
(12) STANDARD PATENT (11) Application No. AU 2011323848 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Serializing document editing commands

(51) International Patent Classification(s)
G06F 9/44 (2006.01) G06F 17/24 (2006.01)
G06F 17/21 (2006.01)

(21) Application No: 2011323848 (22) Date of Filing: 2011.10.25

(87) WIPO No: W012/061102

(30) Priority Data

(31) Number (32) Date (33) Country
12/939,171 2010.11.04 US

(43) Publication Date: 2012.05.10
(44) Accepted Journal Date: 2016.05.05

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Huang, Jeffrey;Zhang, Dachuan

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 7769810 B1
US 2008/0077848 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2012/061102 A3
10 May 2012 (10.05.2012) W I P0 I P CT

(51) International Patent Classification: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
G06F 17/24 (2006.01) G06F 9/44 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
G06F 17/21 (2006.01) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(21) International Application Number: TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

PCT/US201 1/057611
(84) Designated States (unless otherwise indicated, for every

(22) International Filing Date: kind of regional protection available): ARIPO (BW, GH,
25 October 2011 (25.10.2011) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(25) Filing Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(26) Publication Language: English DK, EE, ES, Fl, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU,

(30) Priority Data: LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

12/939,171 4 November 2010 (04.11.2010) US SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): MI
CROSOFT CORPORATION [US/US]; One Microsoft Declarations under Rule 4.17:

Way, Redmond, Washington 98052-6399 (US). - as to applicant's entitlement to apply for and be granted a

(72) Inventors: HUANG, Jeffrey; c/o Microsoft Corporation, patent (Rule 4.17(ii))

LCA - international Patents, One Microsoft Way, Red- - as to the applicant's entitlement to claim the priority of the
mond, Washington 98052-6399 (US). ZHANG, Dachuan; earlier application (Rule 4.17(ii))
c/o Microsoft Corporation, LCA - International Patents, Published:
One Microsoft Way, Redmond, Washington 98052-6399

(US). - with international search report (Art. 21 (3))

(81) Designated States (unless otherwise indicated, for every - before the expiration of the time limit for amending the
kind of national protection available): AE, AG, AL, AM, claims and to be republished in the event of receipt of
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, amendments (Rule 48.2(h))
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (88) Date of publication of the international search report:
DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN, 19 July 2012
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

(54) Title: SERIALIZING DOCUMENT EDITING COMMANDS

COMMAND02 FIG. 2 ;COMMAND N -202N

BROWSER
202

APPLICATON FRONT-END COMMAND 202C
PROGRAM ->COMMAND SERVER COMMAND -202B

CLIENT COMMAND 2

COMPUTER COMMAND1 '-202A

205
104 - COMMAND STREAM

.4 MEMORY DOCUMENT
BACK-END SERVER DS DISK

118A 11 A

(57) Abstract: A command stream is generated that includes serialized commands for editing a document. The command stream can

o be applied to a modified document to generate a single document that contains modifications to the document made using both a
N Web application and a client application. The command stream can also be utilized to recreate the edited state of a document follow

ing the disconnection from a Web application for editing the document, to load balance a server computer hosting the Web applica
tion even while editing sessions are in progress, to perform an upgrade of a server hosting the Web application while editing sessions
are in progress, and for other purposes.

WO 2012/061102 PCT/US20111/057611

SERIALIZING DOCUMENT EDITING COMMANDS

BACKGROUND

100011 World Wide Web ("Web") applications have been developed that allow the

creation and editing of rich documents. For instance, Web applications are available for

5 creating and editing word processing documents, spreadsheets, presentations, and other

types of documents. These documents might also be created and edited in a compatible

client application. For instance, a word processing client application might be executed on

a desktop or laptop computer and utilized to create a word processing document. The

word processing document might then be edited utilizing a suitable Web application.

10 100021 One problem with current Web applications occurs when a user of the Web

application edits a document simultaneously with the editing of the document by another

user utilizing a client application. In this scenario, two versions of the document are

generated. One version of the document contains the edits made using the Web

application and a second version of the document contains the edits made using the client

15 application. It can be difficult to reconcile the changes between the two versions of the

document.

100031 Another problem with current Web applications occurs when a client

application, such as a Web browser application, becomes disconnected from a server

hosting the Web application. In this scenario, it can be difficult to revert an edited

20 document to its previous state when a connection is reestablished. Consequently, edits to

a document can be lost when a disconnection occurs.

100041 Other problems with current Web applications can occur because it can be

difficult to migrate in-progress editing sessions between server computers. For instance, if

a Web server that implements the Web application and hosts editing sessions becomes

25 overloaded, it can be difficult to migrate in-progress editing sessions to another server to

balance the load. Similarly, it can be difficult to upgrade the Web application on a server

computer that has in-progress editing sessions.

100051 It is with respect to these and other considerations that the disclosure made

herein is presented.

30 SUMMARY

100061 Technologies are described herein for serializing document editing commands.

Through an implementation of the concepts and technologies presented herein, a single

document can be generated that contains modifications to a document made using both a

Web application and a client application. Through an implementation of the concepts and

I

WO 2012/061102 PCT/US20111/057611

technologies presented herein, the edited state of a document can also be recreated

following the disconnection from a Web application. Additionally, servers hosting Web

applications can be load balanced and upgraded even while editing sessions are in

progress.

