a second test (602) that checks

In the

dall eXrror

10

15

20

29

30

CA 02678186 2009-08-10

23

(603) indicating that the file does not exist.

In the case of a positive response, a test (604) checks

whether the number of attempts (600) exceeds a threshold

value, or whether the timeout period has expired, and

undertakes a new attempt (600) after a time delay (649) in

the case of a negative response; otherwise the function

returns a system error (002).

- g—
p—

If the result of the test (601) 1is positive, the function

reads the availability state of the file 1n a state

parameter of the file header during a task (6006) .

The function then proceeds with a test (007) on the

availability of the file according to the state parameter.

P

If the result of the test (607) is positive, the function

proceeds with a task (608) of the simultaneous closing and

F P

unlocking of the file at the level of the file system of the

operating system and returns an error (609) indicating that

the file is not acquired.

p— 2l pr—
p—

If the result of the test (607) is negative, corresponding

to an unavallability state, the function reads the

acquisition identifier in the file header during a task

(610) .

The function then performs a test (611) that checks whether

this identifier 1is different from the identifilier submitted

as an input. In the case of a positive response, the

function proceeds with a task (612) of the simultaneous

closing and unlocking of the file at the level of the file

ﬁ

system of the operating system and returns an error (613)

indicating that the acquisition 1dentifier submitted as an

10

15

2.0

29

30

CA 02678186 2009-08-10

input is not wvalid.

with a task

the state parameter of the

)

24

In the case of a negative response,

the

function proceeds

(614) of deleting the acquisition identifiler 1in

file header, and then

(615) of writing the availability state in the file

The last task (6lo) consists O0:

unlocking and deleting of

P

a task

header.

- the simultaneous closing,

the file at the level-of the file

system of the operating system.

The function returns as an output on its completion (651)

confirmation of the release

deletion.

Function o

—

the simple reading of

of the

date file

and 1ts

an existing data file

without acquisition of the

file

Figure 8 shows the succession of

—
e

simple reading of an existing data

of the file.

The function takes as an 1nput

calculated

tasks necessary

(750)

F

the name of

from the use name as disclosed previously.

for the

file without acquisition

a file

The first task (700) consists of attempting the simultaneous

opening and locking of the

system of the operating system,

P

locking of

unlocking,

F

the file, thus preventing,

the opening and locking

subsequent processing operation.

file at the level of the file

requesting an opening and

until 1ts closure and

of this file by a

The function then proceeds with a test (701) for checkilng

the opening and locking of

and locked,

whether the

F

the result of

function proceeds with a

the test

the file:

1

—_y—

(701)
second test (702) that

the file 1s not open

1S negative

file existed during the attempt (700).

and the

checks

In the

10

15

20

29

30

CA 02678186 2009-08-10

29

case of a negative response, the function returns an error

(703) indicating that the file does not exist.

P
p—

In the case of a positive response, a test (704) checks

whether the number of attempts (700) exceeds a threshold

value, or whether the timeout period has expired, and

undertakes a new attempt (700) after a time delay (749) 1in

the case of a negative response; otherwise the function

returns a system error

If the result of the

(705) .

test (701) 1is positive, the function

reads the availability state of the file 1n a state

fre—

parameter of the

-l

file header during a task (700).

The function then proceeds with a test (707) on the

availability of the file according to the state parameter.

#

If the result of the

to an unavallability

test (707) 1is negative, correspondilng

state, the function proceeds with a

task (708) of the simultaneous closing and unlocking of the

file at the level o

system.

The function then per:

F
=

f the file system of the operating

"orms a test (709) that checks whether

the number of attempts (700) exceeds a threshold value, or

whether the timeout period has expired, and undertakes a new

o
—

attempt (700) after a time delay (749) 1n the case of a

negative response; otherwise the function returns an error

(710) indicating that

processing operation.

If the result of the

proceeds with a task

then a task (712) otf

the file remains acquilred by a current

test (707) 1s positive, the function

(711) of reading the file body, and

processing the file body in order to

CA 02678186 2009-08-10

20

extract the modifiable content of the file. This processing

takes place according to state parameters of the file

header. It corresponds, for example, to a decompression Or

deciphering of the modifiable content of the file. The last

5 task (713) consists of the simultaneous <c¢losing and

unlocking of the file at the level of the file system of the

operating system.

The function returns as an output on 1its completion (/51)

10 confirmation of the simple reading of the data file and the

P

modifiable content of the file.

P

Other functions facilitate the administration of the tree,

in particular:

15
— the reading of the state parameters of the header of a
data file, including the availability state of the file,
—~ the forced release of a data file that has not Dbeen
20 released by a processing operation,
— the 1listing of the data files contained 1in the tree by
subsets of the tree.
29 Client-server mode

i
—r—

Figure 9 concerns a case of a particular and preferred

application. It shows the succession of tasks necessary for

F

the use of the file management system according to the

invention over a network, corresponding to a client-server

30 mode.

In this case, the file management system 1s 1nstalled on a

server computer (800) that comprises server software (801).

F

The server computer 1is accessible by a plurality of client

10

15

20

29

30

computers (8

SO

SO

ftware and

uny

CA 02678186 2009-08-10

2]

02 to 804) each of which comprise <client

ftware (805 to 807). The exchanges between the client

the server software use a network transport

protocol of a known type, for example HTTP or preferably a

F

secure protocol of the HTTPS type.

The 1invention 1in this case uses an application protocol
(808) for <calling the functions of the file management
system according to the invention by commands of the %file
acguisition” or VYfile release” type. The files are

g

distributed at the level of the server computer 1n several

subsets (809

to 811l), each subset corresponding to a tree

according to the invention, called a “table”. The use name

P

oL

The

the data £

ile is designated in the protocol by “key”.

F

first task (812) 1s executed on one of the client

computers by the client software. It consists of calling an

acqulsition,

release or simple reading function relating to

a table and a key.

The second task (813) is executed by the server software on

P

che server computer. It consists of executing the function

requested by the client software.

The third task (814) 1is executed by the server software on

the server computer. It consists of returning to the client

SO

the system comprises several servers

ftware the

result of the function requested. Optionally,

R

for distributing the

P

storage volume and load of the data. In this case, the

client so:

"tware (805 to 807) comprises rules for selecting

the server according to the tables and keys.

The server software (801) can also comprise functionalities

of

logging o:

F

C the operations executed to allow 1incremental

CA 02678186 2009-08-10

28

reconstruction of the trees of the server computer on a

P

backup computer without making a complete copy of the trees

on the backup computer.

10

15

20

29

30

CA 02678186 2009-08-10

29
CLAIMS
1. A file management method comprising a first step of

an -

organizing the base of data files consisting ol creating a

tree of directories with M 1levels, each having N

directories, with M being an integer greater than 1, and

P

steps of recording the data files, consisting of:

-0

—~ applying a hash function to the identifier of a data file

F. to be recorded,

F

_ determining the path of the destination directory Rg 1n

"

the tree of several levels, according to the result o:

the previous step,

-~ recording the data file 1n the salid directory Ragi

determined by the said hash function, at a location that

depends on the identifier of the data file,

'

and steps of reading data files consisting of:

"

— applying the same hash function to the identifier of a

data file Fy to be read,

P

- determining the path of the target directory Rey 1n the

tree according to the result of the previous step,

— reading the data file in the said directory Re;

determined by the said hash function, at a location that

depends on the identifier of the data file.

2. A file management method according to the preceding

claim, characterized in that the data files are distributed

over Q storage units, each storage unit corresponding to P

10

15

20

25

30

CA 02678186 2009-08-10

30

P

directory levels of N directories.

3. A file management method according to any one of the

preceding claims, characterized 1n that N 1s equal to 16 and

in that the hash function 1s the SHA-1 function.

i~

4, A file management method according to any one of the

preceding claims, characterized 1n that each data file

comprises a header and a body, the body comprising the

modifiable content of the file, the body being preceded by a

header comprising state parameters of the file 1n the file

management system, the method comprising a prior step of

acguiring a target file by a processing operation for

LR

performing a series of operations, the acguisition causiling a

fl. it

at least one of the parameters of the

t N

change 1n the state o:

header, this change 1n state preventing acquisition by

another processing operation until its release.