5 100071 According to one aspect presented herein, a Web application is provided for

creating and editing documents. For instance, in one implementation, the Web application

provides functionality for creating and editing a presentation document using a

conventional Web browser application program. The Web application stores the

document or has access to a network location storing the document.

10 100081 Commands for modifying the document are generated through the Web

browser application program and transmitted to the Web application executing on a server

computer. The Web application receives the commands and serializes the commands.

This might include, for instance, adding data to the commands indicating the time at which

the commands were received and arranging the commands in time order. The serialized

15 commands are then stored in a command stream. The command stream is stored

separately from the document. It should be appreciated that the command stream

represents the difference, which may be referred to herein as a "delta", between the

original document and its current state. Application of the commands stored in the

command stream to the document will result in the current state of the document.

20 100091 According to another aspect, the command stream may be applied to the

document when a request is received via the Web application to save the document. For

instance, when a request is received to save the document, the commands in the command

stream may be applied to the document in serial order (i.e. the order in which the

commands were originally made). The document may then be saved once the commands

25 have been applied to the document.

100101 According to another aspect, the command stream described above may be

utilized to enable co-authoring. For instance, in one example, a client application might

modify a document to create a modified document. The Web application might be utilized

to edit the same document, resulting in the creation of a command stream. In order to

30 reconcile the changes between the two versions of the document, the commands in the

command stream may be applied to the modified document. In this way, the resulting

document includes edits applied to the document by way of the client application and edits

applied to the document by way of the Web application.

2

[0011] According to another aspect, the command stream described above can be utilized

to improve the performance of a Web application. For instance, a Web application may be

configured to maintain a command stream in a volatile memory, such as a Random Access

Memory ("RAM"), for documents as described above. In order to free memory, the

document and the command stream may be stored to a mass storage device, such as a hard

disk drive, and unloaded from the volatile memory. When additional commands are received

for the document, the document may be returned to its current state by applying the stored

command stream to the document. The additional commands may then be serialized into a

command stream in the manner described above.

[0012] According to another aspect, the command stream may be utilized to perform

dynamic load balancing on the server computers that provide the Web application. In this

implementation, one or more highly loaded server computers are identified. In-progress

document editing sessions are then identified on the highly loaded server computers. For

each of the identified editing sessions, the command stream for a document is applied to the

document. The document is then moved to a non-highly loaded server computer. In other

embodiments, the command stream and the document might be moved to the non-highly

loaded server computer without applying the command stream to the document. The server

computer to which the document is moved then takes over responsibility for handling the

editing session.

[0013] According to another aspect, the command stream may be utilized to perform an

uninterrupted upgrade on a server computer that hosts the Web application. In particular, an

in-progress editing session is identified on a server computer that is executing a down level

version of the Web application. The document and command stream associated with the

identified in-progress editing session are then moved to a server computer executing an up

level version of the Web application. The editing session is then resumed at the server

computer to which the document and command stream have been moved. Once all of the in

progress editing sessions on a down level server have been moved in this manner, the Web

application on the server can be upgraded. In one implementation, the commands in the

command stream are applied to the document prior to moving the document to the server

computer executing the up level Web application.

[0013A] In another aspect there is provided a computer-implemented method

comprising performing computer-implemented operations for:

storing a document;

receiving a command to modify the document;

3

serializing the received command;

storing the serialized command in a command stream separate from the document;

identifying one or more highly loaded server computers;

identifying one or more document editing sessions on each of the highly loaded server

computers; and

for each of the identified document editing sessions, applying a command stream to a

document associated with the document editing session and moving the document to a non

highly loaded server computer.

[0013B] In a further aspect there is provided a computer-readable storage medium

having computer-executable instructions stored thereupon which, when executed by a

computer, cause the computer to:

store a document;

receive a command to modify the document;

serialize the received command;

store the serialized command in a command stream separate from the document;

receive a request to save the document; and

in response to receipt of the request, apply the commands in the command stream to

the document in serial order and save the document;

identify one or more highly loaded server computers;

identify one or more document editing sessions on each of the highly loaded server

computers; and

for each of the identified document editing sessions, apply a command stream to a

document associated with the document editing session and move the document to a non

highly loaded server computer.

[0013C] In a further aspect there is provided a computer-implemented method

comprising performing computer-implemented operations for:

storing a document;

receiving a command to modify the document at a first application;

serializing the received command by way of the first application;

storing the serialized command in a command stream separate from the document;

modifying the document by way of a second application to create a modified

document;

applying the serialized commands in the command stream to the modified document

by way of the first application;

3A

identifying one or more highly loaded server computers;

identifying one or more document editing sessions on each of the highly loaded server

computers; and

for each of the identified document editing sessions, applying a command stream to a

document associated with the document editing session and moving the document to a non

highly loaded server computer.