5. A file management method according to any one of the

preceding claims, characterized 1n that the acquisition,

reading and release operations are controlled by a client

software, and the corresponding steps are executed by a

server software.

6. A file management method according to any one of the

preceding claims, characterized 1in that 1t comprises a step

of acquiring an exilisting data file taking as an input (150)

the name of a file calculated from 1its use name, the said

F

step comprising a first task (100) consisting of attempting

P

the simultaneous opening and locking of the file at the

- o~

level of the file system of the operating system, requesting

F

opening and locking of the file preventing until its closure

P

and unlocking the opening and locking of this file by a

subsequent processing operation.

10

15

20

25

30

7. A

CA 02678186 2009-08-10

31

file management method according to any one of the

preceding claims, characterilzed in that 1t comprises a step

-

name of

of acquiring a new data file taking as an 1nput (250) the

a file calculated from its use name, the first task

F

(200) consisting of attempting the simultaneous creation,

opening
system

opening

F

and locking of a new file at the level of the file

of the operating system, requesting a creation,

and locking of the file preventing until its closure

and unlocking the opening and locking of this file by a

subsegquent processing operation.

3 . A file management method according to any one of the

preceding claims, characterized 1n that 1t comprises a step

of acquiring an existing data file with the creation of the

F

file 1if

1t does not exist, the function taking as an input

F
P

(350) the name of a file calculated from its use name, the

g~

first task (300) consisting of attempting the simultaneous

opening

and locking of the file at the level of the file

- —
p—

system of the operating system, and creating the file 1f 1t

P

does not exist, requesting opening and locking of the file

preventing until 1ts closure and unlockling the opening and

locking

9. A

of this file by a subsequent processing operation.

file management method according to any one of the

preceding claims, characterized 1in that 1t comprises a step

F

the data, the function taking as an input (450) the name of

a file

and an

of releasing an acquired data file without modification of

—~

calculated from 1ts use name as disclosed previously

acqulisition 1identifier returned during a previous

F
p—

acquisition of the data file, the first task (400)

g
p—

conslsting of attempting the simultaneous opening and

locking

n

of the file at the level of the file system of the

operating system, requesting opening and locking of the file

10

15

20

25

30

CA 02678186 2009-08-10

32

preventing until 1ts closure and unlocking the opening and

locking of this file by a subsequent processing operation.

10. A file management method according to any one of the

preceding claims, characterized in that it comprises a step

of releasing an acquired data file with modification of the

F

data, the function taking as an input (550) the name of a

A

‘1le calculated from 1ts use name as disclosed previously

and an acqulsition 1dentifier returned during a previous

acquisition of the data file, the first task (500)

consisting of attempting the simultaneous opening and

p—

locking of the file at the level of the file system of the

operating system, requesting opening and locking of the file

preventing untll 1ts closure and unlocking the opening and

locking of this file by a subsequent processing operation.

F

11. A file management method according to any one of the

preceding claims, characterized in that it comprises a step

— piy

of releasing an 'acquired data file with deletion of the

file, the function taking as an input (650) the name of a

file calculated from its use name as disclosed previously

and an acquilsition identifier returned during a previous

P

acqulsition of the data file, the first task (600)

P

consisting of attempting the simultaneous opening and

locking of the file at the level of the file system of the

operating system, requesting opening and locking of the file

preventing until its closure and unlocking the opening and

locking of this file by a subsequent processing operation.

P

12. A file management method according to any one of the

preceding claims, characterized in that it comprises a step

— -

e a simple reading of an existing data file without

—

acquisition of the file, the function taking as an input

(750) the name of a file calculated from its use name as

CA 02678186 2009-08-10

33

disclosed previously, the first task (700) consisting of

attempting the simultaneous opening and locking of the file

at the 1level of the file system of the operating system,

requesting opening and locking of the file preventing until

its closure and unlocking the opening and locking of this

file by a subsequent processing operation.

CA 02678186 2009-08-10

1

Fig.