[0014] It should be appreciated that the command stream described herein might also be

utilized for other purposes, such as undo/redo, document recovery, and others. It should also

be appreciated that this Summary is provided to introduce a selection of concepts in a

simplified form that are further described below in the Detailed Description.

3B

WO 2012/061102 PCT/US20111/057611

This Summary is not intended to identify key features or essential features of the claimed

subject matter, nor is it intended that this Summary be used to limit the scope of the

claimed subject matter. Furthermore, the claimed subject matter is not limited to

implementations that solve any or all disadvantages noted in any part of this disclosure.

5 BRIEF DESCRIPTION OF THE DRAWINGS

100151 FIGURE 1 is a software and network architecture diagram showing one

illustrative operating environment for the embodiments disclosed herein;

100161 FIGURE 2 is a software architecture diagram showing aspects of various

components disclosed herein for serializing document editing commands in one

10 embodiment disclosed herein;

100171 FIGURE 3 is a data structure diagram showing aspects of a command stream

generated and utilized in embodiments disclosed herein;

100181 FIGURE 4 is a flow diagram showing one illustrative process for serializing a

command stream according to one embodiment disclosed herein;

15 100191 FIGURE 5 is a data structure diagram showing aspects of one process for

generating a modified document that includes edits made at both a Web application and a

client application in one embodiment disclosed herein;

100201 FIGURE 6 is a flow diagram showing one illustrative process for optimizing

the performance of a Web application using a command stream in one embodiment

20 disclosed herein;

100211 FIGURE 7 is a flow diagram showing one illustrative process for dynamically

load balancing a server computer hosting a Web application using a command stream in

one embodiment disclosed herein;

100221 FIGURE 8 is a flow diagram showing one illustrative process for upgrading a

25 Web application using a command stream in one embodiment disclosed herein; and

100231 FIGURE 9 is a computer architecture diagram showing an illustrative computer

hardware and software architecture for a computing system capable of implementing the

various embodiments presented herein.

DETAILED DESCRIPTION

30 100241 The following detailed description is directed to technologies for serializing

document editing commands. As discussed briefly above, a command stream may be

generated using the technologies described herein that includes serialized commands for

editing a document. The command stream can be applied to a modified document to

generate a single document that contains modifications to the document made using both a

4

WO 2012/061102 PCT/US20111/057611

Web application and a client application. The command stream can also be utilized to

recreate the edited state of a document following the disconnection from a Web

application for editing the document, to load balance a server computer hosting the Web

application even while editing sessions are in-progress, to perform an upgrade of a server

5 hosting the Web application while editing sessions are in-progress, and for other purposes.

100251 While the subject matter described herein is presented in the general context of

program modules that execute in conjunction with the execution of an operating system

and application programs on a computer system, those skilled in the art will recognize that

other implementations may be performed in combination with other types of program

10 modules. Generally, program modules include routines, programs, components, data

structures, and other types of structures that perform particular tasks or implement

particular abstract data types. Moreover, those skilled in the art will appreciate that the

subject matter described herein may be practiced with other computer system

configurations, including hand-held devices, multiprocessor systems, microprocessor

15 based or programmable consumer electronics, minicomputers, mainframe computers, and

the like.

100261 In the following detailed description, references are made to the accompanying

drawings that form a part hereof, and which are shown by way of illustration specific

embodiments or examples. Referring now to the drawings, in which like numerals

20 represent like elements through the several figures, aspects of a computing system and

methodology for serializing document editing commands into a command stream and for

utilizing the command stream will be described.

100271 FIGURE 1 is a software and network architecture diagram showing one

illustrative operating environment for the embodiments disclosed herein. The operating

25 environment 100 illustrated in FIGURE 1 is configured for providing a Web application

114 to a client computer 104 executing a Web browser application program 102. It should

be appreciated that the term "Web application" as utilized herein is intended to encompass

an application that can be accessed and utilized through standard protocols and

technologies such as HTTP, SOAP, asynchronous JAVASCRIPT, and others. The term

30 "Web application" should not be limited only to applications that are available via the

World Wide Web. Rather, a Web application 114 may be accessible through virtually any

type of network 108 including, but not limited to, wide area networks, local area networks,

wireless networks, and other types of networks.

5

WO 2012/061102 PCT/US20111/057611

100281 In the operating environment 100 shown in FIGURE 1, a number of front end

servers 106A-106C are provided to execute a front end component 110. Requests for the

Web application 114 received from the Web browser application program 102 are load

balanced to the front end servers 106A-106C. In this way, a front end server 106A-106C

5 may be assigned for a particular document editing session. Commands generated by the

Web browser application program 102 for a particular editing session are received by a

front end server component 110 on the front end server 106A-106C assigned to the editing

session. These commands are then forwarded to an instance of the Web application 114

executing on one of the back end server computers 112A-112C. The back end server

10 computers 112A-112C might also be load balanced in order to ensure that the Web

application 114 operates in a performant manner.

100291 As also illustrated in FIGURE 1, each of the back end servers 12A-112C

maintains one or more disks 1 16A-1 16C for storing executable program code, such as an

operating system and the Web application 114. The disks 116A-116C might also be

15 utilized to store documents 118A-118C. The documents 118A-118C might also be stored

on another location accessible via the network 108 or another network.

100301 According to one implementation, the Web application 114 provides

functionality for creating and editing one or more document types. For instance, the Web

application 114 may be configured for creating and editing a word processing document, a

20 spreadsheet document, a presentation document, or another type of document. As will be

described in greater detail below, a client application executing on the client computer 104

might also be configured to create and edit document types that are compatible with the

documents 11 8A- 118C generated by the Web application 114. For instance, a document

might be created at the client computer 104 utilizing a client application and then edited by

25 the Web application 114. Similarly, a document might be created at the Web application

114 and then edited utilizing a client application executing on the client computer 104.

100311 It should be appreciated that the operating environment 100 shown in FIGURE

1 is merely illustrative and other types of operating environments might also be utilized.

For instance, in other embodiments, the front end servers 106A-106C may not be utilized.

30 Additionally, in other embodiments, more or fewer back end servers 1 12A-1 12C might

also be utilized. Moreover, although a single client computer 104 is illustrated in FIGURE

1, it should be appreciated that the operating environment 100 shown in FIGURE 1 is

capable of supporting many more client computers 104 simultaneously. Other types of

6

WO 2012/061102 PCT/US20111/057611

operating environments capable of supporting the concepts and technologies described

herein may be apparent to those skilled in the art.

100321 FIGURE 2 is a software architecture diagram showing aspects of various

components disclosed herein for serializing document editing commands in one

5 embodiment disclosed herein. As shown in FIGURE 2, and described briefly above, a

user of the client computer 104 can utilize the Web browser application 102 to interact

with the Web application 114. In particular, a command 202 for modifying a document

118 can be generated at the client computer 104 by a user. For instance, if the document

118 is a presentation document, the command 202 might be for adding a new slide to the

10 presentation, adding a graphical element to the presentation, adding or modifying text in

the presentation, or performing any other type of editing task. When the document 118 is

a word processing document, the command 202 may be for adding text to the document,

formatting text, adding graphics, or performing other edits to the document. It should be

appreciated, therefore, that the term command as utilized herein refers to any type of

15 command for modifying a document.

100331 Each command 202 generated at the client computer 104 includes data

identifying how the edit should be made to the document 118. The data may be specified

utilizing extensible markup language ("XML"), binary encoding, or in another format.

For instance, if the command 202 is for editing text in a document 118, the data stored in

20 the command 202 may describe the location within the document at which the edit should

occur and how the edit should be performed. If the command 202 is for adding a slide to a

presentation, the command 202 might include data indicating the position at which the

new slide is to be added, the title of the new slide, and other information. Other types of

commands might also be represented similarly.

25 100341 As discussed briefly above, a command 202 is generated at the client computer

104 and transmitted to a front end server, such as the front end server 106A. In turn, the

front end server 106A transmits the command 202 to the appropriate back end server 112,

such as the back end server 1 12A. As discussed briefly above, each back end server 112

executes an instance of the Web application 114. As also discussed briefly above, each

30 back end server 112 maintains, or has access to, a disk storage device 116 storing the

document 118 to which the command 202 should be applied. Rather than applying the

command 202 directly to a document 118, however, the Web application 114 maintains a

command stream 206.

7

WO 2012/061102 PCT/US20111/057611

100351 As will be discussed in greater detail below, the command stream 206 includes

a serialized sequence of commands 202A-202N. In order to serialize the commands 202,

the Web application 114 may add data to the commands 202A-202N indicating the

absolute or relative time at which the commands were generated. Other types of data,

5 such as sequence number, might also be used to serialize the commands 202A-202N. The

commands 202A-202N are then stored in the command stream 206 in sequential order. In

the example shown in FIGURE 2, the command stream 206 is stored in a volatile memory

204 of a back end server 112. It should be appreciated that, in other embodiments, the

command stream 206 may be stored on a disk 116.

10 100361 FIGURE 3 is a data structure diagram showing aspects of a command stream

206 generated and utilized in embodiments disclosed herein. In particular, FIGURE 3

shows the commands 202A-202N which have been serialized and placed in sequential

order according to the order in which the commands 202A-202N were generated. It

should be appreciated, therefore, that the command stream 206 storing the commands

15 202A-202N represents a delta between the document 118 prior to modification and its

current state. As will be described in greater detail below, the Web application 114 can

apply the commands 202A-202N to the command stream 206 in serial order in order to

generate the current state of the document 118. Details regarding this process and several

applications of this process will be described below with reference to FIGURES 4-8.

20 100371 FIGURE 4 is a flow diagram showing one illustrative routine 400 for

serializing a command stream according to one embodiment disclosed herein. It should be

appreciated that the logical operations described herein with respect to FIGURE 4 and the

other FIGURES are implemented (1) as a sequence of computer implemented acts or

program modules running on a computing system and/or (2) as interconnected machine

25 logic circuits or circuit modules within the computing system. The implementation is a

matter of choice dependent on the performance and other requirements of the computing

system. Accordingly, the logical operations described herein are referred to variously as

operations, structural devices, acts, or modules. These operations, structural devices, acts

and modules may be implemented in software, in firmware, in special purpose digital

30 logic, and any combination thereof. It should also be appreciated that more or fewer

operations may be performed than shown in the figures and described herein. These

operations may also be performed in a different order than those described herein.