52

41

42

20

32

21

22

11

12

33

25

35

45

55

CA 02678186 2009-08-10

a1l

°TT3 9ya

JO JUS3U0D STJeTIIpou -
°1tF =243 JO ISTITQUSPT
UOTJ3TSTNnboe -

21T3 =2yl Jo uorlrsinboe
JO UOTJRWITIUOD -

:3Indang

oaﬂs//l
mOH\//i

IOIXD WaISAS

OL1

Wwa3sAs

21U JO wa3sAs
°T1T3 <943
JO T=24A3T 943
Je 2113 Syd
JO burysoTun
pue burtsolo
SNO2URITNWIS

putjexsado {

_|n\ STT Ihl\ PTIT £TT CTT ITT
—_— — e
]] |
(038 ‘butasydiosp
‘uotssaxdwcssp)
18pesy 1epesy STT3 |
STTF ®ya Jo <4+ Iopeay | STTT aU3l 93 JO I9jswexed
sIiajawexred 3je)s 91713 STty 3y Jo JO ISTJTIRUSPT 23e3s e ut
03 buIlpIxooDE 8yl Jo Iajswuelied 33e3s uoTltsinboe 9TTI 9yl JO =23e3S
5113 sya Jo Apoq b Apoq syuj e UT ISTITIUSPT ue Jjo A3TTTIqeITRARUN
Sl 3O buisssooxd JO bulpesx 23 JO burjTtam uoTleInoTesn 2U3 JO butjTam

cpaatTdxs

potasd anoswT]
10 paysest
sjdwuaille IO

ON
ISqUNU WNWTXew

601
SHA

vwnﬂzwum TIIT3IS 3TT] :I0IXH

: I0IIH
SHA

vO1

61

SHA

walsAs butjyexsdo syj
JOo wa3sAs S7TI 3U3
3O T=24A917 23 38 SBTTJ
2yl JO buryooTun pue
bursoio snosuejTnwIs

iaTqeTTesE

ON STT3

SPBITAX®
potax=a2d InoawTly
I0 psyoesI
sjdwajae Jo
ISUNU WnWTxXeu

SHA

ON

moa\//t

AeTsp awtj

ISTX2 30U S0P STT]

LOT

¢3dwaiaje
JO QWT3 3e

1STXD ©TTJ PIP

c01l

ON

: TOX IS

00T

ON

A9pE3Y STT3 SYU3
Jo asiswexed sje3ls

B UT 3TTI =Yz JO
331838 AJTITIqeIIRAR
U3 JO burtpeaIx

S01

SHA

(PoO0T
pue
pauado aTT13]

TO1

ws3sAs burjeaado
23 JO wa3sAs 9TT3F 3yl Jo
=497 843l e ©1TF Syl buryo07 pue
butusdo ATsnosuejTnwis e 3dwsije

-)

0ST
\/lm.:”u Ul JO sueu -
“uﬁmGH

CA 02678186 2009-08-10

15¢ 60Z 80¢ LOC 30¢ G0¢C

(= =

|

Ispeay 9713 STT3 8yl 3JoO
S9TTF Syl JO ISTITIUSaPT weisks bButjeaado . Ispesy 9TT3 <U4d oy3 JO I9jswexed ’ Apog Ajdws ue
uoTaTSTNbOR - 5 e TT o 3713 92Ul JO JO ISTITIUSPT @93e3s e UT J3tm Japesy

Ul JOo wajsAs STTF =Yl : STTI aul

2173 2u3 jo uoTirsTnboe Jo T9AST oyl e 9TT3 1o3jowesed 27e3s uot3Tstnboe STT3 Y3 3JO 93]S Lrd =H

3O uorarwATITS 2yl JO butrydoTun Umm L e UT IS9TITIULIPT ue 3o AJTTTqRTTRARUN JOo but3tam
ERCELE putsoio mmomzmuaﬂsam 23 3o buTiTtas l_ uotjieInoTED ﬁl 9yl Jo buijram pue uoTIe3ID
I. s m— !I-'-IIIIIII.IL — —— e inn —— S —
SHA

ASD (oloh]
pue psusdo

‘poleaIo STT3]

¢adwslae
JO swT3j 3je

ISTX® 9TT3F PTP

wom1//t

s3sTxo Apedoare 3113 :A1011d ON

T10¢

£0Z

1//! IOII2 Wa3sAS :110xxd wailsds burjeasdo

oyl JO wa3lsAs 9TTF aul JO T9aAST sU3
Je 9TTJ mMau e Bburyool pue butusdo

oom.}/(4 ‘Butireard AfsnosuejTnwuis e 3dwsijle

052"\ STT3 aYy3 3o msmm.-
:andur

CA 02678186 2009-08-10

mmmx//t

15t

°Tt3 =Y4

JO JU33UOD STeTITpoul -
o113 =243 JO JASTJTJU=IpPTL
uoT3TsTNnboEe -

paieaxn

ussq 30U sey ST TJ

33 3B'y3 UoIjesniiTiou -
STTI =Yyl JO uoTjiIsTnboe
JO UOT3IBPWIATIUOD -
andang

ON

TIET\

STTI ®ya 3o — i N

ISTITIUSPT UOTITISTnboe -

clt

p23eslId U3 sey 2717 .
o] 31Ul UOTIEeDTITI0OU - Wa1SAS Ispesy
2TTF 3yl Jo uotritrsinboe butjeiado 2yl Jo ws3sAs 21T 3yl Jo
JO UOTIRWITIUOD - O2TTI 3yl JO TSa8T 9Yj] asjsueaed 23e3s
:andang Je STTJ 2yl JO buryoorun ® UT ISTITIUDPT
pue bUuTsSOTO snosuejlTnwis | a3yl Jo butjitam
LTE — —
Wwa3sas ST¢ bTE
buTtjeasdo (D319 ‘butasydrosp [lJJYIr
82Ul JO wailsAs ‘uoTssaxdwuossp)
21TTII =2Y3 Ispesy

30 T=a=1 943l
1€ 9113 Sy3
Jo burypoTun
pue bursSoTo
SNOsURITNWTS

9113 8yl 3o

cpaiTdxsa

poriad 3noawt)
I0 payoesa
gsydwajjge Jo

Lt
1010

paxtnboe TTT3s 9TT3

S0t
\//I. IOXIIS WaASAS :1I0aIx9

ASUITIU WNW T Xeuwl

waj3lsAs butjeasdo syl
JO WwalsAs STTI 3[yy
FO TeasT =243l 3 S[H]
23 Jo butydoTun pue
putsoTo snosuejlTnuIs

60¢

LPRITdXS
potiad 3noswTt]
I0 payoeal
sjdwaije Jo
Ia2qunu wnwIxeu

: I0OIIY

mwm!//J Aelap swT3

iCt

Ispeay

s1ayswesed sjyejls °1t3 STIF ®{Ya 3Jo
a2yl IO Toj2urIed si3els
01 butpxoooe
. Apoq 8y3 e Ul I8TITIUSPT
°TFF °d3 3o 7pod Jo burpesax 2yl JO BurjTam
_ 2yl 3jo bursssooxd : g

coTgerTeae
9113

R NS

JO awTl 3e
ISTX® STTJ PIP

0C¢t

1.1 ~_

°TT3 =|Y3
30 AS9TJTIUSPT <

uUcT3TsSTnboe
ue JO

UOTRRINDTED

tle

2[1d 2Y3
il 3O A1 JTUspt
uotrjistnboe
ue Jo
uoT3IR[NDOTED
I —

61t

I9peay STTJ

2yl JO xojsuerard

931 B Ul

STTJ SY3 3O 23e3S

AJTTTgRITRARUN
99Ul JO burjtam

BT

N

27T
SU3l JO Apoq
Ajdwas ue
yaTM I3peay
STTI =2U3]
JO bUuijTam
pPUB UOTJIeaID

ZTE N\

Ispesy STT3T
93 IO I93sweaed
53e73S ' UT
STTI =2U3 JO 93e3s
AJTI{TgeITRARUN
Y3l JO butjiTam

I=gpesy =211T]1 |yl
JO Jasijsuweaed 23€3S
E Ul 9113 =Yl JO | 0N
2318 AjJTT1IgelIeAar