100381 The routine 400 begins at operation 402, where the Web application 114

receives a command 202. In response to receiving a command, the routine 400 proceeds

8

WO 2012/061102 PCT/US20111/057611

to operation 404 where the Web application 114 serializes the command 202. This might

include, for instance, adding data to the command 202 indicating the absolute or relative

time at which the command 202 was received. Other types of mechanisms for serializing

the command 202 might also be utilized. Once the command 202 has been serialized, the

5 routine 400 proceeds from operation 404 to operation 406.

100391 At operation 406, the serialized command 202 is stored in the command stream

206. The routine 400 then proceeds to operation 408 where the Web application 114

determines whether a request has been received to save the document 118 corresponding

to the command stream. If not, the routine 400 proceeds to operation 402, described

10 above, where additional commands 202 are received and serialized in the manner

described above. If a request is received at operation 408 to save the document 118, the

routine 400 proceeds to operation 410.

100401 At operation 410, the commands 202A-202N in the command stream 206 for

the current document 118 are applied to the document 118 in serial order. In this manner,

15 the commands 202A-202N stored in the command stream 206 are applied to the document

118 in the order in which they were generated. The document 118 following application

of the command stream 206 represents the current state of the document 118. Once the

command stream 206 has been applied to the document 118, the routine 400 proceeds to

operation 412 where the document 118 is persisted to disk. The routine 400 then proceeds

20 to operation 402, where additional commands 202 are received, serialized, and stored in

the command stream 206.

100411 FIGURE 5 is a data structure diagram showing aspects of one process for

generating a modified document that includes edits made at both a Web application and a

client application in one embodiment disclosed herein. As discussed briefly above, a

25 desktop client application 502 might be utilized on the client computer 104 that is capable

of editing the documents generated by the Web application 114. For instance, as

discussed briefly above, a word processing desktop client application 502 might be

utilized to edit a document 118A generated by the Web application 114. Similarly, the

Web application 114 might be utilized to edit a document 118A created by the desktop

30 client application 502. In the example shown in FIGURE 5, the desktop client application

502 has been utilized to make modifications 504 to an original document 118A. The

resulting document is a modified document 1 18D.

100421 In one scenario, the Web browser application program 102 may utilize the Web

application 114 to also make modifications to the original document I I8A. As discussed

9

WO 2012/061102 PCT/US20111/057611

above, however, the modifications to the original document 118A made by way of the

Web application 114 are represented in a command stream 206. For instance, in the

example shown in FIGURE 5, a command stream 206 has been generated that includes

two commands 202A-202B.

5 100431 In order to reconcile the changes between the version of the document

generated by the Web application 114 and the version of the document generated by the

desktop client application 502, the Web application 114 may be configured to apply the

commands 202A-202B in the command stream 206 to the modified document 118D. In

this way, an updated document 118E is generated that includes the modifications 504

10 made to the document 118A by the desktop client application 502 and that also includes

the modifications made to the document by way of the Web application 114. By

generating an updated document 118E in this manner, the concepts and technologies

disclosed herein permit concurrent editing ("co-editing") utilizing a desktop client

application 502 and a Web application 114.

15 100441 It should be appreciated that conflicts might exist in the updated document

118E. For instance, the desktop client application 502 might be utilized to delete a portion

of text in the document 1 18A. Concurrently, the Web application 114 might be utilized to

edit the text deleted by way of the desktop client application 502. In this example, a

conflict will exist when the command stream 206 is applied to the modified document

20 118D. It should be appreciated that various mechanisms might be utilized to resolve the

conflict. For instance, a user may be asked to choose between the conflicting edits. Other

mechanisms might also be used to resolve a conflict between modifications made to a

document at a client application 502 and at a Web application 114.

100451 FIGURE 6 is a flow diagram showing one illustrative routine 600 for

25 optimizing the performance of a Web application 114 using a command stream 206 in one

embodiment disclosed herein. The routine 600 begins at operation 602, where the

commands 202 received at the Web application 114 are serialized into the command

stream 206. The routine 600 then proceeds from operation 602 to operation 604 where the

document 118 and its associated command stream 206 are saved to a disk 116. Once the

30 document 118 and the command stream 206 have been saved, the routine 600 proceeds to

operation 606 where the command stream 206 is unloaded from the memory 204. As

illustrated in FIGURE 2, the command stream 206 might be stored in a volatile memory

204 of a back end server 112. By unloading the command stream 206 from the volatile

memory 204, the memory 204 may be freed for other uses.

10

WO 2012/061102 PCT/US20111/057611

100461 From operation 606, the routine 600 proceeds to operation 608 where the Web

application 114 determines whether an additional command 202 has been received for the

saved document 118. If not, the routine 600 proceeds to operation 608 where another such

determination is made. If a command is received, the routine 600 proceeds to operation

5 610 where the document 118 is loaded from disk. The command stream stored on disk

may also be loaded into a volatile memory 204 of the back end server 112.