9U3 JO butrpeax

cidwusjije

waj3s8As 11011

v 90t

LOE

ON

10t

pausdo o713

SHA

d1dwusije
butanp
pa3eaxd STTJ

SHA

ipaxy20T
pue

Ss0p 3T JT
U3Tm waig

JO walsAs o

1€ S1T1 =21

oom‘i/(L ATsnosue

31STX® 30U

2TTF SYy3l Jo uUoTjeard
gAs burtjexasdo syij
I[T3 =23 JO T=aAST =|Y3l
buryool pue burtusdo
JTnUTS 3 jdwsijije

0S¢
‘)/[. 5ITJ =Yyl JO 2[weu -

:andur

MHW\/‘ ﬂu-.m.m.mr)r 30U .HMWHM._HUAHQMUH EOMU-.HW._”HHUUUM s LOAAY

paaxtnboe jou S8IT¥ :I0CIXH
1S * » N\ 6o
ﬂv wol1sAs _
STTJ pbutjeasdo ayul IO Wo3SAS
213 IO mmmwﬁwu Z1¥ waslsAs STT3 =243 3o putjexsado syl 3Jo
JO UOTJRWITIUOD - TeA3T Y3 3e S1T17 mo¢.l/(\ wa1sAs 9711 2yl Jo
| : andang oyl JO bBurlyooTun | ISAST 83Ul 23€ STT]
pue DBUTISOTD | U3 JO buriyooTun
91% viv snosuel3TNWIS pue BUTSOID
Av SNOIURITNWTS
m’ —
Jopesy Iispesy
Wa]SAS 2113 9yl S3TTF 3|Y3)
purjexado syl 3Jo JO0 Is3jswered | :po33 TWANS JO MWNWMWHM
wajlsAs STTI 8yly 3JoO Iapesay 3[1J] 23e3s 3|Y1] < I9TITIUSPT 3Y3I ¢ 1opeay ;oTqeTTeAR 4 M
I3A3T 92U3 3e 9113 93] Uutl 93e3s Ut ISTITIUSPT woxy JUSISIITIP 2TTI 2U3 ON STT3 e ut =it}
sy3 Jo Buroorun AiTTIqeTTRAR uotarstnboe | ON I9T3TIUSPT UT I9TJTIUSPT sy 3o 93e3s
pue BUTSOTP : °U3 22 uorTaisinboe AjTTTqeTTRAR
| 0LV 2yl JO butlpesx
snoaUueITNUTS JO butjtam JO UOT3II[2P _ syl burpesx !

CA 02678186 2009-08-10

L1V LOV

SHA

cpaxtTdxs

potraad 3InoswTl
I0 payoesx
sqdusjyge Jo

ASER s
pue
pausado 2713

cadwajae
JO SWT] 3%

SHA ASTXe =113 PIP

SO0¥
\/\ Tox1o waalsks :xoxxng
SHA

ON
I2gunu wnuTxXew
Z70¥ TO0%
ON ON
mow\//l wa3sAs burtjzeaado
67V AeTsp swT] 3sTXs 30U S90p STT3 A0I1Y 913 JOo waishAs 9TTJ 8yl 3Jo

T9AST 2U3 31k STTF 92Ul burydoT pue

00% putusdo AfsnosuejTnuwis j3e jdwsije

omw\//l ISTJITIUSPTI UOTJITSInboe -
3TTI 8yl JO suweu -
uUSQGH

CA 02678186 2009-08-10

S9TT3

ay3 JO JuUs3uod 3yl 1//\
JO UOCTIBDTIITPOW 195

JO UOTIBWITIUOD -
°TT3

Syl JO 28e3a[dx

JO UOTIBWITIUCD -
: andang

BLS

Wwa1lsSAsS
putjeasdo syl JO
walsAs a7I3 ¥yl Jo
TsasT 243l 3 S[t3]
23 JO buTtdooTun
pue bursoTo
snosue}TnNUES