100471 The routine 600 then proceeds to operation 612 where the stored command

stream 206 is applied to the document 118 in the manner described above. As discussed

above, this results in a document 118 that represents the current state of the document

10 following application of all the commands in the command stream 206. The routine 600

then proceeds to operation 614 where the newly received command is serialized in the

command stream 206 in manner described above. From operation 614, the routine 600

proceeds to operation 616, where it ends.

100481 FIGURE 7 is a flow diagram showing one illustrative routine 700 for

15 dynamically load balancing a server computer 112 hosting a Web application using a

command stream in one embodiment disclosed herein. The routine 700 begins at

operation 702, where a highly loaded back end server 112A-112C is identified. A highly

loaded server computer is a server computer that is experiencing a relatively high

utilization of its resources, such as CPU cycles, memory utilization, mass storage

20 utilization, and /or high utilization of other types of resources. Once a highly loaded back

end server 112A-1 12C has been identified, the routine 700 proceeds to operation 704.

[00491 At operation 704, one or more editing sessions on the identified highly loaded

back end server 1 12A-1 12C to be moved to another back end server are identified. The

in-progress editing sessions to be moved to another server 112 may be identified based

25 upon the resources utilized by the editing session, randomly, or in another fashion. Once

one or more in-progress editing sessions to be moved to another server 112 have been

identified, the routine 700 proceeds to operation 706.

100501 At operation 706, some or all of the commands in the command stream 206 for

the identified editing sessions may be applied to the associated document. In this manner,

30 each document may be brought to its current state prior to moving the document to another

back end server 112. It should be appreciated that this process is optional and that the

command stream 206 may not be applied to a document associated with an in-progress

editing session prior to moving the editing session to another back end server 112.

11

WO 2012/061102 PCT/US20111/057611

100511 From operation 706, the routine 700 proceeds to operation 708 where the

documents 118 and command streams 206 for the identified in-progress editing sessions

are moved to a non-highly loaded back end server 112A-112C. The back end server

11 2A- 112C to which the in-progress editing sessions are moved may be identified based

5 upon the utilization of resources by the destination back end server, such as CPU

utilization, memory utilization, disk utilization, and / or utilization of other types of

resources. The back end server 1 12A-1 12C to which the in-progress editing sessions have

been moved then takes over responsibility for handling the in-progress editing sessions. In

this manner, any new commands received for the in-progress editing sessions will be

10 handled by the destination back end server 112A-112C. It should be appreciated,

therefore, that the back end servers 112A-1 12C may be dynamically load balanced without

interrupting in-progress editing sessions. From operation 708, the routine 700 proceeds to

operation 710, where it ends.

100521 FIGURE 8 is a flow diagram showing one illustrative routine 800 for

15 upgrading a Web application using a command stream in one embodiment disclosed

herein. The routine 800 begins at operation 802, where an up-level version of the Web

application 114 is deployed on back end servers 112 not currently supporting any editing

sessions. The routine 800 then proceeds to operation 804 where the upgraded servers 112

are enabled to begin hosting editing sessions. Once the up level servers 112 have been

20 enabled for hosting editing sessions, the routine 800 proceeds to operation 806.

100531 At operation 806, the in-progress editing sessions on a back end server 112

executing a down level Web application 114 are identified. For each identified in

progress editing session, the commands 202 in the command stream 206 are applied to the

associated document. The routine 800 then proceeds to operation 808 where the

25 documents for the in-progress editing sessions are moved to the upgraded servers 112

executing the up level version of the Web application 114. The server computers to which

the documents are moved then take over responsibility for hosting the in-progress editing

session.

[00541 Once all of the in-progress editing sessions have been moved off of a down

30 level back end server 112, the routine 800 proceeds to operation 810 where the down level

server computers may be upgraded with an up-level version of the Web application 114.

The routine 800 then proceeds from operation 810 to operation 812, where it ends. In

view of the above, it should be appreciated that the Web application 114 maybe upgraded

without disturbing in-progress editing sessions.

12

WO 2012/061102 PCT/US20111/057611

100551 FIGURE 9 is a computer architecture diagram showing an illustrative computer

hardware and software architecture for a computing system capable of implementing the

various embodiments presented herein. The computer architecture shown in FIGURE 9

illustrates a conventional desktop, laptop computer, or server computer and may be

5 utilized to execute the various software components described herein.

100561 The computer architecture shown in FIGURE 9 includes a central processing

unit 902 ("CPU"), a system memory 908, including a random access memory 914

("RAM") and a read-only memory ("ROM") 916, and a system bus 904 that couples the

memory to the CPU 902. A basic input/output system ("BIOS") containing the basic

10 routines that help to transfer information between elements within the computer 900, such

as during startup, is stored in the ROM 916. The computer 900 further includes a mass

storage device 910 for storing an operating system 918, application programs, and other

program modules, which will be described in greater detail below.

100571 The mass storage device 910 is connected to the CPU 902 through a mass

15 storage controller (not shown) connected to the bus 904. The mass storage device 910 and

its associated computer-readable storage media provide non-volatile storage for the

computer 900. Although the description of computer-readable media contained herein

refers to a mass storage device, such as a hard disk or CD-ROM drive, it should be

appreciated by those skilled in the art that computer-readable storage media can be any

20 available computer storage media that can be accessed by the computer 900.

100581 By way of example, and not limitation, computer-readable storage media may

include volatile and non-volatile, removable and non-removable media implemented in

any method or technology for storage of information such as computer-readable

instructions, data structures, program modules or other data. For example, computer

25 readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM,

flash memory or other solid state memory technology, CD-ROM, digital versatile disks

("DVD"), HD-DVD, BLU-RAY, or other optical storage, magnetic cassettes, magnetic

tape, magnetic disk storage or other magnetic storage devices, or any other non-transitory

medium which can be used to store the desired information and which can be accessed by

30 the computer 900.

100591 It should be appreciated that the computer-readable media disclosed herein also

encompasses communication media. Communication media typically embodies computer

readable instructions, data structures, program modules or other data in a modulated data

signal such as a carrier wave or other transport mechanism and includes any information

13

WO 2012/061102 PCT/US20111/057611

delivery media. The term "modulated data signal" means a signal that has one or more of

its characteristics set or changed in such a manner as to encode information in the signal.

By way of example, and not limitation, communication media includes wired media such

as a wired network or direct-wired connection, and wireless media such as acoustic, RF,

5 infrared and other wireless media. Combinations of the any of the above should also be

included within the scope of computer readable media. Computer-readable storage media

does not encompass communication media.

100601 According to various embodiments, the computer 900 may operate in a

networked environment using logical connections to remote computers through a network

10 such as the network 920. The computer 900 may connect to the network 920 through a

network interface unit 906 connected to the bus 904. It should be appreciated that the

network interface unit 906 may also be utilized to connect to other types of networks and

remote computer systems. The computer 900 may also include an input/output controller

912 for receiving and processing input from a number of other devices, including a

15 keyboard, mouse, or electronic stylus (not shown in FIGURE 9). Similarly, an

input/output controller may provide output to a display screen, a printer, or other type of

output device (also not shown in FIGURE 9).

100611 As mentioned briefly above, a number of program modules and data files may

be stored in the mass storage device 910 and RAM 914 of the computer 900, including an

20 operating system 918 suitable for controlling the operation of a networked desktop, laptop,

or server computer. The mass storage device 910 and RAM 914 may also store one or

more program modules. In particular, the mass storage device 910 and the RAM 914 may

store the Web browser application program 102 and/or the Web application 114, and the

other software components described above. The mass storage device 910 and RAM 914

25 may also store other program modules and data, such as the command stream 206.

100621 In general, software applications or modules may, when loaded into the CPU

902 and executed, transform the CPU 902 and the overall computer 900 from a general

purpose computing system into a special-purpose computing system customized to

perform the functionality presented herein. The CPU 902 may be constructed from any

30 number of transistors or other discrete circuit elements, which may individually or

collectively assume any number of states. More specifically, the CPU 902 may operate as

one or more finite-state machines, in response to executable instructions contained within

the software or modules. These computer-executable instructions may transform the CPU

14

WO 2012/061102 PCT/US20111/057611

902 by specifying how the CPU 902 transitions between states, thereby physically

transforming the transistors or other discrete hardware elements constituting the CPU 902.

100631 Encoding the software or modules onto a mass storage device may also

transform the physical structure of the mass storage device or associated computer

5 readable storage media. The specific transformation of physical structure may depend on

various factors, in different implementations of this description. Examples of such factors

may include, but are not limited to: the technology used to implement the computer

readable storage media, whether the computer readable storage media are characterized as

primary or secondary storage, and the like. For example, if the computer readable storage

10 media is implemented as semiconductor-based memory, the software or modules may

transform the physical state of the semiconductor memory, when the software is encoded

therein. For example, the software may transform the states of transistors, capacitors, or

other discrete circuit elements constituting the semiconductor memory.

100641 As another example, the computer readable storage media may be implemented

15 using magnetic or optical technology. In such implementations, the software or modules

may transform the physical state of magnetic or optical media, when the software is

encoded therein. These transformations may include altering the magnetic characteristics

of particular locations within given magnetic media. These transformations may also

include altering the physical features or characteristics of particular locations within given

20 optical media, to change the optical characteristics of those locations. Other

transformations of physical media are possible without departing from the scope and spirit

of the present description, with the foregoing examples provided only to facilitate this

discussion.

100651 Based on the foregoing, it should be appreciated that technologies for

25 serializing document editing commands into a command stream and for utilizing the

command stream have been presented herein. Although the subject matter presented

herein has been described in language specific to computer structural features,

methodological acts, and computer readable media, it is to be understood that the

invention defined in the appended claims is not necessarily limited to the specific features,

30 acts, or media described herein. Rather, the specific features, acts and mediums are

disclosed as example forms of implementing the claims.

100661 The subject matter described above is provided by way of illustration only and

should not be construed as limiting. Various modifications and changes may be made to

the subject matter described herein without following the example embodiments and

15

applications illustrated and described, and without departing from the true spirit and scope of

the present invention, which is set forth in the following claims.