°1T3 =43
JO Apoq

(0o ‘butzeydrous
‘uotTssaxdwuod)
ispesy =117

syl 3o saisjswexed

o3els 03 burpxoooe

91TF 8yl Jo Apoq
oyl Jo buissaooxd

aspesy a1T3

93 ul 23e]Ss

A3TTIqe[TRAR
S e

Jo butitam

(

915

509 \/\ I0II9 WA3SAS 1I0IIH M
SHA

;

STS

2y3 Jo
putjTam _

PITeA 20U ASTITIAUSIPT uorjrstnboe “HOHHM1//1

£1S paxtnboe j0Uu STTI :I0CIIH
u»” .1/(umom
LTS _w
ﬁ. W3]ISAS an
putjexado 8yl jJo WO 3SAS

putjeaxsdo syl 3o

Wwaj3sAs STTI 3yl 3O
[eA3T 3943 e 9117
|yl J0 buTtiooTun

pue butso[o —

wal1sAs 37T =243 JO
I[sasT =243 3€ =S[td
23 JO buriooTun
pue bursoio
snosuelTNWIS 806G

SNOoQURITNWIS

Ispeay Iapeay
°Tt3d =Yl 2113 =43

JOo Ixajswexed Lpoiltuqns Jo I193swexed

99e3s 8yl I9TITIUSPT Y3 Iopesy : OTRTTEAE clalcie¥s

ut ISTJ13Uspt ON woij JusISIIIP S3TTI =2U3 ON STT3 B ut 2113

uotT3IsTnboe 1oL TSP UuT ASTITIUSPT o3 JO =338

213 uoraisinbor AjITIgeTTRAE

JO UOTIJST=p 2y] buTpesa 90§ 2131 JO butpeaax

(

LS

40

potxad 3noswTl
10 pIaydesI
sjqdwajje JFO

Ioqunu wnuwIxeu

ITS LOS

SHA

JpSa1ITdXa

{PIADOT
pue

pausado STT7J

¢3dwsjgqe
JO SwTI3 3Je

3 97T T
SHA ISTX It PTP ON

6¥vS

A T0S
ON
ON
B B mom\//l walsAs butjexsdo

AeTap 3wt3y ISTX® 30U S90p B8TTI :I011d Y3 JO ws3sAs STTI [yl Jo
Te2A3T 33Ul 3 3[LF Syl buridol pue
0049 butuado ATsnoauej3Tnuis j3e 3dwsjle

.
0GG S3TTF =93 JO JUIJUOD STeTFIpow -

ISTITIUSPT UOoT3TsTnbdEe -
91T 9Yy3 JO =sweu -

:anduT

199

«v mﬂmx//t
pITeA 30U ISTITIUSPT UOTITSTnbO® :I0I1Y
paitnboe jou STTIJF :I0IIH
TT3 H \/\ 609
3yl JO UOIJIS[SP +
JO uOTjewITjuod - Wo31SAS
STTT pburjexsdo syl IO we3SAS
3y JO 2sea[sa 219 walsAs 8TTI 8yl 30 pbutjexado ayj 3Jo
JO UOTJIeWITIUOD - T2AS9T 3yl e 3717 mow‘l//\ we3sAs 8113 Syl Jo
:andang 2yl JO buriooTun TOA®] 93Ul e 2717
pue PUTSOTD 29Ul JO buTtyooTun
919 mHNWWI 719 SNOBURJTTIUTS pue burlsoTo
hv SNO/UERITNUTS —
A3pesy _ Ispeay
wosSAs STTF 8yl 2113 3Yy3
putjeaado syj3 Jo Jo Io3swered cpalalrTugns JO xa3jswexed
wajlsAs 9713 8yl Jo I3peay STt 231e3s 3yl LAI. ISTITIUSPT |Y7] Ispray soTqeTTEA®E 23815
[°2AST 943 1B 91713 U3 Ul 93e3ls Ut ISTITIUSPT | wold JUSLSIILP 1T ¥yl ON aTT3 e ut o1t3
243 JO UOCTIST=3p PpPUE AJTITTIqR]TRARE uotj3Tstnboe 1St3tauept UT ISTITIUIPT °y3 JO =3els
putyoorun ‘bUrsoId °oy4 3yj uoTilrsinboe AJTTIqeTTERAR
SNOSUBR}TNWTS rllmo burtatam JO UOTI}a[9IP 013 syl burpesad syl 10 burpesax