[0067] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or "comprising",

will be understood to imply the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step or group of integers or steps.

[0068] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as, an

acknowledgement or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general knowledge

in the field of endeavour to which this specification relates.

16

What is claimed is:

1. A computer-implemented method comprising performing computer

implemented operations for:

storing a document;

receiving a command to modify the document;

serializing the received command;

storing the serialized command in a command stream separate from the document;

identifying one or more highly loaded server computers;

identifying one or more document editing sessions on each of the highly loaded server

computers; and

for each of the identified document editing sessions, applying a command stream to a

document associated with the document editing session and moving the document to a non

highly loaded server computer.

2. The computer-implemented method of claim 1, further comprising:

receiving a request to save the document; and

in response to receiving the request, applying the commands in the command stream

to the document in serial order and saving the document.

3. The computer-implemented method of claim 2, wherein a first application

modifies the document to generate a modified document, and wherein a second application

applies the commands in the serialized command stream to the modified document.

4. The computer-implemented method of claim 3, wherein the first application

comprises a desktop client application, and wherein the second application comprises a web

application.

5. The computer-implemented method of claim 1, further comprising:

saving the document and the command stream to a mass storage device;

unloading the command stream from a volatile memory;

receiving a second command;

in response to receiving the second command, loading the document from the mass

storage device, applying the command stream to the document, serializing the second

command, and storing the serialized second command in the command stream separate from

the document.

6. The computer-implemented method of any one of claims 1 to 5, further

comprising:

17

identifying an editing session on a server computer executing a down level application

program for editing the document;

moving the document and the command stream associated with the editing session to

a server computer executing an up level application program for editing the document; and

resuming the editing session on the server computer executing the up level application

program for editing the document.

7. The computer-implemented method of claim 6, further comprising applying

the commands in the command stream to the document in serial order prior to moving the

document to the server computer executing the up level application program.

8. A computer-readable storage medium having computer-executable

instructions stored thereupon which, when executed by a computer, cause the computer to:

store a document;

receive a command to modify the document;

serialize the received command;

store the serialized command in a command stream separate from the document;

receive a request to save the document; and

in response to receipt of the request, apply the commands in the command stream to

the document in serial order and save the document;

identify one or more highly loaded server computers;

identify one or more document editing sessions on each of the highly loaded server

computers; and

for each of the identified document editing sessions, apply a command stream to a

document associated with the document editing session and move the document to a non

highly loaded server computer.

9. The computer-readable storage medium of claim 8, wherein a first application

modifies the document to generate a modified document, and wherein a second application

applies the commands in the serialized command stream to the modified document.

10. The computer-readable storage medium of claim 9, wherein the first

application comprises a desktop client application, and wherein the second application

comprises a web application.

11. The computer-readable storage medium of claim 10, having further computer

executable instructions stored thereupon which, when executed by the computer, cause the

computer to:

save the document and the command stream to a mass storage device;

18

unload the command stream from a volatile memory of the computer;

receive a second command;

in response to receiving the second command, load the document from the mass

storage device, apply the command stream to the document, serialize the second command,

and store the serialized second command in the command stream separate from the

document.

12. The computer-readable storage medium of any one of claims 9 to 11, having

further computer-executable instructions stored thereupon which, when executed by the

computer, cause the computer to:

identify an editing session on a server computer executing a down level application

program for editing the document;

move the document and the command stream associated with the editing session to a

server computer executing an up level application program for editing the document; and

resume the editing session on the server computer executing the up level application

program for editing the document.

13. The computer-readable storage medium of claim 12, having further computer

executable instructions stored thereupon which, when executed by the computer, cause the

computer to apply the commands in the command stream to the document in serial order

prior to moving the document to the server computer executing the up level application

program.

14. A computer-implemented method comprising performing computer

implemented operations for:

storing a document;

receiving a command to modify the document at a first application;

serializing the received command by way of the first application;

storing the serialized command in a command stream separate from the document;

modifying the document by way of a second application to create a modified

document;

applying the serialized commands in the command stream to the modified document

by way of the first application;

identifying one or more highly loaded server computers;

identifying one or more document editing sessions on each of the highly loaded server

computers; and

19

for each of the identified document editing sessions, applying a command stream to a

document associated with the document editing session and moving the document to a non

highly loaded server computer.

15. The computer-implemented method of claim 14, further comprising:

receiving a request at the first application to save the document; and

in response to receiving the request, applying the commands in the command stream

to the document in serial order and saving the document.

16. The computer-implemented method of claim 15, further comprising:

saving the document and the command stream to a mass storage device;

unloading the command stream from a volatile memory;

receiving a second command;

in response to receiving the second command, loading the document from the mass

storage device, applying the command stream to the document, serializing the second

command, and storing the serialized second command in the command stream separate from

the document.

17. The computer-implemented method of any one of claims 14 to 16, further

comprising:

identifying an editing session on a server computer executing a down level application

program for editing the document;

applying the commands in the command stream to a document associated with the

editing session;

moving the document associated with the editing session to a server computer

executing an up level application program for editing the document; and

resuming the editing session on the server computer executing the up level application

program for editing the document.

20

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