CA 02678186 2009-08-10

LL9 LO9

SHA

ipoITdX®e

potasd j3noswt]
IO payoeax
sjdws3yae JO

Isqunu wnutxew

¢PaYD0T
pue

pousdo a[T3I

cadwenie
JO B|swTjy 13e

1STX2 91TF PTIP

509
\/l 10115 waasis :zoixg W
SHA

SHA ON

709 209 TOS
ON ON
— - it -
mow\//l wa3s8As burtjeIxado
6F9 Aefsp swi] ISTXS 30U S=0p 2113 40444 29Ul Jo wai3sdAs oITI =3yl Jo
| TOAST SY3 3e STTJ 292Ul bUuiooT pue
009 putuado ATsnosuejTnwls 3e jdwsije

059
1/(1 I9TITIUSPT uoIjTstinboe -
91TJ 9yl JO sweu -
:anduT

CA 02678186 2009-08-10

cLL

(_
“Mw me\//; A Bl ~ llJ}/(t

STLt4 wa3sAs (P32 ‘butasydiosp [
231 JO JUusjuod sTgeTJTpoul - butjexsdo syl Jo . ‘UOTSS2XdwoDaP)
STTJ 2yl JO uorjrsinboe 4— waj3sAs 8113 =2U3 3O |— I9pesy ST113
INOY3ITM 27TF 8yl jo buipesx _ I9AST oYl 21e STTIJ oyl 30 sisiswexed mmaﬂwo
aTduts JO UOTJIRWITIUOCD - 2yl Jo burydooTun s1eas 03 Burpaoooe . U3 3
:3nd3no pue BuTsSOTO STT3 aya 3o Apoq poq =4l
JO butpesx
SNO2ULITNWTS a3 Jo bursssooxd .
_ — —— M]
SHA aspesy
cpaiTdxs wajlsis °It3 =43 5
potasd 3noswt) putiexado ay3 IO Jo MWHMHWHM

I0 psysesx
sadwaj33e JO

iTqeIIRAR
°[T3]

44— Wwe3lsds 81T Syl IO

¥ UI 9TTJ
[eaeT 9Yya 3e a1TJ ON .

- Yl FO 23®3S
oTun
ISqUNU WHWTXew 23 JO BUTIDOT AaTTIGeTTENT
B sy3 o Burpes:
wons)/lrl: SNOSURZITNMUTS 90L u3i 3 [P
= _ LOL

SHA

SHA
0TL
\//l pextnboe TTT3s 9TT] :JXIOXIH

cpsIxITdXs

poTasd Jnoswt]
10 payoeax
sjdwa]ile JO

I{qUNU WnuTxeuw

EPe300T
pue

pauado 31173

cidwalje
JO SWT3 3e

1sTX® °TTF PIP

QoL
\/\ I0IIO WIISAS :I0IIH 44—
SHA

SHA ON

POL cOL 10/

ON ON

mont//l. wa3sdhs burtjeasado
1STX9 10U S§30p STTI I0IIH sy1 jo weqsAs ©TJ 9yl JO

IsAST 2y3 3 oT1F oyl buTyooT pue
0051//4 putusdo ATsnosuejTnurts 38 3dwsije

6oL AeTsp swtr3

omb\//l STTIJ =2yl Jo mEmM -
s andurl

CA 02678186 2009-08-10

£ b

TL8

18

608

€18

Y
@

SI1eM]1J0S
ISAISS

808

LO8

908

_l N INZITO J0 ¥FINAWOD | \

5Iem]1JOS

ust
AU LY burssasnoad ejed

s e — v08

I-—————-

9IBM]JOS

AUSTIO butsssnoad ejled

z INZITID J0 mmhbmzow_\/l
- €08

Q/\NS

2IBM1JOS

AUSTTO purtsssooxd eied

T INZIID A0 UAILOJWOD r/l
_ — | Z08

508

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings

